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Feynman diagrams (notably the triangle diagram) involving heavy enough particles contain branch cuts
on the physical sheet—anomalous thresholds—which, unlike normal thresholds and bound-state poles, do
not correspond to any asymptotic n-particle state. “Who ordered that?” We show that anomalous thresholds
arise as a consequence of established S-matrix principles and two reasonable assumptions: unitarity below
the physical region and analyticity in the mass. We find explicit nonperturbative formulas for the
anomalous threshold singularity and test them against the Coleman-Thun poles of the Ey integrable model.
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I. INTRODUCTION

Despite the intricate analytic structure of scattering
amplitudes most singularities have a clear on-shell explan-
ation. A basic consequence of unitarity is the presence
of normal thresholds: branch cuts on the physical sheet
starting at energies where particle production occurs, i.e.,
where intermediate states can be made on-shell (see
Fig. 1). While rigorous unitarity only holds in the physical
scattering region, perturbation theory indicates that the
exchange of states lighter than the physical threshold
should still correspond to singularities, such as the usual
simple poles (single particles going on-shell). These can
be accounted for by extended unitarity [1-9], which
assumes that unitarity remains valid below the physical
region (see Fig. 1).

Yet, when going beyond the 2 — 2 scattering of the
lightest particle (i.e., 2 — 2 scattering of heavier particles
or generic multiparticle scattering) one typically encounters
singularities in perturbation theory which are not captured
by extended unitarity (as defined above). The prototypical
example is the triangle diagram in Fig. 1. When the mass M

of the heavier particle exceeds /2 of the mass m of the
lightest particle (and remains stable),

2m > M > /2m, (1)

the triangle singularity occurs on the physical sheet below
the normal thresholds, at s = a, where
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a=4M?* — M*/m? < 4m>. (2)

This is known as an anomalous threshold [10-13].

Anomalous thresholds have a physical interpretation for
certain composite objects.1 They are nonetheless present
regardless of compositeness, and they have physical
consequences. In the absence of poles, the anomalous
threshold is the closest singularity to the crossed channel
physical region (where s <0 is a scattering angle, see
Fig. 1), and therefore controls the decay at large impact
parameters of the amplitude and the corresponding
Froissart bound on the asymptotic cross section [16].”

Perturbation theory indicates that anomalous thresholds
are not only present in 2 — 2 scattering of heavy enough
particles, but also in generic multi-particle scattering (even
of the lightest particle, say mm — mmm) [4,13]. The
absence of anomalous thresholds (or other exotic singu-
larities [5,26,27]) in Feynman diagrams of 2 — 2 scattering
of the lightest particle (here mm — mm) is quite special
and motivates the hypothesis of lightest particle maximal
analyticity (LPMA) [28].

LPMA has important practical implications: Bounds on
physical observables such as Wilson coefficients can be

1Namely, for loose bound states, such as the deuteron, whose
mass M = 2m — e, with binding energy ¢ < m, satisfies the
relation (1). It follows from nonrelativistic quantum mechanics
that the anomalous threshold is related to the spatial extension of
the bound state’s wave function [14,15] (see also [16] for a recent
treatment).

The triangle singularity can also affect the direct channel
(even in the nonanomalous regime where it is on the second
sheet). It appears to be in the origin of threshold enhancements
or resonancelike effects in some processes involving exotic
hadrons [17-22]. See [23] for a list of processes where the
triangle singularity is suspected to play a role (of note the
a,(1420) “peak” [24,25]).

Published by the American Physical Society
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FIG. 1. Complex s-plane for MM — MM. Physical scattering
occurs for s > 4M? where unitarity applies. Typically, unitarity is
extended below to find further normal thresholds and simple
poles, but not anomalous thresholds [4].

determined since all branch cuts of the amplitude are
normal thresholds and are directly constrained by unitarity
and positivity. On the other hand, the presence of an
unconstrained branch cut, such as an anomalous threshold,
would be a serious obstacle to finding bounds in general, as
the amplitude can oscillate wildly across this cut (where it
technically is a distribution). Given the renewed interest on
the numerical S-matrix bootstrap [6-8,29-54] (see [55] for
a recent overview), understanding whether anomalous
thresholds can be constrained, and how, is paramount.

Anomalous thresholds also famously show up in
integrable models, where they are typically known as
Coleman-Thun poles [56]. Contrarily to bound-state poles,
Coleman-Thun poles are not necessarily simple. For
example, in the Eg Toda field theory, the scattering of
the heaviest particle has two Coleman-Thun poles of order
twelve [57,58]. Integrable models are exact nonperturbative
solutions. However, to our knowledge, current understand-
ing of Coleman-Thun poles as anomalous thresholds is
only based on Feynman diagrams and corresponding
Landau analysis [59].

Here we take a nonperturbative approach. In Sec. II we
briefly review how the anomalous threshold arises in the
triangle diagram. The main argument is described in Sec. I1I
where the anomalous threshold of the mm — MM process
in d = 2 is studied and checked against the Eg integrable
model. In Sec. IV we generalize the previous argument to
d > 2 and, finding a match with old results on the dis-
continuity on the anomalous threshold of the mm — MM in
d =4. In Sec. V we propose, for the first time, a non-
perturbative formula for the anomalous threshold of the
MM — MM process. For simplicity, we consider d = 2 and
compute the Coleman-Thun double pole residue of the
MM — MM process. We check against the Eg integrable
model. Finally, in Sec. VI we compare with previous
literature and discuss possible generalizations of our work.

