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Using spacetime Gaussian test functions, we find closed-form expressions for the smeared Wightman
function, Feynman propagator, retarded and advanced Green’s functions, causal propagator, and symmetric
propagator of a massless scalar field in the vacuum of Minkowski spacetime. We apply our results to
localized quantum systems that interact with a quantum field in Gaussian spacetime regions and study
different relativistic quantum information protocols. In the protocol of entanglement harvesting, we find a
closed-form expression for the entanglement that can be acquired by probes that interact in Gaussian
spacetime regions and obtain asymptotic results for the protocol. We also revisit the case of two gapless
detectors and show that the detectors can become entangled if there is two-way signalling between their
interaction regions, providing closed-form expressions for the detectors’ final state.
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I. INTRODUCTION

Interactions between quantum systems are fundamentally
mediated by quantum fields. As the precision of our
measurement devices and experimental techniques reach
unprecedented levels, the effects of quantum fields in
interactions between quantum systems become increasingly
significant. In particular, there has been growing interest in
understanding how the quantum features of mediating fields
affect quantum information protocols [1–8]. These features
can then be used to either enhance existing protocols [1,3], or
to allow entirely new processes to take place [2,9–17].
All features of quantum fields are encoded in the expected

values of operators in quantum field theory (QFT).
Moreover, for a specific class of states, namely, for quasifree
states, all predictions of the theory are encoded in the field’s
two-point function, aswell as other bidistributions that can be
built from it (such as the Feynman propagator). As such, if
observers have access to the field in specific spacetime
regions, it is enough to smear these bidistributions in the
corresponding regions to obtain the expected value of any
field operator that the observers might have access to. One of
the goals of thismanuscript is to provide explicit closed-form
expressions for the smeared field bidistributions that observ-
ers have access to when they interact with the field in
Gaussian regions of spacetime.
Of special interest to us is the case where one has access

to the field in localized regions of spacetime so that local

operations can be applied to a quantum field. Local
operations in QFT can be studied using probes that locally
couple to the field. These probes can then be used to access
the field’s correlations between different spacetime regions
[18,19], and they can also be used to transmit classical and
quantum information through the field [1,3,9,10,20,21].
Usually, the localized quantum systems used for these
processes are modeled as particle detectors, introduced by
Unruh [22] in the context of black hole radiation, and later
explored by DeWitt [23]. These models have since been
referred to as Unruh–DeWitt (UDW) detectors, and have
proven to be extremely valuable tools for studying proper-
ties of QFT [24–31]. Moreover, it has also been shown that
results obtained from weakly interacting particle detectors
directly translate to localized interactions entirely pre-
scribed in terms of relativistic fields [32,33].
An example of a protocol in quantum field theory that

can be implemented by UDW detectors is entanglement
harvesting [34–37], which consists of using localized
probes to extract preexisting entanglement from a quantum
field. Many studies of entanglement harvesting have been
conducted considering different states of quantum fields in
different spacetimes (see e.g. [38–48], among others).
Although entanglement harvesting has been studied in a
plethora of scenarios, there are significant challenges in the
explicit computations involved in the protocol. For in-
stance, one must to consider weak interactions with the
field in order to obtain explicit results using perturba-
tion theory. Moreover, one has to resort to other
approximations [49] or numerical techniques to evaluate*trickperche@perimeterinstitute.ca
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the field bidistributions that yield the entanglement
acquired by the probes. As a matter of fact, as of today,
there are no closed-form expressions for the entanglement
that can be harvested by finite-sized particle detectors in
any spacetime. Our results for the field bidistributions will
then provide the first example of closed-form results in
entanglement harvesting. As an application of these expres-
sions, we will find asymptotic results for the protocol.
Another case of interest is when the particle detectors

coupled to a quantum field have trivial internal dynamics
(the case where the detectors do not have an internal energy
gap). In this case, the interaction with the field can be
computed nonperturbatively for arbitrary couplings in
terms of the field’s two-point functions. This has been
explored in [20], where the author considers one detector to
interact first with the field, in order to transmit information
to a second detector. Here we will generalize this result to
arbitrary coupling regions and apply our closed-form
expressions to study the conditions under which the
detectors can become entangled with each other. We will
show that when there is two-way causal contact between
the probes, it is possible to get them entangled through the
field, and we will explore explicit examples using our
closed-form expressions.
This manuscript is organized as follows. In Sec. II, we

review an algebraic formulation of quantum field theory,
emphasizing the role of the relevant bidistributions in the
construction. In Sec. III we state some of the closed-form
expressions found for these bidistributions, leaving the
more general results for Appendix. In Sec. IV we briefly
review the UDW model. In Sec. V we apply our closed-
form expressions to the protocol of entanglement harvest-
ing, and find asymptotic results for the entanglement that
can be harvested by two spacelike separated particle
detectors. In Sec. VI we study two gapless detectors with
arbitrary interaction regions, extending the results of [20].
We also consider specific examples of gapless detectors
interacting with a massless scalar field and show how to
recover the previous results in the literature from our
expressions. The conclusions of this work can be found
in Sec. VII.

II. THE BIDISTRIBUTIONS THAT DESCRIBE
A QUANTUM FIELD THEORY

There are numerous ways of formulating quantum field
theory. For instance, one can formulate it in terms of
canonical quantization, path integrals, or from an algebraic
perspective [50–52]. Even within the context of algebraic
quantum field theory (AQFT), there are numerous different
formulations that can be used, such as considering the
Wightman axioms [53], formulations in terms of *-algebras
[54], or in terms of C*-algebras [55]. No matter which
formulation is used, all of these have one thing in common:
all expected values of the theory can be written in terms of
n-point correlation functions of the field smeared in regions

of spacetime. In particular, many situations of physical
relevance, such as the case of quasifree states, allow one to
compute all predictions of the theory in terms of two-point
functions (or their time-ordered version). In this paper, we
will be exclusively concerned with examples of quasifree
states, where a characterization of the two-point functions
is all that is required for a full description of the theory.
Mathematically, the two-point functions are bidistribu-

tions in spacetime (which we denote here by M). That is,
they are functions of the form A∶F ðMÞ × F ðMÞ → C,
where F ðMÞ is a suitable space of test functions where
the distributions are defined. In the context of algebraic
quantum field theory, it is usual to take F ðMÞ ¼ C∞

0 ðMÞ
as the set of compactly supported smooth functions in M
[55], but F ðMÞ can be often generalized (e.g. to Schartz
space [56]). We write the action of a bidistribution A on test
functions f and g as

Aðf; gÞ ¼
Z

dVdV 0fðxÞgðx0ÞAðx; x0Þ; ð1Þ

where it is understood that whenever a distribution is
evaluated at spacetime events x and x0, Aðx; x0Þ stands for
the kernel of the distribution A. It is, however, not always
possible to write a well-defined function Aðx; x0Þ such that
Aðf; gÞ takes the shape above, and in most cases Aðx; x0Þ
has a more general distributional interpretation as the kernel
of Aðf; gÞ. Also notice that it is possible to apply a
bidistribution to only one of its arguments, resulting in a
spacetime function. Indeed, if A is a bidistribution and
f∈F ðMÞ, one can define the function

AfðxÞ ¼
Z

dV 0Aðx; x0Þfðx0Þ ð2Þ

whenever the right-hand side of the equation above is well
defined. Overall, if A is a bidistribution, we denote by
Aðx; x0Þ its integral Kernel, Aðf; gÞ its application to two
test functions f and g, and by Af its application to a test
function f, which results in a function in spacetime. This
sets up the notation convention that will be used throughout
the manuscript.
One example where bidistributions are relevant is in the

case of a real scalar Klein–Gordon field ϕðxÞ in a curved
spacetime M, which satisfies an equation of motion of the
form

Pϕ ¼ ð∇μ∇μ − VðxÞÞϕ ¼ 0; ð3Þ

where VðxÞ is any smooth function in spacetime,1 and P is
defined as the differential operator that defines the homo-
geneous equations of motion Pϕ ¼ 0. The operator P

1For instance, a minimally coupled massive Klein–Gordon
field corresponds to VðxÞ ¼ m2.
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defines advanced and retarded Green’s functions, GR and
GA, which can be used to find solutions to the nonhomo-
geneous equation Pϕ ¼ f, where f is a source function.
The Green’s functions satisfy the equations

PGRf ¼ f; PGAf ¼ f; ð4Þ

with the functions GRfðxÞ having support in the causal
future of the support of f and GAfðxÞ having support in its
causal past, corresponding to retarded and advanced
propagation of a source f. An important property of the
integral kernels of GR and GA is that

GRðx; x0Þ ¼ GAðx0; xÞ; ð5Þ

with the physical interpretation that propagation from x0 to
x in the forward time direction is equivalent to propagation
from x0 to x in the backwards time direction. The
distributions GR and GA can also be used to build solutions
to the homogeneous equation of motion through the causal
propagator E, defined as

Eðx; x0Þ ¼ GRðx; x0Þ −GAðx; x0Þ: ð6Þ

Indeed, one can verify that PEf ¼ 0 using (4). The causal
propagator is also key in the definition of quantum field
theories.
We will now briefly review the *-algebra formulation of

a real scalar QFT, and highlight important properties of the
bidistributions that contain the information about the
quantum field. In the context of this manuscript, a real
scalar quantum field theory that satisfies the equation of
motion (3) will be defined by a �-algebra A which is
generated by the identity 1 and by products of operators of
the form ϕ̂ðfÞ, with f∈C∞

0 ðMÞ, which satisfy the follow-
ing properties:
(1) ϕ̂ðαfþgÞ¼αϕ̂ðfÞþϕ̂ðgÞ for α∈C, f; g∈C∞

0 ðMÞ.
(2) ðϕ̂ðfÞÞ† ¼ ϕ̂ðf�Þ for f∈C∞

0 ðMÞ, where † denotes
the conjugation operation in the �-algebra and �
denotes complex conjugation.

(3) ϕ̂ðEfÞ ¼ 0 for f∈C∞
0 ðMÞ.

(4) ½ϕ̂ðfÞ; ϕ̂ðgÞ� ¼ iEðf; gÞ for f; g∈C∞
0 ðMÞ,

where E is the causal propagator, defined in (6). In essence,
property 1 ensures linearity of the association f ↦ ϕ̂ðfÞ,
property 2 ensures that the field ϕ̂ is real, property 3
implements the equations of motion for the field ϕ̂, and
property 4 defines the commutation structure of the algebra.
The intuitive idea is that the algebra element ϕ̂ðfÞ can be
seen as an operator-valued distribution in spacetime, which
can formally be written as

ϕ̂ðfÞ ¼
Z

dVfðxÞϕ̂ðxÞ; ð7Þ

where ϕ̂ðxÞ is in some way the “operator kernel” of this
distribution. When we refer to “the quantum field” in this
manuscript, we will usually mean the formal operator ϕ̂ðxÞ,
with the understanding that well-defined algebra elements
can be obtained by integrating it with respect to a suitable
test function.
The formal expression of Eq. (7) also allows one to

define more general operators in the quantum field theory
by considering distributional derivatives of the smeared
field operators. For instance, the distribution ∇μϕ̂, which
acts in smooth compactly supported test vectors jμðxÞ, can
be defined as

∇ϕ̂ðjÞ ≔ ϕ̂ð−∇μjμÞ ¼
Z

dVð−∇μjμðxÞÞϕ̂ðxÞ; ð8Þ

which allows one to formally recover an integrand of the
form jμ∇μϕ̂ through integration by parts.
An important part of a quantum theory is its states. States

in the context of AQFT are linear functionals ω∶A → C
which satisfy the conditions
(1) ωð1Þ ¼ 1.
(2) ωðÂ†ÂÞ ≥ 0 for all Â∈A.

