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We investigate the gravitational anomaly vertex hTTJ5i (graviton—graviton—axial current) under
conditions of finite density and temperature. Through a direct analysis of perturbative contributions, we
demonstrate that neither finite temperature nor finite fermion density affects the gravitational chiral
anomaly. These results find application in several contexts, from topological materials to the early Universe
plasma. They affect the decay of any axion or axionlike particle into gravitational waves, in very dense and
hot environments.
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I. INTRODUCTION

The interest on gravitational anomalies has been con-
tinuous due to their connections with various theories,
including ordinary gauge theories [1,2], supergravity [3],
and self-dual antisymmetric fields in string theory [4]. The
gravitational anomaly RR̃ can manifest in different scenar-
ios, with its implications varying from benign to critical.
For example, consider a scenario involving a Dirac fermion
interacting with gravity and a vector gauge field. The
anomaly, that in this case appears in the divergence of J5,
was first computed by Kimura, Delbourgo, and Salam
[1,2]. This specific anomaly poses no threat and holds
relevance in phenomenology.
Another instance involves a chiral model incorporating a

Weyl fermion ψL=R interacting with gravity and a gauge
field. In this case, the anomaly emerges in the divergence of
JL=R, potentially endangering unitarity and renormalization,
unless it is canceled [4,5]. In the StandardModel, when J5 is
the non-Abelian SUð2Þ gauge current or the hypercharge
gauge current, the gravitational anomaly cancel out by
summing over the chiral spectrum of each fermion gen-
eration. This feature is usually interpreted as an indication of
the compatibility of the Standard Model when coupled to a
gravitational background, providing an essential constraint
on its possible extensions. The correlator hTTJ5i, where T
denotes the stress energy tensor, under examination in this
work, has been recently re-investigated [6] using conformal

field theory (CFT) in momentum space methods [7–9],
previously studied in [10] using coordinate space methods.
Correlators influenced by chiral and conformal anoma-

lies, as well as discrete anomalies, play a vital role in
condensed matter theory, particularly in the context of
topological materials [11–20]. The gravitational anomaly
has been investigated, in the same context, in other
interesting works [21,22]. Crucial, in this analysis, is
the correspondence between thermal stresses and gravity,
as summarized by Luttinger’s relation [23] connecting a
gravitational potential to a thermal gradient [24,25].
Understanding these phenomena is essential for unravel-
ing the intricate properties of such materials. Since their
dynamical contribution in the evolution of topological
matter, in the realistic case, is characterized by both
thermal effecs and by Fermi surfaces, which break the
charge conjugation C invariance of the vacuum, the
quantification of such corrections becomes crucial for
phenomenology.

A. Thermal and density effects

Considerable attention has been dedicated to examining
the effects of finite temperature and density on the axial
gauge anomaly in several other contexts [26–33]. Despite
the diverse approaches taken by the various authors to
address this issue, a unanimous consensus emerges: such
anomaly remains insensitive to corrections from finite
temperature and density.
In our previous work [31], we have investigated the

general structure of the chiral anomaly vertex hAVVi, in the
presence of chemical potentials in perturbation theory. We
have classified the minimal number of tensorial structures
for the hAVVi parametrization, and we have provided a
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direct perturbative identification of their corresponding
form factors. Moreover, when the photons are on-shell,
we have shown that the entire correlator reduces to the
longitudinal anomalous sector.
The gravitational axial anomaly has yet to be explored in

the context of finite temperature and density. In this paper,
we aim to fill this gap by investigating this interaction. Our
approach involves utilizing the real-time Green’s function
method [34]. Through this technique, we will compute the
amplitude of thermal Feynman diagrams. Our objective is
to demonstrate that the gravitational axial anomaly remains
unchanged, with no contributions from either density or
temperature effects.

II. REVIEW: DECOMPOSITION
OF THE CORRELATOR

AND THE PERTURBATIVE EXPANSION
AT ZERO TEMPERATURE AND DENSITY

In this section, we provide an overview of the general
structure for the hTTJ5i correlator in the vacuum, using the
longitudinal/transverse-traceless decomposition, commonly
referred to as the “L=T” decomposition [8]. This allows us
to gain insight into its global tensorial structure under zero
temperature and density conditions. The decomposition has

been used in the case of parity-even anomaly correlators in
several previous works involving both 3-point and 4-point
functions [9,35–37] and extended to the simplest parity-odd
correlator, the AVV in [38]. Nonconserved vector currents,
have been discussed by the same method in [39]. The
analysis presented here, at zero T and μ, is nonperturbative
since it relies on the solution of the conformal constraints by
the inclusion of an anomaly pole in order to fix the
longitudinal sector of the correlator, and does not require
a Lagrangian realization. The structure becomes consider-
ably more intricate in the case of finite T and μ, primarily
due to the inclusion of a velocity four-vector η representing
the heat bath. The exhaustive analysis of the vertex entails a
tensorial expansion, which is particularly demanding, even
in the simpler AVV diagram case [31].
We start by decomposing the energy-momentum tensor

