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Inspired by the method of smoothed asymptotics developed by Terence Tao, we introduce a new
ultraviolet regularization scheme for loop integrals in quantum field theory which we call η regularization.
This reveals a connection between the elimination of divergences in divergent series of powers and the
preservation of gauge invariance in the regularization of loop integrals in quantum field theory. In
particular, we note that a method for regularizing the series of natural numbers so that it converges to minus
one-twelfth inspires a regularization scheme for non-Abelian gauge theories coupled to Dirac fermions that
preserves the Ward identity for the vacuum polarization tensor and other higher point functions. We also
comment on a possible connection to Schwinger proper time integrals.

DOI: 10.1103/PhysRevD.110.025010

I. INTRODUCTION

The problem of infinity dates back to the sixth century
BCE when Anaximander, a tutor of Pythagoras, conjured
up apeiron, an indefinite and limitless source from which
everything is born and to which everything will return [1].
However, the ancient Greeks did not embrace the infinite
with Aristotle accepting only the potential for infinity,
rejecting it in actuality. Centuries later, Gauss, perhaps the
greatest mathematician of the modern era, warned that “the
use of an infinite quantity as a completed one ... is never
permissible in mathematics. The infinite is only a façon de
parler, where one is really speaking of limits where certain
ratios come as close as one likes, while others are allowed
to grow without restriction” [2].
As physicists, how can we heed these warnings and at the

same time make sense of divergent series and integrals that
emerge unapologetically in the mathematics we use to
describe fundamental physics? Perturbative quantum field
theory (QFT) is well established as a microscopic theory of
the fundamental interactions, enjoying predictive power
and stunning experimental success [3], and yet the presence
of divergences is well documented. Indeed, as Dyson noted
[4], the perturbative expansion used in quantum electro-
dynamics does not converge, even after renormalization.

Although this does not hinder its predictive power when the
expansion parameter is small, it does raise concerns around
the concepts upon which the theory is built. Many notable
advances have been made in this regard using Borel
summation, particularly under the heading of resurgence
theory [5–7]. Here the usual perturbative expansion is
replaced with a transseries expansion, including nonper-
turbative instanton contributions.
Even at finite order in perturbative QFT, we encounter

divergences from the integration over momenta running
through loops. These problems were first identified for
quantum electrodynamics by Oppenheimer [8] and later
solved using the method of renormalization developed by
Tomonaga [9], Schwinger [10], and Feynman [11] and
extended to non-Abelian gauge theories by ’t Hooft and
Veltman [12]. As for general relativity, this works well as a
perturbative quantum field theory at scales below the
Planck scale, but cannot be extended to arbitrarily high
energies as the theory is known to be perturbatively
nonrenormalizable. Said another way, for general relativity,
the number of counterterms required to renormalize the
divergences arising from loops is itself divergent.
Adopting Aristotle’s philosophy in rejecting actual

infinity, at least in a natural context, one might hope that
the correct theory of quantum gravity coupled to matter will
be free of all such divergences. If this is the case, it may
point toward a preferred way of regularizing the divergen-
ces in the low energy QFT. String theory has certainly
provided multiple insights in this regard, particularly in
terms of a natural exponential damping of ultraviolet (UV)
divergences, which can be seen, for instance, in the
modular invariance of the world sheet theory [13,14].
Further, in the Gross-Mende regime [15,16] where the
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high energy, fixed angle behavior of string scattering
amplitudes is considered, the sum over all Riemann
surfaces is dominated by a saddle point, and we recover
the exponential damping from a stringy tower of states.
With a view to understanding this from a simple particle
perspective, Abel and others [17,18] have constructed UV
complete particle theories based on the Schwinger repre-
sentation and worldline formalism. This includes particle
theories with a tower of worldline internal degrees of
freedom that mimic stringy behavior in the UV, from
Gross-Mende saddle points to modular invariance [18].
Finally, string field theory has revealed how such expo-
nential damping comes partly from adding stubs to loop
diagrams [19], which can also be translated to the point
particles of QFT [20].
Mathematically rigorous and axiomatic formulations of

perturbative QFT have progressed significantly in recent
decades, aiding our understanding on the nature of UV
divergences, with the view that all regularization in QFT is
really just an effort in obtaining sensible results for
products of distributions [21]. But, with this progress
and insight, not much has been said fundamentally about
regularization besides it being a useful, if not altogether
ad hoc, tool. This philosophy does not align with the hopes
outlined in the previous paragraph and the quest to identify
a preferred method of regularization inherited from string
theory, or some other consistent quantum theory of gravity.
Where else can we take our inspiration? One possibility is
through analytic number theory and the study of divergent
series. In particular, we ask if there are clever ways to
regularize these series that eliminate the divergences
altogether and, if so, can we connect them, via QFT, to
the softening of scattering amplitudes at high energies in a
fundamental microscopic theory of nature?
A particularly interesting approach to divergent series is

the method of smoothed asymptotics, elegantly discussed by
Tao [22]. For monomial series, this makes use of the Euler-
Maclaurin summation formula and as such is closely related
to Ramanujan’s methods [23,24]. The importance of
smoothed asymptotics in understanding divergent series is
best illustrated with an example. Consider the infinite series
of natural numbers,

P∞
n¼1 n, which was famously assigned

the seemingly absurd value of −1=12 by Ramanujan. The
high school technique for evaluating infinite series is to take
the limit of partial sums, which for the sum of natural
numbers yields

P
N
n¼1 n ¼ 1

2
NðN þ 1Þ. There is no sign of

−1=12 in this expression, leading many to scoff at
Ramanujan’s claim. However, this is simply an artifact of
the discontinuities that occur as we increase the cutoffN. To
remedy this, we note that partial sums are really just infinite
serieswhere each term isweighted by a step function θðn=NÞ
that equates to unity for n ≤ N and vanishes for n > N.
However, suppose we replace the step function with another
regulator function, ηðn=NÞ, where ηðxÞ is a bounded smooth
function with compact support on the non-negative real line

and with ηð0Þ ¼ 1 and ηðxÞ → 0 at large x. Tao shows
that

P∞
n¼1 nηðn=NÞ ¼ C1½η�N2 − 1=12þOð1=NÞ, where

C1½η� ¼
R∞
0 dx xηðxÞ is the Mellin transform of the regu-

lator function. As wewill explicitly show, the samemethod
can also be extended to regulator functions that are
Schwartz class.
Tao’s results have several interesting features. The first

concerns the divergence as N → ∞. Unlike the partial sum,
there is no linear divergence, while the quadratic divergence
is dependent on the choice of regulator. This is in stark
contrast to the finite term which is universal, returning
Ramanujan’s famous result. These features extend to infinite
series of polynomials and are reminiscent of a well known
result regarding UV divergences in QFT. In particular, when
we compute the one-loop effective action for a theory cutoff
at some scale, Λ, the couplings associated with power law
divergences are not universal. This is in contrast to the
logarithmic divergences where the couplings are universal,
much like the finite terms in regularizing divergent series of
polynomials using smoothed asymptotics. This overlap
suggests that one-loop divergences inQFTmaybe connected
to divergent series.
The power law divergences that emerge from regularizing

a series with smoothed asymptotics can also be eliminated
with a suitable choice of regulator. We call these enhanced
regulators. For the series of natural numbers, an enhanced
regulator is one for which the corresponding Mellin trans-
form is vanishingC1½η� ¼ 0.Aswewill show, such enhanced
regulators are relatively easy to find and we present several
algorithms for finding them. A particularly elegant choice is
the enhanced regulator ηðn=NÞ ¼ e−

n
N cosðn=NÞ. When this

regulator is used for the series of natural numbers the result
converges to −1=12 and there is no divergence whatsoever.
To build these ideas into QFT, we introduce the concept of

η regularization. Here the integrand in (Euclidean) loop
integrals is weighted by a regulator function ηðjkj=ΛÞ, where
jkj is the normof the loopmomentum andΛ is the cutoff. It is
convenient to work directly with onefold irreducible loop
integrals introduced byWu [25] as the basic building block
of all one-particle irreducible graphs. When we implement
η regularization we see, as expected, that power law
divergences are regulator dependent while logarithmic
divergences are universal. As with divergent series and
smoothed asymptotics, the power law divergences are
multiplied by Mellin transforms of the regulator. By
choosing enhanced regulators, we can eliminate the power
law divergences at will.
However, the real question is whether or not the

elimination of power law divergences by enhanced regu-
lators has any deeper meaning from a QFT perspective.
Perhaps as one might have expected from dimensional
regularization, we find that the answer is yes. In a series of
papers [25–30], Wu and others have derived a set of
consistency relations that are necessary in order for the
regulator to preserve gauge invariance. Requiring that these
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hold for η regularization, we find that certain regulators
must be enhanced. In other words, regulators that allow the
infinite series of natural numbers to converge toward
−1=12 are intimately connected to the preservation of
gauge invariance at one loop in a wide class of non-Abelian
gauge theories coupled to an arbitrary number of Dirac
fermions. This is the main result of our work.
The rest of the paper is organized as follows: in Sec. II,

we review several ideas from analytic number theory and
the study of divergent series. We introduce a number of
important concepts, including a brief review of the Euler-
Maclaurin summation formula and Ramanujan summation
in Sec. II A. In Sec. II B, we review Tao’s work on
smoothed asymptotics, extending the analysis to include
regulators that are Schwartz and to series of general
polynomials. We also introduce the concept of enhanced
regulators that eliminate divergences altogether and present
several algorithms for finding them, including one that is
inspired by the Schwinger proper time formalism. In
Sec. III, we switch gears to divergent integrals in QFT,
drawing analogies between these and the results that
emerged from regularizing divergent series with smoothed
asymptotics. We formally introduce η regularization in
Sec. III A and study the implications for irreducible loop
integrals in Sec. III A 1. In Sec. III B, we implement Wu’s
consistency conditions, demonstrating the role of enhanced
regulators in preserving gauge invariance. We comment
explicitly on the connection to Schwinger proper time in
Sec. III B 1. In Sec. IV, we conclude.