The intuitive idea is that “states are mappings of observ-
ables into expected values,” with the generalization to
operators which are not necessarily self adjoint. The
analogy between a state ω in this context and a unit trace
positive density operator ρ̂ is ωðÂÞ ¼ trðρ̂ ÂÞ, whenever a
representation ρ̂ is well defined. In this sense, property 1
ensures normalization, and property 2 ensures positivity.
From this perspective, a state ω is entirely defined by its
value in arbitrary products of field operators. That is if one
has access to ωðϕ̂ðf1Þ…ϕ̂ðfnÞÞ for all possible fn’s, then
one has complete information about the state. This state-
ment is equivalent to saying that a state is completely
determined by its n-point functions, as one can always
write

ωðϕ̂ðf1Þ…ϕ̂ðfnÞÞ

¼
Z

dV1…dVnf1ðx1Þ…fnðxnÞWðx1;…; xnÞ ð9Þ

for appropriate integral Kernels Wðx1;…; x2Þ, which are
precisely the n-point functions of the state.
In this manuscript we will focus on the specific class of

states that are quasifree, meaning that all their odd-point
functions vanish, and all even-point functions can be
computed from the two-point function Wðx; x0Þ (or
Wightman function) through Wick’s theorem. This class
of states is thus completely determined by their Wightman
function, which showcases the importance of this specific
bidistribution in QFT. The Wightman function can be
decomposed into its real and imaginary parts using
ϕ̂ðfÞϕ̂ðgÞ ¼ 1

2
fϕ̂ðfÞ; ϕ̂ðgÞg þ 1

2
½ϕ̂ðfÞ; ϕ̂ðgÞ�, so that
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Wðf; gÞ ¼ 1

2
Hðf; gÞ þ i

2
Eðf; gÞ; ð10Þ

where E is the causal propagator and H is the Hadamard
function, Hðf; gÞ ¼ ωðfϕ̂ðfÞ; ϕ̂ðgÞgÞ. Another important
bidistribution that can be obtained from the Wightman
function is the Feynman propagator, whose kernel can be
written as

GFðx; x0Þ ¼ θðt − t0ÞWðx; x0Þ þ θðt0 − tÞWðx0; xÞ; ð11Þ

where θðuÞ denotes the Heaviside theta function and t is
any timelike coordinate. It can then be shown that

GFðf; gÞ ¼
1

2
Hðf; gÞ þ i

2
Δðf; gÞ; ð12Þ

where Δ is the symmetric propagator:

Δðf; gÞ ¼ GRðf; gÞ þGAðf; gÞ: ð13Þ

The key points of this section are to set up the
conventions that will be used throughout the manuscript
and to convey the message that if one has knowledge of the
distributions W and GF for general functions f and g, one
can compute any expected values in a quasifree state. The
shape of the functions f and g will then correspond to the
regions where one has access to operators whose expected
values one wishes to compute. One could then be led to
believe that there is a rich literature with examples where
the correlation functions of different states in different field
theories are evaluated, and their properties are explored.
Unfortunately, this is not the case. It is not common to find
literature where the smeared two-point functions of quan-
tum fields are evaluated in specific spacetime regions, and
where these are used to infer properties of the field. The
exceptions are studies of local operations in quantum field
theory, usually utilizing quantum systems that couple to the
field in localized spacetime regions. Even so, in most
examples where this approach is considered, the evaluation
of the relevant smeared two-point functions is mostly
numerical. Overall, as far as the author is aware, no
previous reference has closed-form expressions for all
the smeared two-point functions described here smeared
in any four-dimensional spacetime regions.

III. CLOSED-FORM EXPRESSIONS
FOR GAUSSIAN SMEARED

BIDISTRIBUTIONS IN MINKOWSKI
SPACETIME

In this section, we will present closed-form expressions
for the bidistributions discussed in Sec. II evaluated at
Gaussian test functions is spacetime. We will focus on the
example of a real massless scalar field in Minkowski
spacetime so that the differential operator P in Eq. (3)

reduces to P ¼ ∇μ∇μ ≡□. Our goal will be to compute the
distributionsW and GF evaluated at spacetime functions of
the form

fðxÞ ¼ e−
ðt−t0Þ2
2T2 e−iΩt

e−
jx−Lj2
2σ2

ð2πσ2Þ32 ≡ χðtÞFðxÞ; ð14Þ

which depend on the free parameters ðT; t0;Ω; σ;LÞ. The
parameters T and σ correspond to the standard deviations in
time and in space of fðxÞ, and define the region where the
function is effectively nonzero.2 The parameters t0 and L
define the center of the effective support of fðxÞ, and Ω
can be seen as a shift in frequency through the Fourier
transform.
In particular, in this section we will compute Hðf1; f2Þ,

Eðf1; f2Þ, GRðf1; f2Þ, GAðf1; f2Þ, and Δðf1; f2Þ in
the Minkowski vacuum, with the parameter choices
ðT; 0;Ω; σ; 0Þ for f1 and ðT; t0;Ω; σ;LÞ for f2.
Expressions with more general parameters can be found
in Appendix. Notice that the bidistributions Hðf1; f2Þ,
Eðf1; f2Þ, and GAðf1; f2Þ are enough to evaluate
Wðf1; f2Þ, GRðf1; f2Þ, and GFðf1; f2Þ, as well as
Δðf1; f2Þ. As far as the author is aware, the closed-form
analytical expressions3 for all these bidistributions in the
Minkowski vacuum have not yet been found in the
literature.
In order to perform the computations, we start by noting

that the Wightman function in the Minkowski vacuum can
be represented as

Wðx; x0Þ ¼ 1

ð2πÞ3
Z

d3k
2jkj e

−ijkjðt−t0Þþik·ðx−x0Þ; ð15Þ

which allows one to recast the smeared Wightman function
in terms of Fourier transforms, as has been done many
times in the literature (see e.g. [37,39,44]),

Wðf1; f2Þ ¼
1

ð2πÞ3
Z

d3k
2jkj F̃1ðkÞF̃2ð−kÞχ̃2ðjkjÞχ̃1ð−jkjÞ;

ð16Þ

where F̃ðkÞ and χ̃ðωÞ denote the Fourier transforms

2At this stage it must be clear that functions of the form of
Eq. (14) do not belong to the space C∞

0 ðMÞ. Nevertheless, these
functions are localized, in the sense that for a fixed small ϵ > 0,
the region jfðxÞj > ϵ is finite. The idea is that the value jfðxÞj
defines “how much one has access to the quantum field” at the
event x.

3Notice that the term “closed-form analytical expression” is
ambiguous, as any integral expression can be considered to be
closed form. In this manuscript, we will use “closed-form
analytical expression” to mean an expression in terms of special
functions (as listed, for instance, in [57]), with no need for any
external dummy index or integration variable. This excludes any
integrals or infinite series of functions.

T. RICK PERCHE PHYS. REV. D 110, 025013 (2024)

025013-4



F̃ðkÞ ¼
Z

d3xfðxÞeik·x; χ̃ðωÞ ¼
Z

dtχðtÞeiωt: ð17Þ

We can then compute the integral of Eq. (16). From its real
part, we find

Hðf1; f2Þ ¼
T2e−Ω

2T2

eiΩt0

4
ffiffiffi
π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�
e
−ðjLjþt0Þ2
4ðT2þσ2Þerfi

� jLj þ t0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�

þ e
− ðjLj−t0Þ2
4ðT2þσ2Þerfi

� jLj− t0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
��

; ð18Þ

and from the imaginary part of Wðf1; f2Þ, we obtain

Eðf1;f2Þ¼
T2e−Ω

2T2

eiΩt0

4
ffiffiffi
π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
�
e
− ðjLj−t0Þ2
4ðT2þσ2Þ−e

−ðjLjþt0Þ2
4ðT2þσ2Þ

�
: ð19Þ

These results have been found in [37] with different
conventions, but they are not sufficient to compute

GAðf1; f2Þ, GRðf1; f2Þ, Δðf1; f2Þ, and, most importantly,
GFðf1; f2Þ. It is however possible to obtain all of these
from GAðf1; f2Þ, together with Hðf1; f2Þ and Eðf1; f2Þ.
While the integration in terms of Fourier transforms is
nontrivial for the retarded and advanced Green’s functions,
we can switch strategies, and work in spacetime in order to
solve these integrals. In inertial coordinates in Minkowski
spacetime the retarded and advanced Green’s functions of
the operator □ can be written as

GRðx; x0Þ ¼ −
1

4πjx − x0j δðt
0 − tþ jx − x0jÞ; ð20Þ

GAðx; x0Þ ¼ −
1

4πjx − x0j δðt
0 − t − jx − x0jÞ: ð21Þ

We can then perform the integration in spacetime (see
Appendix) to find

GAðf1;f2Þ¼−
T2e−Ω

2T2

eiΩt0

8
ffiffiffi
π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
�
e
−ðjLjþt0Þ2
4ðT2þσ2Þ

�
−1þ erf

� jLjT2− t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
��

þe
− ðjLj−t0Þ2
4ðT2þσ2Þ

�
1þ erf

� jLjT2þ t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
���

;

GRðf1;f2Þ¼−
T2e−Ω

2T2

eiΩt0

8
ffiffiffi
π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
�
e
−ðjLjþt0Þ2
4ðT2þσ2Þ

�
1þ erf

� jLjT2− t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
��

þe
− ðjLj−t0Þ2
4ðT2þσ2Þ

�
−1þ erf

� jLjT2þ t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þσ2

p
���

; ð22Þ

which is compatible with Eq. (19) from E ¼ GR −GA. We also find

Δðf1; f2Þ ¼ −
T2e−Ω

2T2

eiΩt0

4
ffiffiffi
π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�
e
−ðjLjþt0Þ2
4ðT2þσ2Þerf

� jLjT2 − t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�
þ e

− ðjLj−t0Þ2
4ðT2þσ2Þerf

� jLjT2 þ t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
��

; ð23Þ

from which the Feynman propagator GFðf1; f2Þ can be
computed using Eq. (12). These expressions are particu-
larly important in the context of entanglement harvesting,
as we discuss in more detail in Sec. V, but have not been
found in closed form in previous works, which have instead
used numerical integration to evaluate the Feynman propa-
gator for different parameters (see e.g. [38–48,58]). It is
also worth mentioning that in [49] an expression was found
for the limit σ → 0 or our expressions. For generalizations
of these expressions for different parameters ðT; t0;Ω; σ;LÞ
and for more general field operators coupled in these
regions, see Appendix.
As we will see in the next section, the results above are

enough to compute all predictions that observers that
couple to the field amplitude in regions defined by
functions of the form jfðxÞj have access to.

