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The large-charge master field which generates all n-point correlation functions with an insertion of large
charge Q in nonrelativistic conformal field theory is obtained. This field is used to compute Schrödinger-
invariant n-point correlation functions of large-charge operators via a direct evaluation of the path integral.
Conformal dimensions are found to agree with calculations based on the state-operator correspondence. The
master field solution exhibits an emergent harmonic trapwhose frequency is a function of the Euclidean time.
The large-charge effective action with operator insertions describes a droplet of superfluid matter whose
spatial size scaleswith the time separation of sources. The solution is used to compute Schrödinger symmetry
breaking corrections in the large-charge effective field theory (EFT) due to a finite scattering length in the
fundamental theory of fermions near unitarity. The scaling of these effects in the large-charge power counting
scheme is established, and the size of the effects is quantified using input from quantum Monte Carlo
simulations of the near-unitary gas, as well as from the large-N expansion at large charge.
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I. INTRODUCTION

In physical systems with many-body complexity, theo-
retical progress relies on finding small parameters which
enable a perturbative expansion of physical observables.
These small parameters may arise from ratios of character-
istic physical scales as in EFT constructions, as well as
from the large dimensionality of group representations or
large particle number. For momentum transfers that are
small compared to the pion mass, nuclear physics can be
described efficiently by an EFT of contact operators [1–3].
As s-wave scattering lengths in the nucleon-nucleon system
are very large compared to the range of the interaction, this
EFT is nonperturbative in the scattering length with higher-
order terms in the effective range expansion treated as
perturbative insertions in the EFT. If one considers a system
of neutrons only, the neutron-neutron scattering length is
near infinite as compared to the pion Compton wavelength,
and the leading order in the nuclear EFT is very near
unitarity, where the theory is at a fixed point of the
renormalization group (RG) and is therefore described

by a nonrelativistic conformal field theory, constrained
by Schrödinger symmetry. While this EFT is significantly
constrained by its proximity to unitarity [4,5], the machi-
nery of conformal field theory has not found many useful
applications in this EFT of nucleon contact operators.
This situation has recently changed with work of

Hammer and Son [6] (See also Refs. [7–9]) which has
shown that in special nuclear reactions with some number
of low-energy neutrons in the final state, nonrelativistic
conformal field theory technology can be used to compute
the part of the nuclear reaction cross sections which
account for neutron final-state interactions. This EFT for
nuclear reactions has been dubbed “unnuclear” physics (in
analogy with the related “unparticle” physics of Ref. [10]),
as the object that describes the propagating nucleus does
not have a particle interpretation. In the EFT description,
the leading order is a nonrelativistic conformal field theory,
whose correlation functions are constrained by Schrödinger
symmetry [5,11–14]. A powerful tool for such theories is
the state-operator correspondence [15], which allows the
simple computation of the conformal dimensions of oper-
ators that appear in the correlation functions by considering
the energy eigenspectrum of the system in a harmonic trap.
Schrödinger symmetry breaking effects due to a finite
scattering length and effective range can be included in
conformal perturbation theory [9]. This method has now
been applied to nuclear reactions with up to three neutrons
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as one of the reaction products. However, as pointed out in
Ref. [9], the analysis of final states with more than three
neutrons is constrained by the complexity of the few-body
wave functions, and, for systems with many neutrons, it
may be profitable to consider the large-charge expansion
[16,17] for nonrelativistic systems.
Based on earlier work with relativistic superfluids (for a

review, see Refs. [18,19]), the large-charge expansion is
formulated in the superfluid phase where the fundamental
degree of freedom is the Goldstone boson of spontaneously
broken particle number [20,21]. Working in sectors of large
global charge has been shown to lead to important
simplifications and allows the computation of the con-
formal data in strongly coupled relativistic CFTs [18,19].
Also in the nonrelativistic case, the conformal dimensions
of charged operators have been computed to several non-
trivial orders, making use of the state-operator correspon-
dence [16,22–26]. A primary goal of this paper is to verify
results based on the state-operator correspondence via a
direct evaluation of the path integral, with no input from the
state-operator correspondence. It turns out to be straight-
forward to find the large-charge “master field” solution of
the Goldstone field which generates all n-point functions
with large-charge Q operators. A second goal of this paper
is to use the large-charge solution to compute Schrödinger-
symmetry breaking corrections within the large-charge
expansion. In particular, Schrödinger symmetry breaking
corrections to correlation functions due to a finite scattering
length in the fundamental theory of fermions are obtained.
These corrections are found to take a universal form in the
large-charge limit, and their size is estimated using both
quantum Monte Carlo simulations, and the large-N expan-
sion, whereN is the number of fundamental fermion flavors
[26]. Inclusion of effective range and other shape parameter
effects in the fundamental theory, which are essential for
quantifying Schrödinger symmetry breaking effects in
neutron matter, require hadronic modeling, and will be
left to a separate publication.
This paper is organized as follows. Section II reviews an

EFTof fermions which exhibits two RG fixed points which
are in correspondence with the ideal Fermi gas and with the
unitary Fermi gas. This EFT near the unitary fixed point
describes neutrons interacting at small momentum trans-
fers. Since the unitary Fermi gas is superfluid, it is also
described by an EFT whose degree of freedom is the
Goldstone boson of spontaneously broken particle number.
Aspects of this EFT that are relevant for what follows are
also reviewed in this section. Section III focuses on the
evaluation of nonrelativistic conformal field theory corre-
lation functions. Schrödinger symmetry constraints on two-
and three-point functions are reviewed, and the technique
of evaluating correlation functions via operator insertions is
introduced using the example of a two-point correlation
function of noninteracting bosons. As a necessary prelude
to what follows, the Euclidean formulation of the superfluid

EFT, which contains various subtleties, is developed. Then,
the large-charge master field solution is found and the two-,
three- and general n-point correlation functions with large-
charge insertions are evaluated in the large charge limit,
finding results consistent with the state-operator correspon-
dence. In Sec. IV Schrödinger symmetry breaking effects
are considered. First, these effects are formulated in the
fundamental fermion theory, and then through a simple
spurion analysis are matched to operators in the superfluid
EFT. The quantitative size of these effects is shown to
follow from quantum Monte Carlo simulations. Then, the
basic structure of the symmetry-breaking corrections is
shown to be constrained by Schrödinger symmetry, and, the
symmetry breaking terms are derived explicitly with the
large-charge solution. Finally, in Sec. V, a second estimate
of the size of the symmetry-breaking corrections is pro-
vided by considering the large-N expansion at large charge.
Section VI summarizes and concludes.

II. NONRELATIVISTIC CONFORMAL
FIELD THEORIES

A. Fermions at unitarity

Consider a system of spin-1=2 fermions which interact
via two-body contact forces. At very low energies, where
derivative interactions can be ignored, the Lagrange density
takes the Galilean invariant form

L ¼ ψ†
σ

�
i∂t þ

∇!2

2M

�
ψσ −

1

2
C0ðψ†

σψσÞ2; ð2:1Þ

where the field ψ†
σ creates a fermion of spin σ ¼ ↑;↓ and

C0 is a bare low-energy constant. The position-space
interaction is a delta function at the origin, and therefore
the fermion interactions are highly singular at short
distances.
Now consider fermion-fermion scattering. Below inelas-

tic thresholds, the s-wave phase shift is given by the
effective range expansion

k cot δðkÞ ¼ −
1

a
þ 1

2
rk2 þOðk4Þ; ð2:2Þ

where k is the center-of-mass momentum, a is the scatter-
ing length and r is the effective range. The EFT described
by Eq. (2.1) requires regularization and renormalization. In
dimensional regularization with the PDS scheme [2,3] and
renormalized at the scale μ, the relation between the low-
energy constant C0 and the scattering length is given by

C0ðμÞ ¼
4π

M
1

1=a − μ
: ð2:3Þ

There is a fixed point at C0 ¼ 0, corresponding to free
particles (a ¼ 0), and a fixedpoint atC0 ¼ C⋆ corresponding
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to a divergent scattering length (unitarity). It is convenient to
rescale the couplings to Ĉ0 ≡ C0=C⋆. The beta-function for
the rescaled coupling is then

β̂ðĈ0Þ ¼ μ
d
dμ

Ĉ0ðμÞ ¼ −Ĉ0ðμÞðĈ0ðμÞ − 1Þ; ð2:4Þ

which has fixed points at Ĉ0 ¼ 0 (free fermions) and 1
(fermions at unitarity).
It is convenient to rewrite the Lagrangian with an

auxiliary field s as [9]

L¼ψ†
σ

�
i∂tþ

∇!2

2M

�
ψσþ

1

C0

s†sþψ†
↓ψ

†
↑sþ s†ψ↑ψ↓: ð2:5Þ

Then, at unitarity, the system of low-energy fermions is
described by a nonrelativistic conformal field theory,
defined by the Lagrange density

LCFT ¼ ψ†
σ

�
i∂t þ

∇!2

2M

�
ψσ þ

1

C⋆
s†sþ ψ†

↓ψ
†
↑s

þ s†ψ↑ψ↓: ð2:6Þ

Now consider a gas of fermions. At the noninteracting
fixed point (C0 ¼ 0), the energy per particle is

E=N ¼ 3

5

k2F
2M

; ð2:7Þ

where kF is the Fermi momentum. At the interacting fixed
point (unitarity) there is no new scale and therefore

E=N ¼ 3

5

k2F
2M

ξ; ð2:8Þ

where ξ is a dimensionless parameter, known as the Bertsch
parameter, that must be determined by numerical simu-
lation or via experiment (see section IVA for details).