II. DIVERGENT SERIES: A PHYSICIST’S REVIEW

Let us begin with the following well known expressions
for the finite sums of powers:

XN
n¼1

n ¼ 1

2
N þ 1

2
N2; ð1Þ

XN
n¼1

n2 ¼ 1

6
N þ 1

2
N2 þ 1

3
N3; ð2Þ

XN
n¼1

n3 ¼¼ 1

4
N2 þ 1

2
N3 þ 1

4
N4: ð3Þ

These relationships date back more than two millennia. The
first of them, corresponding to a sum of natural numbers,
can be traced to the Pythagorean school in the sixth century
BCE [31,32]. Archimedes of Syracuse (circa 287–212
BCE), considered the greatest mathematician of antiquity,
discovered the second relationship for a sum of the squares.
The sum of cubes can be found in the work of Nicomachus
of Gerasa (circa 60–120 CE), along with the remarkable
theorem that bears his name

XN
n−1

n3 ¼
�XN

n−1
n

�
2

:

The expressions for the three finite sums (1)–(3) are
special cases of Faulhaber’s formula [33]

XN
n¼1

nz ¼ 1

zþ 1

Xz
n¼0

�
zþ 1

n

�
BnNz−nþ1; ð4Þ

where z is a positive integer and Bn are the Bernoulli
numbers (with B1 ¼ 1=2), which are defined by the
following recursion relation:

Xz

n¼0

�
zþ 1

n

�
Bn ¼ zþ 1; B0 ¼ 1 ð5Þ

or, equivalently, from the exponential generating function

t
1 − e−t

¼
X∞
n¼0

Bn
tn

n!
: ð6Þ

In the limit where we take N → ∞, Faulhaber’s formula
will obviously break down. This is because the infinite
series SðzÞ ¼ P∞

n¼1 n
z is known to be divergent in the

Cauchy sense whenever ℜðzÞ ≥ −1. According to
Cauchy’s definition, an infinite series is said to be con-
vergent if the sequence of partial sums converges to some
finite limit; otherwise, the series is divergent. If the series is
not convergent in the Cauchy sense, then it will generally
be considered as one of two types of divergent series
[24,34]: (i) a series that grows in absolute value without
limit or (ii) a series that is bounded but whose sequence of
partial sums does not approximate any specific value.
At high school we are taught to think of an infinite seriesP∞
n¼1 an as the limit of its partial sums, limN→∞

P
N
n¼1 an.

Partial sums are favored because they allow us to perform
standard arithmetic without issue. Of course, the method
works well for convergent series, less so for divergent
series. With the latter the task is to develop a summation
method that shares the most important properties of partial
sums but allows the result to be generalized to infinity
without giving a divergent answer. Alternative summation
methods include Cesaro summation, where we compute the
sequence of partial sums sN ¼ P

N
n¼1 an and find the limiting

value of their average limN→∞
1
N

P
N
n¼1 sn, and Abel summa-

tion, where we compute limt→1−
P∞

n¼1 ant
n. Hardy has

argued that any new summation method should satisfy three
properties: regularity, linearity, and stability [24]. Regularity
states that a summation method yields the known results for
convergent series obtained using partial sums. For linearity,
we require that

P∞
n¼1 λan þ μbn ¼λ

P∞
n¼1 an þ μ

P∞
n¼1 bn.

The third property of stability, namely
P∞

n¼1 an ¼
a1 þ

P∞
n¼1 anþ1, is considered less crucial and known to
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fail in some important cases, including Ramanujan summa-
tion [35].
The real question is whether any meaning can be

extracted from the finite results obtained by these alter-
native methods. This is more than just a mathematical
curiosity. In physics, the mathematical description of
physical phenomena is often given in terms of divergent
series and/or integrals. Although the formal treatment of
divergent series remains an open question, a commitment to
truncated partial sums ignores the fact that divergences can
lead to inconsistent results in physical situations. Of course,
such divergences may just be a reflection of a breakdown in
the relevant mathematical description. However, in some
cases, physically consistent results can be obtained by
using alternative summation methods that yield finite as
opposed to infinite answers. Indeed, the infinite series of
natural numbers appears in computations of the Casimir
force [36] and in the critical dimension of bosonic string
theory [14], where it is necessarily interpreted as the
seemingly absurd formula

P∞
n¼1 n ¼ −1=12 [23,24].

Although
P∞

n¼1 n ¼ −1=12 is often associated with
Ramanujan [23], the result is best derived using ζ function
regularization. When ℜðzÞ > 1, the Riemann ζ function is
defined by the convergent series ζðzÞ ¼ P∞

n¼1 n
−z. Of

course, when ℜðzÞ ≤ 1 the series is no longer convergent.
However, we can analytically continue ζðzÞ into ℜðzÞ < 1
using the following formula:

ζðzÞ ¼ 2zπz−1 sin

�
πz
2

�
Γð1 − zÞζð1 − zÞ:

Wemaynow identify the series given above,SðzÞ¼P∞
n¼1n

z

with ζð−zÞ, even when it is divergent, ℜðzÞ ≥ −1. In

particular, we obtain Sð1Þ ¼ P∞
n¼1 nζ

¼
ζð−1Þ ¼ −1=12.

More generally, to sum a divergent series
P∞

n¼1 an using
ζ function regularization, we identify a convergent seriesP∞

n¼1 a
−z
n for z in some complex domain, then analytically

continue the result to z ¼ −1.
The majority of issues with divergent series come with

the transition from partial sums to infinity, as notably
exposed by Ramanujan [23,24]. Although it does not
appear that he fully understood the validity of his asymp-
totic expansions, he was able to extract some remarkable
results. As we will see in a moment, Ramanujan developed
a study of divergent series based upon the Euler-Maclaurin
summation formula, often employing it in creative ways.
The Euler-Maclaurin formula also plays an important role
in understanding the results of smoothed asymptotic
expansions, an intuitive approach to the regularization of
divergent series beautifully elucidated by Tao [22]. Indeed,
using Tao’s methodology we will begin to understand how
a divergent series of positive numbers could ever be
identified with a finite negative number in a meaning-
ful way.

A. Ramanujan and the Euler-Maclaurin
summation formula

In the early 1730s, Euler solved one of the most intriguing
mathematical puzzles of the time: the Basel problem [37].
First formulated by Leibniz and the Bernoulli brothers [31],
the Basel problem concerns the infinite series whose terms
are the reciprocal squares of the natural numbers. Using
calculus to relate the discrete sum of an arbitrary functionP

n fðnÞ to an integral of the form
R
dxfðxÞ, Euler was able

to prove that
P∞

n¼1
1
n2 ¼ π2

6
. For a historical review of the

development of some of Euler’s key ideas, see [38,39].
From elementary calculus, we know that a sum and an

integral provide first approximations to one other. In
particular, the sum can be interpreted as the total area of
rectangles forming a step graph along some curve, while
the integral, evaluated between end points, can be inter-
preted as the area under the same curve. More formally, the
Euler-Maclaurin summation formula provides an estima-
tion of the sum

P
b
n¼a fðnÞ in terms of the integralR

b
a dx fðxÞ and the derivatives of the function fðxÞ. As
an estimate of how much the trapezoid rule fails, an error
term is also included given by an integral involving
Bernoulli polynomials. The formula can be written as [35]

Xb
n¼a

fðnÞ ¼
Z

b

a
dxfðxÞ þ fðbÞ þ fðaÞ

2

þ
Xm
k¼2

Bk

k!
ðfðk−1ÞðbÞ − fðk−1ÞðaÞÞ þ Rm; ð7Þ

where a, b are integers such that a ≤ b and the integer
m ≥ 2. We denote the kth derivative fðkÞðxÞ ¼ dk

dxk
f. The

sum on the right-hand side contains the nonvanishing
Bernoulli numbers B2n (recall that B2nþ1 ¼ 0 for n ≥ 1).
As these numbers grow asymptotically for large k as
B2n ∼ ð−1Þnþ14n2nðπeÞ−2n ffiffiffiffiffiffi