IV. LOCALLY PROBING A QUANTUM FIELD:
UNRUH–DEWITT DETECTORS

In this section wewill review the two-level UDW particle
detector [22,23] coupled to a scalar field. This is probably

the simplest model of particle detector, and consists of a
two-level system linearly coupled to a real scalar field. For
all purposes, one can think of a UDW detector as a qubit
that undergoes a given timelike trajectory zðτÞ in space-
time, and that interacts with a quantum field locally around
its trajectory. Given how simple this model is, it can be
perhaps surprising that it has been shown to capture
fundamental features of the interactions of any localized
quantum system with a quantum field [59], such as the
interactions of atoms and electromagnetism [39,60], the
interactions of nucleons with neutrinos [61–63], as well as
the interactions of quantum systems with linearized quan-
tum gravity [64,65]. Overall, UDW detectors capture the
essential way in which localized quantum systems can be
used to access information from quantum fields and
implement local operations in QFT.
In order to define the two-level UDW detector, we

assume that the qubit has a free Hamiltonian with
energy gap Ω ≥ 0, which promotes time evolution with
respect to the proper time of the trajectory zðτÞ where the
qubit is defined. The free Hamiltonian of the qubit can be
written as
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ĤD ¼ Ωσ̂þσ̂−; ð24Þ

where σ̂� are the standard SUð2Þ ladder operators. The
Hamiltonian above then defines the ground and excited
states fjgi; jeig for the two-level system, so that σ̂þjgi ¼
jei and σ̂−jgi ¼ 0.
The next step is to prescribe the interaction of the

detector with a scalar quantum field ϕ̂ðxÞ. We assume that
the interaction happens in a region associated with the
support of a spacetime smearing function ΛðxÞ, defined
locally around the trajectory zðτÞ. The value of ΛðxÞ at each
x defines how much access the qubit has to the quantum
field at each event, and here we will assume that the
function ΛðxÞ is localized in spacetime, allowing the
detector to access the field only in a localized region.
The detector couples to the field through its monopole
moment, which we prescribe as μ̂ðτÞ ¼ eiΩτσ̂þ þ e−iΩτσ̂−,
where free evolution with respect to ĤD has already been
incorporated. The interaction Hamiltonian can then be
written at the level of a scalar spacetime density ĥIðxÞ
[66], given by

ĥIðxÞ ¼ λΛðxÞμ̂ðτÞϕ̂ðxÞ ð25Þ

¼ λðΛþðxÞσ̂þ þ Λ−ðxÞσ̂−Þϕ̂ðxÞ; ð26Þ

where λ is a coupling constant and we defined

Λ�ðxÞ ¼ ΛðxÞe�iΩτ: ð27Þ

In the equation above, the time parameter τ stands for the
Fermi normal coordinate time around the trajectory zðτÞ
(see Refs. [59,66,67] and references therein for details).
In order to see exactly how the detector’s final state

depends on the field, we proceed to compute the qubit’s
final state after the interaction. The time evolution operator
can be computed from the interaction Hamiltonian density
ĥIðxÞ as

ÛI ¼ T τ exp

�
−i

Z
dVĥIðxÞ

�
; ð28Þ

where T τ denotes time ordering with respect to the time
parameter τ. It is important to remark that the time evolution
operator of Eq. (28) explicitly depends on the time
parameter τ that is used to prescribe the qubit’s internal
degree of freedom. This has been discussed in detail in [67],
and the reason for this breakdown of covariance is that the
interaction Hamiltonian density fails to satisfy the micro-
causality condition. That is, ĥIðxÞ does not commute with
itself at spacelike separated points, due to the fact that the
monopole μ̂ðτÞ couples to ϕ̂ðxÞ at each surface τ ¼ const at
multiple spacelike separated points simultaneously.
Although this could bring a fair concern to whether the

UDW model should still be used in relativistic scenarios,
the model’s regimes of validity are well understood
[66–70], which allows one to use particle detectors to
study relativistic quantum field theories in a plethora of
scenarios.
In order to compute the time evolution operator explic-

itly, we use the Dyson series as a power expansion in the
coupling constant, so that ÛI can be written, to second
order in λ, as

ÛI ¼ 1þ Ûð1Þ
I þ Ûð2Þ

I þOðλ3Þ; ð29Þ

where

Ûð1Þ
I ¼ −i

Z
dVĥIðxÞ; ð30Þ

Ûð2Þ
I ¼ −

Z
dVdV 0θðτ − τ0ÞĥIðxÞĥIðx0Þ: ð31Þ

We assume that the initial state of the detector is uncorre-
lated with the field, so that the initial state of the detector-
field system can be written as ρ̂0 ¼ ρ̂D;0 ⊗ ρ̂ω, where ρ̂D;0 is
an arbitrary qubit state, and ρ̂ω is the density operator in a
given Hilbert space representation of a quasifree state of
the field, ω. As such, the state ω is entirely determined by
the value of the field’s Wightman function, Wðx; x0Þ ¼
trðρ̂ωϕ̂ðxÞϕ̂ðx0ÞÞ ¼ ωðϕ̂ðxÞϕ̂ðx0ÞÞ, and we assume from this
point on that all field bidistributions are evaluated at the
state ω.
We are interested in the final state of the detector, only.

That is, we work under the assumption that one only has
access to the detector’s degrees of freedom. Operationally,
this is implemented by tracing over the quantum field, so
that the detector state after the interaction is given by

ρ̂D ¼ trϕðÛIρ̂0Û
†
I Þ

¼ ρ̂D;0 þ trϕðÛð1Þ
I ρ̂0Û

ð1Þ†
I Þ þ trϕðÛð2Þ

I ρ̂0Þ þ trϕðρ̂0Ûð2Þ†
I Þ

þOðλ4Þ: ð32Þ

In order to compute the terms above, we first define the
following bidistributions, which are explicitly dependent
on the time parameter τ:

Wτðx; x0Þ ¼ θðτ − τ0ÞWðx; x0Þ; ð33Þ

W−τðx; x0Þ ¼ θðτ0 − τÞWðx0; xÞ: ð34Þ

The two-point functions Wτ and W−τ can then be used to
generate all the bidistributions discussed in Sec. II. For
instance, one can express the Wightman function and the
Feynman propagator as

W ¼ Wτ þW�
−τ; GF ¼ Wτ þW−τ; ð35Þ
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where we remark that ðWτðf; gÞÞ� ¼ W−τðg�; f�Þ. The
advantage of using Wτ and W−τ in the context of particle
detectors is that these depend explicitly on the time
parameter used to define the model itself, and will naturally
show up in the Dyson series for the detector’s final state.
Indeed, we can write

trϕðÛð2Þ
I ρ̂0Þ ¼ −

Z
dVdV 0θðτ − τ0ÞtrϕðĥIðxÞĥIðx0Þρ̂ωÞρ̂D;0

¼ −λ2ðWτðΛþ;Λ−Þσ̂þσ̂− þWτðΛ−;ΛþÞσ̂−σ̂þÞ
× ρ̂D;0; ð36Þ

and, analogously,

trϕðρ̂0Ûð2Þ†
I Þ ¼ trϕðÛð2Þ

I ρ̂0Þ†
¼ −λ2ρ̂D;0ðW�

−τðΛþ;Λ−Þσ̂þσ̂−
þW�

−τðΛ−;ΛþÞσ̂−σ̂þÞ: ð37Þ

The term trϕðÛð1Þ
I ρ̂0Û

ð1Þ†
I Þ in Eq. (32) does not depend

explicitly on the time ordering, so that it is independent of
the parameter τ,

trϕðÛð1Þ
I ρ̂0Û

ð1Þ†
I Þ¼

Z
dVdV 0trϕðĥIðxÞρ̂0ĥIðx0ÞÞ

¼
Z

dVdV 0ΛðxÞΛðx0ÞWðx0;xÞμ̂ðτÞρ̂D;0μ̂ðτ0Þ

¼ λ2ðWðΛþ;Λ−Þσ̂þρ̂D;0σ̂
þþWðΛ−;ΛþÞσ̂þρ̂D;0σ̂

−þWðΛþ;Λ−Þσ̂−ρ̂D;0σ̂
þþWðΛ−;Λ−Þσ̂−ρ̂D;0σ̂

−Þ: ð38Þ

Combining the results above, we then obtain the final state
of the detector, to leading order:

ρ̂D ¼ ρ̂D;0 þ ðWþþσ̂þρ̂D;0σ̂
þ þW−þσ̂þρ̂D;0σ̂

−

þWþ−σ̂−ρ̂D;0σ̂
þ þW−−σ̂−ρ̂D;0σ̂

−

−Wþ−
τ σ̂þσ̂−ρ̂D;0 −W−þ

τ σ̂−σ̂þρ̂D;0

− W̄þ−
−τ ρ̂D;0σ̂

þσ̂− − W̄−þ
−τ ρ̂D;0σ̂

−σ̂þÞ
þOðλ4Þ; ð39Þ

where we denote

W�∓ ¼ λ2WðΛ�;Λ∓Þ; ð40Þ

W�∓
τ ¼ λ2WτðΛ�;Λ∓Þ; ð41Þ

W̄�∓
−τ ¼ λ2W�

−τðΛ�;Λ∓Þ: ð42Þ

From Eq. (39) one can see that the leading order result for
ρ̂D will in general depend on the time parameter τ due to the
dependence on the bidistributionsWτ andW−τ. Indeed, it is
only when ½ρ̂D;0; σ̂þσ̂−� ¼ ½ρ̂D;0; σ̂−σ̂þ� ¼ 0 that one has a
result independent of the time parameter τ, which is one of
the key results of [67]. This can also be seen from Eq. (39)
by noting that W−þ ¼ W−þ

τ þ W̄−þ
−τ [see Eq. (35)].

For concreteness, we specialize the result to the case
where the detector starts in the ground state, with ρ̂D;0 ¼
jgihgj ¼ σ̂−σ̂þ. In this case we obtain

ρ̂D ¼ ð1 −W−þÞσ̂−σ̂þ þW−þσ̂þσ̂− þOðλ4Þ; ð43Þ

whereW−þ is the leading order excitation probability of the
state, andwe see that it is determined by the field’sWightman
function evaluated at the spacetime smearing function ΛðxÞ
with an added complex phase due to the detector’s free time
evolution. In the case where the detector interacts with the
Minkowski vacuum in a Gaussian spacetime region, one can
find a closed-form expression for W−þ (as has been done
in [37,44], among others). For completeness, we state the
result for W−þ in the case where

ΛðxÞ ¼ e−
t2

2T2
e−

jxj2
2σ2

ð2πσ2Þ32 : ð44Þ

We obtain

W−þ ¼ λ2

4π

e−Ω
2T2

α2

�
1 −

ffiffiffi
π

p
ΩT
α

e
Ω2T2

α2 erfc

�
ΩT
α

��
; ð45Þ

where we defined α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

p
. From Eq. (45) one can

explore properties of the interaction of the detector with the
field. For instance, one can see that the vacuum excitation
probability vanishes in the limit of large interaction times.
This is often interpreted as the fact that it is only possible to
see “virtual field excitations” for finite interaction times.

