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Given the growing interest in gravitational-wave and cosmological parity-violating effects in dynamical
Chern-Simons (dCS) gravity, it is crucial to investigate whether the scalar-gravitational Pontryagin term in
dCS gravity persists when formulated in the context of the Uð1ÞB−L anomaly in the standard model (SM).
In particular, it has been argued that dCS gravity can be reduced to Einstein gravity after “rotating away”
the gravitational-Pontryagin coupling into the phase of the Weinberg operator—analogous to the
rotation of the axion zero mode into the quark mass matrix. We find that dCS gravity is nontrivial if the
scalar field ϕ has significant spacetime dependence from dynamics. We provide a comprehensive
consideration of the dCS classical and quantum symmetries relevant for embedding a dCS sector in the
SM. We find that, because of the baryon/lepton number chiral gravitational anomaly, the scalar-
Pontryagin term cannot be absorbed by a field redefinition. Assuming a minimal extension of the SM,
we also find that a coupling of the dCS scalar with right-handed neutrinos induces both the scalar-
Pontryagin coupling and an axionlike phase in the dimension-five Weinberg operator. We comment on
the issue of gauging the Uð1ÞB−L, the observational effects with these two operators present for
upcoming experiments, and the origin of dCS gravity in string theory.
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I. INTRODUCTION

Given that the electroweak sector of the standard model
(SM) maximally violates parity, it is natural to investigate
whether parity violation occurs in sectors beyond the SM.
In particular, the gravitational sector has been under such
observational and theoretical investigation over the past
several years [1–9]. The primary phenomenological moti-
vation is that parity-violating modifications of general
relativity (GR) lead to a myriad of distinct astrophysical
and cosmological observables.
As originally demonstrated in Ref. [10], the cosmic

microwave background (CMB) is sensitive to parity violation
through its EB and TB power spectra, where E and B denote
its polarization modes. In fact, utilizing Galactic foreground
emission as a polarization-angle calibrator [11–13], there

are recent hints that Planck’s EB angular power spectrum
shows such a signature [14,15]. In addition, there are
further indications that the four-point galaxy correlation
function is parity violating [16,17], although the CMB’s
four-point correlators yield no analogous signal [18,19].
Finally, it is possible that parity violation may be encoded
in the large-scale correlation of galaxy spins, as explored in
Refs. [20–23]. Clearly, as such parity-sensitive data accu-
mulates, the need for well-motivated parity-breaking grav-
ity theories increases.
The simplest and most theoretically motivated effective

theory of gravity that encodes parity violation is dynamical
Chern-Simons (dCS) gravity.1 There are different motiva-
tions to study such a theory. The most basic one is the
effective theory perspective, which states one could add all
possible terms compatible with symmetries. Thus, dCS
gravity is a valid candidate for a classical scalar-tensor
modification ofGR. This approach to dCS has been explored
in the literature before (see Ref. [1] and references therein).
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1An earlier nondynamical version that violates the strong
equivalence principle of Chern-Simons gravity was first put forth
in Ref. [24]. See also [25–27] and references therein for works on
the Lorentz CS form in supersymmetric theories.
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dCS gravity was the framework within which the cosmic
baryon/lepton number (B-L) asymmetry was instantiated in
inflationary models through the production of parity
asymmetry of chiral gravitational waves which sourced a
B-L asymmetry by the end of inflation [28]. It was later
demonstrated that these gravitational waves can induce a
scalar four-point (trispectrum) that contributes to the
primordial large-scale parity violation in galactic distribu-
tions [29]. In the strong gravity regime, such as compact
binary systems, dCS gravity leads to distinct waveforms in
the propagation and sourcing of gravitational waves as well
as the phenomena of scalarization [30,31].
It is therefore important to consider how dCS gravity

connects with the standard model and its logical exten-
sions. From the perspective of modified theories of
gravity, such as fðRÞ theories, the principle of general
covariance is enough to formulate it. This is the case of
versions of dCS gravity that emerge as an effective theory
of four-dimensional (4D) heterotic string theory, and there
is no need to relate it directly to the standard model.
However, dCS gravity has a term where a pseudoscalar
couples to the gravitational Chern-Simons form, which
also encodes the B-L global anomaly2 in the standard
model. This structure has a close semblance to the
axion coupling to the Yang-Mills Pontryagin density.
For the latter case, in the presence of massless quarks
and when the axion is stabilized at a value θ, a field
redefinition of the quark fields can eliminate the θFF̃
coupling, rendering the CP-violating effects ignorable. In
this paper, we investigate to what extent and how these
axion features apply to the dCS pseudoscalar. This is
relevant for any SM extension in which the dCS scalar-
Pontryagin coupling appears after integrating out heavy
fermions.
The paper is organized as follows. In the next section, we

discuss the global shift symmetry of dCS gravity and use
analogous axion results to comment on what to expect in
the quantum gravitational regime. In Sec. III, we show
that dCS gravity is nontrivial even after including
fermions, highlighting some features relevant to the
coupling with SM fermions. In Sec. IV, we propose an
extension of the SM where a dCS sector appears after
integrating out right-handed neutrinos. We conclude in
Sec. V with a discussion on the combined shift and B-L
symmetry of the model and its gauging. Some aspects of
the baryonic and leptonic number anomalies in the SM
are summarized in the Appendix.
Conventions.—We set ℏ ¼ c ¼ 1. Moreover, we work

with the mostly plus metric-signature convention and the
Weyl (chiral) basis for the Dirac matrices.