πn
p

, this sum often diverges
as m → ∞ and is best treated as an asymptotic series. The
corresponding error or remainder is given by

Rm ¼ ð−1Þmþ1

Z
b

a
dx

bmðxÞ
m!

fðmÞðxÞ; ð8Þ

where bmðxÞ is the periodic function Bmðx − bxcÞ given in
terms of the Bernoulli polynomials. The latter are defined
by the generating function

text

et − 1
¼

X∞
n¼0

BnðxÞ
tn

n!
: ð9Þ

As emphasized in [22], the level of approximation offered
by (7) is heavily dependent on the asymptotic behavior of
Rm. It is often the case that the expansion remains valid
even after taking the limits a → −∞ and/or b → ∞.
Generally, the integral on the right-hand side can be
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evaluated in closed form in terms of elementary functions,
even though the sum on the left-hand side cannot. In the
best case scenario, all the terms in the asymptotic series can
be expressed in terms of elementary functions.
The idea behind Ramanujan’s summation method is to

use the Euler-Maclaurin formula in the following asymp-
totic form:

XN
n¼1

fðnÞ ∼
Z

N

a
dxfðxÞ þ fðNÞ

2

þ
X∞
k¼2

Bk

k!
fðk−1ÞðNÞ þ Cðf; aÞ; ð10Þ

where Cðf; aÞ is the so-called “constant of the series.” This
will depend on the choice of lower limit on the integral, first
noted by Hardy [24]. We will return to this ambiguity in a
moment. This constant is identified with the corresponding
infinite series in the limit where N → ∞ such that

X∞
n¼1

fðnÞ ¼ðR;aÞ
Cðf; aÞ: ð11Þ

TheR corresponds to Ramanujan, whereas the a reflects the
ambiguity in choosing the limits on the integral. To recover
Cðf; aÞ, we first define a sequence of constantsCmðf; aÞ via
the Euler-Maclaurin formula. In particular, we write

XN
n¼1

fðnÞ ¼
Z

N

a
dxfðxÞ þ fðNÞ

2
þ
Xm
k¼2

Bk

k!
fð2k−1ÞðNÞ

þ ð−1Þm
Z

∞

N
dx

bmðxÞ
ð2mÞ! f

ðmÞðxÞ þ Cmðf; aÞ;

ð12Þ
so that

Cmðf; aÞ ¼ −
Z

1

a
dxfðxÞ þ fð1Þ

2
−
Xm
k¼2

Bk

k!
fðk−1Þð1Þ

þ ð−1Þmþ1

Z
∞

1

dx
bmðxÞ
m!

fðmÞðxÞ: ð13Þ

Assuming that f∈ C∞ and the integral above is convergent
for sufficiently large values of m, one is able to show that
Cmðf; aÞ becomes independent of m at large m, settling
down toCðf; aÞ. ForfðnÞ ¼ nz, where z is a positive integer,
it is sufficient to take anym ≥ zþ 1 and evaluate the constant
of the series, giving

X∞
n¼1

nz ¼ðR;aÞ 1

zþ 1
ðazþ1 − 1Þ þ 1

2

−
1

zþ 1

Xzþ1

k¼2

�
zþ 1

k

�
Bk ¼

azþ1

zþ 1
−

Bzþ1

zþ 1
ð14Þ

where we have used the recursion relation (5) for the
Bernoulli numbers. Given that ζð−zÞ ¼ − Bzþ1

zþ1
for positive

integers z, we see the connection of this result to ζ function
regularization in the limit where a ¼ 0.
To better understand the role played by the arbitrary real

number a in general, we first note that

Cðf; bÞ − Cðf; aÞ ¼
Z

b

a
dxfðxÞ: ð15Þ

Furthermore, when the series
P∞

n¼1 fðnÞ is convergent, it is
easy to see from the asymptotic formula (10) that [35]

Cðf; 1Þ ¼
X∞
n¼1

fðnÞ −
Z

∞

1

dxfðxÞ: ð16Þ

It immediately follows that
P∞

n¼1 fðnÞ ¼ Cðf;∞Þ, dem-
onstrating the fact that we should choose a ¼ ∞ for the
case of convergent series. For a divergent series with
fðnÞ ¼ P

s
z¼0 czn

z a polynomial of degree s, it is clear
that we must take a ¼ 0 in order to match the result
obtained via analytic continuation. When we develop the
method of smooth asymptotics advocated by Tao [22] in
the next section, we will see how Cðf; 0Þ also picks out the
finite term that is independent of the choice of cutoff.

B. Smoothed asymptotics

When we use partial sums to sum an infinite seriesP∞
n¼1 an, we truncate the series at some finite value N and

then compute the sum
P

N
n¼1 an before taking N → ∞. We

can think of the partial sum as modifying the infinite series
with a step function

θðxÞ ¼
�
1 x ≤ 1

0 x > 1
ð17Þ

such that

X∞
n¼1

an →
X∞
n¼1

anθ

�
n
N

�
¼

XN
n¼1

an: ð18Þ

In the case of a convergent series, the partial sum tends
toward a unique finite value as we take larger and larger
values of N. For a divergent series, we have seen how there
exist alternative summation that yield finite answers.
Unfortunately, there is no obvious trace of those finite
values anywhere in the partial sum. This is readily seen in
Faulhaber’s formula (4) where we see no evidence for the
finite value of SðzÞ ¼ P∞

n¼1 n
z obtained via analytic

continuation. In [22], Tao argues that this is an artifact
of the jump discontinuity in θðxÞ and can be remedied by
generalizing θðxÞ to a smooth regulator function, as
opposed to a sharp cutoff.
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To this end, we regularize the infinite series with a
smooth function, ηðxÞ, such that

X∞
n¼1

an →
X∞
n¼1

anη

�
n
N

�
: ð19Þ

We assume that ηðxÞ is a smooth bounded function,
defined for the non-negative real numbers, with ηð0Þ ¼ 1
and ηðxÞ → 0 at large x. Indeed, Tao assumes that ηðxÞ is a
bump function—a smooth function with compact support,
vanishing whenever x ∉ ½0; 1�. Here we will relax this
condition a little and allow ηðxÞ to be a Schwartz function.
That means that ηðxÞ and all its derivatives are rapidly
decreasing at large x, going to zero at infinity faster than xα

for all α < 0.
For series that were already absolutely convergent, the

smoothing by ηðxÞ does not affect the asymptotic value
[22]. However, for divergent series, smoothing can signifi-
cantly improve the convergence properties. For example,
we can easily sum Grandi’s series

P∞
n¼1ð−1Þn−1 using a

regulator function ηðxÞ ¼ e−x, so that the corresponding
series converges toward one half.
Let us consider the impact of smoothing on a divergent

series
P∞

n¼1 fðnÞ where fðnÞ ¼
P

s
z¼0 czn

z is a polynomial
of degree s. From the Euler-Maclaurin formula (7) applied
to the function gNðxÞ ¼ fðxÞηðx=NÞ with a ¼ 0 and
b ¼ ∞, we readily obtain the following expression:

X∞
n¼1

gNðnÞ¼
Z

∞

0

dxgNðxÞ−
gNð0Þ
2

−
Xm
k¼2

Bk

k!
gðk−1ÞN ð0ÞþRm;

ð20Þ

where we have used the fact that gNðxÞ and all of its
derivatives vanish at infinity and the remainder term is
given by

Rm ¼ ð−1Þmþ1

Z
∞

0

dx
bmðxÞ
m!

gðmÞ
N ðxÞ: ð21Þ

As gðkÞN ðxÞ ¼ fðkÞðxÞηðx=NÞ þOð1=NÞ, and given the
polynomial form for fðnÞ ¼ P

s
z¼0 czn

z, we choose m ≥
sþ 2 and find that

X∞
n¼1

fðnÞη
�
n
N

�
¼

Xs
z¼0

cz½Cz½η�Nzþ1 þ ζð−zÞ� þOð1=NÞ;

ð22Þ

where Cz½η� ¼
R∞
0 dx xzηðxÞ is the Mellin transform of the

regulator function. Here we have used the fact that ζð−zÞ ¼
− Bzþ1

zþ1
for natural numbers z. The appearance of the ζ

function follows in a very similar way to its appearance in
Eq. (14). In choosing m ≥ sþ 2, we guarantee that the

remainder term Rm ¼ Oð1=NÞ. This is not immediately
obvious. In particular, we find that

Rm¼ð−1Þmþ1
Xs
z¼0

cz

Z
∞

0

dx
bmðxÞ
m!

dm

dxm

�
xzη

�
x
N

��
ð23Þ

¼ ð−1Þmþ1
Xs

z¼0

czNzþ1−m
Z

∞

0

dy
bmðNyÞ

m!

dm

dym
ðyzηðyÞÞ:

ð24Þ

Now since η is Schwartz and bm is bounded, it follows that

the integrand bmðNyÞ
m!

dm
dym ðyzηðyÞÞ is also Schwartz, and so the

corresponding integral is bounded [40]. Since m ≥ sþ 2,
and s is finite, we immediately see that Rm ¼ Oð1=NÞ.
For monomials fðnÞ ¼ nz, there is a single divergence as