II. THE TRIANGLE DIAGRAM

It is instructive to take a brief look at anomalous
thresholds in perturbation theory before we proceed. The
case of triangle diagram has been studied many times

FIG. 2. Left: Triangle diagram with anomalous threshold given
by Eq. (3). Right: Representation of Eq. (12).

(see, e.g., [5,9,16]). In summary, the anomalous threshold
is a singularity which is already present for M < v/2m on
the second sheet of the s complex plane. As M is increased,
it comes closer to the branch point at s = 4m?, encircling it
at M =+/2m and coming onto the first sheet for
M > \/2m, as depicted below.

‘ 3 M>\@m'
‘.-\!'r
0‘ """"" )' =% 9 4M2

In d =2, the anomalous threshold of the triangle
diagram in Fig. 2 takes the form of a simple pole. We
find (see Appendix A)

2
B(s = a) = —2N¢(a) 49 ,

for M > V2m  (3)

with

M* —2m*M? 1
N 4 ’ Q(S) °
m 2/sVam? —s

(4)

Notice how the residue is not positive definite, given that 1
can have either sign.

The triangle diagram is the first among infinitely many
diagrams that develops an anomalous threshold at s = a. In
particular, every diagram which can be reduced to the
triangle diagram via a contraction of legs will share the
same subset of Landau singularities [5,54]. All these
diagrams have the following things in common with the
triangle diagram:

(1) A two-particle cut across 2m.

(2) A cubic vertex g # 0 between mmM.

(3) Analyticity in M?.

Note that analyticity in any of the kinematic invariants—
including M>—is a feature of any Feynman integral, which
can be seen explicitly, e.g., in the Schwinger parametriza-
tion [5]. We now proceed to implement these features in a
nonperturbative way.
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III. A NONPERTURBATIVE ARGUMENT

A. Step 1: Local solution to 2-particle unitarity

To implement the 2m threshold we write down 2-particle
unitarity across this branch cut. In d = 2 it takes a very
simple form

Disc A(s) = p(s)|A(s)[*, (5)
Disc B(s) = p(s)A(s)B*(s), (6)

where Disc is the imaginary part and A and B are the
amplitudes for mm — mm and mm — MM scattering,
respectively, and p(s) = Disc ¢(s) is the phase-space vol-
ume. These two equations admit a formal solution [60,61]
(see Appendix B for a derivation)

_afs) Bl
A= P ety
with
Disca(s) =Discf(s) =0, s€[4m?,s;) (8)

where s, is the next threshold.

Solution (7) effectively resums 2-particle exchanges in
terms of 2mPI amplitudes a(s) and f(s) (see Fig. 5 in
Appendix B). Importantly, it makes the analytic depend-
ence across the 2m threshold manifest in terms of the
2-particle phase space volume ¢(s).

B. Step 2: Inserting the cubic coupling g

We can define the cubic coupling g nonperturbatively
as the ¢ and u-channel residue of the mm — MM amplitude
at m2,

2 2 2
g g a= g
©)

B(s,t) D — - =-N ,
(s.1) t—m? 2 s—a

where the last step is only valid in d = 2, where ¢ and u
kinematically depend on s (see Egs. (D3) and (D4) in
Appendix D). Note that this is already a pole at the
anomalous threshold location s — a. Nonetheless, this
contribution is already there for M < \/Em The anomalous
threshold coming from the triangle in Eq. (3) will modify
the residue for M > \/§m in terms of A. We wish to
understand what happens for finite A.

To let solution know (7) about the presence of the pole in
Eq. (9) we can make use of the freedom in the 2PI
amplitude f(s). In particular, Eq. (9) implies

§s—a

Bls) = [1 —a(a)e(a)] +p<2(s)  (10)

where f"°¢(s) is regular as s — a. Inserting into Eq. (7) we
have

N 1-ala)ela)

s—al—a(s)o(s) M<Vam (1)

B(s) =

+ ...,
where “...” include regular pieces as s — a.

C. Step 3: Analytic continuation in M?

Equation (11) makes explicit the analytic behavior close
to s — a and s — 4m?. According to Eq. (4) it tells us that
the 2m branch cut is of a square-root type, which is double-
sheeted. To access the second-sheet one just needs to
continue ¢(s) — —¢(s) in Eq. (11). Likewise, as M
increases from M < \2m to M > \/2m we see that a
crosses the branch cut of ¢(a), as depicted above.
Therefore, solution (11) gets continued ¢(a) — —¢(a)
representing the anomalous threshold coming onto the first
sheet. Crucially, given that a(s) is analytic across the 2m
threshold according to Eq. (8) we assume that there is no
other change to (11) besides ¢(a) - —¢(a).We find that
the residue at s — a gets modified to

21 4a(a)o(a
B(s—a)= —':\Cga i taéa;j((a))’ M>\2m
:—':\/_g:l[1+29(a)A(a)], M>V2m (12)

where we reexpressed a(a) in terms of A(a) using Eq. (7).
We see that this expression trivially reproduces the triangle
diagram simple pole in Eq. (3) at leading order in
perturbation theory A(s) = 1+ O(4%).