II. DCS GRAVITY AND AXIONS

A. Continuous shift symmetry

The dCS action is

SdCS½gμν;ϕ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
∂μϕ∂

μϕ−λϕR̃μνρσRμνρσ

�
; ð1Þ

where gμν is the spacetime metric with g its determinant, ϕ
is the dCS pseudoscalar, R is the Ricci scalar, Rμνρσ is the
Riemann tensor with R̃μνρσ its Hodge dual, and λ the dCS
coupling constant.
Under the global transformation ϕðxμÞ → ϕðxμÞ þ χ,

Eq. (1) changes by a constant shift since the last term
can be written as the derivative of the gravitational Chern-
Simons (CS) current Kμ,

R̃μνρσRμνρσ ¼ 2ϵμνρσ∂μ

�
tr

�
ω½ν∂ρωσ� þ

2

3
ω½νωρωσ�

��

≡∇μKμ; ð2Þ

where ϵμνρσ are the contravariant components of the Levi-
Civita tensor and the trace is taken over the indices of the
Lorentz-algebra valued spin connection ωμ

a
b. The equa-

tions of motion will be invariant under constant scalar
shifts. We will call this shift symmetry Uð1ÞdCS. Its
associated Noether current is

jμdCS ¼ −∂μϕþ λKμ; ð3Þ

which satisfy

∇μj
μ
dCS ¼ 0 ð4Þ

upon using ϕ’s equation of motion □ϕ − λR̃R ¼ 0.3

For field theories in a flat spacetime with vanishing
boundary conditions, Eq. (4) guarantees the existence of a
conserved charge. In curved spacetime, a conserved Noether
charge is obtained if we assume a globally hyperbolic and
asymptotically flat spacetime. In this case, we then integrate
Eq. (4) over a spacetime volume V foliated by spacelike
surfaces Σt whose boundaries ∂Σt are two-spheres with a
very large radius (compared to the maximum curvature scale
inside V), where t is the parameter of the timelike curves
perpendicular to Σt. We have

2We shall call a classical symmetry anomalous if the
path integral measure is not invariant under the symmetry
transformation.

3We note that the SdCS is not strictly invariant under global ϕ
shifts because the dCS Lagrangian changes by a total derivative.
Symmetries satisfying this property are often referred to as
quasisymmetries, so a UdCSð1Þ transformation is more properly
referred to as a quasisymmetry of the action, although we will
make no such distinction in what follows.
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0 ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p ∇μjμ ¼
Z
∂V

d3x
ffiffiffiffiffiffi
jhj

p
nμjμ

¼
Z
Σt1

dSj0 −
Z
Σt2

dSj0 þ
Z
R×S2

dSniji: ð5Þ

Note that jμ is defined up to a term Δjμ that vanishes at the
boundary ofV. If the last integral in the second line of Eq. (5)
vanishes, then we have that

Q ¼
Z
Σt

dSj0 ð6Þ

is independent of Σt and thus is conserved. Typically, it is
assumed that niji → 0 asymptotically such that the last
integral in Eq. (5) vanishes andwe have charge conservation.
Let us now apply these facts to dCS gravity. Assuming

that ∂iϕ vanishes at the boundary, only the gravitational CS
current will contribute to the integral of niji. However, the
spin connection will be pure gauge on the cylinder at
infinity, and we can choose a gauge where its time
component ω0 vanishes there [32]. In such a case, the
CS contribution to nijidCS is null. Then, the conserved
charge is

QdCS ¼
Z
Σt

dSðϕ̇þ λK0Þ: ð7Þ

This charge is precisely the momentum of ϕ, with the
contribution K0 coming from the fact that the Lagrangian
contains a term proportional to λϕ̇K0. If QdCS were gauge
invariant, the expression above would be independent of
the gauge choice ω0j∂Σt

¼ 0. As shown below, QdCS

changes under large Lorentz gauge transformations.
Under a Lorentz transformation Λ, we have that the
gravitational CS current transforms as Kμ → K0μ, where

K0μ ¼ Kμ − 2ϵμνρσtr

�
∂νð∂ρΛΛ−1ωσÞ

þ 1

3
∂νΛΛ−1

∂ρΛΛ−1
∂σΛΛ−1

�
: ð8Þ

It follows that [33]

Q0 ¼ Q −
2

3
λ

Z
Σt

dSϵ0ijktr½∂iΛΛ−1
∂jΛΛ−1

∂kΛΛ−1� ð9Þ

and thus

Q0
dCS ¼ QdCS − 16π2λνðΛÞ; ð10Þ

where νðΛÞ is the winding number of the corresponding
Lorentz transformation (that might be nonvanishing even
withΛðxiÞ → 1 asymptotically at infinity). In particular, we
have that the Noether charge is only invariant under

transformations such that νðΛÞ ¼ 0, i.e., for transformations
continuously connected to the identity. But the charge
transforms nontrivially for large Lorentz transformations.
Equation (10) then shows that the charge QdCS associated
with global shifts in the dCS scalar transform nontrivially
under largegauge transformationwhile still being conserved.
Some of the above results are analogous to axions

coupled to non-Abelian gauge fields [34–37]. To better
understand what can be applied to the gravitational case, we
shall review some aspects of axions in the next section.

B. Non-Abelian axions

We wish to understand what happens with the shift
symmetry and the conserved charge when we quantize the
scalar ϕ in theory. Because all the results above have
analogs for axions and their coupling to gauge fields, we
will first consider the system

S ¼
Z

d4x
�
−
1

2
∂μa∂μa − λatrF̃μνFμν

�
; ð11Þ

which includes an axionlike field a coupled to a SU(2)
gauge field Aa

μ via the term proportional to λ. We can
consider this system in Minkowski space and Cartesian
coordinates for simplicity since curvature is unimportant
for the axion discussion in this section. Classically, the
action above has the global shift symmetry a → aþ c with
conserved current

jμ ¼ −∂μaþ λCμ; ð12Þ

where Cμ is the Chern-Simons current of the gauge field

Cμ ¼ 2ϵμνρσtr

�
Aν∂ρAσ þ

2

3
AνAρAσ

�
; ð13Þ

and the trace is now taken over the adjoint of the gauge
group. The Noether charge is

Qa ¼
Z
Σ
dSðȧþ λC0Þ; ð14Þ

wherewe chose the gauge A0 ¼ 0without loss of generality.
Under a gauge transformation Aμ → g−1Aμgþg−1∂μg where

gðxiÞ ¼ eifðrÞr̂·τ ð15Þ

with τa the generators of SU(2) and fðrÞ → 2πn as r → ∞,
the charge Qa transforms as [33,38]