N → ∞ in the corresponding expression for the regularized
series (22), and there is a unique finite piece given by
ζð−zÞ. This coincides with the result obtained using
Ramanujan or analytic continuation. The connection to
Ramanujan summation (with a ¼ 0) is understood via the
following identity derived directly from (22)

X∞
n¼1

nz ¼ðR;0Þ
Cðf;0Þ¼ lim

N→∞

�X∞
n¼1

nzη

�
n
N

�
−
Z

∞

0

dxxzη

�
x
N

��

¼ ζð−zÞ: ð25Þ

Using the method of smoothed asymptotics, we see how
Ramanujan performed a delicate cancellation between
infinities that can be rigorously understood. The procedure
is reminiscent of renormalization in perturbative QFT.
As we will explore in more detail in the next section

another feature of Eq. (22) reminiscent of QFT is the
regulator dependence in the power law divergences. The
regulator dependence in the divergences of (22) raises the
possibility that there are families of enhanced regulators for
which the power law divergences vanish altogether, just as
they do for dimensional regularization.
This is indeed the case: an enhanced regulator is one for

which the Mellin transform Cz;η ¼
R∞
0 dx xzηðxÞ vanishes

for integer values of z ≥ 0. More precisely, for all natural
numbers z, we define an “enhanced regulator of order z” to be
a regulator function η½z�ðxÞ for which

R∞
0 dx xzη½z�ðxÞ ¼ 0.

We immediately see from (22) that if we use an enhanced
regulator of order z to regularize the monomial series
SðzÞ ¼ P∞

n¼0 n
z, there are no divergences whatsoever.

Indeed, the regularized series converges to the finite value
ζð−zÞ as N → ∞, without any need to renormalize.
An elegant example of an enhanced regulator of order z

is given by the function

η½z�ðxÞ ¼ e−x cotð
π
2
−θ

zþ1
Þ cosðxþ θÞ

cos θ
; ð26Þ
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where 0 < θ < π
2
and z is any natural number. One can

readily check that we have
R∞
0 dx xzη½z�ðxÞ ¼ 0 and so the

smoothed series
P∞

n¼1 n
zη½z�ðnNÞ converges to ζð−zÞ. We

can actually take θ to be zero, except in the case of z ¼ 0
where nonvanishing θ is required in order to ensure that the
regulator remains Schwartz. Note that for θ ¼ 0 and z ¼ 1
we recover the rather beautiful enhanced regulator of order
one, η½1�ðxÞ ¼ e−x cos x, from which we infer that [41]

lim
N→∞

X
n

ne−
n
N cos

�
n
N

�
¼ −

1

12
:

Since
R∞
0 dx xze−x cos x ¼ 2−

1
2
ð1þzÞz! cos ðπ

4
ðzþ 1ÞÞ it

just so happens that e−x cos x is also an enhanced regulator
of order z ¼ 4mþ 1 for any natural numberm. Likewise, it

turns out that η½z�ðxÞ ¼ e−x cotð
π

2ðzþ1ÞÞ cos x is also enhanced
regulator of order z0 ¼ zþ 2ðzþ 1Þm for any natural
number m and z ≥ 1.
More generally, we can employ a few simple algorithms

for finding enhanced regulators of any given order. The first
assumes thatwe alreadyknowan enhanced regulator of order
zero, η½0�ðxÞ, with vanishing integral

R
∞
0 dxη½0�ðxÞ ¼ 0. By

changing variables from x → xzþ1, we see that η½z�ðxÞ ¼
η½0�ðxzþ1Þ is an enhanced regulator of order z. The second
algorithm requires no previous knowledge of enhanced
regulators: take any Schwartz function χðxÞ defined on the
positive real axis with the property that χð0Þ ¼ 0 and
χðzþ1Þð0Þ ¼ 1, then η½z�ðxÞ ¼ χðzþ1ÞðxÞ is an enhanced regu-
lator of order z. To see this, we first note that since χðxÞ is a
Schwartz function, the same is trivially true of χðzþ1ÞðxÞ.
Furthermore, since χðzþ1Þð0Þ ¼ 1, it is clear that χðzþ1ÞðxÞ has
all the properties of a regulator as defined at the beginning of
this section. To see that it is an enhanced regulator, we
compute the relevant Mellin transform

Z
∞

0

dxxzχðzþ1ÞðxÞ¼
�Xz
k¼0

ð−1Þk z!
ðz−kÞ!x

z−kχðz−kÞðxÞ
�∞
0

¼0

ð27Þ
verifying the defining condition for an enhanced regulator of
order z.
A third and final algorithm connects enhanced regulators

to Schwinger’s proper time formalism [42]. Indeed, for any
natural number n, consider a regulator of the form

λnðxÞ ¼
1

ðn − 1Þ!
Z

∞

0

du
u
ρðuÞðux2Þne−ux2 ; ð28Þ

where the bounded function ρðuÞ → 0 faster than any
power as u → 0 and ρðuÞ → 1 as u → ∞. The properties
of ρðuÞ guarantee that this function is Schwartz with
λnðxÞ → 1 as x → 0þ, as required for a regulator. After
changing variables from x to ux2, it is not difficult to show
that the Mellin transform is given by

Z
∞

0

dx xzλnðxÞ ¼
Γðnþ zþ1

2
Þ

2ðn − 1Þ!
Z

∞

0

du ρðuÞu−ðzþ3
2
Þ: ð29Þ

For any natural numbers n ≠ m, we can now construct an
enhanced regulator of order z as follows:

η½z�ðxÞ ¼
ðn−1Þ!

Γ
�
nþzþ1

2

	 λnðxÞ − ðm−1Þ!
Γ
�
mþzþ1

2

	 λmðxÞ
ðn−1Þ!

Γ
�
nþzþ1

2

	 − ðm−1Þ!
Γ
�
mþzþ1

2

	 : ð30Þ

This is clearly normalized so that it is classed as a regulator.
To see that it is enhanced we simply check that the
corresponding Mellin transform vanishes

R
dxxzη½z�ðxÞ¼ 0

using (29).
Although the enhanced regulators described above work

well for summing specific monomial series, they are less
suited to eliminating divergences for generic polynomial
series. For example, the regulators given in Eq. (26) will
yield convergent series for

P
n nzη½z�ðn=NÞ but not for,

say,
P

nðnz−1 þ nzÞη½z�ðn=NÞ. To remedy these problems
for all natural numbers r ≤ s, we introduce the notion of
an enhanced regulator of order ½r; s� defined to be a
regulator function η½r;s�ðxÞ for which

R∞
0 dx xzη½r;s�ðxÞ ¼ 0

for all natural numbers z∈ ½r; s�. It now follows from (22)
that if we use an enhanced regulator of order ½0; s� to
regularize the series over polynomials of degree s, there
are no divergences whatsoever. The regularized series for
the polynomial fðnÞ ¼ P

s
z¼0 czn

z converges to the finite
value

P
s
z¼0 czζð−zÞ as N → ∞ without any need to

renormalize. For the example given above, we find that
limN→∞

P
nðnz−1 þ nzÞη½0;z�ðn=NÞ ¼ ζð1 − zÞ þ ζð−zÞ

for z ≥ 1.
We can generalize the second algorithm described above

to find enhanced regulators of order ½r; s�: take any
Schwartz function χðxÞ defined on the positive real axis
with the property that χðkÞð0Þ ¼ 0 for all natural numbers
k∈ ½0; s − r� and with χðsþ1Þð0Þ ¼ 1. It follows that
η½r;s�ðxÞ ¼ χðsþ1ÞðxÞ is an enhanced regulator of order
½r; s�. The argument for η½r;s�ðxÞ being a regulator is the
same as for η½z�ðxÞ. To see that it is enhanced at order ½r; s�,
we compute the Mellin transforms for all natural numbers
z∈ ½r; s� and see that they all vanish

Z
∞

0

dx xzχðsþ1ÞðxÞ

¼
�Xz

k¼0

ð−1Þk z!
ðz − kÞ! x

z−kχðs−kÞðxÞ
�∞
0

¼ 0: ð31Þ

As an example, we consider the case where χðxÞ ¼
e−x xsþ1

ðsþ1Þ! which generates an enhanced regulator of order

½0; s� given by
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η½0;s�ðxÞ ¼ e−x
Xsþ1

k¼0

�
sþ 1

k

� ð−xÞk
k!

: ð32Þ

The existence of enhanced regulators challenges the idea
that divergent series of polynomials must be renormalized
in order to recover their corresponding finite values.
Indeed, they explicitly demonstrate a rigorous method of
taking the series toward infinity without encountering any
divergence. Of course, there is a magic of sort: the
enhanced regulators must always change sign and in just
the right way in order for large positive contributions to be
canceled by large negative ones. It is here that we are
reminded of the words of Euler who said “the quantities
greater than infinity are also smaller than nothing and the
quantities smaller than infinity also correspond to the
quantities greater than nothing” [43].