B. Superfluid EFT at unitarity

As the unitary limit can be approached from both negative
and positive values of a, it is natural to wonder: what phase
does the gas of unitary fermions find itself in the far infrared?
In nuclear physics the neutron-neutron interaction is attrac-
tive, the scattering length is negative, and the neutron gas is
superfluid. More generally, in atomic systems the s-wave
scattering length a can be tuned at will via external magnetic
fields near a Feshbach resonance, and one can smoothly
crossover from a fermionic superfluid BCS state (a < 0) of
long-range Cooper pairs to a bosonic superfluid BEC state
(a > 0) of tightly bound, repulsive dimers at the unitary
fixed point. Remarkably these seemingly very different
physical systems are all described by the same superfluid
EFT in the infrared [20,21].

The order parameter hψψi breaks the U(1) particle-
number symmetry, giving rise to a Goldstone boson
excitation, θðxÞ, which can be defined as (one half of)
the phase of the condensate,

hψψi ¼ jhψψije−2iθ: ð2:9Þ

A fundamental Galilean-invariant building block in the
superfluid EFT is the field

X ¼ Dtθ −
ð∂iθÞ2
2M

; ð2:10Þ

where Dtθ ¼ θ̇ − A0, with θ̇ ¼ ∂tθ and A0 is an external
field. The effect of an external trapping potential can be
included by setting A0 ¼ Mω2r2=2. It is straightforward to
find the leading-order (LO) Lagrange density correspond-
ing to fermions at unitarity [21,27],

LLO ¼ c0M3=2X5=2; ð2:11Þ

where c0 is a low-energy constant. Note that assigning
time, t, scaling dimension −2, and space, xi, scaling
dimension −1, i.e.,

ðt; xiÞ → ðe2αt; eαxiÞ; ð2:12Þ

a scale-invariant action implies a Lagrange density with
scaling dimension 5. As X has scaling dimension 2, the
Lagrange density of Eq. (2.11) is scale invariant, and can be
further shown to respect the full Schrödinger sym-
metry [21].
The equation of motion (EOM) for θ is

∂tðX3=2Þ ¼ 1

M
∂ið∂iθX3=2Þ: ð2:13Þ

In spite of the apparently simple form, this is a highly
nonlinear equation.
The simplest nontrivial solution θ ¼ μt gives the

ground state of a system with chemical potential μ. If
one expands as

θðxÞ ¼ μt − ϕðxÞ; ð2:14Þ

the fluctuations around ϕ correspond to phonon excitations.
The density of the system is

ρ ¼ δL
δX
¼ 5

2
c0M3=2X3=2; ð2:15Þ

and one sees that the EOM takes the form of the continuity
equation for the particle number symmetry:

∂tρ −
1

M
∂ið∂iθρÞ ¼ 0: ð2:16Þ
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Identifying the Lagrange density at the ground-state sol-
ution with the grand potential, ΩðμÞ, and matching with
Eq. (2.8), one finds

c0 ¼
25=2

15π2ξ3=2
: ð2:17Þ

The Hamiltonian density is related to the Lagrange density
in the usual way,

H ¼ θ̇
∂L

∂θ̇
− L ¼

�
X − A0 −

ð∂iθÞ2
2M

�
ρ − L: ð2:18Þ

The classical solution ϕ ¼ 0, X ¼ μ with A0 ¼ 0 then
recovers the standard thermodynamic relation between the
energy density and the grand potential.

III. CORRELATION FUNCTIONS
AT LARGE CHARGE

A. Schrödinger symmetry constraints

Schrödinger symmetry places strong constraints on the
form of the correlation functions that can be computed in
the EFT [5,11–14]. Consider the N-point correlation
function of scalar primary operators, Oi,

Gðx1; x2;…; xNÞ ¼ −ih0jTðO1ðx1ÞO2ðx2Þ…ONðxNÞÞj0i:
ð3:1Þ

In Euclidean space, Schrödinger symmetry constrains the
form of the two-point function as [11–14]

Gðx1; x2Þ ¼ δQ1;Q2
δΔ1;Δ2

θðτ12Þτ−Δ1

12 exp

�
−
Q1Mx2

12

2τ12

�
Ψ2

þ…; ð3:2Þ

where Ψ2 is a constant normalization factor, and the dots
corresponds to the other time ordering. The notation is
given by τij ≡ τi − τj, xij ≡ xi − xj. Similarly, the three-
point correlation function of scalar primary operators takes
the form

Gðx1;x2;x3Þ
¼ δQ1þQ2;−Q3

θðτ13Þθðτ23Þτ−Δ13;2=2
13 τ

−Δ23;1=2
23 τ

−Δ12;3=2
12

×exp

�
−
Q1Mx2

13

2τ13
−
Q2Mx2

23

2τ23

�
Ψ3ðv123Þþ �� � ; ð3:3Þ

where Ψ3 is a nonuniversal function of the Schrödinger-
invariant variable v123, which is given by

v123≡1

2

ðx13τ23−x23τ13Þ2
τ12τ13τ23

¼ 1

2

�
x2
23

τ23
þx2

12

τ12
−
x2
13

τ13

�
; ð3:4Þ

and Δij;k ≡ Δi − Δj − Δk. The Ward identity constraints
become less and less strong for higher n-point correla-
tors, which include nonuniversal functions of the
ðn − 2Þðn − 1Þ=2 Schrödinger-invariant variables that gen-
eralize the v123 [28].
If the correlation functions describe free-particle propa-

gation, then the conformal dimensions are given by their
naive scaling values. However, for interacting nonrelativ-
istic conformal field theories, the conformal dimensions are
generally strong-interaction physics and must be obtained
from either the state-operator correspondence or an exact
evaluation of the correlator.

B. Free theory with operator insertions

A useful tool for evaluating correlation functions in the
semi-classical approximation involves exponentiating the
operator insertions and defining a new effective action,
which in turn is evaluated at its saddle point to generate the
correlation functions. This method has been used in the
context of the large-charge expansion in Refs. [19,29–32].
Here, as an example for what follows, it will be applied to
the two-point function of free, nonrelativistic, boson
operators. The correlation function of interest is

Gðx1; x2Þ ¼ −ih0jTðOQðx1ÞO†
Qðx2ÞÞj0i; ð3:5Þ

where O†
Q is a primary operator of number charge Q≡

QO† ¼ −QO ≥ 0, and scaling dimension ΔQ. Assuming
that OQj0i ¼ 0, and x1 ¼ ðτ1;x1Þ, x2 ¼ ðτ2;x2Þ, one can
write

Gðx1; x2Þ ¼ −iθðτ12Þh0jOQðτ1;x1ÞO†
Qðτ2;x2Þj0i: ð3:6Þ

Consider the path integral representation of the two-point
function,

Gðx1; x2Þ ¼
Z

DϕDϕ†OQðx1ÞO†
Qðx2Þe−

R
d4xLðxÞ; ð3:7Þ

where now the Euclidean space formulation1 of the free
theory will be used, with a chemical potential μ,

L ¼ ϕ†
�
∂τ −

∇!2

2M
− μ

�
ϕ; ð3:8Þ

where the field ϕ† creates a boson with unit charge. An
operator of charge Q can be written as

OQ ¼ N ðϕÞQ; O†
Q ¼ N ðϕ†ÞQ; ð3:9Þ

whereN is a normalization factor. WithΔϕ ¼ 3=2, one has
ΔQ ¼ 3Q=2. Note that sinceOQ is a primary operator with

1The Euclidean space formulation is obtained via transforming
t → −iτ, accompanied by L → −L.
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OQj0i ¼ 0, there is always an overall θðτ12Þ multiplying
the two-point function which is ignored in what follows by
assuming that τ1 > τ2.
Exponentiating the insertions gives the new action,