Q0
a ¼ Qa − 16π2λnðgÞ: ð16Þ

This gauge dependence does not introduce any issues
because once we fix the background gauge field configu-
ration, the system will not be invariant under large gauge
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transformations with a nontrivial winding number. To see
that explicitly, note that a given background configuration
Aμðt; xiÞ should approach a pure gauge one as r → ∞, and
we can choose it to be of the form (15) with fðrÞ → 2πm at
infinity. In other words, the homotopy class of the gauge
configuration is part of the system’s definition so that large
gauge transformations would change the system altogether.
Thus, by definition, large gauge transformations cannot be
a symmetry of the system, and it is no surprise that such a
gauge transformation changes Qa.
The conservation of the homotopy-class dependent Qa

implies that the dynamical evolution cannot change the
winding number of the background configuration Aμ

ðνÞ. In
fact, even if we promoteAμ to a dynamical field, there are no
solutions to the equations of motion in the Lorentzian
signature that would allow a change in the winding number
[32]. This also guarantees that if Aμ is pure gauge asymp-
totically at t → �∞, the action is invariant under global a
shifts: we have

S½aþ χ� ¼ S½a� − λχ

Z
d4xtrF̃F; ð17Þ

but

Z
d4xtrF̃F ¼

Z
d4x∂μCμ ¼

Z
d3xC0

����
t¼∞

t¼−∞

¼ 32π2½nðt ¼ þ∞Þ − nðt ¼ −∞Þ� ¼ 0; ð18Þ

since the homotopy class of the gauge field does not change
in time.
However, if Aa

μ is promoted to a dynamical field that
should also be quantized, the argument in the paragraph
above cannot be applied. If we also quantize the gauge field,
we cannot exclude the possibility of quantum tunneling
between gauge configurations of different homotopy classes.
This is precisely what happens in quantum chromodynamics
(QCD) and general non-Abelian gauge theories, as man-
ifested by instanton solutions. This is the reason why the
vacuum structure of gauge theories is nontrivial [38].
With a quantized gauge field, the system cannot be fixed

in a given homotopy class because there is always a
probability for the gauge field to tunnel to configurations
of different classes. In other words, the partition function
includes a sum over the instantons connecting different
homotopy classes,

Z ¼
X
ν

Z
½dμðνÞdAðνÞda� expðiSgaugeÞ expðiθνÞ

× exp

�
i
Z �

−
1

2
trF2 −

1

2
ð∂aÞ2 − λaF̃F

��
; ð19Þ

where we wrote the (homotopically trivial) gauge fixing
and Fadeev-Popov contributions in Sgauge and ½dμðνÞ�. Then,
the vacuum state of the whole system depends on θ, but all

physical observables would be the same regardless of the
vacuum θ we use to compute them. In the quantum theory
defined above, the specific value of theta is unphysical
because of the shift symmetry at the quantum level: since

ν ¼ 1

32π2

Z
d4xF̃F; ð20Þ

a shift in a, which should not change any physical
observable, induces a shift in θ. Another way of seeing
this is by looking at howQa acts on a given θ vacuum of the
pure gauge sector (in the absence a, there is no shift
symmetry and θ is observable). Under a gauge trans-
formation in the homotopy class n ¼ 1, we have

jθi → e−iθjθi: ð21Þ

So, since Qa transforms as Eq. (16), we have [33]

exp

�
iθ0

16π2λ
Qa

�
jθi ¼ jθ þ θ0i: ð22Þ

As Qa is conserved (commutes with the Hamiltonian),
different theta vacua are degenerated in energy and thus are
physically indistinguishable.
This degeneracy between the choice of θ and the zero

mode (constant part) of a has a different nature than the usual
quantum symmetries. Consider, for instance, the symmetry
breaking potential VðΦÞ ¼ λΦðjΦj2 − μ2Φ=2λΦÞ2 for the
complex scalar field ΦðxÞ ¼ rðxÞeiαðxÞ. In this case, a
vacuum expectation value for rðxÞ spontaneously breaks
the symmetry while α parametrizes the vacuum manifold,
with shifts in α being the nonlinear realizations ofU(1) phase
rotation of the complex scalar field. If we think of a as a
Goldstone mode after some phase transition [as is the case
in the Peccei-Quinn (PQ) proposal], then shifts around
the vacuum manifold at constant θ are generated by the
CS-independent part of Qa, which we will call Q̃a:

Qa ¼ Q̃a þQCS; Q̃a ¼
Z

dSȧ: ð23Þ

Due to Eq. (22), Q̃a andQCS are not individually conserved,
and so the conservation of Qa implies that Q̃a is not
conserved: shifts of the vacuum manifold for a given value
of θ are not symmetries of the θ invariant quantum theory.
Instanton effects explicitly break the continuous θ symmetry
transformations. Therefore, there are no Goldstone bosons
associated with this instanton induced explicit symmetry
breaking. Note that it is a mistake to claim that the axion is a
Goldstone boson associated with the anomalous breaking by
these instanton effects.
These arguments are at the core of ’t Hooft’s solution to

the U(1) problem in QCD [39,40]. The discussion about
how the U(1) symmetry is affected by nonperturbative
effects is very similar to the chiral symmetry of massless
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fermions coupled to non-Abelian gauge fields. The stan-
dard chiral rotation combines with the instanton effects to
make physics independent of θ. Equivalently, the chiral
rotation alone is explicitly broken by instantons.
Returning to dCS gravity, we can apply the following

non-Abelian axion results to the dCS pseudoscalar: (i) The
dCS action has a continuous constant shift (quasi)sym-
metry with an associated divergent-free current jμdCS. (ii) If
gravity is quantized in the path integral for the theory, the
CS-independent part of the total UdCSð1Þ charge is not
conserved due to gravitational instanton effects.4 (iii) The
total charge QdCS (7) is conserved, but not invariant under
homotopically nontrivial gauge transformations.
So, we see that the Uð1ÞdCS shift symmetry is always

present, while the CS-independent part of the charge Q̃dCS
is only conserved in flat spacetime in the absence of
gravitational instantons (which are absent at the semi-
classical level). In that regime, Q̃dCS is not conserved
because the local coupling of ϕ with the gravitational
Pontryagin density changes the dynamical evolution of the
metric and the dCS scalar. For instance, in regions where
R̃R is nontrivial, it will source ϕ. This does not mean the
symmetry under ϕ translations is broken: the total charge
QdCS is conserved (even after quantizing ϕ). Similarly, one
does not worry about nontrivial topological effects when
using the axion coupling to F̃F to compute the axion-
photon interactions or birefringence effects [15,42,43].
In the next discussion, we shall couple a Dirac fermion

with dCS and show that gravitational instantons do not affect
a combination of the dCS-shift and fermion-axial currents.