III. DIVERGENT INTEGRALS
IN QUANTUM FIELD THEORY

Divergent integrals are encountered with unsettling
regularity in interacting QFTs. As revealed by Tomonaga
[9], Schwinger [10], and Feynman [11] in the context of
quantum electrodynamics and by ’t Hooft and Veltman for
non-Abelian gauge theories [12], for renormalizable the-
ories, these divergences can be carefully regularized and
absorbed into a renormalization of a finite number of
couplings. The origin of these divergences is understood to
be a consequence of pushing the corresponding theory too
hard and assuming it to apply even at the shortest distance
scales or, equivalently, at the highest energies. Thanks to

the Appelquist-Carazzone decoupling theorem, the effects
of very heavy particles on low energy scattering processes
are hidden inside a renormalization of the low energy
couplings [44]. Said another way, even though our QFTs
encounter divergences that betray limitations on their
validity at all scales, they can still be made to work well
as effective field theories at low energies.
It is interesting to note parallels between divergences in

effective field theory and the characteristic behavior we see
whenever we regularize a divergent series with a smooth
cutoff. Indeed, it is well known that power law divergences
in QFT are regulator dependent in stark contrast to the
universal prediction obtained from the logarithmic diver-
gences. Although not universal, power law divergences do
play a role in the correct matching to UV physics in the
Wilsonian EFT. They can also indicate an unwelcome
sensitivity to the details of the UV completion, leading to
problems with naturalness in high energy physics and
cosmology [45].
In order to develop the analogy with our divergent series,

it is instructive to examine power law and logarithmic
divergences in QFT in a little more detail. Closely follow-
ing the discussion presented in [46], we consider the
Wilson action SΛ½φ� for modes lighter than some scale
Λ defined according to the path integral [47]

eiSΛ½φ� ¼
Z
k>Λ

D½φ�eiS½φ�: ð33Þ

This generically contains power law and logarithmic
divergences and can be written as

SΛ½φ� ¼
Z

d4x

�X
i

Λ4−digiðΛÞOiðxÞ þ lnðΛ=μÞ
X
a

gaðΛÞOaðxÞ þ…

�
; ð34Þ

whereOi are relevant operators of dimension di ¼ 0; 2 andOa are marginal operators of dimension 4. The ellipsis denotes
finite terms which may also depend on μ, an arbitrarily chosen mass scale. Now consider the Wilson action, S0Λ½φ�, defined
at some lower scale, Λ0 < Λ, and given by

eiS
0
Λ½φ� ¼

Z
Λ0<k<Λ

D½φ�eiSΛ½φ�: ð35Þ

This is obviously independent of the choice of Λ, but highly dependent on Λ0 and correspondingly takes the form

SΛ0 ½φ� ¼
Z

d4x

�X
i

Λ04−digiðΛ0ÞOiðxÞ þ lnðΛ0=μÞ
X
a

gaðΛ0ÞOaðxÞ þ…

�
: ð36Þ

It follows that S0Λ ¼ SΛ þ ΔΓ where ΔΓ is the contribution from integrating out intermediate modes Λ0 ≤ k ≤ Λ. Focusing
on the relevant and marginal operators, we must have

ΔΓ ¼
Z

d4x

�X
i

ciðΛ0;ΛÞOiðxÞ þ
X
a

caðΛ0;ΛÞOaðxÞ þ…

�
; ð37Þ
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where the contribution from the intermediate modes
ciðΛ0;ΛÞ ¼ Λ04−digiðΛ0Þ − Λ4−digiðΛÞ completely cancels
the power law divergences in passing from one Wilson
action to another. This is just Wilsonian renormalization
in action—the coefficients of powerlike divergences
in the momentum cutoff get canceled in the regulariza-
tion procedure (see [48] for elegant discussions on this
point). In contrast, the cancellation of the Λ dependence
for the logarithmic couplings yields caðΛ0;ΛÞ ¼
lnðΛ0=μÞPa gaðΛ0Þ − lnðΛ=μÞPa gaðΛ0Þ. In order for
the μ to consistently drop out to leading order, we see that
there must be a universal property gaðΛÞ ∼ gaðΛ0Þ ∼ ga.
In a similar vein, if we compute the one-loop effective

action

eiΓeff ½φ� ¼
Z
k<Λ

D½δφ�eiSΛ½φþδφ� ð38Þ

so that Γeff ½φ� ¼ SΛ½φ� þ ΔΓeff ½φ�, we find that any power
law divergences generated in ΔΓ are canceled by the
corresponding terms in the Wilson action, SΛ. In contrast,
the couplings associated with logarithmic divergences can
survive as a universal feature of the effective action,
necessarily independent of Λ.
These universal features of logarithmic divergences, in

contrast to power law divergences, are strongly reminiscent
of the results we saw in the previous section. When we
regularized a divergent series with a smoothed cutoff, we
saw how it was the finite terms that were universal, yielding
the results obtained via analytic continuation, in contrast to
the power law divergences that were regulator dependent.
How far can we push the similarities? For example, having
introduced the enhanced regulators to eliminate divergen-
ces appearing in number theory, it is tempting to ask if they
can also play an interesting role in the loop divergences
arising in QFT and whether this can be linked to the
absence of divergences in finite theories. Indeed, the
reluctance of string theory to travel deep into the UV is
a direct manifestation of the smoothing or smearing effect
of the string length scale as seen in a study of modular
invariance of the world sheet. This was first observed in
string theory by Shapiro [49], but a more modern treatment
can be found in [14].

A. η regularization in QFT

To control the ultraviolet divergences that plague per-
turbative QFT, several regularization schemes are included
in the literature. A sharp momentum cutoff connects
intuitively with Wilson’s understanding of the renormali-
zation group [50–53] but is known to break translational
invariance and, perhaps more importantly, the gauge
invariance of the underlying theory. The standard way to
regularize loop integrals while preserving gauge invariance
is dimensional regularization [12]. However, in analytically
continuing the dimensionality of the spacetime, we run into

difficulties when defining quantities unique to four dimen-
sions (such as the γ5 matrix).
For infinite series, the method of smoothed asymptotics

amounts to replacing an infinite sum with a weighted
infinite sum

X∞
n¼0

# →
X∞
n¼0

η

�
n
N

�
#: ð39Þ

The generalization of this to divergent loops is straightfor-
ward: working in Euclidean signature, we simply replace
the loop integral with a weighted loop integral

Z
d4k# →

Z
d4k η

�jkj
Λ

�
#; ð40Þ

where jkj is the normof theEuclidean four-momentumandΛ
is a cutoff scale. Of course, if ηwere just a step function, this
would be nothing more than a sharp momentum cutoff.
However, inspired by the method of smoothed asymptotics
discussed in the previous section, we shall assume that η is a
smooth regulator, corresponding to a Schwartz function that
equates to unity at the origin. We dub this η regularization.
The idea of smoothing the cutoff is, of course, nothing

new although, in most applications, this is implemented at
the level of the propagator. For example, in his derivation of
the exact renormalization group equation, Polchinski
makes use of a modified propagator that is exponentially
damped at high momenta [54]. As a modification of the
integral measure, η regularization is similar to dimensional
regularization albeit with the advantage that it does not
require us to analytically continue the dimension of
spacetime. However, the proposed scheme has most in
common with the smooth operator regularization method
inspired by [55] and developed in [56,57] using Schwinger
proper time [42]. Gauge invariance is also preserved in this
case, as it is with dimensional regularization. This is
because the regularization is transferred to the proper time
integral, leaving the (gauge invariant) momentum integral
unchanged. For a recent application of the smooth operator
regularization and further discussion on symmetry preser-
vation, see [58].
Does η regularization also preserve gauge invariance?