A more interesting check can be made using the Ejg
integrable model. In integrable models, masses and cou-
plings are fine-tuned such that particle production is absent,
B(s) = 0. This requires the existence of another singularity
at s — a with exactly the opposite residue. For example,
t— and u— channel exchange of M? leads to a simple pole at
s — a,,., where m and M are switched in a given by
Eq. (2). Indeed, these two singularities can be made to
overlap by requiring a = a,,.,j; which nontrivially fixes
M = # m > \/2m (see Fig. 6). Letting g be the coupling
between mMM this imposes a further constraint between
the residues

[J\'/g2 + NP+ 2g(a)A(a))}E —0, (13)

8

where N' =N,y in Eq. (4). The parameters g, g and
A(a) can be taken directly from the Eg S-matrices (see
Appendix C), and one can verify that Eq. (13) holds,
providing a nontrivial test of the proposed method.

IV. GENERALIZATION TO d > 2

Let us now describe how the previous approach gets
modified for d > 2. In this case, the unitarity Eqgs. (6) will
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now retain a phase space integral [61]. However, they do
retain the same form in partial wave basis, which is defined
in the usual way,

Ays) 1/ P A () (14)

~16r )

and likewise for Bj(s), where P,(z) is the Legendre
polynomial and z is the cosine of the scattering angle
(see Appendix D for the precise relation between z and ).
For concreteness, we will focus in d = 4, but the procedure
is very similar for any d > 2.

Step 1. of implementing the 2m cut therefore remains
analogous with the addition of the angular momentum label
J in Egs. (7) and rescalling the phase space factor ¢(s) —
(s —4m?)o(s) in Eq. (4). The main difference is in step 2:
now the poles (9) in B(s, ) will lead to a left-hand cut
for B;(s). The partial wave integral over the poles can be
easily done using the Froissart-Gribov representation (see
Appendix D). We get (9)

90y (Z(S))

() for even J, (15)

B,(s) D

with Z(s) = (2M?* = s5)/w(s) and w(s) =
V/ (4m? — 5)(4M? — 5) where Q,(Z(s)) is the Legendre
function of the second kind which has a cut for
Z(s)€[~1,1], which translates to s € (—o0,a]. We now
want to impose the presence of this left cut on the solution
to unitarity (7). This fixes f;(s) to have the form

ds' + P (s)

po=-L /[ P2~y ()els")]

87 ) w(s')(s'—s)

(16)

where /7% (s) is regular across this particular cut.” It is easy
to see that inserting (16) into the solution (7) gives the

correct result: Disc B;(s) = Disc BY"*(s), across the cut
s < a (making use of the relation Disc Q;(z) = znP,(z)/2).

Now the continuation in the mass M is more interesting.
We find that as M increases, a encircles the 4m? branch point
and the integration contour (16) will go onto the second
sheet of ¢(s”). Therefore, as a recedes the difference between
the contours from a — 4m? and back from 4m> — a is
nonzero, where on the return trip ¢(s’) = —o(s’) in (16). We
find that (16) gets corrected by

~ & [ Py(Z())ay(s)els)
ﬁJ(S> ﬁJ(S) +4”L W(S/)(S/ _ S) (17)

*Note that 7% (s) can have other left-hand cuts. In writing (16)
we are isolating the contribution coming from the poles (9).

We see that this extra piece now gives a cut for s > a, i.e., an
anomalous threshold. Plugging for B, (s) into (7) and taking
the Disc we get

g*A;(s)P;(Z(s))
8y/s(4M? — )

Disc B,(s) = — O(s—a), (18)

Mandelstam’s result [1] is reproduced by taking J =0
in (18). We can invert (18) back for the amplitude,

G S P22 Z(s))A(s 1)) d2!
8/ s(4M? — )

Disc,B(s, 1(z)) =

’

(19)

for s € [a, 4m?], and where z is the cosine of the scattering
angle and P is the 2-particle unitarity kernel (see
Appendix D). Eq. (19) matches the results from [62,63].

V. ANOMALOUS THRESHOLD
OF MM — MM IN d=2

Let us now see how the procedure detailed in
Appendix B applies to the anomalous threshold of MM —
MM in d = 2, for simplicity, whose amplitude we label by
C(s). Repeating step 1, we write down 2-particle unitarity
across 2m

Disc C(s) = p(s)|B(s)|* (20)
with solution
$)p* (s
C(s):a(s)—l—%, with Disco(s)=0 (21)

across the 2m branch cut until the next threshold. Again,
o(s) is interpreted as the 2mPI amplitude for MM — MM
scattering. See Appendix B for a derivation.*

Moving to step 2, we insert (s) given by Eq. (10) into
the solution (21). We find

N2ge(s)[1
(s —a)[l

2
—a(a)o(a

@e@l )
—a(s)e(s)]
where ... include less singular terms as s — a. Now, we fix

o(s) to cancel the double pole in C(s) for M < v/2m.
Eq. (22) then becomes

N1 —alae(@] (. 1-alaela)
O )

C(s) =o(s) +

(23)

*This solution had already been found by Gribov [64] (and
partially by Oehme [60]). It also follows from the K-matrix
solution with the second cut set to zero [65].
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FIG. 3. Left: Representation of Eq. (24). Right: Diagram with
anomalous threshold given by Eq. (25) in d = 2.

for M < \/Em, where the factor in parenthesis vanishes
as s — a.