V. ENTANGLEMENT HARVESTING
AND ASYMPTOTIC RESULTS

In this section we will consider the protocol of entan-
glement harvesting, where two UDW detectors couple to a
quantum field in an attempt to extract entanglement
previously existent in the field. At this stage, there is a
vast literature in entanglement harvesting, with examples in
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both flat [38–42] and curved spacetimes [43–46].
Nevertheless, the lack of closed-form expressions for field
bidistributions makes it so that one usually has to employ
numerical methods to evaluate the integrals that allow one
to compute the final state of the detectors involved in the
protocol. The only exception was in [49], where closed-
form expressions were found in the case of two pointlike
inertial UDW detectors in Minkowski spacetime interacting
with a massless scalar field. In this section we will use the
results of Sec. III to generalize the expressions of [49] to
smeared detectors. We will also use our closed-form
expressions to find asymptotic results for the entanglement
that can be extracted from a real massless quantum field by
a pair of detectors.
In order to implement the protocol of entanglement

harvesting, we consider two UDW detectors defined along
trajectories zAðτAÞ and zBðτBÞ with energy gaps ΩA and ΩB

coupled to a massless scalar field ϕ̂ðxÞ according to the
interaction Hamiltonian density

ĥIðxÞ ¼ λðμ̂AðτAÞΛAðxÞ þ μ̂BðτBÞΛBðxÞÞϕ̂ðxÞ: ð46Þ

Here τA and τB represent the Fermi normal coordinate times
associated with each trajectory. We also assume that the
supports of ΛAðxÞ and ΛBðxÞ do not extend past the region
where the Fermi normal coordinates are defined.
When considering two detectors, it is again possible to

use the Dyson series to express the time evolution operator
as a power series in the coupling constant λ. The compu-
tations are similar to those of Sec. IV for an initial state for
the detectors-field system of the form ρ̂0 ¼ ρ̂AB;0 ⊗ ρ̂ω,
with ρ̂ω being the representation of a quasifree state ω. One
finds that the leading order final state of the two detectors
after tracing the quantum field can be written as

ρ̂AB ¼ ρ̂AB;0 þ λ2
X

s1 ;s2¼�
I;J¼A;B

WðΛs1
I ;Λ

s2
J Þσ̂s2J ρ̂AB;0σ̂

s1
I

− ðWτðΛs1
I ;Λ

s2
J Þσ̂s1I σ̂s2J ρ̂AB;0 þ H:c:Þ

þOðλ4Þ; ð47Þ

where here τ is the time parameter used to prescribe the
time evolution in the model. Unfortunately, the equation
above is not particularly insightful. In order to analyze the
final state of the detectors, let us consider a specific choice
of initial state for ρ̂AB;0. As it is usually considered in
protocols of entanglement harvesting [37,39,40,44,71], we
will initialize both detectors in their ground state, consid-
ering the uncorrelated state ρ̂AB;0 ¼ jgAihgAj ⊗ jgBihgBj ¼
σ̂−A σ̂

þ
A σ̂

−
B σ̂

þ
B . In this setup it is simpler to write the final

density operator in matrix form in the basis fjgAgBi;
jeAgBi; jgAeBi; jeAeBig. We obtain

ρ̂AB ¼

0
BBB@

1− ðW−þ
AA þW−þ

BB Þ 0 0 −ðGþþ
AB Þ�

0 W−þ
BB ðW−þ

AB Þ� 0

0 W−þ
AB W−þ

AA 0

−Gþþ
AB 0 0 0

1
CCCA

þOðλ4Þ; ð48Þ

and we denote

W�∓
IJ ¼ λ2WðΛ�

I ;Λ
∓
J Þ; G�∓

IJ ¼ λ2GFðΛ�
I ;Λ

∓
J Þ: ð49Þ

Importantly, as far as the author is aware, a closed-form
expression for the function GFðΛI;ΛJÞ smeared in four-
dimensional spacetime has not been obtained in any previous
work. This has important consequences to one’s ability to
estimate the optimal parameters that allow the detectors to
harvest entanglement from the vacuum of a quantum field.
In order to check the entanglement present in the

detectors’ final state, we will use the negativity [72–74]
as an entanglement quantifier. The negativity is a faithful
entanglement quantifier for bipartite systems of qubits, and
is defined as the sum of the absolute value of the negative
eigenvalues of the partial transpose of a density operator.
For the specific density operator of Eq. (48), the leading
order negativity can be written as

N ðρ̂ABÞ ¼ max

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGþþ

AB j2 − ðW−þ
AA −W−þ

BB Þ2
2

r

−
W−þ

AA þW−þ
BB

2

�
þOðλ4Þ: ð50Þ

Overall, the negativity is a competition between the non-
local term Gþþ

AB and the local vacuum noise termsW−þ
AA and

W−þ
BB . This competition becomes even more explicit in the

case of where the excitation probabilities are the same,
W−þ

AA ¼ W−þ
BB ¼ L, when the negativity reduces to

N ðρ̂ABÞ ¼ maxð0; jGþþ
AB j − LÞ: ð51Þ

At this stage it is important to mention that there are two
physically distinguished processes that can allow the detec-
tors to become entangled.One possibility is that the detectors
become entangled after exchanging information through the
field, in which case the field merely propagates quantum
information from one detector to another. The other case is
when the detectors extract previously existing entanglement
from the field’s state itself. The differences between these
have been explicitly studied in [44] and the role of the field’s
quantum degrees of freedom in the protocol has been
discussed in [4].
It is possible to quantify how much of the entanglement

acquired by the detectors is due to communication and how
much of it is actual entanglement harvested from the field
by looking at the real and imaginary parts of the Feynman
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propagator GF ¼ 1
2
H þ i

2
Δ [Eq. (12)]. The symmetric

propagator Δðx; x0Þ represents the causal interaction
between the detectors and is responsible for exchanging
information between them. An evidence of the fact that
Δðx; x0Þ does not contain any information about the
preexisting correlations of the field is that this propagator
is independent of the field’s state. On the other hand, the
Hadamard function Hðx; x0Þ contains all the state depend-
ence of the propagator GFðx; x0Þ, and as such, it contains
the information about the nonlocal correlations in the
quantum field. In order to successfully harvest entangle-
ment from a QFT, one looks for situations where the
contribution of the symmetric propagator Δðx; x0Þ is
negligible, and where the contribution due to the
Hadamard term Hðx; x0Þ is dominating. One way of
ensuring this is by considering spacelike separated inter-
action regions, where ΔðΛþ

A ;Λþ
B Þ ¼ 0. However, even

when the interactions are not completely causally
separated, one can achieve entanglement harvesting if
N ðρ̂DÞ > 0 and 1

2
jΔðΛþ

A ;Λþ
B Þj ≪ N ðρ̂DÞ.

In order to consider an explicit example of entanglement
harvesting, we will consider the case where the detectors
interact with a massless scalar field in Minkowski space-
time, with the following spacetime smearing functions

ΛAðxÞ ¼ e−
t2

2T2
e−

jxj2
2σ2

ð2πσ2Þ32 ; ð52Þ

ΛBðxÞ ¼ e−
ðt−t0Þ2
2T2

e−
jx−Lj2
2σ2

ð2πσ2Þ32 : ð53Þ

This choice defines the interaction regions of the detectors
to be spacetime Gaussians of spatial width σ and effective
time duration controlled by the parameter T. The inter-
action regions are shifted in space by L and in time by t0
with respect to the inertial frame ðt; xÞ. Due to the fact that
the spacetime smearing functions of Eqs. (52) and (53)
differ only by spacetime translations, we find that
W−þ

AA ¼ W−þ
BB ¼ L. This scenario has been studied multiple

times in the literature (see e.g. [37,39,44,49,71]), however,
it was only in the σ → 0 limit that analytical results were
found for the relevant smeared bidistributions necessary to
compute the negativity. While the L term can be evaluated
analytically and is given by Eq. (45), in order to numeri-
cally evaluate Gþþ

AB effectively, one usually writes, in
momentum space [37],

Gþþ
AB ¼ λ2T2eiΩt0

4π

Z
djkjjkje−jkj2σ2e−ðΩ2þjkj2ÞT2

sincðjkjjLjÞ

×

�
e−ijkjt0erfc

�
ijkjT −

t0
2T

�

þ eijkjt0erfc
�
ijkjT þ t0

2T

��
; ð54Þ

which up to this point could not be solved in terms of
elementary functions.
On the other hand, the results that we have from Sec. III

give the exact value of the relevant propagators in this case.
We find

Gþþ
AB ¼ λ2T2e−Ω

2T2

eiΩt0

8
ffiffiffi
π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�
e
−ðjLjþt0Þ2
4ðT2þσ2Þerfi

� jLj þ t0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�

þ e
− ðjLj−t0Þ2
4ðT2þσ2Þerfi

� jLj − t0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�

− i

�
e
−ðjLjþt0Þ2
4ðT2þσ2Þerf

� jLjT2 − t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
�

þ e
− ðjLj−t0Þ2
4ðT2þσ2Þerf

� jLjT2 þ t0σ2

2Tσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ σ2

p
���

: ð55Þ

We have also checked that the numerical integration of
Eq. (54) matches the results of Eq. (55) for numerous
parameters jLj, t0, T, σ, and Ω. Combining the equation
above with Eq. (45), one then finds a closed-form analytical
expression for the negativity. In particular, for the case
where there is no time separation between the interactions,
t0 ¼ 0, we obtain, with α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

p
,

N ðρ̂ABÞ ¼ max

�
0;
λ2e−Ω

2T2

4πα2

� ffiffiffi
π

p
αe−

jLj2
4α2T2

T
jLj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erf

� jLj
2ασ

�
2

þ erfi

� jLj
2αT

�
2

s
þ

ffiffiffi
π

p
ΩT
α

e
Ω2T2

α2 erfc

�
ΩT
α

�
− 1

��
; ð56Þ

while the imaginary part of the Feynman propagator at
t0 ¼ 0 reads

1

2
jΔðΛþ

A ;Λþ
B Þj ¼ e−Ω

2T2

4α
ffiffiffi
π

p T
jLj e

− jLj2
4α2T2erf

� jLj
2ασ

�
: ð57Þ

Equation (57) can then be used to estimate the signalling
between the detectors, so that we are looking for situations

in which N ðρ̂ABÞ > 0 and 1
2
jΔþþ

AB j ≪ N ðρ̂ABÞ. From the
expression above, one also confirms the exponential decay
of the signalling between two Gaussian detectors which
was seen in [70]. We also see that the erf term in Eq. (56)
comes exclusively from the signalling between the detec-
tors.
In Fig. 1, we plot the negativity and the signalling

contribution as a function of the detectors’ energy gap for
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σ ¼ 0.01T when the detectors are separated by a distance
of jLj ¼ 5T. We find that the negativity becomes an order
of magnitude larger than the signalling from the moment at
which it peaks, and this ratio continues to increase withΩT.
Notice that the results of Eq. (55) can also be used to

determine the previously unsolved integral of Eq. (54) in
closed form. For instance, comparing Eqs. (54) and (55) at
t0 ¼ 0, we find