Generically, it seems obvious that it will not. Just as we saw
for sharp momentum cutoffs, gauge invariance is typically
broken as soon as we regularize the momentum integral
directly. However, if η regularization has any chance of
opening up a better understanding of how divergences are
absent in string theory, it must, at the very least, admit a
preferred set of regulators that preserve gauge invariance.
This may seem unlikely at first glance, although as we will
see in a moment, it will be possible to preserve gauge
invariance and key to that are the enhanced regulators that
eliminate divergences. We will also see how this connects
to regularization of Schwinger proper time integrals.
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1. Irreducible loop integrals and eliminating divergences

To develop η regularization in more detail, it is conven-
ient to introduce the concept of irreducible loop integrals
(ILIs) [25,26,29]. In general, n-fold ILIs are defined as the
n-loop integrals for which there are no longer the over-
lapping factors ðki − kj þ pÞ in the denominator of the
integrand and no factors of the scalar momentum k2 in the
numerator [29]. In this work we focus on regularizing
ultraviolet divergences at one loop, postponing a detailed
discussion of higher loops to future work [59]. It was
shown in [25] that, upon use of the Feynman parameter
method, all one-loop perturbative Feynman integrals of the
one-particle irreducible graphs can be evaluated as the
following onefold ILIs in Minkowski spacetime:

I−2αðM2Þ ¼
Z

d4k
ð2πÞ4

1

ðk2 þM2Þ2þα ; ð41Þ

Iμν−2αðM2Þ ¼
Z

d4k
ð2πÞ4

kμkν

ðk2 þM2Þ3þα ; ð42Þ

Iμνρσ−2α ðM2Þ ¼
Z

d4k
ð2πÞ4

kμkνkρkσ

ðk2 þM2Þ4þα ; ð43Þ

where the subscript ð−2αÞ labels the power counting
dimension (of energy-momentum) with α¼−1 and α¼ 0
corresponding to quadratic and logarithmically divergent
integrals. The mass term M2 ¼ M2ðm2

1; p
2
1;…Þ is a func-

tion of Feynman parameters, external momenta pi, and
correspondingmass scalesmi. Note that k2 ¼ gμνkμkν where
the metric gμν is written with mostly positive signature.
The ILIs of tensor type are related to scalar integrals in

the usual way,

Iμν−2αðM2Þ ¼ 1

4
gμν

Z
d4k
ð2πÞ4

k2

ðk2 þM2Þ3þα ; ð44Þ

Iμνρσ−2α ðM2Þ ¼ 1

4!
Sμνρσ

Z
d4k
ð2πÞ4

k4

ðk2 þM2Þ4þα ; ð45Þ

where Sμνρσ ¼ gμνgρσ þ gμρgνσ þ gμσgνρ is a totally sym-
metric tensor of rank four. Notice that these relations are
merely a consequence of the rotational symmetries of the
four-dimensional space and not to be confused with the
gauge consistency relations derived in [25,26,29]. As we
will see later, the latter can be accommodated by using
different η’s for regularizing different ILIs.
When implementing the η regularization, we Wick rotate

the integrals to Euclidean signature k0 → ik4 and insert a
factor of ηðjkj=ΛÞ in the integrand. This yields
I���−2α → iJ���−2α½η�, where the form of η need not be universal
for all onefold ILIs, at least in principle. In particular, we
now have that

J−2α½η�ðM2Þ ¼
Z

d4k
ð2πÞ4

1

ðk2 þM2Þ2þα η

�jkj
Λ

�
; ð46Þ

Jμν−2α½η�ðM2Þ ¼ 1

4
gμν

Z
d4k
ð2πÞ4

k2

ðk2 þM2Þ3þα η

�jkj
Λ

�
; ð47Þ

Jμνρσ−2α ½η�ðM2Þ ¼ 1

4!
Sμνρσ

Z
d4k
ð2πÞ4

k4

ðk2 þM2Þ4þα η

�jkj
Λ

�
;

ð48Þ

where the integration is over four-dimensional Euclidean
space in each case. Making use of partial fractions, the
regularized tensor ILIs can be written explicitly in terms of
scalar counterparts,

Jμν−2α½η�ðM2Þ¼ 1

4
gμν½J−2α½η�ðM2Þ−M2J−2ðαþ1Þ½η�ðM2Þ�;

ð49Þ

Jμνρσ−2α ½η�ðM2Þ ¼ 1

4!
Sμνρσ½J−2α½η�ðM2Þ − 2M2J−2ðαþ1Þ½η�ðM2Þ þM4J−2ðαþ2Þ½η�ðM2Þ�. ð50Þ

To understand the role of divergences, it is now sufficient to
study the scalar integrals of the form (46). After integrating
out the three-sphere, these can be written as

J−2α½η�ðM2Þ ¼ 1

8π2

Z
∞

0

dk
k3

ðk2 þM2Þ2þα η

�jkj
Λ

�
: ð51Þ

For α > 0 the integrals are convergent as Λ → ∞ and one
readily obtains

J−2α½η�ðM2Þ ∼ 1

16π2αð1þ αÞM2α : ð52Þ

For α ≤ 0, the integrals diverge as Λ → ∞, where they take
the following asymptotic form:

J0½η�ðM2Þ ∼ 1

8π2

�
lnðΛ=jMjÞ þ γ½η� − 1

2

�
; ð53Þ
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J2½η�ðM2Þ ∼ 1

8π2
½Λ2C1½η� −M2ðlnðΛ=jMjÞ þ γ½η�Þ�;

ð54Þ

and

J2sþ4½η�ðM2Þ∼ 1

8π2

�Xs

z¼0

�
s
z

�
C2zþ3½η�M2ðs−zÞΛ2zþ4

�
ð55Þ

for any natural number s. These expressions are valid
provided η is a regulator: a smooth Schwartz function with
ηð0Þ ¼ 1. Here we have also defined the finite integral

γ½η� ¼ −
Z

∞

0

dx η0ðxÞ ln x; ð56Þ

and recall that Cz½η� ¼
R
∞
0 xzηðxÞ is the corresponding

Mellin transform for any natural number z. We immediately
see the parallels with the divergent series in the previous
section. Power law divergences are regulator dependent and
weighted by the correspondingMellin transform. These can
always be eliminated with a judicious use of enhanced
regulators. Logarithmic divergences are independent of the
regulator, just as the finite terms were in the divergent
series. This universal form for the log divergences agrees
with the corresponding terms obtained by other regulari-
zation methods, such as dimensional regularization. Of
course, for our QFT integrals, there are also finite terms,
although unlike those that appear in the divergent series,
they are regulator dependent. This is a direct consequence
of the logarithm and the correction to the finite term that
arises when we rescale the cutoff Λ. Indeed, for any
regulator ηðxÞ and real number λ > 0, we can define
another regulator ηλðxÞ ¼ ηðλxÞ which is equivalent to
rescaling the cutoff. It then follows that γ½ηλ� ¼ γ½η� −
ln λ while Cz½ηλ� ¼ λ−1−zCz½η�. These relations will be
useful when we consider the role of gauge invariance in
the next section.

B. Gauge invariant η regularization

To investigate how gauge invariance is affected by η
regularization, we follow [25,26,29] and consider a general
gauge theory where the gauge group has dimension dG and
where Nf Dirac spinors Ψn (n ¼ 1;…; Nf) are interacting
with the Yang-Mills field Aa

μ (a ¼ 1;…; dG). Such a theory
is described by a Lagrangian

L ¼ ψ̄nðiγμDμ −mÞψn −
1

4
Fa
μνF

μν
a ; ð57Þ

where

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν;

Dμψn ¼ ð∂μ þ igTaAa
μÞψn; ð58Þ

and Ta are the generators of the gauge group whose
commutator ½Ta; Tb� ¼ ifabcTc defines the structure con-
stants fabc. A careful computation of the vacuum polari-
zation for the gauge field at one-loop yields an expression
of the form [25,26,29]

Πab
μνðpÞ ¼ ΠðgÞab

μν ðpÞ þ ΠðfÞab
μν ðpÞ; ð59Þ

where pμ is the external momentum. Here ΠðgÞab
μν ðpÞ are the

pure Yang-Mills contributions coming from gauge field

loops and ghost loops. ΠðfÞab
μν ðpÞ are the contributions from

fermion loops, arising from the interaction of the fermions
with the gauge field. Gauge invariance is understood in terms
of theWard identitiespμΠab

μν ¼ Πab
μνpν ¼ 0. Requiring this to

hold for any gauge theory and with any number of fermions
means that Ward identities should hold separately for the
gauge field and fermionic contributions

pμΠðgÞab
μν ¼ ΠðgÞab

μν pν ¼ 0; pμΠðfÞab
μν ¼ ΠðfÞab

μν pν ¼ 0:

ð60Þ

When the vacuum polarization is computed in terms of the
regularized ILIs, I���−2αjregularized, these generalized Ward
identities impose strict consistency conditions on the regu-
larization scheme. There are also generalizedWard identities
and corresponding consistency conditions associated with
three and four point functions. Altogether, we find that for
α ¼ −1; 0; 1 we must have (see the Appendix and
[25,26,29,58] for further details)

Iμν−2αjregularized ∼
1

2ðαþ 2Þ g
μνI−2αjregularized; ð61Þ

Iμνρσ−2α jregularized ∼
1

4ðαþ 2Þðαþ 3Þ S
μνρσI−2αjregularized; ð62Þ

in the asymptotic limit. We now wish to apply these
conditions in the context of η regularization. As mentioned
earlier, it is important to note that, in principle, different ILIs
use different regulators. At this stage, we do this in order to
keep things sufficiently general. As we will see shortly, the
Ward identities impose relations between different η’s for
different loop topologies, which may point to a deeper
underlying structure. We will investigate the meaning of
these relations in more detail in our forthcoming work [59].
In the following we denote the regulators for scalar ILIs

I−2α by η−2α and the regulators for the corresponding tensor
ILIs of rank two and four by θ−2α and κ−2α respectively. It
follows that

I−2αjregularized ¼ iJ−2α½η−2α�; ð63Þ

Iμν−2αjregularized ¼ iJμν−2α½θ−2α�; ð64Þ
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Iμνρσ−2α jregularized ¼ iJμνρσ−2α ½κ−2α�: ð65Þ

We now impose the conditions (61) and (62) making use of
the decomposition formulas (49) and (50) giving