Finally, the last step is to perform the continuation to
M > /2m. As before, this amounts to taking ¢(a) — —¢(a)
in the above. We then find that the residue of C(s) as s — ais
no longer canceled, but instead reads

2N?g*o(a)[l 4 2¢(a)A(a)]

Cls = a) = - ,

(24)

for M > \/2m, where we made use of solution (7) to
reexpress a(a) in terms of A(a).

A nonperturbative test can be made using the Ejy
integrable model. However, Eq. (24) alone does not capture
the double pole of the Eg model [given in Eq. (C21)]. There
is an overlapping singularity coming the asymmetric box
diagram in Fig. 3 which becomes a double pole exactly at
M = (1++/5)m/2 (see Appendix C). It reads (in units of
m=1)

8v/50(a) + V130 +38V5 &7
B 5 (s—a)?
(25)

Cabox(s - a) =

If we add the two contributions from (24) and (25), which
numerically given in Egs. (C22) and (C36), respectively,
we find a perfect match with the double pole residue of the
Eg model [Eq. (C21)].

VI. CONCLUSION

In this work we showed that consistency of extended
unitarity and analyticity in the mass M? requires the
presence of anomalous thresholds. We showcased our
argument with the mm — MM process in d = 2, where
the anomalous threshold is found to be a simple pole given
by Eq. (12) whose residue depends explicitly on the
mm — mm nonperturbative amplitude. This formula repro-
duces the triangle diagram in perturbation theory and is
consistent with the Eg integrable model [see Eq. (13)].

We then applied the method to higher dimensions (d = 4
was chosen for concreteness), where the anomalous thresh-
old is a branch cut and whose discontinuity is found to be
given by Egs. (18), for the partial wave, and (19) for the

amplitude. We match with Mandelstam’s result for the
anomalous threshold of the J = 0 wave [1] whose main
tool was the Muskhelishvili-Omngs representation.’ This is
a dispersion relation specific to the mm — MM process. It
assumes global analyticity and dominance of the nearest
2m exchange dominates over other intermediate processes
(see [13] for a discussion).

Our method, on the other hand, only requires local
analyticity assumptions and is not restricted to mm — MM
scattering. In particular, we find that the process MM — MM
develops a double pole given by Eq. (24). A nonperturbative
check of this formula was made using the Eg integrable
model. Because of the usual fine-tuning in the masses of
integrable models required by the absence of particle
production, we find other overlapping singularities.
Namely, the box in Fig. 2 contributes with another anoma-
lous threshold in the t-channel (see Appendix C) given by
Eq. (25). Once the two contributions are added, the Eg double
pole is reproduced.

The nonperturbative analysis presented here corrobo-
rates Coleman and Thun’s [56] interpretation of the higher
order poles in integrable models as anomalous thresholds.
Formulas such as (12) and (24) have been suggested before
in the literature in a qualitative way with unspecified
coefficients (see, e.g., [6,59]). We believe this is the first
time a derivation has been presented.

Future directions include the analysis of the subleading
(simple) pole behavior of MM — MM ind =2 and d > 2,
where the anomalous threshold is expected to either be of
logarithm or square-root nature [77]. It would be interesting
if the simple pole of integrable models, as in the E5 model,
could be reproduced via a similar set of assumptions. It
would also be interesting to test the proposed formulas in
nonintegrable theories, such as Ising field theory, e.g.,
making use of Hamiltonian truncation (see [78,79] for
recent developments).
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APPENDIX A: TRIANGLE DIAGRAM IN d =2

Here we find the anomalous threshold (Coleman-Thun
pole) of the triangle diagram in Fig. 2 of the main text. The
Feynman parameter representation of the triangle diagram
in d = 2 reads [5]

A2 1 [l-x dxd
T(S):i/ / 2 xyz 2)2 (A1)
2z Jo Jo  (szy+M?xy+ M*xz—m?*)
with z = 1 — x —y. The answer reads
Ag? W(s) — W(a)
T(s)=—-——"F—=——= A2
(5) == 5202 (A2)
with
Wis)=— 275 aian S (A3)
§)=———————arctan [————
my/s(4m? — ) dm? — s

and a given by Eq. (2) in the main text.®

Let us look at the analyticity structure of 7'(s). First, the
function W(s) only has a cut for s > 4m?, as required by
unitarity, The role of the arctan is to cancel the square-root
branch cut for s < 0 on the physical sheet.

Now, T'(s) inherits this singularity structure from W(s)
via Eq. (A2). Note that 7'(s) is regular at s — a because the
numerator cancels the pole. In other words, no anomalous
threshold exists for M < /2m.

The situation changes when going to M > v/2m. In this
case, a will go around the branch cut of the function W(a)
(precisely as depicted in the main text). So to write T'(s)
explicitly in this regime we continue W(a) to the second
sheet, i.e., find its monodromy (to the unfamiliar reader, see
dispersive argument below), which is given by

Wia) - W(a)——M =4 (A4)
Va(dm? —a)’
Making use of ¢(a) = 1/+/a(4m* — a) we have
oM — 4
T() = T(5) = 20(a) L 2=0 (a3)

m s—a

And we see the appearance of a pole at s — a on the
physical sheet, i.e., an anomalous threshold.

Following Mandelstam [1] we can reproduce the same
result directly from a dispersive representation. Taking a
discontinuity of (A2), or using unitarity directly, we get

_ AP s —2M* ©(s —4m?)
DiscT(s) = E s—a 5 T

(A6)

®Note that W(s)/(2M? — s) is the bubble diagram in d = 2.