S¼
Z

d4x½L−Q logðϕÞδ4ðx−x1Þ−Q logðϕ†Þδ4ðx−x2Þ�:

ð3:10Þ

Varying this action then gives the two EOM about the free
fixed point,

ϕ†
�
∂τ −

∇!2

2M
− μ

�
ϕ ¼ þQδ4ðx − x2Þ;

ϕ

�
∂τ þ

∇!2

2M
þ μ

�
ϕ† ¼ −Qδ4ðx − x1Þ: ð3:11Þ

In order to solve these equations, consider the diffusion
equation

�
∂τ −

∇!2

2M
− μ

�
Gðx; x2Þ ¼ δ4ðx − x2Þ; ð3:12Þ

which is satisfied by the Green’s function

Gðx; x2Þ ¼ θðτ − τ2Þ
�

M
2πðτ − τ2Þ

�
3=2

exp

�
−
Mðx− x2Þ2
2ðτ − τ2Þ

�

× exp ðμðτ − τ2ÞÞ; ð3:13Þ

and, likewise,

�
∂τ þ

∇!2

2M
þ μ

�
Gðx2; xÞ ¼ −δ4ðx − x2Þ: ð3:14Þ

The solution of the EOM in the presence of the sources is
thus found to be

ϕ ¼ iðQÞ1=2 Gðx; x2Þ
Gðx1; x2Þ1=2

;

ϕ† ¼ −iðQÞ1=2 Gðx1; xÞ
Gðx1; x2Þ1=2

: ð3:15Þ

Note that the density is given by

ρ ¼ −
δL
δμ
¼ ϕ†ϕ ¼ Q

Gðx1; xÞGðx; x2Þ
Gðx1; x2Þ

; ð3:16Þ

which has support in the range τ2 ≤ τ ≤ τ1. Using the
identity

Gðx1; x2Þ ¼
Z

d3xGðx1; xÞGðx; x2Þ; ð3:17Þ

one finds

Q ¼
Z

d3xρ; ð3:18Þ

as expected.
The action at the saddle point is

S ¼ Q −Q log

�
−
1

2
QGðx1; x2Þ

�
; ð3:19Þ

and, finally,

Gðx1;x2Þ¼θðτ12Þτ−3Q=2
12 exp

�
−
MQx2

12

2τ12

�
Ψ2eμQτ12 ; ð3:20Þ

where

Ψ2 ¼ N 2

��
M
2π

�
3=2

e1−iπ2Q

�
Q
: ð3:21Þ

This result is in the Schrödinger form of Eq. (3.2) only if
μ ¼ 0, as the chemical potential is a Schrödinger-breaking
effect.
Before moving on to the more interesting interacting case,

consider several general remarks regarding this result. An
operator of charge Q has been inserted at τ ¼ τ2 and then
removed at τ ¼ τ1 > τ2. By construction this is the Euclidean
time-ordered correlator. In this semiclassical calculation, the
ordering [represented here by the Heaviside function θðτ12Þ]
comes from the fact that the EOM is a diffusion equation, for
which the initial-value problem is well-posed for τ > 0 (as
opposed to the backward equation for which the problem is
generically not well posed).

C. Two-point function at large charge

Before proceeding to computing the two-point function
in the large-charge EFT, consider the Euclidean formu-
lation of the superfluid EFT. The partition function is

Z¼
Z

Dθ expð−SÞ¼
Z

Dθ exp

�
−
Z

dτd3xL
�
; ð3:22Þ

where, at LO,

LLO ¼ −c0M3=2X5=2; ð3:23Þ

with

X ¼ i∂τθ − A0 −
ð∂iθÞ2
2M

: ð3:24Þ

Hermiticity requires that θ be pure imaginary. Note that
now

ρ ¼ −
δL
δX

; H ¼ L − θ̇
∂L

∂θ̇
; ð3:25Þ
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where here θ̇≡ ∂τθ. The Euler-Lagrange equations take the
form

∂τ

�
i
δL
δX

�
¼ 1

M
∂i

�
∂iθ

δL
δX

�
þ δL

δθ
: ð3:26Þ

At LO, one finds the ground-state solution

θ ¼ −iμτ; X ¼ μ − A0: ð3:27Þ

For what follows, it is interesting to note that there is also a
space-time dependent solution to the EOM (now taking
A0 ¼ 0),

θfðτ;xÞ ¼ −i
Mx2

4τ
; Xfðτ;xÞ ¼ −

Mx2

8τ2
: ð3:28Þ

As Xf is negative definite, this solution corresponds to an
unstable configuration. As will be seen below, there is a
sense in which this is the “free” solution, which is
unsurprisingly not stable in the superfluid EFT.
The saddle configuration. Now, take A0 ¼ 0. In the EFT

every operator can be written as a function of the Goldstone
field by simply identifying its quantum numbers. If follows
that a generic primary operator with charge Q and
dimension Δ must have the form

OΔ;Q ¼ N
�
2

γ

�
Δ=2

XΔ=2 exp ðiQθÞ; ð3:29Þ

whereN is a normalization constant, and the other constant
factor has been chosen for future convenience and will be
defined below. Define the two-point function

GQðx1; x2Þ ¼
Z

DθOΔ;Qðx2ÞOΔ;−Qðx1Þe−
R

d4xLI ; ð3:30Þ

where LI is the interaction Lagrange density. In this
semiclassical computation, only one time ordering will
appear as a consequence of the fact that the EOM are not
time-reversal invariant, as was already observed in the free
case above. In what follows, it will be assumed that τ1 > τ2.
The operator insertions can be exponentiated to give

GQðx1; x2Þ ¼ N 2

�
2

γ

�
Δ Z

Dθe−
R

d4xL; ð3:31Þ

where

L ¼ LI −
Δ
2
logX½δ4ðx − x2Þ þ δ4ðx − x1Þ�

− iQθ½δ4ðx − x2Þ − δ4ðx − x1Þ�: ð3:32Þ

Now the saddle point solution must be found in the
presence of the sources. The Euler-Lagrange equation is

∂τρþ
1

M
∂iði∂iθρÞ ¼ Q½δ4ðx − x2Þ − δ4ðx − x1Þ�: ð3:33Þ

This is the continuity equation in the presence of a source.
It may appear confusing that there are now two distinct
expressions for the density. First, there is the density as an
observable quantity related to the specific Lagrange density
which describes the system, given by Eq. (3.25), and which
satisfies Eq. (3.33) in the presence and absence of sources.
On the other hand, there is the density—proportional to
Q—which solves Eq. (3.33) in the presence of sources and
vanishes in the absence of sources. This second density is a
distribution and is not directly equal to the observable
density. However, the densities integrated over space must
be equal, and indeed that equality fixes the charge Q of the
superfluid system.
In order to solve Eq. (3.33) for θ ¼ θðτ;xÞ, consider the

ansatz

i∂iθϵρϵ ¼ ϵ
1

2
∂iρϵ; ð3:34Þ

where ϵ ¼ �. This equation is readily integrated to give

ρϵ ¼ fϵðτÞ exp ð2iϵθϵÞ; ð3:35Þ
where fϵðτÞ is an arbitrary real function of τ.
Now plugging the ansatz, Eq. (3.34), into the EOM gives

�
∂τ þ ϵ

∇!2

2M

�
ρϵ ¼ Q½δ4ðx − x2Þ − δ4ðx − x1Þ�; ð3:36Þ

and it is clear that the ansatz restricts the initial highly
nonlinear EOM to a diffusion equation, whose solution has
been shown above to be Schrödinger invariant. Noting that
the diffusion equation

�
∂τ −

∇!2

2M

�
gðx; x0Þ ¼ δ4ðx − x0Þ ð3:37Þ

is solved by the Green’s function

gðx; x0Þ ¼ θðτ − τ0Þ
�

M
2πðτ − τ0Þ

�
3=2

exp

�
−
Mðx − x0Þ2
2ðτ − τ0Þ

�
;

ð3:38Þ

and

�
∂τ þ

∇!2

2M

�
gðx0; xÞ ¼ −δ4ðx − x0Þ; ð3:39Þ

one finds the solutions

ρ− ¼ þQ½gðx; x2Þ − gðx; x1Þ�;
ρþ ¼ −Q½gðx2; xÞ − gðx1; xÞ�: ð3:40Þ
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Integrating both sides over space gives

Z
d3xρ− ¼ þQ½θðτ − τ2Þ − θðτ − τ1Þ�;Z
d3xρþ ¼ −Q½θðτ2 − τÞ − θðτ1 − τÞ�: ð3:41Þ

And, as expected,

Q ¼ 1

ðτ1 − τ2Þ
Z

τ1−ε

τ2þε

Z
d3xρ�: ð3:42Þ

The temporal structure of the solution is illustrated in
Fig. 1, which makes clear that the solution has nonvanish-
ing charge only in the interval between τ2 and τ1.
Consider the solution ρ− in the range τ2þε<τ<τ1−ε.