Z
∞

0

dre−ðγ2þσ2Þr2 sinðrlÞerfiðγrÞ

¼ e
− l2

4ðγ2þσ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ σ2

p ffiffiffi
π

p
2

erf

�
lγ

2jσj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ σ2

p �
; ð58Þ

which, as far as the author is aware, has not been solved in
closed form in previous literature. The result above is valid
for l; γ; σ ∈R with jγj < jσj, but it also seems to work for
complex γ and l, provided that jγj < jσj, so that the integral
on the left-hand side converges.
We now turn to the study of asymptotic results in

entanglement harvesting in the weak coupling regime.
Having the analytical expression for the negativity allows
one to estimate the behavior of the entanglement that can be
harvested by detectors that couple to a massless field in the
limit of large jLj. This is done by considering the
asymptotic expansion of Eq. (55). One finds

jGþþ
AB j¼λ2e−Ω

2T2

2π

�
T2

jLj2þ
2T2ðT2þσ2Þ

jLj4 þOðjLj−6Þ
�
: ð59Þ

Notice, however, that the term above must be larger than the
local vacuum excitations of the detectors in order to ensure
that any entanglement can be harvested at all. The vacuum
noise is independent of jLj, but, as has been shown in [71],
there is always a large enough value of the energy gap Ω
which allows the Gaussian detectors to harvest entangle-
ment. In order to see which value of Ω maximizes the
negativity, we differentiate Eq. (56) assuming σ ≪ T, and
set the result to zero, which yields the same asymptotic
result forΩ found in [71]:ΩT ∼ jLj=ð2TÞ. This allows us to

evaluate the negativity at said energy gap, and to consider
the asymptotic limit of the resulting expression. We find
that for ΩT ∼ jLj=ð2TÞ,

N ðρ̂ABÞ ¼
4λ2e−

jLj2
4T2

π

T4

jLj4 þO
�
T6

jLj6 e
−jLj2
4T2

�
: ð60Þ

We can then conclude the first asymptotic result regarding
entanglement harvesting: the maximum entanglement
that can be harvested by a pair of inertial detectors that
couple to a massless field in Gaussian spacetime regions
decays as l−4e−l

2=4 in the limit of large separations, where
l ¼ jLj=T. In this limit, of course, the communication
between the detectors is negligible, as they are too far away
to signal to each other. Indeed, the signalling term, in this
case, decays as e−l

2=2.
Another interesting asymptotic result regarding the entan-

glement acquired by the detectors can be obtained in the case
of very large interaction times, T → ∞. However, in this
case, the main contribution for the entanglement acquired by
the detectors is given by the signalling term, so that the setup
does not properly configure entanglement harvesting. In any
case, one obtains

N ðρ̂ABÞ ¼
λ2e−Ω

2T2

e−
jLj2
4T2

4
ffiffiffi
π

p T
jLj erf

�jLj
2σ

�
þO

�
e−

jLj2
4T2

T

�
; ð61Þ

and the vacuum excitation probabilities are also negligible
in this limit, as they behave as 1=ðΩTÞ2 in the limit of large
T (for Ω > 0). Although the asymptotic limit above cannot
be used for estimating entanglement harvesting, it is useful
as an estimate of how entangled two systems that interact
with a massless quantum field could become in the limit of
large interaction times. Notice that larger values of the
energy gap will result in less entangled systems. The
physical interpretation for this fact is that the larger Ω
is, the more energy it costs to change the state of either
qubit from the ground state.

VI. NONPERTURBATIVE RESULTS
FOR GAPLESS DETECTORS

In this section we will show nonperturbative results for
gapless detectors (Ω ¼ 0). This case has been studied in the
past, for instance in [20], however, the results of [20] are
only valid when the interaction regions of two detectors are
separated by a Cauchy surface. Our goal in this section is to
generalize these results to arbitrary interaction regions for
the detectors and to employ the results of Sec. III to analyze
specific examples. We will focus on the case of a single
gapless detector in Sec. VI A, and on the case of two
gapless detectors in Sec. VI B. We compare our results with
previous literature in Sec. VI C.

FIG. 1. The negativity and signalling contribution for two
detectors interacting with a massless scalar field in Gaussian
spacetime regions separated by jLj ¼ 5T, with detector sizes
σ ¼ 0.01T.
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Before going through the computations with gapless
detectors, let us discuss the physical interpretation of this
limit of the UDWmodel. One of the applications of particle
detectors is to provide a definition of the concept of
particles measured by an observer. This is done by
considering a detector in a given state of motion, and by
associating excitations of the detector with the detection of
field quanta. However, it is necessary to have an energy gap
in order to claim that energy from the field was absorbed,
and thus, to make statements about “detected particles.”
Gapless detectors do not share this property, and therefore
cannot be used to discuss particle absorption/emission.
Nevertheless, gapless detectors can be used to extract field
correlations more precisely than gapped detectors can.
Intuitively, one can think of a UDW detector as a

spin-1=2 system with an energy gap Ω which is put to
interact with a scalar field. The energy gap Ω in the case of
a spin system is often the result of the application of an
external (classical) magnetic field. In terms of the Bloch
sphere, the effect of the energy gap is to add a constant
rotation around the axes of the magnetic field. While this
constant rotation is in place, the qubit is then put to interact
with a quantum field, and the field fluctuations effectively
generate another axis of rotation, also exchanging quantum
information with the detector. With a gapless detector, the
only “rotation” that takes place is due to the interaction with
the quantum field. This is why, intuitively, gapless detectors
can be better at extracting field correlations, as the only
effect that they are sensitive to is the quantum field itself.
This intuition is also aligned with the continuous variables
studies of [75].
Finally, notice that the lack of an energy gap does not

prevent one from defining excited and ground states, as one
can always consider that a magnetic field is applied before
and after the interaction, but not while it is taking place. For
this reason, we will keep our notation fjgi; jeig for the
basis of the qubit system, and we will keep the nomen-
clature of “ground” and “excited” states for the eigenvec-
tors of σ̂þσ̂−, even when Ω ¼ 0.

A. A single gapless UDW detector interacting
with a scalar quantum field

We first consider the case where a single particle detector
interacts with a field, with the assumption that Ω ¼ 0. In
this case, the interaction Hamiltonian reduces to

ĥIðxÞ ¼ λΛðxÞμ̂ ϕ̂ðxÞ; ð62Þ

and here we will consider that μ̂ is any constant operator in
the qubit’s Hilbert space. The fact that μ̂ is time indepen-
dent implies an important technical fact: we will now have
the microcausality condition fulfilled. Indeed,

½ĥIðxÞ; ĥIðx0Þ� ¼ λ2ΛðxÞΛðx0Þμ̂2½ϕ̂ðxÞ; ϕ̂ðx0Þ�; ð63Þ

whichwill always commutewhenever the points x and x0 are
spacelike separated. This fact prevents the incompatibilities
with relativity described in [67–70] to take place.
A consequence of the simple expression for the com-

mutator ½ĥIðxÞ; ĥIðx0Þ� is that the time evolution operator
for the detector and field can be solved nonperturbatively
using the Magnus expansion. In essence, due to the fact that
½½ĥIðxÞ; ĥIðx0Þ�; ĥIðx00Þ� ¼ 0, we have that [76]

ÛI ¼ T exp

�
−i

Z
dVĥIðxÞ

�
¼ eΘ̂1þΘ̂2 ; ð64Þ

where

Θ̂1 ¼ −i
Z

dVĥIðxÞ ¼ −iλμ̂ ϕ̂ðΛÞ; ð65Þ

Θ̂2 ¼ −
1

2

Z
dVdV 0θðt − t0Þ½ĥIðxÞ; ĥIðx0Þ� ð66Þ

¼ −i
λ2

2
μ̂2GRðΛ;ΛÞ; ð67Þ

where we used that ½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ iEðx; x0Þ and that
θðt − t0ÞEðx; x0Þ ¼ GRðx; x0Þ. We can then write the time
evolution operator for the detector-field system as

ÛI ¼ e−iλμ̂ ϕ̂ðΛÞe−iμ̂2G; ð68Þ
where we used that ½μ̂; μ̂2� ¼ 0 in order to separate the
exponentials and we denoted G ¼ λ2

2
GRðΛ;ΛÞ.

We will again assume that the detector and field start in
an uncorrelated state ρ̂0 ¼ ρ̂D;0 ⊗ ρ̂ω, where ρ̂ω is a
representation of a quasifree state ω for the quantum field.
In this case, one can compute the final state of the detector
by tracing over the field’s state,

ρ̂D ¼ trϕðÛIρ̂0Û
†
I Þ

¼ e−iμ̂
2Gtrϕðe−iλμ̂ ϕ̂ðΛÞðρ̂D;0 ⊗ ρ̂ωÞeiλμ̂ ϕ̂ðΛÞÞeiμ̂2G; ð69Þ

with G ¼ λ2

2
GRðΛ;ΛÞ. We proceed with the computation

using the identities

e−iλμ̂ ϕ̂ðΛÞ ¼ cosðλϕ̂ðΛÞÞ − iμ̂ sinðλϕ̂ðΛÞÞ;
ωðeiϕ̂ðfÞÞ ¼ ωðcosðϕ̂ðfÞÞ ¼ e−

1
2
Wðf;fÞ;

eiϕ̂ðfÞeiϕ̂ðgÞ ¼ eiϕ̂ðfþgÞe i
2
Eðf;gÞ;

ωðcos2ðϕ̂ðfÞÞ ¼ e−Wðf;fÞ coshðWðf; fÞÞ; ð70Þ

so that we find

ρ̂D¼ωðcos2ðλϕ̂ðΛÞÞe−iμ̂2Gρ̂D;0eiμ̂
2G

þωðsin2ðλϕ̂ðΛÞÞe−iμ̂2Gμ̂ρ̂D;0μ̂eiμ̂
2G

¼e−iμ̂
2Gðe−ξcoshðξÞρ̂D;0þe−ξ sinhðξÞμ̂ρ̂D;0μ̂Þeiμ̂2G; ð71Þ
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which establishes a quantum channel acting in the qubit
with ξ ¼ λ2WðΛ;ΛÞ. In the case of μ̂ ¼ σ̂þ þ σ̂−, this
quantum channel is a bit-flip channel with parameter
p ¼ e−ξ sinhðξÞ.
One can also use the expressions found in Sec. III

to compute the parameters ξ and G in the case where
the detector is interacting with the Minkowski vacuum
of a massless scalar field, with the spacetime smearing
function

ΛðxÞ ¼ e−
t2

2T2
e−

jxj2
2σ2

ð2πσ2Þ32 : ð72Þ

The values for ξ and G are then obtained from Eqs. (20),
(21), and (45) by taking jLj ¼ t0 ¼ Ω ¼ 0. We obtain:

GRðΛ;ΛÞ ¼
T=σ
4πα2

; ð73Þ

WðΛ;ΛÞ ¼ 1

4πα2
; ð74Þ

where again α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

p
. Notice, in particular, that

the purity of the state ρ̂D is entirely determined by the
parameter ξ. Indeed, if ρ̂D;0 starts in a pure state, we find

trðρ̂2DÞ ¼ e−2ξðcoshð2ξÞ þM2 sinhð2ξÞÞ; ð75Þ

with M2 ¼ trððμ̂ρ̂D;0Þ2Þ. The qubit’s purity is then a
decreasing function of ξ. Using that ξ increases with T,
we can see that the purity of the state decreases with T,
and asymptotically reaches its minimum value when
ξ → λ2=4π, unless ½ρ̂D;0; μ̂� ¼ 0, in which case the evolution
is always unitary for the detector, as it starts in an eigenstate
of the Hamiltonian. We also see that the stronger the
coupling, the more mixed the detector state is, as ξ ∝ λ2.
The fact that the detector in general ends in a mixed state
shows that the detector generally becomes entangled with
the field.