α

αþ 2
J−2α



θ̃−2α

�
∼M2J−2ðαþ1Þ½θ−2α�; ð66Þ

αðαþ 5Þ
ðαþ 2Þðαþ 3Þ J−2α½κ̃−2α� ∼ 2M2J−2ðαþ1Þ½κ−2α�

−M4J−2ðαþ2Þ½κ−2α�; ð67Þ

as Λ → ∞ and where

θ̃−2α ¼
ðαþ 2Þθ−2α − 2η−2α

α
;

κ̃−2α ¼
ðαþ 2Þðαþ 3Þκ−2α − 6η−2α

αðαþ 5Þ : ð68Þ

Note that for α ≠ 0 the combination of regulators appearing
in (68) are themselves regulators, being Schwartz and
equating to unity at the origin, θ̃−2αð0Þ ¼ κ̃−2αð0Þ ¼ 1. It
remains to plug in the asymptotic expressions for the scalar
ILIs given by (52)–(55). For the convergent ILIs, with
α ≥ 1, we can use the asymptotic formula (52) to show that
the consistency relations hold automatically in the limit as
Λ → ∞, as, of course, they should. For α ¼ 0, the con-
ditions (66) and (67) can be understood via the α → 0 limit,
giving

J0½θ0� − J0½η0� ∼M2J−2½θ0�; ð69Þ

J0½κ0� − J0½η0� ∼ 2M2J−2½κ0� −M4J−4½κ0�: ð70Þ

Plugging in the asymptotic formulas, we see that there are
logarithmic divergences, although they cancel and the
leftover finite parts yield the following constraints:

γ½θ0� − γ½η0� ¼
1

4
; γ½κ0� − γ½η0� ¼

5

12
: ð71Þ

For α ¼ −1, we get both quadratic and logarithmic diver-
gences. The latter cancel when we impose the two

consistency conditions (66) and (67), just as they did for
α ¼ 0, and we are left with

Λ2C1½θ̃2� þ 2M2

�
γ½θ2� − γ½η2� −

1

4

�
∼ 0; ð72Þ

Λ2C1½κ̃2� þ
3

2
M2

�
γ½κ2� − γ½η2� −

5

12

�
∼ 0; ð73Þ

where we recall that θ̃2 ¼ 2η2 − θ2 and κ̃2 ¼ 3
2
η2 − 1

2
κ2.

Cancellation of the quadratic divergences requires that θ̃2
and κ̃2 are enhanced regulators of order one,

C1½θ̃2� ¼ C1½κ̃2� ¼ 0: ð74Þ

Here we see for the first time the connection between gauge
invariance and the elimination of quadratic divergences in
both divergent series and ILIs. The remaining finite parts in
(72) and (73) yield constraints that are very similar to (71),

γ½θ2� − γ½η2� ¼
1

4
; γ½κ2� − γ½η2� ¼

5

12
: ð75Þ

At this time, we have not been able to develop any further
insight into the consistency conditions arising for the finite
parts, given by (71) and (75). However, using the fact that
γ½ηλ� ¼ γ½η� − ln λ and Cz½ηλ� ¼ λ−1−zCz½η� for any regula-
tor ηλðxÞ ¼ ηðλxÞ with a rescaled cutoff, we can arrive at a
rather elegant solution to the full set of consistency
conditions. For α ≥ −1, this is given by

η−2αðxÞ¼η½1�ðxÞ; θ−2αðxÞ¼η½1�ðλxÞ; κ−2αðxÞ¼η½1�ðμxÞ;
ð76Þ

where λ ¼ e−1=4, μ ¼ e−5=12, and η½1�ðxÞ is any enhanced
regulator of order one.

1. Connecting to Schwinger proper time

It was noted in [58] that regularized Schwinger proper
time integrals provide an elegant framework for satisfying
Wu’s consistency relations (61) and (62). In particular, we
write the regularized ILIs as follows:

I−2αðM2Þjregularized ¼
i

ðαþ 1Þ!
Z

∞

0

dτ
τ
ρðΛ2τÞτ2þα

Z
d4k
ð2πÞ4 e

−τðk2þM2Þ; ð77Þ

Iμν−2αðM2Þjregularized ¼
i

ðαþ 2Þ!
Z

∞

0

dτ
τ
ρðΛ2τÞτ3þα

Z
d4k
ð2πÞ4 k

μkνe−τðk2þM2Þ; ð78Þ

Iμνρσ−2α ðM2Þjregularized ¼
i

ðαþ 3Þ!
Z

∞

0

dτ
τ
ρðΛ2τÞτ4þα

Z
d4k
ð2πÞ4 k

μkνkρkσe−τðk2þM2Þ; ð79Þ
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where ρðuÞ → 0 faster than any power as u → 0 and ρðuÞ → 1 as u → ∞. To make contact with the current work, we note
that we can write these formulas in the form of Eqs. (63)–(65), provided we generalize the regulators as follows:

η−2αðxÞ → η−2αðx;MΛÞ ¼
R
∞
0

du
u ρðuÞ½uðx2 þM2

ΛÞ�αþ2e−uðx2þM2
ΛÞR∞

0
du
u ρðuÞ½uM2

Λ�αþ2e−uM
2
Λ

; ð80Þ

θ−2αðxÞ → θ−2αðx;MΛÞ ¼
R
∞
0

du
u ρðuÞ½uðx2 þM2

ΛÞ�αþ3e−uðx2þM2
ΛÞR

∞
0

du
u ρðuÞ½uM2

Λ�αþ3e−uM
2
Λ

; ð81Þ

κ−2αðxÞ → κ−2αðx;MΛÞ ¼
R∞
0

du
u ρðuÞ½uðx2 þM2

ΛÞ�αþ4e−uðx2þM2
ΛÞR∞

0
du
u ρðuÞ½uM2

Λ�αþ4e−uM
2
Λ

; ð82Þ

where u ¼ Λ2τ, x ¼ jkj=Λ, and MΛ ¼ jMj=Λ. These do
not have the precise form of the η regulators described in
this paper as the Λ dependence is spread between x ¼
jkj=Λ and MΛ ¼ jMj=Λ. We will consider much more
general regulators in our forthcoming work [59], but for
now let us examine the form of these regulators in the limit
where MΛ → 0. In particular, note that, in this limit, the
denominators can generically be written as

Z
∞

0

du
u
ρðuÞ½uM2

Λ�ne−uM
2
Λ ¼

Z
∞

0

dy
y
ρ

�
y

M2
Λ

�
yne−y ð83Þ

∼
Z

∞

0þ

dy
y
yne−y ¼ ðn − 1Þ! ð84Þ

It follows that asMΛ → 0, the regulators fall into the class
described by Eq. (28), with

η−2αðx; 0Þ ¼ λ2þαðxÞ; θ−2αðx; 0Þ ¼ λ3þαðxÞ;
κ−2αðx; 0Þ ¼ λ4þαðxÞ: ð85Þ

Using the expression (30), it is easy to verify that θ̃2 ¼
2η2ðx; 0Þ − θ2ðx; 0Þ and κ̃2 ¼ 3

2
η2ðx; 0Þ − 1

2
κ2ðx; 0Þ are

enhanced regulators of order one, consistent with the gauge
consistency condition (74). Of course, this had to be true
given the claim in [58] that regularized Schwinger proper
time integrals automatically satisfy Wu’s consistency rela-
tions but it serves as a nice check of our formalism.
We can also compute the finite integral (56) for each of

the regulators in (85). Indeed, from (28), we change the
integration variable to y ¼ ux2 and write

λnðxÞ ¼
1

ðn − 1Þ!
Z

∞

0

dy
y
ρðy=x2Þyne−y; ð86Þ

to then find that

γ½λn�¼
1

ðn−1Þ!
Z

∞

0

dx
Z

∞

0

dyρ0ðy=x2Þy
n

x3
e−yð2 lnxÞ ð87Þ

¼ 1

2ðn−1Þ!
Z

∞

0

dy
Z

∞

0

duρ0ðuÞyn−1e−yðlny− lnuÞ ð88Þ

¼ 1

2

�
ΨðnÞ −

Z
∞

0

duρ0ðuÞ ln u
�
; ð89Þ

where ΨðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the digamma function and we
have used the fact that ρðuÞ → 0 as u → 0 and ρðuÞ → 1 as
u → ∞. It immediately follows that