One has

ρ− ¼ Q

�
M

2πðτ − τ2Þ
�

3=2
exp

�
−
Mðx − x2Þ2
2ðτ − τ2Þ

�

¼ f−ðτÞ exp ð−2iθ−Þ: ð3:43Þ

Now scale invariance suggests the power law form

f−ðτÞ ¼ d

�
M

2πðτ − τ2Þ
�

3=2−γ
; ð3:44Þ

where d is an irrelevant dimensionless constant that
contributes to the overall normalization of the Green’s
function, and is here chosen for convenience to be d ¼ Q,
and γ is an anomalous dimension.2 Now if γ ¼ 0, then one
finds from Eq. (3.43) the unstable solution θ− ¼ θf, given
in Eq. (3.28). It is in this sense that θf may be thought of as
the “free” solution. Therefore, one should expect super-
fluidity to be triggered by γ ≠ 0. In this case, one finds from
Eq. (3.43) the Goldstone field

θ− ¼
i
2
γ log

�
M

2πðτ − τ2Þ
�
− i

Mðx − x2Þ2
4ðτ − τ2Þ

: ð3:45Þ

Next consider the solution ρþ in the range τ2þε<τ<τ1−ε.
One has

ρþ ¼ Q

�
M

2πðτ1 − τÞ
�

3=2
exp

�
−
Mðx − x1Þ2
2ðτ1 − τÞ

�

¼ fþðτÞ exp ð2iθþÞ; ð3:46Þ

where now

fþðτÞ ¼ d

�
M

2πðτ1 − τÞ
�

3=2−γ
: ð3:47Þ

And the second solution for the Goldstone field is

θþ ¼ −
i
2
γ log

�
M

2πðτ1 − τÞ
�
þ i

Mðx − x1Þ2
4ðτ1 − τÞ : ð3:48Þ

Both solutions, Eq. (3.45) and Eq. (3.48), satisfy the
homogeneous EOM. However, the inhomogeneous solu-
tion, and therefore the general solution, must depend on
both source locations. Indeed, one expects that the solution
will be invariant with respect toQ → −Q and x2 ↔ x1. The
only linear combination of θ− and θþ which is invariant
with respect to x2 ↔ x1 is the sum3 θ− þ θþ, and indeed
the sum is evidently the only linear combination that solves
the homogeneous EOM.
Finally, the general solution to the EOM and the saddle

point location in the presence of sources is given by

θsðτ;xÞ ¼
i
2
γ log

�
τ1 − τ

τ − τ2

�
−
i
4
M

�ðx− x2Þ2
ðτ − τ2Þ

−
ðx− x1Þ2
ðτ1 − τÞ

�
:

ð3:49Þ

As will be seen below, this is the large-charge master field.
The solution is well-defined and physical for τ2 < τ < τ1.
Just as in the free case, the structure of the EOM imposes a
time ordering. To arrive at this solution, the assumption of
Schrödinger invariance has entered via the diffusion-equa-
tion ansatz of Eq. (3.34). However, it is straightforward to
see that the master field solution is present in the
Schrödinger algebra, and this will be shown in detail
below.4 From the saddle solution, one finds

X½θs� ¼
1

2
γ
ðτ1 − τ2Þ

ðτ − τ2Þðτ1 − τÞ −
1

8
M

�ðx − x2Þ
ðτ − τ2Þ

−
ðx − x1Þ
ðτ − τ1Þ

�
2

:

ð3:50Þ

FIG. 1. Euclidean timeline with source charge placements
(above line) and charge regions (below line).

2γ should not be confused with Δ, the conformal dimension
that is computed below.

3Invariance follows if one also takes γ → −γ, however note
that the EOM is solved independently of the value of γ, so the
sign of this term is irrelevant until one fixes the charge.

4This solution is general in the following sense. Consider a
Schrödinger-invariant system and let θ be the field that transforms
with a shift under the action of the particle number operator. Then
there always exists a solution to the EOM in which θ has the form
in Eq. (3.49). For example, for the free theory, a special case of
this solution has been found in [33] as an instanton which
describes the decay of a metastable bosonic droplet.
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It is convenient to shift the spatial variable to

x ¼ y þ x2

�
τ1 − τ

τ1 − τ2

�
þ x1

�
τ − τ2
τ1 − τ2

�
: ð3:51Þ

It then follows that

x − x2 ¼ y þ x12

�
τ − τ2
τ1 − τ2

�
;

x − x1 ¼ y − x12

�
τ1 − τ

τ1 − τ2

�
; ð3:52Þ

and the spatial delta functions become

δ4ðx − xiÞ ¼ δ3ðyÞδðτ − τiÞ: ð3:53Þ

In the new coordinate,

θs ¼
i
2
γ log

�
τ1 − τ

τ − τ2

�
−
i
4
M

�
1

τ − τ2

�
y þ x12

�
τ − τ2
τ1 − τ2

��
2

−
1

τ1 − τ

�
y − x12

�
τ1 − τ

τ1 − τ2

��
2
�

ð3:54Þ

and

X¼ 1

2
γ
ðτ1− τ2Þ

ðτ− τ2Þðτ1− τÞ−
1

8
M

� ðτ1− τ2Þ
ðτ− τ2Þðτ1− τÞ

�
2

y2: ð3:55Þ

Note that now all dependence of the correlation function on
the spatial separation is contained in the Q insertion in the
action. The emergent harmonic trap is now seen by writing

X ¼ μ̄ðτÞ − 1

2
Mω̄ðτÞ2r2; ð3:56Þ

where r ¼ jyj, and

ω̄ðτÞ ¼ 1

2

ðτ1 − τ2Þ
ðτ − τ2Þðτ1 − τÞ ;

μ̄ðτÞ ¼ 1

2
γ
ðτ1 − τ2Þ

ðτ − τ2Þðτ1 − τÞ : ð3:57Þ

Here, it is clear that the time-dependent function μ̄ðτÞ, via
the anomalous dimension γ > 0, drives spontaneous sym-
metry breaking.5

The saddle from the state-operator correspondence. An
alternative derivation of the saddle solution, this time based
on Schrödinger invariance is obtained by comparing two
equivalent frames:

(i) The Galileian frame with coordinates ðτ;xÞ that was
used above, in which there is no background

potential and the sources are inserted at finite
Euclidean time, and

(ii) the oscillator frame, with coordinates ðτ̃; x̃Þ in which
the sources are placed at τ̃ ¼ �∞ and a background
field A0 ¼ Mω2y2=2 is present.

These are the two sides of the nonrelativistic state-operator
correspondence [34], in which the conformal dimension Δ
of a primary in the Galileian frame is mapped to the energy
in units of ω, Ẽ=ω of a state in the oscillator frame.
The two frames are completely equivalent for

Schrödinger-invariant systems and are related by

�ωτ ¼ tanhðωτ̃Þ;
x ¼ x̃ 1

coshðωτ̃Þ
;

�ωτ̃ ¼ arctanhðωτÞ;
x̃ ¼ xffiffiffiffiffiffiffiffiffiffiffi

1−ω2τ2
p :

ð3:58Þ

Insertions at τ̃ ¼ �∞ are then mapped to τ ¼ �1=ω.
However, since the map is singular at these points, such
insertions in the oscillator frame are always mapped to
x ¼ 0 in the Galilean frame. Then the source points are
always at x1 ¼ x2 ¼ 0, and therefore x ¼ y. In addition,
M ¼ 1 in this section.
Primary operators of dimension Δ and charge Q are

related by

OΔ;Qðτ;xÞ ¼ ðcoshðωτ̃ÞÞΔ exp

�
−
Qω

2
tanhðωτ̃Þx̃2

�

× ÕΔ;Qðτ̃; x̃Þ; ð3:59Þ

ÕΔ;Qðτ̃; x̃Þ¼ ð1−ω2τ2ÞΔ=2 exp
�
Qω2

2

x2τ

1−ω2τ2

�
OΔ;Qðτ;xÞ:

ð3:60Þ
The Goldstone field transforms nonlinearly under
Schrödinger symmetry, so to see how the ground state
solution θ̃ðτ̃; x̃Þ ¼ −iμτ̃ is mapped to θðτ;xÞ, take a generic
primary in terms of the Goldstone field and use the map
above:

ÕΔ;Qðτ̃; x̃Þ ¼ X̃ðτ̃; x̃ÞΔ=2eiQθ̃ðτ̃;x̃Þ ↦ OΔ;Qðτ;xÞ
¼ Xðτ;xÞΔ=2eiQθðτ;xÞ: ð3:61Þ

Then one finds

θ̃¼−iμτ̃↦ θ

¼ i
μ

2ω
log

�
1=ω− τ

τþ1=ω

�
−
i
4

�
x2

τþ1=ω
−

x2

1=ω− τ

�
; ð3:62Þ

X̃ ¼ μ −
ω2

2
x̃2 ↦ X

¼ μ

2ω

�
1

1=ω − τ
þ 1

τ þ 1=ω

�

−
1

8

�
x

τ þ 1=ω
þ x
1=ω − τ

�
2

; ð3:63Þ5Despite the suggestive notation, this function should not be
viewed as a time-dependent chemical potential.
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which is the field configuration generated by two insertions
at ðτ ¼ �1=ω;x ¼ 0Þ. These expressions are consistent
with those found working directly in the Galileian frame
with the identification

γ ¼ μ

ω
¼ μ

2
τ12: ð3:64Þ

Evaluation of the 2-point function. The density is
given by

ρ¼−
δL
δX
¼−

δLI

δX
þΔ
2
X−1½δ4ðx−x2Þþδ4ðx−x1Þ�: ð3:65Þ

Now, using Eq. (3.53) and Eq. (3.55), it is easy to see that
the second term has no support and therefore gives a
vanishing contribution to the density. Therefore, taking

LI ¼LLO¼−c0M3=2X5=2; ρ¼ 5

2
c0M3=2X3=2; ð3:66Þ

it is straightforward to check that ρ satisfies the homo-
geneous EOM at the saddle-point solution, Eq. (3.49).
To satisfy the EOM in the presence of sources, the

density at the saddle-point solution must be integrated over
all space to fix the charge. Now note that the density
vanishes when r → R̄ðτÞ with

R̄ðτÞ ¼
ffiffiffiffiffi
2μ̄

M

r
1

ω̄
¼ 2ffiffiffiffiffi

M
p

�
γ
ðτ − τ2Þðτ1 − τÞ
ðτ1 − τ2Þ

�
1=2

: ð3:67Þ

Hence, in the presence of the sources the superfluid system
behaves like a droplet whose size is governed by the
Euclidean-time separation between sources. Figure 2

illustrates the droplet radius forming at the source τ2,
rising to its maximum at radius τ12=2, and returning to zero
at the sink, τ1.
One now easily finds

Z
d3xρ¼4π

Z
R̄ðτÞ

0

drr2ρ¼ μ̄3

3ω̄3ξ3=2
¼ 1

3ξ3=2
γ3¼Q: ð3:68Þ

Therefore, the anomalous dimension is related to the
charge by

γ ¼ 31=3ξ1=2Q1=3; ð3:69Þ

and

μ̄ðτÞ ¼ 31=3ξ1=2Q1=3ω̄ðτÞ: ð3:70Þ

Having found the solution to the EOM, the two-point
function at the saddle is straightforwardly evaluated:

GQðx1;x2Þ¼OΔ;Qðx2ÞOΔ;−Qðx1Þe−S½θ�jθ¼θSþ��� ; ð3:71Þ

where the dots are subleading effects in the large-charge
EFT (see below). Because of the insertions at τ ¼ τ2 and
τ ¼ τ1, it is convenient to view this expression as

GQðx1;x2Þ¼ lim
ε→0

OΔ;Qðτ2þ ε;x2ÞOΔ;−Qðτ1−ε;x1Þ

×exp

�
−
Z

τ1−ε

τ2þε
dτ

Z
d3xLI½θ�

�����
θ¼θS

: ð3:72Þ

The existence of this limit will then give a constraint that
will be used to compute the conformal dimension Δ.

FIG. 2. Left: plot of the radius of the superfluid droplet vs Euclidean time as described in the text. Right: equal-time slices representing
the evolution of the droplet size for insertions at ð0;−1;−1Þ and (1, 1, 1). Darker colors correspond to denser regions.
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The only thing that remains to compute is the value of the
action at the saddle:

SI ¼
Z

τ1−ε

τ2þε
dτ

Z
d3xLI

¼ −4πc0
Z

τ1−ε

τ2þε
dτ

Z
R̄ðτÞ

0

r2drXðτ; rÞ5=2

¼ −
5c0π2γ4

16
ffiffiffi
2
p log

�
τ12
ε

�
þOðεÞ

¼ −
31=3ξ1=2

4
Q4=3 log

�
τ12
ε

�
þOðεÞ: ð3:73Þ

Simply substituting the saddle solution into the expression
for the operators one then finds

GQðx1; x2Þ ¼N 2εQγ−Δ−31=3ξ1=2

4
Q4=3

×

�
τ
−Qγþ31=3ξ1=2

4
Q4=3

12 exp

�
−
QMx2

12

2τ12

�
þOðεÞ

�
:

ð3:74Þ

Cancellation of the divergence for ε → 0 requires

Qγ − Δ −
31=3ξ1=2

4
Q4=3 ¼ 0 ð3:75Þ

and leads to the solution

GQðx1; x2Þ ¼ N 2τ−Δ12 exp

�
−
QMx2

12

2τ12

�
; ð3:76Þ

where

Δ ¼ Qγ −
31=3ξ1=2

4
Q4=3 ¼ 34=3

4
ξ1=2Q4=3 ð3:77Þ

in agreement with the state-operator correspondence large-
charge result [17].
Note also that γ measures how much the conformal

dimension changes when the charge changes by one unit:

dΔ
dQ
¼ γ: ð3:78Þ

This shows that equation (3.75) is simply a Legendre
transform relating Δ to the value of the action at the saddle.
In the oscillator frame, this is precisely the thermodynamic
relation between the free energy FðQÞ and the grand
potential ΩðμÞ.
EFT power counting.Note that up to this point, there has

been no explicit use of the large-charge expansion.
However, the semi-classical expansion is used implicitly
in a claim that the effective action, evaluated at the saddle,
provides the large-charge solution. This is, of course, true

when Q is large, as expected. However, it is worth
considering the various scales in the problem in some
detail. This parallels consideration of the large-charge EFT
in the presence of a harmonic trap [25]. However, in the
state-operator correspondence, the trap frequency, ω, is an
artificial parameter which is taken to zero as Q → ∞ in a
manner that leaves the density fixed. In the exact solution
given here, the emergent trap frequency, ω̄, vanishes as the
temporal separation of the sources increases. Say τ1 ¼ Δτ
and τ2 ¼ −Δτ. Then,Δτ ¼ ðτ1 − τ2Þ=2, and for fixed τ and
Δτ → ∞, one has

ω̄ → Δτ−1 → 0: ð3:79Þ

One also has

R̄ ∼
Q1=6

M1=2ω̄1=2 ; V ∼ R̄3 ∼
Q1=2

M3=2ω̄3=2 ;

ρ ∼
Q
V
∼M3=2ω̄3=2Q1=2; ð3:80Þ

where V is a measure of the spatial volume occupied by the
superfluid droplet. Therefore, one can take Q → ∞, ω̄ → 0

while keeping ρ fixed if in the power countingQ ∼M3Δτ3.
Then, taking the infrared (IR) scale to be pIR ≡ R̄−1 and the
ultraviolet (UV) scale to be ΛUV ≡ ρ1=3, the large-charge
EFT can be organized as an expansion in the ratio
pIR=ΛUV ∼Q−1=3 which is small when Q is large. This
power counting argument provides a basis for organizing
operators and higher-order corrections in the large-
charge EFT.
NLO corrections. The easiest way to identify the NLO

corrections for the two-point function result is to write the
next terms in the EFT in the oscillator frame. The reason is
that there is a natural IR scale p2

IR ∼ ω given by the
oscillator frequency and a natural UV scale Λ2

UV ∼ μ.
The leading scale-invariant terms, up to field redefinitions,
can be chosen to be (with M ¼ 1)

Losc¼ c0X5=2þc1X−1=2ð∂iXÞ2
þX1=2ðc2ð∂i∂iθÞ2þc3ð∂i∂jθÞ2þc4∂i∂iA0Þ ð3:81Þ

with A0 ¼ ω2x2=2. The ci are low-energy constants that are
determined by the short-distance physics. On the basis of
power counting, each derivative counts as Q−1=3, and
therefore one expects NLO contributions to the scaling
dimensions suppressed by Q−2=3 as compared to the LO.
This is indeed correct [17].
Fixing the charge breaks the Schrödinger symmetry and

in general the EFT will not be invariant order-by-order in
ω=μ. When passing to the flat frame, the c0 and c1 terms are
separately invariant under the transformations in Eq. (3.58)
and enter the flat-frame EFT as they are. As for the other
terms, one can verify that the computation of the conformal
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dimension in the oscillator frame and of the two-point
function in the flat frame agree if the following condition
is met:

c4 ¼ −3c2 − c3: ð3:82Þ

This relation agrees with the condition of conformal
invariance when the LO EOM is used, as found in
Ref. [35]. This is also consistent with Ref. [26], which
considers the superfluid EFT at large-charge and large-N
and finds that the explicit trap-dependent contribution to
the c4 operator in Eq. (3.81) is present in the Schrödinger-
invariant EFT.
As is generally the case, there is large freedom in

defining the fields and transformation properties in the
EFT. In the literature different choices have appeared
[17,21,35], but they must all ultimately agree on the
resulting values for the physical observables.