B. Two gapless detectors interacting
with a scalar quantum field

A similar method to that of Sec. VI A can also be applied
to the case where two UDW detectors interact with a
quantum field. This case has been studied in [20] under the
assumption that the interaction of one of the detectors
happens before the other one. We will not make this
assumption here, and will instead obtain results for arbi-
trary interaction regions for the two detectors.
In this case, the total interaction Hamiltonian density is

given by

ĥIðxÞ ¼ λμ̂AΛAðxÞϕ̂ðxÞ þ λμ̂BΛBðxÞϕ̂ðxÞ; ð76Þ

and the Magnus expansion can again be used to compute
the time evolution operator. We find

ÛI ¼ eΘ̂1þΘ̂2 ; ð77Þ

where

Θ̂1 ¼ −i
Z

dVĥIðxÞ ¼ −iλμ̂Aϕ̂ðΛAÞ − iλμ̂Bϕ̂ðΛBÞ; ð78Þ

Θ̂2 ¼ −
1

2

Z
dVdV 0θðt − t0Þ½ĥIðxÞ; ĥIðx0Þ�

¼ −
λ2

2

Z
dVdV 0θðt − t0Þ½ϕ̂ðxÞ; ϕ̂ðx0Þ�

× ðμ̂2AΛAðxÞΛAðx0Þ þ μ̂Aμ̂BΛAðxÞΛBðx0Þ
þ μ̂Bμ̂AΛBðxÞΛAðx0Þ þ μ̂2BΛBðxÞΛBðx0ÞÞ ð79Þ

¼ −
iλ2

2
ðμ̂2AGRðΛA;ΛAÞ þ μ̂2BGRðΛB;ΛBÞ

þ μ̂Aμ̂BðGRðΛA;ΛBÞ þ GRðΛB;ΛAÞÞÞ; ð80Þ

where we used that θðt − t0Þ½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ iGRðx; x0Þ, and
that the operators μ̂A and μ̂B commute. We then denote
ΔAB ¼GRðΛA;ΛBÞþGAðΛA;ΛBÞ, GA ¼ λ2

2
GRðΛA;ΛAÞ, and

GB ¼ λ2

2
GRðΛB;ΛBÞ, so that Eq. (78) allows us to write

Θ̂2 ¼ −iμ̂2AGA − iμ̂2BGB −
i
2
μ̂Aμ̂BΔAB: ð81Þ

The fact that the commutator ½ĥIðxÞ; ĥIðx0Þ� commutes with
hIðx00Þ implies that only Θ̂1 and Θ̂2 are nonzero in the
Magnus expansion so that the unitary time evolution
operator reads

ÛI ¼ e−iλμ̂Aϕ̂ðΛAÞ−iλμ̂Bϕ̂ðΛBÞe−iμ̂2AGAe−iμ̂
2
BGBe−

i
2
μ̂Aμ̂BΔAB ; ð82Þ

where we used that ½Θ̂1; Θ̂2� ¼ 0 in order to separate the
exponentials. One can also use the Baker–Campbell–
Hausdorff formula in order to factor ÛI as

ÛI¼e−iλμ̂Aϕ̂ðΛAÞe−iλμ̂Bϕ̂ðΛBÞe−iμ̂2AGA−iμ̂2BGBe−
i
2
μ̂Aμ̂BðΔAB−EABÞ

¼e−iλμ̂Bϕ̂ðΛBÞe−iλμ̂Aϕ̂ðΛAÞe−iμ̂2AGA−iμ̂2BGBe−
i
2
μ̂Aμ̂BðΔABþEABÞ; ð83Þ

where EAB ¼ EðΛA;ΛBÞ, and we have

1

2
ðΔAB − EABÞ ¼ λ2GAðΛA;ΛBÞ ¼ λ2GRðΛB;ΛAÞ; ð84Þ

1

2
ðΔAB þ EABÞ ¼ λ2GRðΛA;ΛBÞ ¼ λ2GAðΛB;ΛAÞ: ð85Þ
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In order to compute the final state of the two detectors
after tracing the field it is more convenient to work with the
expression from Eq. (82). Assume that the initial state of
the detectors-field systems is ρ̂0 ¼ ρ̂AB;0 ⊗ ρ̂ω, where, as
usual, ρ̂ω is the representation of a quasifree state ω in the
quantum field theory. We further assume that μ̂2A ¼ μ̂2B ¼ 1,
so that the effect of the local unitaries e−iμ̂

2
AGAe−iμ̂

2
BGB

becomes negligible. Given that the unitary e−
i
2
μ̂Aμ̂BΔAB

commutes with the field-dependent term, we can separate
the action of the unitary

Ûϕ ¼ e−iλμ̂Aϕ̂ðΛAÞ−iλμ̂Bϕ̂ðΛBÞ ð86Þ

from the rest. In order to proceed with the computations,
we denote the eigenstate of μ̂A and μ̂B by j�Ai and j�Bi,
so that

Ûϕρ̂0Û
†
ϕ ¼ e−iλμ̂Aϕ̂ðΛAÞ−iλμ̂Bϕ̂ðΛBÞρ̂0eiλμ̂Aϕ̂ðΛAÞþiλμ̂Bϕ̂ðΛBÞ

¼
X

μA ;μB¼�
μ0
A
;μ0
B
¼�

e−iλϕ̂ðμAΛAþμBΛBÞρ̂ωeiλϕ̂ðμ
0
AΛAþμ0BΛBÞ

× hμAμBjρ̂AB;0jμ0AμB0 ijμAμBihμ0AμB0 j: ð87Þ

The next step is to trace over the field to obtain the state
σ̂AB ¼ trϕðÛϕρ̂0Û

†
ϕÞ. We find

σ̂AB ¼
X

μA ;μB¼�
μ0
A
;μ0
B
¼�

ωðeiλϕ̂ðμ0AΛAþμ0BΛBÞe−iλϕ̂ðμAΛAþμBΛBÞÞ

× hμAμBjρ̂AB;0jμ0AμB0 ijμAμBihμ0AμB0 j
¼

X
μA ;μB¼�
μ0
A
;μ0
B
¼�

e
iλ2
2
Eðμ0AΛAþμ0BΛB;μAΛAþμBΛBÞ−λ2

2
jjðμA−μ0AÞΛAþðμB−μ0BÞΛBjj2

× hμAμBjρ̂AB;0jμ0AμB0 ijμAμBihμ0AμB0 j; ð88Þ

where we used

ωðeiλϕ̂ðfÞeiλϕ̂ðgÞÞ ¼ e−iλ2
2
Eðf;gÞ−λ2

2
Wðfþg;fþgÞ; ð89Þ

and we denoted jjfjj2 ¼ Wðf; fÞ. We can now incorporate
the unitary e−

i
2
μ̂Aμ̂BΔAB again, so that the final state of the

detectors is given by

ρ̂AB ¼ e−
i
2
μ̂Aμ̂BΔAB σ̂ABe

i
2
μ̂Aμ̂BΔAB : ð90Þ

Once again, notice that the final state of the qubits is
entirely given in terms of bidistributions of the quantum
field smeared against ΛAðxÞ and ΛBðx0Þ.
Finally, we write ρij, i; j ¼ 1;…; 4 for the components

of ρ̂AB;0 in the basis fjþAþBi;jþA−Bi;j−AþBi;j−A−Big,
so that the final state of the detectors state can be written
(in this same basis) as

ρ̂AB ¼

0
BBB@

ρ11 e−2WBBþiðEAB−ΔABÞρ12 e−2WAA−iðEABþΔABÞρ13 e−2ðWAAþWBBþHABÞρ14
e−2WBB−iðEAB−ΔABÞρ21 ρ22 e−2ðWAAþWBB−HABÞρ23 e−2WAAþiðEABþΔABÞρ24
e−2WAAþiðEABþΔABÞρ31 e−2ðWAAþWBB−HABÞρ32 ρ33 e−2WBB−iðEAB−ΔABÞρ34
e−2ðWAAþWBBþHABÞρ41 e−2WAA−iðEABþΔABÞρ42 e−2WBBþiðEAB−ΔABÞρ43 ρ44

1
CCCA: ð91Þ

For each of the bidistributions W, H, E, and Δ, we use the
convention BAB ¼ λ2BðΛA;ΛBÞ.
In order to see an explicit example, we consider the case

where μ̂A ¼ σ̂þA þ σ̂−A , μ̂B ¼ σ̂þB þ σ̂−B , the detectors undergo
inertial trajectories in Minkowski spacetime, and interact
with the vacuum of a massless scalar field in Gaussian
spacetime regions. For convenience, we use the same
spacetime smearing functions as in Eqs. (52) and (53)
with t0 ¼ 0. We will assume both detectors start in their
ground states, with ρ̂AB;0 ¼ jgAihgAj ⊗ jgBihgBj. As we did
in the example of entanglement harvesting, we will
be interested in checking the conditions so that the
detectors can end up in an entangled state. In order to
check that, we plot the eigenvalues of the partial transpose
of ρ̂AB in Fig. 2 as a function of the effective interaction time
T for three different values of the coupling constant. The
dashed lines represent the eigenvalues of ρ̂tBC , where we
define

ρ̂C ¼ ÛCρ̂AB;0Û
†
C; ÛC ¼ e−

i
2
μ̂Aμ̂BΔAB : ð92Þ

We show the eigenvalues of ρ̂C for comparison.
Keep in mind that the detectors are entangled if and only

if the partial transpose of their density operator has a
negative eigenvalue. Notice that in this example, for small
values of the coupling constant λ, the behavior of the state
evolved by the unitary ÛC ¼ e−

i
2
μ̂Aμ̂BΔAB is very similar to the

interaction with the quantum field. This is because for small
coupling constants, the detectors are not subject to too
much noise, and they are able to communicate through the
field without getting too entangled with the field itself.
Also notice that for small values of T, the detectors

cannot become entangled. This can be seen in the extended

plots on the top right, which display the region T=jLj
< 1. The

fact that the detectors cannot become entangled when T ≲
jLj is in agreement with the results of the no-go theorems
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proven in [77,78], where it was proven that gapless
detectors cannot harvest if their interaction regions are
spacelike separated. The fact that the detectors start
becoming entangled for T ≈ 0.7jLj < jLj is merely an
artifact of the noncompact support of the Gaussian switch-
ing functions considered, so that for T ≳ 0.7jLj, there is still
enough causal contact for the detectors to become
entangled. Importantly, regardless of the coupling constant,
we find that the detectors are only able to become entangled
for T ≳ 0.7jLj, showing that the detectors’ inability to
communicate is independent of how strongly they couple to
the field.
We end our analysis of this specific example by

computing the explicit difference between the final density
operator ρ̂AB, obtained considering the complete interaction

with the field, and the operator ρ̂C, obtained by considering
only the unitary part of the evolution, ÛC. In Fig. 3, we
plot the squared Hilbert–Schmidt norm4 of the difference
ρ̂AB − ρ̂C for different values of λ, using the same setup as
we considered before. In the figure we see that the norm of
the difference quickly goes to zero as λ decreases. We can
also notice that in the limit of T → ∞, the difference
between the two evolutions becomes a constant.
Given that we have access to analytical expressions for

both ρ̂AB and ρ̂C, we can also compute the asymptotic
behavior of jjρ̂AB − ρ̂Cjj2HS in the limit where σ ≪ jLj and
T ≫ jLj (with the assumption of σT ≪ jLj2). In this limit,
we find that the result is independent of σ, jLj, and, of
course, T. We find

lim
T→∞

jjρ̂AB − ρ̂Cjj2HS

¼ 1

8

�
5þ e−

4λ2

π − 2e−
2λ2

π þ 4e−
λ2

π − 8e−
λ2

2π

�
: ð93Þ

We plot this result in Fig. 4. Also notice that the behavior of
the above limit for λ → 0 is given by

lim
T→∞

jjρ̂AB − ρ̂Cjj2HS ¼
5λ4

8π2
þOðλ6Þ; ð94Þ

suggesting that indeed, in the regime of small coupling
constant, the evolution is well modeled by the unitary ÛC.