III. ADDING FERMIONS

Before addressing SM fermions, we first consider a
single Dirac fermion ψ in addition to the dCS action,

S½eμa;ϕ;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
∂μϕ∂

μϕ

−λϕR̃μνρσRμνρσ − ψ̄eμaγa
�
∂μ þ

1

4
ωab
μ γab

�
ψ

�
;

ð24Þ

where eμa is thevierbein field and γab ¼ γ½aγb� are the Lorentz
group generators for Dirac fermions. This classical theory
has the global symmetry group Uð1ÞdCS × Uð1ÞV × Uð1ÞA.
The new vector and axial U(1)’s are phase and chiral phase
transformations of the fermion, ψ → eiαψ and ψ → eiβγ5ψ ,
respectively. Note that the fermion does not transform under
ϕ shifts. The new Noether currents are the ordinary vector
and axial currents,

jμV ¼ iψ̄γμψ ; jμA ¼ iψ̄γμγ5ψ ; ð25Þ

which are classically conserved upon using the equations of
motion of the fermion.
If we consider this theory at the quantum level, the

currents will satisfy

∇μ

�
hjμAi −

1

192π2
Kμ

�
¼ 0; ð26aÞ

∇μðhj̃μdCSi þ λKμÞ ¼ 0; ð26bÞ

∇μhjμVi ¼ 0: ð26cÞ

The appearance of Kμ in the divergence of jμA is due to a
nontrivial path-integral Jacobian under axial transforma-
tions. Given its dependence on the curvature tensor, which
has the same structure as the ϕ-curvature coupling in dCS,
one might wonder if a chiral rotation can modify the value
of λ. In other words, there is a linear combination of the
scalar shift and chiral rotation that is not affected by
instanton effects at the quantum level, and one might
wonder whether we can use such a combined U(1) to hide
the dCS scalar coupling inside the fermion chiral phase. If
so, the pseudoscalar-Pontryagin coupling in dCS gravity
would not be observable. This is not the case, as we shall
see below, since a constant chiral rotation cannot make a
whole dynamic coupling disappear.

We write the path integral for the quantum theory as

Z½e;ω� ¼ eiSEH
Z

½dϕdψ̄dψ � exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ − λϕR̃μνρσRμνρσ − ψ̄eμaγa
�
∂μ þ

1

4
ωab
μ γab

�
ψ

�	
; ð27Þ

where we brought the Einstein-Hilbert action SEH contribution to outside the path integral. Under the field redefinition

ψðxÞ → ψ̃ðxÞ ¼ eiβðxÞγ5ψðxÞ; ψ̄ðxÞ → ¯̃ψ ¼ ψ̄ðxÞeiβðxÞγ5 ; ð28Þ

4See Ref. [41] for a discussion on the gravitational theta sector.
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we have ½dψ̄dψ � → ½d ¯̃ψdψ̃ � ¼ ½dψ̄dψ �J½β�, where [44,45]

J½β� ¼ exp

�
−i

Z
d4x

ffiffiffiffiffiffi
−g

p βðxÞ
192π2

R̃μνρσRμνρσ

�
: ð29Þ

Together with the fact that Z½e;ω� does not change by a change of integration variables, this result implies Eq. (26a).
That Z½e;ω� is invariant also explains why there is no choice of βðxÞ in the Jacobian that kills the ϕR̃R term in the action,
as can be seen from

Z½e;ω� ¼ eiSEH
Z

½dϕd ˜̄ψdψ̃ � exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ − λϕR̃μνρσRμνρσ − ˜̄ψeμaγa
�
∂μ þ

1

4
ωab
μ γab

�
ψ̃

�	

¼ eiSEH
Z

½dϕdψ̄dψ � exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ −
�
λϕþ β

192π2

�
R̃μνρσRμνρσ − ψ̄eμaγa

�
∂μ þ

1

4
ωab
μ γab

�
ψ

− ∂μβj
μ
A

�	
; ð30Þ

so, even if we choose βðxÞ ¼ −192π2λϕ, we will find

Z½e;ω� ¼ eiSEH
Z

½dϕdψ̄dψ � exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ − ψ̄eμaγa
�
∂μ þ

1

4
ωab
μ γab

�
ψ − 192π2λϕ∇μj

μ
A

�	

¼ eiSEH
Z

½dϕdψ̄dψ � exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ − ψ̄eμaγa
�
∂μ þ

1

4
ωab
μ γab

�
ψ − λϕR̃μνρσRμνρσ

�	
; ð31Þ

where to get the second equality we used the fact that, inside
the path integral, the axial current satisfies Eq. (26a). So, we
cannot simply set λ to zero, and the ϕR̃R coupling of dCS is
quantum mechanically nontrivial even after the coupling
with fermions. Equivalently, we could have redefined
ϕ → ϕ − ð192π2λÞ−1β in the last line of Eq. (30), keeping
the R̃R coupling.
One redefinition that can kill some part of ϕ, however, is

to assume a constant β. In this case, the last term inside the
exponent of the last line in Eq. (30) will not contribute, and
thus, we cannot recover a R̃R term from it. This is because a
field redefinition of the form Eq. (28) with a constant β is a
genuine global transformation. Thus, quantum mechani-
cally, the (constant) zero mode ϕ0 of ϕðxμÞ can be absorbed
into the chiral phase of the fermions. Although such a phase
is not observable, phase differences are, so λ might still be
measurable across regions where ϕ0 changes abruptly (e.g.,
domain wall solutions). More interestingly, if ψ has a mass,
only a combination of ϕ0 and the mass phase will be
observable, and any measurement or observation sensible
to the phase of the mass and ϕ0 will also constrain the value
of λ. Note that the mass term’s explicit chiral symmetry
breaking will not affect these conclusions. On top of that,
the results above are naturally extended for couplings with
multiple fermions.
The results in this section are a direct consequence of the

fact that the path integral is invariant under redefinitions of
the integrating fields. Our goal here was to explicitly check

that if one wants to use the nontrivial Jacobian (anomaly) to
remove the CS coupling with ϕ, then, by consistency, one
cannot neglect that ∇μj

μ
A ≠ 0, which ends up reintroducing

the CS coupling. The same calculations also allow us to
conclude that, when there is a mass term for the fermions,
ϕ0 alone is not physical since only a combination of the
zero mode of ϕ and the mass matrix phase is observable.