D. Three-point function and higher at large charge

Again consider the primary operator with charge Q and
dimension Δ given in Eq. (3.29), and now define the three-
point function

GQðx1; x2; x3Þ ¼
Z

DθOΔ3;Q3
ðx3ÞOΔ2;Q2

ðx2Þ

×OΔ1;Q1
ðx1Þe−

R
d4xLI ; ð3:83Þ

where LI is the interaction Lagrange density. The operator
charges and dimensions are chosen as follows:

Q3 ¼ Q; Q2 ¼ q; Q1 ¼ −Q − q; ð3:84Þ

Δ3 ¼ ΔQ; Δ2 ¼ Δq; Δ1 ¼ ΔQþq; ð3:85Þ

and the large-charge approximation is taken in which
q ≪ Q. In this limit, the small-charge insertion is seen
as a probe in the field configuration generated by the two
large charge insertions [36–38]. Semiclassically, this
requires the insertions to be ordered as τ3 < τ2 < τ1.
Concretely, one can use the same solution that was found
above, corresponding to an insertion of charge Q and
evaluate the three-point function at the saddle,6

GQðx1; x2; x3Þ ¼ hOΔQ;Qðx3ÞOδ;qðx2ÞOΔQþq;−Q−qðx1Þi
¼ lim

ε→0
OΔQ;Qðτ3 þ ε;x3ÞOδ;qðτ2;x2Þ

×OΔQþq;−Q−qðτ1 − ε;x1Þe−SI ½θ�jθ¼θS þ � � � ;
ð3:86Þ

where, for simplicity, δ≡ Δq. The temporal structure of the
solution is illustrated in Fig. 3, which makes clear that in
the large-charge limit, q ≪ Q, there is charge Q in the
interval between τ3 and τ1, and vanishing charge elsewhere.
Note that at τ ¼ τ2 the solution is regular and there is no
need to move the insertion point. The value of SI is the
same as was found above (with τ12 → τ13),

SI ¼ −
31=3

4
ξ1=2Q4=3 log

�
τ13
ε

�
þOðεÞ; ð3:87Þ

and all that remains to do is to insert the values at the
saddle, observing that the master field in x ¼ x2 can be
written in terms of the Schrödinger-invariant variable v123:

eiqθðx2Þjθ¼θs ¼
�
τ23
τ12

�
qγ=2

exp

�
−
1

2
qMv123

þ 1

2
qM

x2
23

τ23
−
1

4
qM

x2
13

τ13

�
; ð3:88Þ

Xðx2Þjθ¼θs ¼
γ

2

�
1

τ12
þ 1

τ23

��
1 −

1

2γ
Mv123

�
: ð3:89Þ

Then one has

GQðx1; x2; x3Þ
¼ N 3lim

ε→0
ε−

31=3ξ1=2

4
Q4=3þqγ=2þQγ−ðΔQþqþΔQÞ=2

× τ−ðqγþδÞ=212 τðqγ−δÞ=223 τδ=2−1=2ðqþ2QÞþ3
1=3=4ξ1=2Q4=3

13

× exp½Q1Mx2
13=ð2τ13Þ þQ2Mx2

23=ð2τ23Þ�

×

�
1 −

1

2γ
Mv123

�
δ=2

e−qMv123=2: ð3:90Þ

In this case, the cancellation of the divergence reads

−
31=3ξ1=2

4
Q4=3 þ q

γ

2
þQγ −

ΔQþq þ ΔQ

2
¼ 0: ð3:91Þ

In the discussion of the two-point function, it was already
found that γ measures the variation of Δ corresponding to a
(small) variation of the charge [Eq. (3.78)],

ΔQþq − ΔQ ¼ γq: ð3:92Þ

Putting it all together, the three-point function takes the
expected form of Eq. (3.3), fixed by Schrödinger invari-
ance, with

FIG. 3. Euclidean timeline with source charge placements
(above line) and charge regions (below line).

6One could equivalently use the solution corresponding to
charge Qþ q as a background.
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Ψ3ðv123Þ¼
�
1−M

v123
2×31=3ξ1=2Q1=3

�
δ=2

e−qMv123=2: ð3:93Þ

This result is consistent with what was found in Ref. [17].
The computation of the three-point function can be

generalized in a straightforward way to any n-point
function with two heavy insertions and n − 2 light ones:

GQðx1;…; xnÞ
¼ hOΔQ;QðxnÞOδn−1;qn−1ðxn−1Þ…Oδ2;q2ðx2ÞOΔQ0 ;−Q

0 ðx1Þi;
ð3:94Þ

where, by charge conservation

Q0 ¼ Qþ
Xn−1
i¼2

qi ¼ Qþ q: ð3:95Þ

The temporal structure of the solution is illustrated in
Fig. 4. The goal is to compute this correlator semiclassi-
cally in the EFT, treating the n − 2 insertions at x2;…; xn−2
as probes for the field profile generated by the heavy
insertions at x1 and xn (which implies that the small
insertions must occur between τ1 and τn). Two conditions
have to be met:

(i) the inner insertions have to be light, jqij ≪ Q,
and jqj ≪ Q,

(ii) the distance between any two insertions has to be
much larger than the UV scale

1

τij
≪ ΛUV ¼ ρ1=3 ≈

Q1=3

τ1n
: ð3:96Þ

If the insertion of chargeQ at xn is taken as a reference, one
recovers precisely the same profile discussed in the
previous sections and the n-point function is simply the
product of n contributions evaluated at the saddle:

GQ ¼ lim
ε→0

OΔQ;Qðτn − ε;xnÞOδn−1;qn−1ðxn−1Þ…
×Oδ2;q2ðx2ÞOΔQ0 ;−Q

0 ðτ1 − ε;x1Þe−SI ½θ�jθ¼θS
þ � � � ð3:97Þ

The regulator ε is only needed at x1 and xn, so that the
ε-dependence inside the limit is given by

ε−
31=3ξ1=2

4
Q4=3þγðQ0þQÞ=2−ðΔQ0þΔQÞ=2; ð3:98Þ

where the fact that the value of the action at the saddle is
still given by Eq. (3.73) has been used. Then the divergence
is canceled if

−
31=3ξ1=2

4
Q4=3þ γ

2
ðQ0 þQÞ−1

2
ðΔQ0 þΔQÞ¼ 0; ð3:99Þ

which is identically true since, as seen in the computation
of the two-point function,

ΔQ ¼ Qγ −
31=3ξ1=2

4
Q4=3 and ΔQ0 − ΔQ ¼ γðQ0 −QÞ:

ð3:100Þ

Consistently with the appropriate Ward identities, the result
can be parametrized in terms of ðn − 1Þðn − 2Þ=2 inde-
pendent conformally invariant variables

vijn ≡ 1

2

�
x2
jn

τjn
þ x2

ij

τij
−
x2
in

τin

�
i < j < n: ð3:101Þ

Now one can write the general expression of the master
field in terms of v1in:

eiqiθðxiÞjθ¼θs ¼
�
τin
τ1i

�
qiγ=2

exp

�
−
1

2
qiMv1in

þ 1

2
qiM

x2
in

τin
−
1

4
qiM

x2
1n

τ1n

�
; ð3:102Þ

XðxiÞjθ¼θs ¼
γ

2

�
1

τ1i
þ 1

τin

��
1 −

1

2γ
Mv1in

�
; ð3:103Þ

to find that the n-point function takes a factorized form

GQ¼N 2τ
−ΔQ−qγ=2þδ=2
1n exp

�
−ðQþqÞM x2

1n

2τ1n

�

×
Yn−1
i¼2

N iτ
−qiγ=2−δi=2
1i τqγi=2−δi=2in exp

�
qiM

x2
in

2τin

�

×
�
1−M

v1in
2×31=3ξ1=2Q1=3

�
δi=2

e−qiMv1in=2; ð3:104Þ

where q ¼ q2 þ � � � þ qn−2 and δ ¼ δ2 þ � � � þ δn−2.