S s’
[ ]

a M <2m

L 4

FIG. 4. s’ complex plane. In black: integration contour. In
green: singularities of the integrand. Note in particular the
presence of a branch cut of p(s’) for s’ < 4m?. In red: trajectory

of a as M is increased. At M = /2, a = 4m? pinches the
integration contour and forces a deformation.

Identifying the last factor as the phase space volume p(s), a
dispersion relation for 7'(s) reads

A /°° p(s") ' —2M?
4

am? Jues'—s ' —a

T(s)

ds'. (A7)

It can be checked that performing the integral gives back
Eq. (A2). Now, from this representation it is clear that
T(s — a) is regular, the pole s’ — a in the integrand is
outside the integration domain s’ > 4m?. However, if we
increase M we see that a approaches the integration contour
and forces its deformation for M > \/Em. So the integral
will pick up an extra term that wraps around a,

2 1 ' —ie) s’ —2M?
T(s) +%_%p(s ie)s ds’.

T(s) —
(s) m’ s'—s s —a

(A8)

If a is chosen to approach the contour from above,
i.e, M? is given a small positive imaginary part, the
contour in (AS8) is counter-clockwise (see Fig. 4). Note,
however that p(s’) « 1/V's' — 4m? has a cut for s’ < 4m?,
and from Fig. 4 it is clear that a will be below this cut after
the continuation. So we have p(s — ie) = i¢(s) and we
recover Eq. (A5).

APPENDIX B: LOCAL SOLUTION
TO 2m UNITARITY

We will solve unitarity across the 2m branch cut in
sequence. First for A(s), then for B(s), and finally for C(s).
Starting with A(s):

1
DiscA = p|A|* & Disc <Z+Q> =0 (B1)
meaning

1
+o0=—, with Disca=0 (B2)
a

L
A

"Note that the direction in which a wraps around the contour
does not matter. Say it comes from below, then the contour would
be clockwise but a would end up on top of the branch cut of p(s”)
instead and the sign difference would cancel out.
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except for possible poles of . This is the well-known
“inverse amplitude” trick.

Now, moving onto B(s), we use the notation
B+ = B(s £ ie),
B_-B B
Disc B = pBA* &+ 2= — P2+% o (p3)
2i 1 —ao_
B, [l—a(o_+2ip)|-B_[l—ao_]=0& (B4)
B.ll-ag,]-B[l-ag] =0 (B5)
Disc[B(l —ag)] =0 B(l —ag) = f (B6)
with Disc f = 0.
Finally, we go to C(s):
2
Disc C = p|B|> & Disc C = LZ (B7)
1 - ag|
2
& Disc C = Disc { o } (BS)
1 —apo
Qﬁ2 L
&SC=0+ , with Disco =0, (B9)
where we made use of
. 0 L1 oy 0-

D =— - = B10
e L—ag] 2i L—ag+ l—agj (B10)
1 - —o_(1-

_0+(1-ae) —o-(I -ae,) (B11)
2i(1 - ag.)(1 —ae-)
- 2i

" (l—ae)(1—ag_) [1—agP

APPENDIX C: THE Eg INTEGRABLE MODEL

Here we look in detail to the Coleman-Thun/anomalous
thresholds of the Eg integrable model. In units where
m = 1, the six lightest particles (out of eight) in the Ej
model are [59]

m=m; =1, M=my=2cos—= ~1.618,

x 1445
5 2

7
msy = Zcos%z 1.989, my=2m, cos£z2.405,

2
ms :2m2cos£z2.956, mg = 2mzcos%z3.218.

(C1)

To describe the S-matrices in integrable models it useful to
use the basic CDD building block which solves elastic
unitarity and crossing symmetry in d = 2. Let us define it
in an abbreviated way as

(€2)

where ¢(s) is the phase space factor.® In the sector of the
two lightest particles m and M we have

Sm—mm(8) = [m?|[M?][m3].

Sumt—m (8) = [m?][M2][m3][m3]

SMM—nnm(s) la
Swum—um () = [m?|[M?)[m3)[m3][m¢][a]?.  (C3)

This means in particular that mm — mm has three simple
poles at m?, M? and m3 (and their crossing symmetric
images s <> 4m” — ), and likewise that MM — MM has

simple poles at m?, M2, m3, m2, m2 and a double pole at

a=4M?* — M*/m?, (C4)
which is the anomalous threshold. Plugging the numbers
we get /a=1.902 so the anomalous threshold sits

between the second and third particles M < y/a < mj.

1. Cancellation of the Coleman-Thun pole
in MM — mm

How is it possible that Typmpmm(s) =0 if
T pi—mum (8) # 02 These two objects are related by crossing
symmetry in d>2 but in d=2 since t=1(s) and
u = u(s) this is not necessarily the case. Let us see
explicitly how Typp-m(s) = 0 at “tree level.”” By “tree
level” we mean just looking at how the simple poles cancel
each other.