IV. A UV COMPLETION OF A DCS SECTOR
IN THE SM

In this section, we will propose a renormalizable four-
dimensional model in which a dCS sector appears after
integrating right-handed neutrinos Ψ in an extension of the
SM. We start by identifying the dCS scalar as the phase of a
complex scalar whose Yukawa coupling with Ψ gives them
a Majorana mass after spontaneous symmetry breaking. We
then couple the sterile right-handed neutrinos with the left-
handed neutrinos via another Yukawa coupling and deduce
the effective field theory (EFT) for the latter and the dCS
pseudoscalar below the symmetry-breaking scale.

A. dCS gravity from integrating out heavy fermions

Similar to axions arising from a PQ symmetry breaking,
we can realize the dCS pseudoscalar as a Goldstone boson
associated with the spontaneous breaking of a U(1)
symmetry. The remaining constant scalar shift is then a
nonlinear realization of the global symmetry below the
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breaking scale. We review this picture in the following
model, recently discussed in Ref. [46] (see also Ref. [47]
for the non-Abelian axion case),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Ψ̄eμaγa

�
∂μ þ

1

4
ωcd
μ γcd

�
Ψ − j∂Φj2

−yΨ̄ðΦPR þ Φ̄PLÞΨ − VðjΦjÞ
�
; ð32Þ

where PL;R ¼ ð1� γ5Þ=2 are the chiral projectors and
VðjΦjÞ is a symmetry-breaking potential for the complex
field Φ whose explicit form is not important in the
following. The action in Eq. (32) is invariant under the
global transformation

Ψ → eiβγ5Ψ; Ψ̄ → Ψ̄eiβγ5 ; Φ → e−2iβΦ: ð33Þ
However, the associated path integral is not invariant as the
symmetry is anomalous at the quantum level due to the

gravitational contribution to the chiral anomaly. This sym-
metry is spontaneously broken by the vacuum expecta-
tion value of Φ. Writing ΦðxμÞ ¼ ð1= ffiffiffi

2
p Þ½vþ ρðxμÞ�×

exp½iϕðxμÞ=v�, with v a constant, we obtain

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Ψ̄eμaγa

�
∂μ þ

1

4
ωcd
μ γcd

�
Ψ

−
1

2
ð∂ρÞ2 − 1

2
ð1þ ρ=vÞ2ð∂ϕÞ2

−
yffiffiffi
2

p ðvþ ρÞΨ̄ðeiϕ=vPR þ e−iϕ=vPLÞΨ − VðρÞ
�
; ð34Þ

where ϕ is massless as expected from a Goldstone mode. To
obtain dCS gravity, we now integrate out the fermion Ψ and
massive scalar ρ. In doing so, we obtain an EFT for the
pseudoscalar ϕ below the symmetry-breaking scale,

Z½ϕ� ¼
Z

½dΨ̄dΨdρ� exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Ψ̄

�
eμaγa∇μ þ

yffiffiffi
2

p ðvþ ρÞeiðϕ=vÞγ5
�
Ψ−

1

2
ð∂ρÞ2 − 1

2
ð1þ ρ=vÞ2ð∂ϕÞ2 −VðρÞ

�	
;

ð35Þ

wherewe simplified theYukawa coupling by rearranging the phases times chiral projectors into exp½iðϕ=vÞγ5�. Using the field
redefinition

Ψ → e−i
ϕ
2vγ5Ψ; Ψ̄ → Ψ̄e−i

ϕ
2vγ5 ; ð36Þ

we get

Z½ϕ� ¼
Z

½dΨ̄dΨdρ� exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Ψ̄

�
eμaγa∇μ þ

yffiffiffi
2

p ðvþ ρÞ − i
2v

∂μϕγ
μγ5

�
Ψ −

1

2
ð∂ρÞ2 − 1

2
ð1þ ρ=vÞ2ð∂ϕÞ2

− VðρÞ þ 1

192π2
ϕ

2v
RR̃

�	
; ð37Þ

where the last term in the exponential appears due to the
nontrivial Jacobian of the path integral measure under the
change of variables above and we identified the spinor-
covariant derivative ∇μΨ ¼ ð∂μ þ ωab

μ γab=4ÞΨ. To leading
order, the path integral picks the classical saddle where
Ψ ¼ 0 ¼ ρ, so the path integral then becomes

Z½ϕ�∝ exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂ϕÞ2þ ϕ

384π2v
RR̃þ� � �

�	
;

ð38Þ
where dots stand for higher-derivative corrections sup-
pressed by the fermionic and ρ masses.5 We see that the

dCS gravity term is obtained from integrating-out heavy
fermions. This model is thus analogous to the Kim-Shifman-
Vainshtein-Zakharov (KSVZ) model for the QCD axion
[50,51].Again, the shift symmetryof thedCSpseudoscalar is
a nonlinear realization of the nonanomalous phase trans-
formation ofΦ in Eq. (33). It is worth noting that the theories
that defined the action in Eqs. (34) and (37) are dual since
their path integrals are the same (they differ by a fermionicΨ
field redefinition), with the latter having no λϕRR̃ coupling.
However, oncewe integrate outΨ, there is no fermionic field
redefinition left, and the λϕRR̃ coupling is a genuine low-
energy operator of the effective action in Eq. (38).

B. Coupling a dCS sector to the SM

In what follows, we wish to make a connection with the
standard model where the neutrinos get a Majorana mass

5Since the fermionic path integral was done in curved space,
there will also be extra curvature contributions; see Refs. [48,49]
and references therein.
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term at energies below the symmetry-breaking scale, with ϕ
appearing as a phase in such a mass term. We do so after
assuming that the heavy fermionΨ plays the role of a right-
handed sterile neutrino that couples with the lepton and
Higgs doublets, L and H, respectively,

L ¼
�
Lν

Le

�
; H̃ ¼

�
ϕ0�

−ϕþ�

�
; ð39Þ

as

ΔL ¼ −ỹðL̄ H̃ PRΨþ Ψ̄PLH̃†LÞ; ð40Þ

where Lν, Le, and Ψ are Majorana spinors:

Lf ¼
�

fL
iσ2f�L

�
; Ψ ¼

�
−iσ2ν�R
νR

�
: ð41Þ

Note that we need the conjugated H̃ instead of the Higgs
doublet HT ¼ ðϕ0 ϕþ Þ in Eq. (40) to get a hypercharge
neutral coupling. We consider a single lepton flavor for
simplicity since a generalization for all three generations is
straightforward (see the discussion section).