IV. SYMMETRY BREAKING EFFECTS

A. Fermions near unitarity

Consider now the inclusion of small Schrödinger-break-
ing effects in the fundamental theory. Using Eq. (2.5) one
can write

FIG. 4. Euclidean timeline for n-point function with source
charge placements (above line) and charge regions (below line).
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L ¼ LCFT þ
M
4πa

s†s −
M2r
16π

s†
�
i∂
↔

t þ
∇!2 þ ∇ 2

4M

�
s; ð4:1Þ

where, in addition, effective range corrections have been
included [9,39]. The scattering length corrections therefore
enter via a relevant dimension-4 operator (the field s at
unitarity has dimension 2), and the effective range correc-
tions enter via an irrelevant dimension-6 operator.
The energy per particle E=N of the interacting Fermi gas

in the near-Schrödinger limit can be written at very-low
densities7 as [40,41]

E=N¼ 3

5

k2F
2M

�
ξ−

ζ

kFa
−

ζ2
k2Fa

2
þ���þηkFrþ���

�
: ð4:2Þ

Here the various dimensionless universal parameters
have been determined using quantum Monte Carlo simu-
lations. From Ref. [42], ξ ¼ 0.372ð5Þ (Bertsch parameter)
and η ¼ 0.12ð3Þ. From the simulation data in Ref. [43], it is
straightforward to extract ζ ¼ 0.8ð3Þ and ζ2 ¼ 1.0ð6Þ.
Note that the effective range contributions to the energy

density grow with Fermi momentum with respect to the
energy at unitarity. This implies that in the large-charge limit,
the superfluid EFT is sensitive to arbitrarily short distance
scales in the fundamental fermion theory. Hence, the effect of
the effective range and all higher shape parameter corrections
that arise from operators with arbitrary numbers of derivative
interactions are of the same size, leading to a breakdown of
the fundamental-fermion EFT expansion. This renders it
difficult to assess the effect of Schrödinger-breaking effects
due to finite effective-range corrections in the large-charge
EFT, as evidently knowledge of the equation-of-state at high
densities is required.8 This will be treated in a separate
publication, and therefore effective range and higher shape
parameter corrections in the fundamental theory are assumed
to vanish in what follows.

B. Symmetry breaking in EFT

The leading conformal-breaking effects are straightfor-
ward to include using spurion formalism. In the fundamental
theory, recalling that the field s has scaling dimension 2, the
conformal-breaking effects can be made scale invariant by
assigning 1=a scaling dimension 1. Correspondingly, in the
EFT, the leading conformal-breaking effects due to a finite
scattering length are encoded as9

LSB ¼ g1a−1MX2 þ g2a−2M1=2X3=2; ð4:3Þ

where the gi are dimensionless constants.10 Matching to
Eq. (4.2) one finds

g1 ¼ −
2ζ

5π2ξ2
¼ −0.23ð10Þ;

g2 ¼ −
ffiffiffi
2
p

25π2ξ5=2
ð4ζ2 þ 5ζ2ξÞ ¼ −0.34ð17Þ; ð4:4Þ

where the Monte Carlo results quoted above have been
used in the numerical determination.
Note that following this procedure for the effective

range corrections, one would assign r scaling dimension
−1. Correspondingly, the range corrections would enter
perturbative matching via an X3 operator which scales as
μ3. As the LO Schrödinger-invariant operator scales as
μ5=2, formally there can be no such operator in the large-
charge limit. This suggests that the utility of the large-
charge EFT in the presence of significant effective range,
and higher shape parameter effects, will be system
specific.

C. Symmetry breaking at large charge

Remarkably, Schrödinger symmetry places strong con-
straints on the general form of the symmetry-breaking
corrections due to scattering length and effective range
correction [9]. In the fundamental fermion theory with a
two-point function constructed from an operator of arbi-
trary charge Q, it can be shown in conformal perturbation
theory that

GQðx1; x2Þ ¼ GCFT
Q ðx1; x2Þ½1þ c0a−1τ1=212 �; ð4:5Þ

where c0 is an arbitrary constant that is not fixed by
symmetry. In conformal perturbation theory this sym-
metry-breaking effect is computed by obtaining the sym-
metry-breaking action at the Schrödinger-symmetric master
field solution.
At leading order in the symmetry breaking, the saddle

solution remains unchanged. This is reflected in the fact
that in computing n-point functions in the theory with
symmetry breaking, in the limit in which two insertions are
much heavier than the others and the symmetry-breaking is
small, the only new effect is a variation in the value of the
action at the saddle:

7Note that the range of validity of the EFT of neutron contact
operators is, strictly speaking, not set by the pion mass, Mπ , but
rather by Mπ=2, which is the position of the t-channel branch
point in the neutron-neutron scattering amplitude.

8Recent state-of-the-art simulations of the energy density in
neutron matter [44] indicate a remarkable closeness to the unitary
curve up to unexpectedly high densities.

9Note that this is the Euclidean Lagrange density, and therefore
the relationship with the energy density is given by Eq. (3.25).

10Note that the contribution of the leading scattering length
correction to the phonon dispersion relation has been considered
in Ref. [45].
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OQ;Δ

Yn−2
i¼2

Oδi;qiOΔ0;−Q0



SB

∼OQ;Δ

Yn−2
i¼2

Oδi;qiOΔ0;−Q0e−S½θ�−SSB½θ�
���
θ¼θS

¼
	
OQ;Δ

Yn−2
i¼2

Oδi;qiOΔ0;−Q0



CFT

e−SSB½θS�; ð4:6Þ

where Δ ¼ ΔðQÞ, Δ0 ¼ ΔðQ0Þ, Q0 ¼Qþq2þ���þqn−2,
Q ≫ qi, and h…iCFT is the correlator in the conformal
theory. In this limit the breaking of Schrödinger symmetry
is measured by a universal term that is easily evaluated.
For the leading scattering length correction one finds

Z
d3xHa

SB ¼ CaM−1=2Q7=6a−1ω̄ðτÞ1=2; ð4:7Þ

where

Ca ≡ 64
ffiffiffi
2
p

31=6πξ7=4g1
35

; ð4:8Þ

and

SaSB ¼
Z

d4xHa
SB

¼ CaM−1=2Q7=6a−1
1ffiffiffi
2
p

Z
τ1−ε

τ2þε
dτ

� ðτ1 − τ2Þ
ðτ − τ2Þðτ1 − τÞ

�
1=2

¼ 1ffiffiffi
2
p πCaM−1=2Q7=6a−1τ1=212 : ð4:9Þ

This effect is small as compared to LO for a−1 ≪
M1=2Q1=6τ−1=212 ∼ ΛUV. Therefore, with a large, one can
take a−1 ∼ pIR and scattering length effects are small at
large charge. For the two-point function one finds

GQðx1;x2Þ¼GCFT
Q ðx1;x2Þ

�
1−

1ffiffiffi
2
p πCaM−1=2Q7=6a−1τ1=212

�
;

which is indeed of the expected form, Eq. (4.5). Now,
continuing back to Minkowski space, choosing the source
points x1 ¼ ðt;xÞ, x2 ¼ ð0; 0Þ, and using the Fourier
transform [6,8]

Z
dt
Z

d3xθðtÞt−Δ exp
�
i
QMx2

2t

�
expðiEt− ip ·xÞ

¼ iΔ−1
�

2π

QM

�
3=2

�
p2

2QM
−E

�
Δ−5=2

Γ
�
5

2
−Δ

�
; ð4:10Þ

one finds

GQðE;pÞ¼−iN 2

�
2π

QM

�
3=2

Γ
�
5

2
−ΔQ

��
p2

2QM
−E

�ΔQ−5=2

×

�
1−

1ffiffiffi
2
p πCaM−1=2Q7=6a−1

Γð6
2
−ΔQÞ

Γð5
2
−ΔQÞ

×

�
p2

2QM
−E

�−1=2�
: ð4:11Þ

Finally, one has

ImGQðE; 0Þ ¼ C0EΔQ−5=2
�
1þ CQ

a
ffiffiffiffiffiffiffiffi
ME
p

�
; ð4:12Þ

where C0 is a normalization constant that can be absorbed
into the definition of the X field, and

CQðQÞ ¼ −
1ffiffiffi
2
p πCaQ7=6 Γð62 − ΔQÞ

Γð5
2
− ΔQÞ

tan πΔQ

⟶
Q→∞

35=6
64

175
ζQ11=6 þOðQ1=2Þ; ð4:13Þ

where on the right side the result at asymptotic Q is given.
This function is plotted in Fig. 5. The Oða−2Þ corrections
are similarly evaluated. It is noteworthy and promising that,
for Q ∼ 3, these Oða−1Þ corrections in the large-charge
EFT are consistent with the range of values found in
Ref. [9] working directly with the three-body wave
functions. Of course the utility of the large-charge EFT
for neutron matter requires consideration of effective-range
effects, which are sizeable in the neutron-neutron system.