The MM — mm process should be able to exchange the
same particles as the ‘“crossing symmetric” process
mM — mM, namely m, M, ms and my. Since t = t(s)
and u = u(s) according to Eq. (D3) all these exchanges
will give rise to poles in s. From Eq. (D3) we have that a
pole in t-channel or u-channels at u?> gives rise to the
following pole in s,

¥For the scattering of particles of different mass we have

1
2VAm? - s\/5

mm — MM: o(s) =

mm — mm: o(s)

1
2\/(m+M)2—s\/s—(m—M)2’
1
2VAM? —5\/5

MM — MM: o(s) =

025012-7
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FIG. 5.
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1- 0@
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1- 0@
B0 1B
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Graphical representation of solution to unitarity across the 2m cut, Eqs. (7) and (21) in the main text. The subgraphs a, f and ¢

are 2m-irreducible, i.e., do not contain any internal exchange of 2m (in the s-channel) meaning that Disc a = Disc # = Disco =0

across this cut.

t(s)=p* or u(s)=p*
222
7(}” 2 ) +2(m? +M?) — u?

= s(u?)=- (C5)

For the particular values where #(s) = u = m, M we find

M4
p=m=s=a=4M* - —,
m
m?
y:M:s:bEameM:4m2—W, (Co6)

The first value is the already studied t-channel and u-
channel pole in Eq. (9) of the main text. As we can see in
Fig. 6, it wraps around the s = 4m? branch cut as M
increases and its residue changes as a result, i.e., becomes
“anomalous” for M > /2m as argued in the main text. The
second value, on the other hand, does not wrap around
s = 4m? as M increases.
Both poles will coincide if a = b,

4M2——2:4m2—W=>M:

Mm* m* (1 +2\/§> m (CT)

which is precisely the mass of the second bound state in the
Eqg model.”

So, in order to have T,y = 0, the residues coming
from these two poles must cancel out. The anomalous
residue was computed in the main text in Eq. (12) where, in

“There are other solutions to Eq. (C7). However, the solution in
Eq. (C7) is the only one for which M > m.

the notation of this section, reads

2
S —mm
_Nm ImmmP mm (Cl) (C8)
s—a

Tmm—»MM(s ~ a) =

with the relation between the amplitude and the S-matrix
being, as usual, S(s) = 1+ 2¢0(s)T(s), and

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M
1.0 1.2 1.4 1.6 1.8 2.0

FIG. 6. In black: the normal thresholds at s =4m” and
t =4M? — s = (m + M)?. In thick line: s-channel singularities
in the mm — MM process. In dashed line: #-channel singularities
in the MM — MM process. Red and blue are given by s = a and
s =b in Eq. (C6). Orange is given by 4M?* —t,_ with 7, in
Eq. (C30). As M increases a = 4M?> — M* touches the s = 4
branch point at M =2~ 141 and comes back. When

M = # ~ 1.62, b overlaps with a and cancels production of
MM — mm. For the MM — MM the other singularities from the
t-channel (in dashed) and contribute to the anomalous threshold
at s — a. In total the 4 singularities play a role in the Coleman-
Thun double pole of the Eg model.
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(C9)

2M? —a M\ 4 M\ 2
== _ (=) =2(=]).
V=2t () -2(5)

We now want to compare this with the residue coming from
the other pole,

We can now verify that this is indeed the case in the Eg
model. We can extract g,,,,,s by looking at the s-channel
exchange of M of the mm — mm process, i.e.,

92 M
Tmm—>mm(s ~ M2) = — =

Y (C14)

2 2 2 (s —2m?)
_ 9amm Gamum Gmmm (C10)
t(s) —M* u(s)—M* M?(s —b) which, making use of the S-matrices in Eq. (C3), gives
so when s ~ b we have Gnmt
2
Tomonnt(s ~b) = =Ny gmMﬂg, (C11) = @\/4605+2047\f5+ 10@\/14045+6281f5
5 —
(C15)
with
taking the values in (C1).
Ny = m\* o) m\? (C12) To extract g, We look at
M \m M
2
For these two to cancel we must have Tym—mm (s ~m?) = —% (Cl6)
ng%unMSmm—vnm(a) + NMg%nMM =0. (C13) and find
|
Py = 2V15 \/ 33814455 + 15122284V/5 4 1015 \/ 1524538572625 + 6817943765425, (C17)
Likewise, we find t(s)=m3=>s=M?> t(s)=mi=>s=m?  (C20)

Spmomm(@) =13 +3V5+5\/15+6V5  (C18)
and, finally,
145 1-/5
N = +2f, Ny = z\f (C19)

We then verify that Eq. (C13), or Eq. (13) in the main text,
is exactly satisfied.

We can also verify cancellation of the other singularities.
No other anomalous threshold should exist. Any singularity
coming from #(s) = p? or u(s) = u* only wraps around the
s = 4m? branch cut if M?> > ;> + m?* and none of the other
masses M, ms and my satisfy this except m which gives the
only anomalous threshold at s = al’

The presence of ms3 and my is nonetheless necessary
to cancel out the remaining singularities. In particular,
we find

"In perturbation theory, the condition M2 > u? + m? for the
existence of the anomalous threshold follows from requiring that
the solution to the Landau equations of the triangle diagram is a-
positive.

It is a straightforward exercise to see that the residues also
cancel each other.
Finally, the singularities at s = m3 and s = m3 whose
residues are respectively gasazm, Gmmm, a0 Garatm, Gmmm, are
not present Since guprm, = Gmmm, = 0. Notice in Eq. (C3)
how mm — mm does not exchange m, and how MM — MM
does not exchange m;.
In summary:
(1) The #- and u-channel exchanges of m; cancel the
s-channel exchange of M.

(i) The #- and u-channel exchanges of my, cancel the
s-channel exchange of m.

(iii) There are no s-channel exchanges of m; and my,
since IMMmy; = Gmmm, = 0.