C. Recovering previous results in the literature

In this subsection we will recover the results of [20] in
the case where the interaction of A happens “before” the
interaction of B. In this context, the word “before” means
that there exists a Cauchy surface Σ separating the supports
of ΛA and ΛB such thatΛA is nonzero only in the causal past
of Σ and ΛB is nonzero only in the causal future of Σ.

FIG. 3. The squared Hilbert–Schmidt norm of the difference
between the density operators ρ̂AB and ρ̂C for σ ¼ 0.05jLj
considering detectors that start in their ground state. The dashed
lines correspond to their asymptotic limit as T → ∞.

FIG. 2. The solid lines correspond to the eigenvalues of the
partial transpose of the detectors final state ρ̂tBAB, when the
detectors start both in their ground state, as a function of
the interaction time T, scaled by the detectors’ separation jLj.
The dashed lines are the eigenvalues of ρ̂tBAB if it were to evolve
only according to the unitary ÛC ¼ e−

i
2
μ̂Aμ̂BΔAB. We picked

σ ¼ 0.05jLj for these plots.

4The Hilbert–Schmidt norm is a norm in the space of operators
in a finite dimensional vector space. It is defined as jjÂjjHS ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðA†AÞ
p

.
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In order to match our results more clearly, we will also
assume that μ̂2A ¼ μ̂2B ¼ 1, so that one can get rid of the local
unitaries, as they contribute only with global phases, and do
not affect the time evolution. The time ordering operation
ensures that one can write the unitary time evolution
operator as

ÛI ¼ e−iλμ̂Bϕ̂ðΛBÞe−iλμ̂Aϕ̂ðΛAÞ; ð95Þ

with the unitary first being applied to the field and qubit A,
and then being applied to the field and qubit B. However, in
[20], the interaction is written in a different form, with the
unitary first being applied to B and only later to A.
Equation (95) can be put in this form by commuting the
two unitaries using the Baker–Campbell–Hausdorf formula,
as was explicitly shown in Eq. (83). Notice that if the
interaction of A happens before B, we have 1

2
ðΔAB þ EABÞ ¼

λ2GRðΛA;ΛBÞ ¼ 0 and 1
2
ðΔAB − EABÞ ¼ λ2GRðΛB;ΛAÞ ¼

−EAB. Under these assumptions (83) reads

ÛI ¼ e−iλμ̂Aϕ̂ðΛAÞe−iλμ̂Bϕ̂ðΛBÞeiμ̂Aμ̂BEAB

¼ e−iλμ̂Bϕ̂ðΛBÞe−iλμ̂Aϕ̂ðΛAÞ; ð96Þ

the first line of which is exactly Eq. (35) of reference [20],
with the appropriate changes of conventions and ignoring the
irrelevant global phase terms.
We also notice that when the interaction of qubit A

happens before the interaction of qubit B and they start
uncorrelated, one can write the final state of B after the
interaction as

ρ̂B ¼ trϕ;AðÛBϕÛAϕðρ̂B;0 ⊗ ρ̂A;0 ⊗ ρ̂ϕÞÛ†
AϕÛ

†
BϕÞ ð97Þ

¼ trϕðÛBϕðρ̂B;0 ⊗ trAðÛAϕðρ̂A;0 ⊗ ρ̂ϕÞÛ†
AϕÞÛ†

BϕÞ ð98Þ

¼ trϕðÛBϕðρ̂B ⊗ ˆ̃ρϕÞÛ†
BϕÞ; ð99Þ

where ˆ̃ρϕ is an updated state for the field after the interaction
of qubit A. As stated in [20], as well as in [78], this is an
entanglement breaking channel for qubit B, thus showing that
A and B cannot become entangled if there is a Cauchy surface
separating the support of their interaction regions.
Finally, we comment on the case of delta-coupled particle

detectors (or ultrafast switchings), in which case the supports
ofΛA andΛB are contained in spacelike surfaces. In this setup
the energy gaps of the detectors become irrelevant, and the
results of gapless detectors apply. Unless the supports of ΛA

andΛB overlap, it is always possible to find a Cauchy surface
between the interaction regions, and the results discussed
above also apply, so that Eq. (96) can be used to compute the
final state of the detectors, and the qubits cannot end in an
entangled state, confirming the results of [21], as well as
another example of the no-go theorems of [77,78]. Overall,
we see that the results of this section generalize the previous
results in the literature for gapless detectors as well as for
delta-coupled particle detectors.

VII. CONCLUSIONS

We have studied the Wightman function, the Feynman
propagator, the retarded and advancedGreen’s functions, the
causal propagator, and the symmetric propagator of a
massless scalar field in the vacuum of Minkowski spacetime
when smeared against Gaussian spacetime functions. We
found closed-form expressions for each of these smeared
bidistributions, and analyzed examples where these corre-
lations can be accessed by local probes that couple to the field
in Gaussian-shaped regions. Our results allowed us to find
easily evaluatable closed-form expressions for the final state
of these probes in the regime of weak interactions with the
field, and in the case where the probes have trivial internal
dynamics during the interaction with the field.
In the case of weak interactions, we found closed-form

expressions for the entanglement acquired by detectors that
interact with a quantum field for a time T and that are
separated by a distance L. Using our results we found a
simple expression for the contribution of signalling to the
entanglement between the detectors. We also looked at
asymptotic results of entanglement harvesting, and we found
that for large spatial separations, the available entanglement
in Gaussian spacetime regions behaves as l−4e−l

2=4, where
l ¼ L=T is the distance between the regions relative to the
interaction time. This confirms that the available entangle-
ment between spacelike separated regions decreases expo-
nentially with their distance. By comparing our results with
the usual numerical integration methods used to study
entanglement harvesting, we could also find the analytical
expression for an integral that had not been solved in closed
form until this point [see Eq. (58)].
We also considered the case where the detectors that

interact with the field have zero energy gap, generalizing the
results of [20]. Using these general results, combined with

FIG. 4. The limit of the asymptotic behavior of the squared
Hilbert–Schmidt norm of the operator ρAB − ρ̂C. This limit only
depends on λ.
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the results of the bidistributions, we studied explicit exam-
ples of gapless detectors interacting in Gaussian regions of
spacetime, and found that gapless detectors can become
entangled, provided that their interaction regions cannot be
separated by a Cauchy surface. We also found that, for small
coupling constants and spacetime regions separated by
translations in space, the noise generated by the quantum
field is suppressed, and the quantum gate established
between the two detectors is well approximated by the
unitary e−

i
2
μ̂Aμ̂BΔAB, where ΔAB represents the symmetric

exchange of information between the interaction regions.
Finally, we discussed how these results are compatible with
the no-go theorems of [77,78] which prevent spacelike
entanglement harvesting using gapless detectors.
In Appendix, we have also generalized the closed-form

results presented in the manuscript to two-point functions
between more general field observables (such as the field’s
momentum), and more general parameters of the Gaussian
spacetime regions. We hope that the results and expressions
presented in this manuscript will be useful for future studies
of local operations in quantum field theory. The fact that all
observables localized in Gaussian spacetime regions in a
massless scalar QFT can be written in terms of the
bidistributions that have been computed in this manuscript
showcases the wide range of applications of our results.
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APPENDIX: MORE GENERAL PARAMETERS
FOR THE SMEARED BIDISTRIBUTIONS

In this appendix we will compute the bidistributions
Wðf1; f2Þ, Eðf1; f2Þ, and Hðf1; f2Þ for general parameters
ðT1; t1;Ω1; σ1;L1Þ and ðT2; t2;Ω2; σ2;L2Þ for the functions
f1ðxÞ and f2ðxÞ detailed in Sec. III. We will also compute
GRðf1; f2Þ, GAðf1; f2Þ, Δðf1; f2Þ, and GFðf1; f2Þ in the
case σ1 ¼ σ2 ¼ σ. Finally, we will discuss how to general-
ize our results for the computation of two-point functions
that involve the momentum of a real massless quantum
field and more general time derivatives of the field.
We start from Eq. (16), and notice that for the functions

FIðxÞ ¼
e
−jx−LI j2

2σ2
I

ð2πσ2I Þ3=2
; χIðtÞ ¼ e

−ðt−tIÞ2
2T2

I eiΩIt; ðA1Þ

we have the Fourier transforms

F̃ðkÞ ¼ eik·LI−
σ2
I
jkj2
2 ;

χ̃ðωÞ ¼
ffiffiffiffiffiffi
2π

p
T IeiðωþΩIÞtI−

ðωþΩIÞ2T2I
2 : ðA2Þ

Plugging the results above into Eq. (16), we find

Wðf1; f2Þ ¼
1

ð2πÞ2
Z

d3k
2jkj e

ik·L1−
σ2
1
jkj2
2 e−ik·L2−

σ2
2
jkj2
2 T2eiðjkjþΩ2Þt2−

ðjkjþΩ2Þ2T22
2 T1e−iðjkj−Ω1Þt1−

ðjkj−Ω1Þ2T21
2

¼ T1T2eiðΩ1t1þΩ2t2Þ

ð2πÞ2
Z

d3k
2jkj e

ik·ðL1−L2Þe−ijkjðt1−t2Þe−
ðσ2
1
þσ2

2
Þjkj2

2 e−
ðjkjþΩ2Þ2T22

2
−
ðjkj−Ω1Þ2T21

2

¼ T1T2eiðΩ1t1þΩ2t2Þ

ð2πÞ2 e−
Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

Z
d3k
2jkj e

ik·ðL1−L2Þe−ijkjðt1−t2Þe−
ðσ2
1
þσ2

2
þT2

1
þT2

2
Þjkj2

2 e−jkjðΩ2T2
2
−Ω1T2

1
Þ

¼ T1T2eiðΩ1t1þΩ2t2Þ

2π
e−

Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

Z
djkj
2jkj jkj

22sincðjkjjLjÞe−ijkjt0e−
ðσ2
1
þσ2

2
þT2

1
þT2

2
Þjkj2

2 e−jkjðΩ2T2
2
−Ω1T2

1
Þ

¼ T1T2eiðΩ1t1þΩ2t2Þ

2πjLj e−
Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

Z
djkj sinðjkjjLjÞe−ijkjt0e−

ðσ2
1
þσ2

2
þT2

1
þT2

2
Þjkj2

2 e−jkjðΩ2T2
2
−Ω1T2

1
Þ; ðA3Þ
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where L ¼ L1 − L2 and t0 ¼ t1 − t2. Using the result