FIG. 5. Plot of the function CQðQÞ vs Q. The band represents
the uncertainty in the parameter g1, determined by Monte Carlo
simulations, as discussed in the text.
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V. LARGE N AT LARGE CHARGE

The action in Eq. (4.1) can be studied perturbatively
without the need for an EFT if one introduces N species of
fermions and takes the N → ∞ limit. To make contact with
the superfluid EFT, a sector of fixed charge Q is also
considered, and the double-scaling limit Q=N with fixed is
studied. Here the effect of a finite scattering length a on the
gap and on the value of the grand potential is considered.
The calculation of other observables is left for future work.
The starting point is the action

S ¼
Z

dtd3x

�XN
i¼1

ψ†
σi

�
i∂t þ

1

2M
∇2 þ μ

�
ψσi

þ ψ†
↓iψ

†
↑isþ s†ψ↑iψ↓i þ

NM
4πa

s†s

−M2r
16π

s†
�
i∂
↔

t þ
∇!2 þ ∇ 2

4M

�
s

�
; ð5:1Þ

which is the nonrelativistic version of the Gross-Neveu-
Yukawa (GNY) model. Note that the field s remains a
singlet of the Uð1Þ × Spð2NÞ symmetry of the action.
One way to view this model is as the UV completion of a

fermionic theorywith four-Fermi interaction.At high energy,
both the fermionic and the bosonic fields are dynamical.
Going down in energy, the first scale that one meets is
1=ðMraÞ where the scalar field is frozen, and one is not
sensitive to a finite effective range of the interactions. Below
this energy, s is nondynamical, appears quadratically and can
be integrated out, leading to a four-Fermi interaction with
coupling proportional to a=N. In this way, the strongly
coupled fixed point of the fermionicmodel then appears as an
IR fixed point for the nonrelativistic GNY model. From this
point of view, the theory under discussion lives below the first
scale (the bosonic field is not dynamical) and is close enough
to the IR fixed point.
The fermions appear quadratically and can be

integrated out,

S ¼ −NTr logG−1½s� −
Z

dτdx
NM
4πa

s†s; ð5:2Þ

where the inverse propagator is given by

G−1½s� ¼
�−∂τ þ 1

2M∇2 þ μ sðxÞ
sðxÞ† −∂τ − 1

2M∇2 − μ

�
: ð5:3Þ

At leading order in N one can look for a saddle at constant
(real) values of s, the effect of the fluctuations being
controlled by 1=N. A standard calculation leads to the
following expression for the action evaluated at s ¼ Σ0 [26]:

Sðμ;Σ0Þ
NVT

¼ −4πM3=2I0;0

�
Σ0

μ

�
μ5=2 −

Σ2
0

4πa
; ð5:4Þ

where Im;n is written in terms of Gaussian hypergeometric
functions 2F1:

Im;nðyÞ ¼ −
y5=2þm=2−2n

2ð2πÞ7=2
�
Γ
�
3þm
4

�
Γ
�
n −

5þm
4

�

× 2F1

�
−
mþ 1

4
; n −

mþ 5

4
;
1

2
;−

1

y2

�

þ 2

y
Γ
�
5þm
4

�
Γ
�
n −

3þm
4

�

× 2F1

�
1 −m
4

; n −
mþ 3

4
;
3

2
;−

1

y2

��
: ð5:5Þ

Here, a heat kernel regularization has been used in which the
conformal point is at 1=a� ¼ 0.
The value of the action at the saddle, that is identified

with the grand potential ΩðμÞ, is obtained by solving the
gap equation

d
dΣ

Sðμ;ΣÞ ¼ 0: ð5:6Þ

This equation can be solved perturbatively in 1=a using the
identity

I0m;nðyÞ ¼ −2yIm;nþ1ðyÞ: ð5:7Þ

At leading order,

I0;1ðy0Þ ¼ 0; ð5:8Þ

which can be solved numerically to give y0¼Σ0=μ¼1.162,
and a Bertsch parameter of ξ ¼ 0.5906, consistent with
well-known results in the literature [46]. Expanding around
this point in inverse powers of a, one then finds the gap

Σ0 ¼ μy0

�
1 −

1

32π2y20aμ
1=2

1

I0;2ðy0Þ

þ 1

2ð32π2y20aμ1=2Þ2
1

I0;2ðy0Þ2
…

�
; ð5:9Þ

and the grand potential

ΩðμÞ¼ 4πNμ5=2I0;0ðy0Þ
�
1−

y20
16π2aμ1=2I0;0ðy0Þ

−
1

2ð16π2aμ1=2Þ2I0;0ðy0ÞI0;2ðy0Þ

−
1

6ð16π2aμ1=2Þ3y20I0;0ðy0ÞI0;2ðy0Þ2
þ���

�

¼−0.08418μ5=2
�
1þ1.277

aμ1=2
þ1.513

a2μ
−
1.195

a3μ3=2
þ�� �

�
:

ð5:10Þ
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In the limit of large chemical potential, the expected
corrections to the standard result for the grand potential
are found at the fixed point, which are controlled by
1=ðaμ1=2Þ. This is in perfect analogy with the result for
the n-point functions in the previous section which, in the
grand canonical ensemble, are controlled by τ1=212 =ðaγ1=2Þ,
which is consistent with the identification of 2γ=τ12 with
the chemical potential. The grand potential is easily read off
from the Euclidean Lagrange density, including scattering
length corrections, giving

ΩðμÞ¼−c0μ5=2
�
1þ 3ζ

23=2ξ1=2aμ1=2
þ3ð4ζ2þ5ζ2ξÞ

20ξa2μ
þ���

�
:

ð5:11Þ

Matching, one finds that in the large-N limit, ζ ¼ 0.925
and ζ2 ¼ 0.858. These values are consistent with the
Monte Carlo simulation values, if one makes a conservative
estimate of uncertainties due to omitted higher orders in the
large-N expansion.

VI. CONCLUSION

Schrödinger symmetry places strong constraints on the
form of correlation functions in nonrelativistic conformal
field theory, and the state-operator correspondence provides
a powerful tool for computing the conformal dimensions of
the operators that appear in the correlation functions. This
paper has shown that in the large-charge limit, there exists a
Goldstone boson master field that allows for the exact
computation of large-charge correlation functions directly
from their path integral expressions. A direct derivation of
the master field was given which relies on the assumption
of Schrödinger invariance of the Goldstone-boson equation
of motion. However, it has also been shown that the master-
field solution is present in the Schrödinger algebra, and can
be obtained directly from the ground-state large-charge
solution in the absence of sources via a transformation from
the Galilean frame to the oscillator frame. The master field
has been used to reproduce the known 2- and 3-point
correlation functions, as well as the n-point correlation
function with an insertion of large charge.

Additionally, the grand potential has been computed
including the effect of finite scattering length in the limit of
large number of fermion species without using the EFT.
The result is consistent with the EFT results. In this limit,
moreover, the numerical constants that are not accessible in
the EFT can be computed and are consistent with
Monte Carlo results.
While Schrödinger symmetry constrains the form of

Schrödinger symmetry breaking corrections, the overall
coefficients of the corrections are not fixed by symmetry.
However, in conformal perturbation theory, these coeffi-
cients are determined by the master field solution. In
particular, symmetry-breaking corrections due to finite
scattering length were computed, and shown to appear
in a universal manner for any large-charge n-point function.
While scattering length corrections are naturally accounted
for in the large-charge EFT, the effective-range corrections
have to be unnaturally small to remain a perturbative effect.
This suggests that the large-charge EFT may not provide an
efficient description of systems of many neutrons. Here the
issue is subtle as in the large-charge limit, the superfluid
EFT probes all distance scales in the fundamental-fermion
EFT. The issue of the effective range corrections and their
quantitative contribution to symmetry breaking in neutron
matter will be treated elsewhere.
It would be interesting to consider quantum corrections,

which have been studied using the state-operator corre-
spondence, in the context of the master field solution and
the time-dependent superfluid droplet. In addition, given
the simplicity of the master-field equation, one interesting
avenue to pursue is the possibility of a holographic dual
[47,48] based on a Schrödinger background [49].
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