With the new Yukawa coupling (40) and the kinetic
terms for L and H, the action in Eq. (32) becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Ψ̄∇Ψ − ∂μΦ∂

μΦ̄ −
1

2
L̄∇L

−j∂Hj2 − yΨ̄ðΦPR þ Φ̄PLÞΨ

−ỹðL̄ H̃ PRΨþ Ψ̄PLH̃†LÞ − VðjΦjÞ
�
: ð42Þ

This action is invariant under Eq. (33) provided L trans-
forms as

L → eiβγ5L: ð43Þ

Note that since both L andΨ are four-component Majorana
spinors, the global chiral transformation acting on those is a
phase rotation associated with their fermionic number. We
discuss further aspects of this symmetry in the discussion
section. After performing the field redefinition in Eq. (36),
the path integral is now

Z ¼
Z

½dΨ̄dΨda� exp
�
i
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Ψ̄
�
eμaγa∇μ þ

yffiffiffi
2

p ðvþ ρÞ − i
2v

∂μϕγ
μγ5

�
Ψ −

1

2
ð∂ρÞ2

− j∂Hj2 − L̄eμaγa∇μL −
1

2
ð1þ ρ=vÞ2ð∂ϕÞ2 − VðρÞ þ 1

192π2
ϕ

2v
RR̃

− ỹ

�
L̄ H̃ e−i

ϕ
2vγ5PRΨþ Ψ̄PLe−i

ϕ
2vγ5H̃†L

��	
: ð44Þ

We thus see that χ̄ ¼ −ỹ L̄ H̃ e−i
ϕ
2vγ5 acts as a source for

the right-hand part of Ψ. Moreover, using L̄ ¼ Lc ¼ LTC,
where C is the charge conjugation matrix, we have

Ψ̄PLe−i
ϕ
2vγ5H̃†L ¼ −ΨTPLe−i

ϕ
2vγ5H̃†L̄T; ð45Þ

and so η ¼ e−i
ϕ
2vγ5H̃†L acts as a source for the left-hand part

of Ψ. But since Ψ is a Majorana spinor, its left and right
components are related, and both χ and η contribute as
sources to the path integral of Ψ. Hence, the coupling in
Eq. (40) will give the contribution

−
1

2
χ̄ðD −MÞ−1PRχ −

1

2
η̄ðD −MÞ−1PLη

¼ −
1

2mΨ
ðχ̄PRχ þ η̄PLηÞ þ � � � ð46Þ

to the effective Lagrangian. Note that the charge conjuga-
tion of the chiral sources fixes χ and η,

χ ≡ Cχ̄T ¼ −ỹe−i
ϕ
2vγ5H̃TL; ð47Þ

η̄≡ ηTC ¼ L̄H̃�e−i
ϕ
2vγ5 : ð48Þ

The effective action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂ϕÞ2 − j∂Hj2 − 1

2
L̄eμaγa∇μL

−
ỹ2

2mΨ

�
ei

ϕ
vL̄ H̃ PRH̃TLþ e−i

ϕ
vL̄H̃�PLH̃†L

�

−
ϕ

384π2v
RR̃þ � � �

�
; ð49Þ

where the heavy fermion mass mΨ can be read from
Eq. (35) to be mΨ ¼ yv=

ffiffiffi
2

p
. The resulting effective action

has a modified Weinberg operator [52] that includes a
coupling with ϕ.
Notice that the pseudoscalar arises as a complex phase in

the neutrino mass matrix and as a coupling to the
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gravitational Pontryagin density. A measurement of the
mass phase will not constrain its coupling to the gravita-
tional Pontryagin density because strong gravitational
effects from a compact binary can source a large gravita-
tional Pontryagin density which will source large
gradients of ϕ.
This is analog to QCD, as the axion couples to chromo-

electric and magnetic field via the Pontryagin density,
astrophysical sources may enhance the axion, and a similar
story applies to dCS gravity. Here, there are two observable
effects to consider. First, an Earth-based measurement of
the dynamical field can constrain the value of the pseudo-
scalar, which is predicted to be small due to the fact that the
Pontryagin term is zero in Minkowski spacetime. However,
in compact binary systems strong gravity can give a
nonvanishing RR̃ which will in turn source gravitational
waves and a nonvanishing pseudoscalar amplitude. Also, in
models of Higgs inflation, the electroweak symmetry is
broken, and the phase can also be nonvanishing in the early
universe. In these strong gravity, early universe regimes the
mass matrix phase will also be nonvanishing but obviously
difficult to measure. Still, it may be possible to study the
effects of the phase and its impact on neutrino cosmology.
We leave this possibility for future investigation.

V. DISCUSSION AND CONCLUSION

In this paper, we have discussed many symmetry
aspects of dCS gravity and anomalies that are relevant
when trying to get the dCS scalar-gravity coupling from a
UV theory. Most of the necessary concepts and results
have analogs in the physics of axions and their coupling
with gauge fields. We reviewed some known results on
axions in detail to better understand their relation and
applicability to the gravitational case.We also proposed an
extension of the SMmodel that gives origin to a dCS sector
and the coupling of the dCS pseudoscalar with neutrinos at
low energies. In the rest of this section, we discuss the
model’s symmetry and its gauging.
The modified Weinberg operator in Eq. (49) breaks the

lepton number symmetry (as the SM lepton number
symmetry alone is anomalous, we consider the baryonic
minus lepton number symmetry). But there is a combi-
nation of the Uð1ÞB−L and the ϕ shift symmetry that
leaves the modified Weinberg term invariant and is a
quasisymmetry of the action Eq. (49). However, such a
symmetry is anomalous, and the ϕRR̃ coupling cannot be
eliminated by redefining L in the path integral for the
same reasons explained in Sec. III: such a redefinition
would bring a term proportional to the divergence of the
L’s chiral current (after integration by parts), giving back
the dCS coupling. We comment on how the symmetry
combination above can be gauged from the low-energy
effective perspective in the Appendix.
On the other hand, the action in Eq. (42) is invariant