(iv) The #- and u-channel exchanges of M cancel the
t- and u-channel exchanges of m whose residue is
anomalous according to Eq. (12) in the main text.

2. Coleman-Thun double pole
of MM — MM
As seen in Eq. (C3) the MM — MM S-matrix of the Eg

contains a double pole at s = 4M? — M*/m?. In units of
m =1 its residue reads
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MIGUEL CORREIA

PHYS. REV. D 110, 025012 (2024)

E
(s— a)ZTMSMaMM(S —a)

= —60\/4031075805785 +1802751904838V/5 + 10\/30(4844686384163194390099\/54— 10833048084656563254865)

(C21)

Equation (24) of the main text for the residue reads, in the notation here:

(S - a)2TMM—>MM(S - d) = 2N%ng‘y‘anQ(a>Smm—>mm<a)

= 60\/224644155305 + 100463920402V/5 + 10\/30(15045755001742455659\/5 + 33643330956703597625)

which does not match with the Eg double pole (C21). What
is missing is the contribution from another overlapping
singularity. Namely, from the box diagram in Fig. 3 of the
main text. This diagram has anomalous thresholds in the
s— and 7— channels which as M — (1 ++/5)/2 overlap
and create a douple pole at s — a. Let us see this explicitly.

Let us first consider the anomalous threshold in the
s-channel. Using the Cutkosky rules we can write down the

unitarity equation for M < v/2m as

. N,.g
Disc; T?l}l)l(i/}(eMM(s) =2pmm (S) |:_ Smg”;’”M
o {_N M Torimt

b }@(s—4m2) (C23)

where the terms in brackets correspond to the tree level
exchanges of m and M, as given by Egs. (C8) and (C11)
Giving

o Qum($)
T3 () = 2N WN 4 Gt Tt {m
_ Qmm(a> _ Qmm<b) 4+ ..
(s—a)(a=b) (b—a)(s—Db)
(C24)
where “...” include regular pieces and contributions with

t-channel branch cuts.

Performing the analytic continuation to M > \/2m we
again find the middle piece changes ¢,,,(a) = —0,m(a)
and the s — a pole no longer cancels. So we get

(€22)
|
s-channel: T50%% /1 (s = a) = 4N, Ny G onim
inm (a>
T M 2
G—aa—py M7 Vom
(C25)

Note that in the limit M — (1 4+ +/5)/2, we have b — a
and we find a divergence. Expanding M = (1 4+ /5)/2 + ¢

in the above we find
11 2 8 1
es—a/5 /5(s—a)?
X mmMganMQmm (a)
(C26)

. rabox —
s-channel: T90%7 (s = a) =

We will now see how this divergence gets canceled out
from the ¢-channel contribution.
The #-channel unitarity cut gives

DiSCtlelll)[?}aMM(t) = 2pmM(t) [Tﬁf\:flaMm(t)]z

O(r—(m+M)>?) (C27)
where
ImmM Immm ImmmYmmm
Thee t)=-— — C28
MM—»Mm( ) E(t)—mz it(t)—mz ( )
P(t
_ _gmmMgmMM ( ) (ng)
(-1 )(t—1)
with P(t) = (m* —3M? + t)t/m?* and
3M? N —4mOM? + 1Tm*M* — 4m> M®
t=t, = |V Am M 4 17 m (C30)

2 2m?

where we made use d = 2 kinematics for MM — mM
scattering to find 5(¢) and @(7):
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t

S0), a(r) = % <m2 gy VIO M)t 4 (M2 = 1) = 2P (M 0). (©31)

The motion of the singularity 4M? — ¢, is plotted in Fig. 6.

AsM — #m it comes in contact with the mM threshold

and becomes an anomalous threshold for M > #m.“

We now plug (C28) back into (C27). Proceeding as
before, we must cancel the anomalous threshold for

M < \/2m, so we must have that

Tabox (l) _ 2gﬁ1mMganM QmM(t)Pz(t)
MM—-MM (t— t+)2 (t— t_)z
o (1) P2 (1 d
e m(ty) (2+) —(t—1)>
(t.—1.) dt
QmM(t)Pz(t)> i|
X\ ——3 + - (C32)
( (t - t—)z 1=ty
where “...” are regular and pieces coming from the
s-channel.

In d =2 we have t = 4M?* — s. InthelimitM—»%
the normal threshold at #(s) = (m + M)? will overlap with

the anomalous threshold s — a from the s-channel (see
Fig. 6):

t-channel mM threshold :
1(s) = (m+M)?

1
=Ss=4M>—(m+M)*—>a, ifM— +2\/§m (C33)

|
Therefore the phase space factor @, (¢) will diverge. We
see that

1—
4el

1+5
2

Sl

Oomm(ts)=— +0(e%), M= +e. (C34)

Carefully expanding M — # + ¢ we find the following
contribution from the 7-channel to the singularity at s — a
of the box diagram:

t-channel: T8 . ( ) [ L1 4V2V5+4V5
- A MMomm\S > 4) = |~
€s—a 10
_V130+38V5
5(s—a)?
X g%angiMM- (C35)

Putting this together with the s-channel piece (C26) we find
that the 1/e pieces cancel out and we get an additional
contribution to the double pole residue given by Eq. (25) in
the main text. Plugging in the cubic couplings from the Eg
model given by Egs. (C15) and (C17), we find

2
amM ImMM

(s— a)ZT?\BI?;—»MM(S —a)=

_8V50,m(a) +V/ 130438542
5

(s—a)®

= —60\/6158935786330 +2754359817458+/5 + 40\/30(706830217586335483049\/5—l— 1580520415074013466285).