γ½θ−2αðx; 0Þ� − γ½η−2αðx; 0Þ� ¼
1

2αþ 4
; ð90Þ

γ½κ−2αðx; 0Þ� − γ½η−2αðx; 0Þ� ¼
2αþ 5

2ð2þ αÞðαþ 3Þ : ð91Þ

For the logarithmically divergent ILIs corresponding to
α ¼ 0, the expressions (90) and (91) satisfy the finite parts
of the consistency condition, given by (71). However, for
the quadratically divergent ILIs corresponding to α ¼ −1,
they do not agree with the corresponding consistency
conditions (75). The difference is easily understood.
Although [58] has shown that ILIs regularized using
Schwinger proper time automatically satisfy Wu’s consis-
tency relations, recall that this is not exactly equivalent to η
regularization with regulators of the form ηðjkj=ΛÞ for
which we derived the consistency conditions (71), (74), and
(75). The equivalence only emerges in the limit MΛ → 0,
suggesting that in the limit of large Λ, only the leading
order constraints should align. This is indeed the case. For
quadratically divergent ILIs, the leading order constraint is
(74) and this holds for the derived regulators, η2ðx; 0Þ,
θ2ðx; 0Þ, and κ2ðx; 0Þ, whereas the subleading constraint
(75) does not, exactly as expected. For logarithmically
divergent ILIs, the leading order constraint is (71), which
we have just seen to hold for the derived regulators,
η0ðx; 0Þ, θ0ðx; 0Þ, and κ0ðx; 0Þ, just as it should.
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IV. CONCLUSIONS

We have explored possible connections between analytic
number theory and the study of divergent series and the
ultraviolet regularization of loop integrals in perturbative
quantum field theory. On the number theory side, we have
extended Tao’s work on smoothed asymptotics [22] which
offers a tantalizing taste of QFT. Both exhibit regulator
dependence of power law divergences, while the universal
features of finite terms in Tao’s study of divergent series
mirror the universal features of logarithms in QFT.
However, our analysis runs much deeper than this elegant
analogy. Inspired by Tao’s work, we have developed a new
and general method for regularizing divergent integrals in
QFT which we dub η regularization. As a result, we have
demonstrated a connection between the regularization of
divergent series and the elimination of divergences in
analytic number theory and the preservation of gauge
invariance at one loop in a regularized quantum field
theory. Is this just a coincidence, or does it signal some-
thing deeper and a possible window into how divergences
are eliminated at high energies in a complete microscopic
theory?
There is certainly much more to be learnt before we can

answer this question. Indeed, it is notable that the con-
sistency relations for preserving gauge invariance, at least
in the context of η regularization, also include a constraint
on the finite terms, as well as the divergences. We have not
been able to glean a deeper understanding of the meaning
of these additional constraints, beyond noting that they are
satisfied in the appropriate limit by η regulators inspired by
Schwinger proper time integrals.
The link to Schwinger proper time integrals is particu-

larly intriguing, not least because of an intuitive connection
between the worldline formulation of QFT and the field
theory limit of string theory. We also note how regularized
Schwinger proper time techniques have been used to
improve the behavior of functional RG equations for gauge
theories at the UV cutoff [60]. It would be interesting to see
if a functional RG equation derived using enhanced η
regulators enjoyed similar properties and to explore the
implications for Weinberg’s asymptotic safety program.
In a forthcoming publication, wewill extend our study of η

regularization to a much broader class of regulators, going
beyond the structure inspired by Tao [59]. This will allow us
to capture all known methods of regularization and
more beyond. Implementing Wu’s consistency relations
[25,26,29] in this general setting will also be shown to yield
amaster equation for the regularization scheme in the formof
a differential equation. Finding solutions will be the same as
finding gauge invariant regulators,whichwill include dimen-
sional regularization, as well as the enhanced η regulators
discussed here. We will also describe how η regularization
can be understood in Lorentzian signature, as well as its

extension to arbitrary loop order, consistent with unitarity,
locality, and causality.
Let us say a little more about higher loops and, in

particular, difficulties associated with overlapping diver-
gences that begin at two-loop order. Key insights in this
regard were developed in the symmetry preserving regu-
larization scheme developed by Wu [25], which has much
in common with our generalized approach. In a future study
of how to apply η regularization to higher loop graphs,
careful treatment of overlapping divergences and subdi-
vergences will exploit generalizations of the ILI formalism.
Moreover, at one loop we have seen that the ILIs encode the
overall UV contribution and tensor structure of Feynman
integrals. Regularization then follows from a simple redefi-
nition of the measure in the master integrals. At two loops
and higher, this shall be seen to be similarly true albeit in a
much more general way. In the repeated use of Feynman
parametrization an important step will be to ensure no
Feynman parameter integration contains UV divergences
and that appropriate subtractions can be made to show all
overlapping divergences are harmless. Using the α, β, γ
technology first introduced by ’t Hooft and Veltman [61],
and following the procedures set out in [25], including key
theorems based on the ILI formalism for factorization,
subtraction, and reduction of overlapping divergences, we
will show how η regularization can be extended to meet
such demands. It will be seen how the treatment of
overlapping Feynman integrals in generalized η regulari-
zation requires certain technical requirements different
from those found in the loop regularization by Wu [25].
There are several ways in which we may continue to

build the bridge toward string theory and the softening of
amplitudes at high energies. Given that critical string theory
is a fundamentally higher-dimensional theory, it would be
interesting to explore the dimensional dependence of Wu’s
consistency relations and the implications on η regulari-
zation. It is also important to better understand the role
played by gravity. Is there a gravitational analog of Wu’s
consistency relations that guarantees diffeomorphism
invariance is preserved by the regulator? Further, how do
we implement η regularization in curved space?
The work of [17,18] could open up a path connecting η

regularization (in the Schwinger representation) to string
theory via nonlocal particle theories that preserve the
higher-dimensional properties of strings. In this context,
we are particularly interested in those regulators that exhibit
some remnant of modular invariance, such as those
presented in [62]. We would also like to deepen this
analysis and say something about the nature of QFT and
the effect of smoothing in position space.
Although our main focus is on developing QFT and

building a bridge toward string theory, there is much to be
explored at the level of analytic number theory. For
example, it would be interesting to see if any other gauge
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invariant regulators identified in [59] have a role to play in
the suppression of divergences in divergent series. Further,
how do these enhanced regulators connect to analytic
continuation? Tao has already provided some insight in
this regard [22]. To develop more understanding it would
be useful to extend Tao’s results to series of nonpolynomial
functions such as logarithms and polylogarithms, which are
also expected to appear in applications to QFT. What
relation, if any, can then be made to resurgence theory and
transseries? In particular, it would be interesting to see if
any connection can be made between η regularization and
some general resummation procedure that might restore
some, or all, nonperturbative information.
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APPENDIX: VACUUM POLARIZATION AND
GENERALIZED WARD IDENTITIES

Following [25], the contribution of Nf equal mass
fermion loops to the gauge boson self-energy is given by

ΠðfÞab
μν ðpÞ ¼ 4NfTrðTaTbÞðigÞ2

Z
d4k
ð2πÞ4

Tr½γμðkþmÞγνðkþ =pþmÞ�
ðk2 þm2 − iϵÞððkþ pÞ2 þm2 − iϵÞ : ðA1Þ

After expressing the color charge factor as TrðTaTbÞ ¼ C2δ
ab for some constantC2 and computing the Dirac algebra, we use

Feynman parametrization to write the remaining integrals in terms of onefold ILIs as clearly laid out in [25]. Doing so gives

ΠðfÞab
μν ðpÞ ¼ −4Nfg2C2δ

ab

Z
1

0

dx

�
2I2μνðMÞ − gμνI2ðMÞ þ 2xð1 − xÞðp2gμν − pμpνÞI2ðMÞ

�
; ðA2Þ

where the mass factor M ¼ m2 − xð1 − xÞp2 in the ILIs
includes a contribution from the fermionmassm, the external
momentumpμ, and the Feynman parameter x. The derivation
of this formula requires several comments. Here and in [25],
the formula is presented in terms of unregulated integrals.
However, these integrals are divergent. Strictly speaking, the
chain of manipulations can only be done for convergent
integrals, which in our case would correspond to a particular

form of η regularization [63]. In future work we will explore
whether or not this choice can generalize some of our
conclusions. Further, one might also worry that the regulator
breaks the invariance under translations of loop momenta.
However, as we will explain in more detail in [59], η
regulators can be rendered translation invariant by redefining
the origin of momentum space.
Taking the regularized form of (A2), we have that

ΠðfÞab
μν ðpÞjregularized ∝

Z
1

0

dx

�
2I2μνðMÞjregularized − gμνI2ðMÞjregularized

þ 2xð1 − xÞðp2gμν − pμpνÞI0ðMÞjregularized
�
: ðA3Þ

As stated in the main text, we now require that this
expression satisfies the generalized Ward identity (60)
asymptotically,

pμΠðfÞab
μν ¼ ΠðfÞab

μν pν ¼ 0: ðA4Þ

We immediately see that the logarithmically divergent
terms on the second line of (A3) vanish automatically
when contracted with the external momenta and do not
affect the generalized Ward identity (60). However, this is
not the case with the two quadratically divergent terms on

the first line of (A3). These must cancel asymptotically in
order to preserve gauge invariance, giving the condition
(61) for α ¼ −1,

Iμν2 ðMÞjregularized ∼
1

2
gμνI2ðMÞjregularized: ðA5Þ

Note that the full set of conditions given by (61) and (62)
for α ¼ −1; 0; 1 are obtained from the remaining general-
ized Ward identities coming from gauge field contributions
to the vacuum polarization tensor and from higher point
correlation functions.
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