under the simultaneous rotation of Ψ, L, and Φ (with

appropriate charges) in Eqs. (33) and (43), and such
symmetry is nonanomalous because the gravitational con-
tribution of L and Ψ to the anomaly cancel each other.
Hence, we can gauge this nonanomalous symmetry com-
bination, which we call Uð1ÞB−L−ϕ. This begs the question
of what happens with this gauge symmetry after integrating
Ψ. At energies well below theΨmass, the only fermion left
in the spectrum is the chiral L, which contributes to the
anomaly of the gauge symmetry. As discussed in Ref. [53],
despite this anomaly, this effective chiral gauge theory is
unitary (but not renormalizable) because the gauge boson
acquires its mass via a Higgs mechanism: the gauge
symmetry is nonlinearly realized as a shift symmetry of
the gauge boson longitudinal mode. The main consequence
of this fact is that ϕ appears in the EFT as the longitudinal
mode of the gauge boson in a Stueckelberg ðAμ;ϕÞ sector
and hence gets eaten by the gauge field in the unitary
gauge. Moreover, before integrating Ψ, the Lagrangian
includes the term Aμj

μ
Ψ ¼ AμiΨ̄γμγ5Ψ and the gauge trans-

formation of the effective action necessary to select the
unitary gauge will give rise to a term proportional to ϕ∂μj

μ
Ψ,

which after the Ψ path integration will appear in the
effective Lagrangian as ϕðRR̃ − FF̃Þ. The gauge variation
of this term cancels the nontrivial Jacobian from the L’s
fermionic measure, making the effective action gauge
invariant at the quantum level.
The results in the previous sections can be straightfor-

wardly generalized to an arbitrary number of heavy
fermions. If we consider the case of all left-handed SM
leptons Li and three sterile right-handed neutrinos Ψi,
we have the simplest Majoron model [54,55], where ϕ play
the role of a Majoron.6 The y and ỹ Yukawa couplings
will be promoted to matrices yij and ỹij with flavor indices,
and the Weinberg operator in the effective Lagrangian
would read

−ỹimM−1
mnỹnj



ei

ϕ
vL̄iH̃PRH̃TLjþe−i

ϕ
vL̄iH̃�PLH̃†Lj

�
; ð50Þ

withe M−1
mn ¼ ymnv=

ffiffiffi
2

p
. An interesting question is how ϕ

affects the seesaw mechanism, a topic that we leave for
future investigations.
The Majoron model above has the global nonanomalous

symmetry Uð1ÞB−L−ϕ that, if gauged, would hide the dCS
scalar ϕ in the longitudinal mode of a massive gauge
boson.7 Note that if we start with a different number of
heavy fermions, unmatched with the three left-handed
neutrinos, we cannot straightforwardly gauge Uð1ÞB−L−ϕ
because this symmetry will be anomalous from the onset.
Moreover, even for three right-handed neutrinos, gauging

6See Refs. [56,57] for a proposal of identifying the QCD axion
with the Majoron.

7For gauged Majoron models, see Refs. [58,59].
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the symmetry is a choice,8 and there is nothing inconsistent
with having a global, nonanomalous, Uð1ÞB−L−ϕ. In this
case, ϕ is a dynamical field that couples with the
Pontryagin density. This is analogous to the PQ symmetry
and axions: although there are models where Uð1ÞPQ is
gauged and the axion is eaten to give the gauge boson a
mass, this has not precluded the search for axions in particle
physics, astrophysics, and cosmology.
Although there are motivations for gauging global

symmetries from the string theory perspective, the same
point of view also motivates us to rethink the origin of the
dCS gravity: we know that a dCS sector should appear in
any heterotic four-dimensional compactification due to the
Green-Schwarz mechanism (see discussion in Ref. [1]).
This is because ϕ can be identified with the zero mode of
the ten-dimensional Kalb-Rammond field on the internal
space, and this identification is compactification indepen-
dent (ϕ is referred to as the model-independent axion) [60].
More explicitly, starting with the bosonic part of the
heterotic string action in the Einstein frame9

S ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂

μϕ −
e−ϕ

2
jH̃3j2

−
e−ϕ=2κ210
30g2

trjF2j2 þ � � �
�
; ð51Þ

where H̃3 satisfies the Bianchi identity dH̃3 ¼
ðα0=4ÞðtrR2 ∧ R2 − trF2 ∧ F2Þ. Dimensionally reducing
over a six-dimensional internal manifold yields the kinetic
term for a two-form field in four dimensions, which is dual
to an axion aðxÞ defined by ð�daÞμνρ ¼ e−2ΦðH3Þμνρ
(where Φ is the four-dimensional dilaton). However, due
to the Bianchi identity for H̃3, this axion couples with
trR2 ∧ R2, which reproduces the dCS pseudoscalar cou-
pling with RR̃. For more details, see [1,60].
Therefore, in the most basic example of how to get a dCS

gravity sector from string theory, the way the global dCS
shift symmetry becomes local is by a promotion to the
gauge symmetry of a two-form at energies close to and
larger than the compactification scale. Thus, at least from a
theoretical perspective, a dCS sector can appear at low
energies without any inconsistency between its global
symmetry and quantum gravity. More realistically, since
ϕ pairs with the dilaton, it gets a potential (generated by
nonperturbative effects; see Ref. [61] for a review) that
breaks its continuous global symmetry down to a discrete
group, again in analogy to the PQ axion, and so it cannot be
the longitudinal mode of any gauge field.
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APPENDIX: BARYON AND LEPTON NUMBER
ANOMALIES IN THE SM

In this appendix, we state some results on global
anomalies in the standard model and comment on how
the anomaly changes after introducing a dCS sector. The
electroweak sector is a chiral gauge theory due to the chiral
coupling of SUð2ÞL gauge bosons with quarks and leptons.
As it is well known, chiral gauge theories have gauge
anomalies that have to be canceled, and such is the case in
the standard model after summing over all representations
and hypercharges of the fermions. Chiral gauge theories
have also a fermion number global anomaly, and in the SM,
the global baryonic and leptonic number symmetries are
indeed anomalous. This is because under redefinitions of
the form