The reader may now check that this piece together
with (C22) reproduces the Eg model double pole residue
given by Eq. (C21).

APPENDIX D: KINEMATICS, UNITARITY,
AND LEGENDRE FUNCTIONS

Here we collect several technical details regarding
kinematics, unitarity and Legendre functions.

U fact, as M — #m we also have r_ — m? which gets

canceled in the Eg model by an s-channel exchange of m? of
MM — mM.

(C36)

1. Scattering angle

Let us relate r and u with the cosine of the scattering
angle in the center of mass frame. We let p and E » be the

momentum and energy of a particle of mass M and kand E X
be the momentum and energy of a particle of mass m. Then,
the cosine of the scattering angle is

bk
1=—=.
|||
For the scattering mm — MM, in the center of mass we

have E, = E; = \/s/2. Further using |p| = \/E} — M?

(D1)
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and |k| = /E2 — m?® we get

t(z) = (p—k)?

=m>+ M+

= M2 + m® = 2E,E; + 2| p||K|z

—s+z2Vs —d4m2s — aM?
> ,

(D2)

where, also, u(z) = t(—z).

Now, in d =2 there is only forward or backward
scattering, i.e., z = 1, so r = #(s) and u = u(s) are fixed
in terms of s,

—s 4+ Vs —4m2Vs — 4AM>

1(s) =m> + M?*+ 5 ,  (D3)
-5 — — 4m>V's — 4M?
u(s) = m? + M2+ > Vs ;” Vs . (D4)
Relation (D2) inverts to
s —2m? —2M?* + 2t
2(1) = (Ds)

Vs — 4m?>Vs —aM?

2. Extended unitarity for the amplitudes

In terms of the amplitudes, unitarity across the 2m cut
reads [61], for the mm — MM process,

. 1 s —4m?
Disc B(s, ) = S{dn) \/ .
1
X // dz'd7"P(z,7,7")
-1

x A(s.1(2))B*(s.1(z"))

(D6)
where z and 7”, scattering angles of mm — MM, are related
to #(z) and #(z”) via (D5) and 7/ = 1 + Sz_tfr:l)z is the usual
relation for the scattering angle of mm — mm.

Likewise, for the MM — MM process,

1 [s —4m?
8(4r)? s
// d7d7"P(z,7.,7")

x B(s, 1('))B* (5. 1(z")),
where z =1 + L&z is the usual relation for the scattering
angle of MM — MM and 7’ and 7", scattering angles of
mm — MM are related to #(z') and #(z") via Eq. (D5).

Disc,C(s,1) =

(D7)

The 2-particle kernel reads (following conventions of [61])

2001 -2 -277

V1I-72 =72
Equations (D6) and (D7), because of the theta function
in (D8), only hold for real ¢ in the scattering angle region

—1 < z < 1. These equations can however be continued in ¢
[2, 3] and be expressed in manifestly analytic form. Say for

MM — MM,
1 s —4m*> [ 1 \?2
8(4r)? 2ri
7{ dz]{ d7'K(z,7,7")

x B(s,1('))B* (5. 1(z")),

K(z, 7, 7")

//2+2ZZ/ //)
//2 +2ZZI "

P(z,7.,7") = (D8)

Disc,C(s, 1) =

(D9)

with  Mandelstam kernel which has

discontinuity [61]

O(z-z,(Z.7"))

2@ ) e—e.2)

Disc. K (z,7',7") = 472

(D10)
with
z+(7,7") —z/z”j:\/(z’z—l)(z”z—l). (DI1)
Equation (D10) can be integrated to give
K(z,7.,7") = i arctan | |~ (D12)

(z,—2)(z—20) 74—z

Note that K(z,7',Z"), as a function of z, has the same
analyticity structure as the “bubble” diagram W(s), in
Eq. (A3), as a function of s.

3. Partial waves and Legendre functions
The partial wave decomposition of the amplitude B(s, t)
reads [61]

o0

167 (1 +27)P;(2(1))By(s)

J=0

B(s, 1) = (D13)

where P(z) is the Legendre polynomial and z(7) the cosine
of the scattering angle given by (D5). Analogous expres-
sions hold for A(s, t) and C(s,1).

Now, Eq. (D13) can be inverted for the partial wave in
the usual way. Alternatively, we can exploit analyticity in ¢
by considering the Legendre function of the second kind
Q,(z). This turns Eq. (14) in the main text into the so-called
Froissart-Gribov representation [61]:
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(2)B(s.1(z)) (D14)

1 dz
B(s) = — =
J(S> 167 %—1,1] 27i QJ

where the contour is counter-clockwise. Using Eq. (D5) we
have instead

1
 81Vs — 4m2\s — 4M2

% § 3 Q) B(s.1).

B,(s)

(D15)

Now, the partial wave decomposition diagonalizes unitar-
ity. This is made explicit by an interesting identity between
the 2-particle kernels P and K and the Legendre functions.
In particular, for the latter [61]

[Se]

K(z,7,7") =4r ) (27 + 1)P;(2)Q,(2)0,s(").

J=0

(D16)

Plugging (D16) into (D9) leads to partial wave unitarity and
likewise for A(s, r) and B(s, 7).
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