Z
∞

0

dre−ibre−
a2r2
2 ¼

ffiffiffi
π

pffiffiffi
2

p
a
e−

b2

2a2

�
1 − ierfi

�
bffiffiffi
2

p
a

��
; ðA4Þ

and writing sinðjkjjLjÞ as exponentials we find

Wðf1; f2Þ ¼
T1T2eiðΩ1t1þΩ2t2Þ

2πjLj
1

2i

ffiffiffi
π

p
e−

Ω2
2
T2
2

2
−
Ω2
1
T2
1

2ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ σ21 þ σ22
p �

e
−
ðt0−jLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ

�
1 − ierfi

�
t0 − jLj þ iðΩ1T2

1 − Ω2T2
2Þffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
1 þ T2

2 þ σ21 þ σ22
p ��

− e
−
ðt0þjLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ

�
1 − ierfi

�
t0 þ jLj þ iðΩ1T2

1 −Ω2T2
2Þffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
1 þ T2

2 þ σ21 þ σ22
p ��

¼ T1T2eiðΩ1t1þΩ2t2Þe−
Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

4
ffiffiffiffiffiffi
2π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ σ21 þ σ22
p �

e
−
ðt0−jLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ

�
−i − erfi

�
t0 − jLj þ iðΩ1T2

1 −Ω2T2
2Þffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
1 þ T2

2 þ σ21 þ σ22
p ��

þ e
−
ðt0þjLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ

�
iþ erfi

�
t0 þ jLj þ iðΩ1T2

1 −Ω2T2
2Þffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
1 þ T2

2 þ σ21 þ σ22
p ���

: ðA5Þ

And, as it turns out, we find that

Hðf1; f2Þ ¼
T1T2eiðΩ1t1þΩ2t2Þe−

Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

2
ffiffiffiffiffiffi
2π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ σ21 þ σ22
p �

e
−
ðt0−jLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ erfi

�jLj − t0 − iðΩ1T2
1 − Ω2T2

2Þffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ σ21 þ σ22
p �

þ e
−
ðt0þjLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ erfi

�jLj þ t0 − iðΩ1T2
1 − Ω2T2

2Þffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ σ21 þ σ22
p ��

; ðA6Þ

and

Eðf1; f2Þ ¼
T1T2eiðΩ1t1þΩ2t2Þe−

Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

2
ffiffiffiffiffiffi
2π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ σ21 þ σ22
p �

e
−
ðt0þjLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ − e

−
ðt0−jLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þσ2

1
þσ2

2
Þ

�
: ðA7Þ

We now move on to the Green’s functions, which will allow us to compute the Feynman propagator and the
symmetric propagator. In order to compute these, we will resort to integration in spacetime of the spacetime smearing
functions, using the expressions for the Green’s functions of Eqs. (20) and (21). Unfortunately, we will have to consider a
more restricted parameter space where σ1 ¼ σ2 ¼ σ in order to solve these integrals. For the retarded Green’s function, we
have

GRðf1; f2Þ ¼
Z

dVdV 0f1ðxÞf2ðx0ÞGRðx; x0Þ

¼ 1

ð2πÞ3σ6
Z

dtdt0d3xd3x0e−
jx−L1 j2
2σ2 e−

jx0−L2 j2
2σ2 eiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2t0e
−ðt0−t2Þ2

2T2
2

�
−
δðt0 − tþ jx − x0jÞ

4πjx − x0j
�

¼ −
1

2ð2πÞ4σ6
Z

dtd3xd3x0e−
jx−L1 j2
2σ2 e−

jx0−L2 j2
2σ2 eiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−jx−x0jÞe
−ðt−jx−x0 j−t2Þ2

2T2
2

1

jx − x0j : ðA8Þ

We now perform the change of variables

x ¼ 1ffiffiffi
2

p ðuþ vÞ þ L1; x0 ¼ 1ffiffiffi
2

p ðu − vÞ þ L1; ðA9Þ
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so that jx − x0j ¼ ffiffiffi
2

p jvj. Defining L ¼ L1 − L2, the integral becomes:

GRðf1; f2Þ ¼ −
1

2ð2πÞ4σ6
Z

d3ud3ve−
juþvj2
4σ2 e−

ju−vþ ffiffi
2

p
Lj2

4σ2
1ffiffiffi
2

p jvj

Z
dteiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−
ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2

¼ −
1

2ð2πÞ4σ6
Z

d3ud3ve−
juj2þjvj2

4σ2 e−
juj2þjvj2þ2jLj2

4σ2 e−
ffiffi
2

p
u·Lþ ffiffi

2
p

v·L
2σ2

1ffiffiffi
2

p jvj

Z
dteiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−
ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2

¼ −
e−

jLj2
2σ2

2ð2πÞ4σ6
Z

d3ud3ve−
juj2
2σ2e−

jvj2
2σ2e−

u·Lffiffi
2

p
σ2e

v·Lffiffi
2

p
σ2

1ffiffiffi
2

p jvj

Z
dteiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−
ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2 : ðA10Þ

We can now proceed to first solve for the angular integrals in u and v, and then the radial integral in juj, resulting in

GRðf1; f2Þ ¼ −
e−

jLj2
2σ2

2ð2πÞ2σ6
Z

djujdjvjjuj2jvj2e−juj2
2σ2e−

jvj2
2σ2

2
ffiffiffi
2

p
σ2 sinh

�
jLjjujffiffi
2

p
σ2

�
jujjLj

2
ffiffiffi
2

p
σ2 sinh

�
jLjjvjffiffi
2

p
σ2

�
jvjjLj

1ffiffiffi
2

p jvj

×
Z

dteiΩ1te
−ðt−t1Þ2

2T2
1 eiΩ2ðt−

ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2

¼ −
e−

jLj2
2σ2ffiffiffi

2
p

π2σ2jLj2
Z

djujdjvjjuje−juj2
2σ2 sinh

�jLjjujffiffiffi
2

p
σ2

�
e−

jvj2
2σ2 sinh

�jLjjvjffiffiffi
2

p
σ2

�

×
Z

dteiΩ1te
−ðt−t1Þ2

2T2
1 eiΩ2ðt−

ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2

¼ −
e−

jLj2
2σ2ffiffiffi

2
p

π2σ2jLj2
Z

djvj
ffiffiffi
π

p
σjLj
2

e
jLj2
4σ2e−

jvj2
2σ2 sinh

�jLjjvjffiffiffi
2

p
σ2

�Z
dteiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−
ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2

¼ −
e−

jLj2
4σ2

2
ffiffiffi
2

p
π3=2σjLj

Z
djvje−jvj2

2σ2 sinh

�jLjjvjffiffiffi
2

p
σ2

�Z
dteiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−
ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2 : ðA11Þ

Defining t0 ¼ t1 − t2, the integral in t yields

Z
dteiΩ1te

−ðt−t1Þ2
2T2

1 eiΩ2ðt−
ffiffi
2

p jvjÞe
−ðt− ffiffi

2
p jvj−t2Þ2
2T2

2 ¼
ffiffiffiffiffiffi
2π

p
T1T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
1 þ T2

2

p e
− jvj2
T2
1
þT2

2e

ffiffi
2

p jvjðt0−iðΩ1T21−Ω2T
2
2
ÞÞ

ðT2
1
þT2

2
Þ e

−
t2
0

2ðT2
1
þT2

2
Þ−

T2
1
T2
2
ðΩ1þΩ2Þ2

2ðT2
1
þT2

2
Þ þiðΩ1þΩ2Þ

ðt1T22þt2T
2
1
Þ

T2
1
þT2

2 : ðA12Þ

The final integral in jvj is merely a combination of Gaussian integrals. After simplifications, we finally find

GRðf1; f2Þ ¼ −
T1T2eiðΩ1t1þΩ2t2Þe−

Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

4
ffiffiffiffiffiffi
2π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ 2σ2
p �

e
−
ðt0þjLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þ2σ2Þ

�
1þ erf

�jLjðT2
1 þ T2

2Þ − 2σ2ðt0 þ iðΩ1T2
1 −Ω2T2

2ÞÞ
2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ 2σ2
p ��

þ e
−
ðt0−jLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þ2σ2Þ

�
−1þ erf

�jLjðT2
1 þ T2

2Þ þ 2σ2ðt0 þ iðΩ1T2
1 −Ω2T2

2ÞÞ
2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ 2σ2
p ���

: ðA13Þ

Combining GRðf1; f2Þ and Eðf1; f2Þ, we can then find GAðf1; f2Þ,

GAðf1; f2Þ ¼ −
T1T2eiðΩ1t1þΩ2t2Þe−

Ω2
2
T2
2

2
−
Ω2
1
T2
1

2

4
ffiffiffiffiffiffi
2π

p jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ 2σ2
p �

e
−
ðt0þjLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þ2σ2Þ

�
−1þ erf

�jLjðT2
1 þ T2

2Þ − 2σ2ðt0 þ iðΩ1T2
1 −Ω2T2

2ÞÞ
2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 þ 2σ2
p ��

þ e
−
ðt0−jLjþiðΩ1T21−Ω2T

2
2
ÞÞ2

2ðT2
1
þT2

2
þ2σ2Þ

�
1þ erf

�jLjðT2
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: ðA14Þ
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Finally, we find Δðf1; f2Þ by adding Eqs. (A13) and (A14):

Δðf1; f2Þ ¼ −
T1T2eiðΩ1t1þΩ2t2Þe−
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2
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2

2
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: ðA15Þ

Using Eqs. (A7) and (A15), one can then findGFðf1; f2Þ ¼
1
2
Hðf1; f2Þ þ i

2
Δðf1; f2Þ.

In order to obtain the field biditributions evaluated at the
field’s momentum π̂ðxÞ ¼ ∂tϕ̂ðxÞ rather than at the field’s
amplitude smeared in Gaussian spacetime regions, one can
simply differentiate the results of this section with respect
to the parameters Ω1, Ω2, using

ωðπ̂ðf1Þϕ̂ðf2ÞÞ ¼ ωðϕ̂ð−∂tf1Þϕ̂ðf2ÞÞ; ðA16Þ
and noticing that for the functions used here

∂tf1ðxÞ ¼
�
−

t
T2
1

þ t1
T2
1

þ iΩ1

�
f1ðxÞ

¼ i
T2
1

d
dΩ1

f1ðxÞ þ
�
t1
T2
1

þ iΩ1

�
f1ðxÞ: ðA17Þ

That is, one finds that

ωðπ̂ðf1Þϕ̂ðf2ÞÞ ¼ −
i
T2
1

d
dΩ1

Wðf1; f2Þ

−
�
t1
T2
1

þ iΩ1

�
Wðf1; f2Þ: ðA18Þ

Analogous expressions are valid for higher derivatives of
the field in both arguments, and for the other bidistributions
H, E, GR, GA, GF, and Δ. For brevity, we will not write
these explicit expressions here, but they can be straight-
forwardly computed.
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