ψLðxÞ → ψ̃LðxÞ ¼ eiαðxÞψLðxÞ; ðA1aÞ

ψRðxÞ → ψ̃RðxÞ ¼ eiαðxÞψRðxÞ; ðA1bÞ

the left and right contributions to the Jacobian of the path
integral measure do not cancel when only one component
(left or right) couples with the gauge field. So, the number
current jμnðxÞ ¼ iψ̄ðxÞγμψðxÞ will satisfy [45]

∂μhjμni ¼ ∂μðhiψ̄Lγ
μψLi þ hiψ̄Rγ

μψRiÞ

¼ � trðTaTbÞ
16π2

F̃a
μνFμνb; ðA2Þ

where the negative (positive) sign case is for when only the
left (right) chirality couples with the gauge field. The trace
is over the representation of the ψ chirality that contributes
to the anomaly. In the SM, only the left-hand part of the
quark and lepton field doublets q and l couple with SUð2ÞL:

SSM ⊃
Z

d4x

�
−q̄iLγμ

�
∂μ þ igAa

μ
σa

2

�
qiL

− l̄iLγμ

�
∂μ þ igAa

μ
σa

2

�
liL

�
: ðA3Þ

The indices in the doublets are generation indices and the
fundamental-representation indices are suppressed. For
instance,

8We thank Michael Peskin for bringing this point to our
attention.

9The dots denote not only fermion contributions and curvature
corrections, but also any possible higher-order dilaton contribu-
tions from the Weyl redefinition used to go from the string frame
to the Einstein frame.
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l1L ¼
�
νe

eL

�
; q1L ¼

�
uL
dL

�
: ðA4Þ

The SM baryon number current satisfies

∂μhjμBi ¼
3Nc

32π2
F̃a
μνFμνa; ðA5Þ

whereNc is the number of quark colors. The lepton number
current will also be anomalous

∂μhjμLi ¼
3

32π2
F̃a
μνFμνa: ðA6Þ

The factor of 3 in the numerator of the anomalies above
comes from the contributions of the 3 quark and lepton
generations. This tells us that the baryon and lepton
numbers are not conserved and, in particular, their asso-
ciated U(1) transformations cannot be straightforwardly
gauged.
However, the combination jμB−L ¼ jμB=3 − jμL satisfies

∂μhjμB−Li ¼
Nc − 3

32π2
F̃a
μνFμνa; ðA7Þ

and so is conserved in the SM, since Nc ¼ 3 (note that the
factor of 1=3 in the baryonic contribution to jμB−L is because
quarks have a baryon number B ¼ 1=3). So, the standard
model has a potential nonanomalous global Uð1ÞB−L
symmetry. In beyond SM models, one can add extra
breaking effects for Uð1ÞB and Uð1ÞL individually, but
the Uð1ÞB−L should be nonanomalous. One can even
contemplate gauging such a symmetry.
The discussion above is modified when we consider the

standard model in curved spacetimes. Since there are no
right-handed neutrinos, there is a mismatch in the number
of left and right chiralities in the fermionic sector. Recall
that a single chiral fermion contributes to the gravitational
anomaly of an otherwise nonanomalous current as [44]

∇μhiψ̄L;Rγ
μψL;Ri ¼ � 1

384π2
R̃μνρσRμνρσ; ðA8Þ

where the negative (positive) sign appears for the left (right)
chirality contribution. So, for a non-chiral fermion with
propagating left and right-parts, we have

∇μhiψ̄γμψi ¼ ∇μ½hiψ̄Lγ
μψLi þ hiψ̄Rγ

μψRi� ¼ 0; ðA9aÞ

∇μhiψ̄γμγ5ψi ¼ ∇μ½hiψ̄Lγ
μψLi − hiψ̄Rγ

μψRi�

¼ 1

192π2
R̃μνρσRμνρσ: ðA9bÞ

Let us apply these results to jμB−L in the SM. The left-
handed contribution to the lepton number overcomes
the right-handed one, such that the total lepton number
current satisfies

∇μhjμLi ¼
3

32π2
F̃a
μνFμνa þ 3

384π2
R̃μνρσRμνρσ: ðA10Þ

where the factor of 3 in the numerator of the gravitational
contribution is the excess of left over right neutrinos.
However, since the number of left- and right-handed quarks
is the same, there is no gravitational contribution to the jμB
anomaly. Hence

∇μhjμB−Li ¼
3

384π2
R̃μνρσRμνρσ: ðA11Þ

In other words, since the lepton number current anomaly
has a gravitational contribution while the baryonic current
does not possess one, the gravitational contribution to the
anomaly in jμB−L cannot be canceled.
Now, after introducing the dCS sector, following the

discussion of Sec. III, there will be a combination of
Uð1ÞdCS and Uð1ÞB−L that is not affected by instanton
effects at the quantum level; i.e., it is nonanomalous. We
will call this combination Uð1ÞB−L−ϕ. Then, a constant part
of ϕ can always be absorbed in the phase of the fermions,
and only a combination of such a zero mode and the phase
of the mass matrix determinant is observable. This is very
similar to the CP violation in QCD with the zero mode of ϕ
playing the role of the QCD θ.
In some extensions of the standard model, the Uð1ÞB−L is

ultimately gauged, leading to new effects. While this can
be done in flat space, the gravitational contribution to the
chiral anomaly must be consistently canceled for the
gauging in curved spacetimes. However, with an added
dCS sector, the nonanomalous Uð1ÞB−L−ϕ can seemingly
be gauged without any constraints on the background,
which looks attractive, for instance, if one wants to
contemplate quantizing gravity. Such a procedure is subtle
because despite Uð1ÞB−L−ϕ being nonanomalous at the
quantum level, there is no contribution from the chiral
anomaly to the conservation of the classical jμB−L−ϕ current.
In other words, the partition function would be gauge
invariant but not the classical action. Notwithstanding,
global anomalous symmetries can be gauged at the
expense of nonrenormalizability [53,62], so the resulting
gauge theory should be an EFT valid only below some
cutoff scale.
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