Tμν and the current Jμ5 in terms of their transverse-traceless
part and longitudinal ones (also called “local”),

TμiνiðpiÞ ¼ tμiνiðpiÞ þ tμiνiloc ðpiÞ; ð2:1Þ

Jμi5 ðpiÞ ¼ jμi5 ðpiÞ þ jμi5locðpiÞ; ð2:2Þ

where

tμiνiðpiÞ ¼ Πμiνi
αiβi

ðpiÞTαiβiðpiÞ; tμiνiloc ðpiÞ ¼ Σμiνi
αiβi

ðpÞTαiβiðpiÞ;

jμi5 ðpiÞ ¼ πμiαiðpiÞJαi5 ðpiÞ; jμi5locðpiÞ ¼
pμi
i piαi

p2
i

Jαi5 ðpiÞ; ð2:3Þ

having introduced the transverse-traceless (Π), transverse (π) and longitudinal (Σ) projectors, given respectively by

πμα ¼ δμα −
pμpα

p2
; ð2:4Þ

Πμν
αβ ¼

1

2
ðπμαπνβ þ πμβπ

ν
αÞ −

1

d − 1
πμνπαβ; ð2:5Þ

Σμiνi
αiβi

¼ piβi

p2
i

�
2δðνiαi p

μiÞ
i −

piαi

ðd − 1Þ
�
δμiνi þ ðd − 2Þp

μi
i p

νi
i

p2
i

��
þ πμiνiðpiÞ

ðd − 1Þ δαiβi : ð2:6Þ

Such decomposition allows to split the vacuum correlation function into the following terms:

hTμ1ν1Tμ2ν2Jμ35 i ¼ htμ1ν1tμ2ν2jμ35 i þ hTμ1ν1Tμ2ν2jμ35loci þ hTμ1ν1tμ2ν2loc Jμ35 i þ htμ1ν1loc Tμ2ν2Jμ35 i
− hTμ1ν1tμ2ν2loc jμ35loci − htμ1ν1loc tμ2ν2loc Jμ35 i − htμ1ν1loc Tμ2ν2jμ35loci þ htμ1ν1loc tμ2ν2loc jμ35loci; ð2:7Þ

where the first contribution on the rhs of the expression above identifies the transverse-traceless part. Using the (anomalous)
conservation and trace WIs, it is then possible to completely fix all the longitudinal parts, i.e. the terms containing at least
one jμ5loc or tμνloc. The nonanomalous equations are

δμiνihTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 0; i ¼ f1; 2g
piμihTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 0; i ¼ f1; 2g: ð2:8Þ
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Thanks to these WIs, we can eliminate most of terms on the right-hand side of Eq. (2.7), ending up with only two terms,

hTμ1ν1Tμ2ν2Jμ35 i ¼ htμ1ν1tμ2ν2jμ35 i þ hTμ1ν1Tμ2ν2jμ35loci ¼ htμ1ν1tμ2ν2jμ35 i þ htμ1ν1tμ2ν2jμ35loci: ð2:9Þ

The remaining local term in the expression above is then fixed by the anomalous WI of J5,

p3μ3hTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 4ia2ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

�
; ð2:10Þ

where a2 is the anomaly constant. Thanks to the equation above, we can write

htμ1ν1tμ2ν2jμ35loci ¼ 4ia2
pμ3
3

p2
3

ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

�
: ð2:11Þ

Notice that in order to identify in field space the effective
action associated with this contribution, we need to
multiply the stress energy tensors by the gravitational
fluctuations of the metric hμν and the axial-vector source
Aμ on the current J5, in the form,

Sanom ∼ a2

Z
d4xd4y∂ · AðxÞ□−1ðx; yÞRR̃ðyÞ: ð2:12Þ

In other words, Eq. (2.11) can be generated from Sanom by
the functional differentiation of the latter twice with respect
to the metric and once with respect to Aμ, followed by an
ordinary Fourier transform. The terms 1=p2

3 is the anomaly
pole, introduced in order to solve (2.10).
Notice that this four-dimensional procedure is quite

straightforward in the case of chiral anomaly diagrams,
since the conformal Ward identities are exact; i.e. they are
not affected by the anomaly. The reason for such behavior
is quite simple, and is due to the fact that there is no
renormalzation needed in order to define the correlator at
spacetime dimension four. The total anomaly effective
action can indeed be decomposed in the form,

Seff ¼ Sanom þ S⊥: ð2:13Þ

The only remaining term in the reconstruction of the entire
correlator is the transverse-traceless part htμ1ν1tμ2ν2jμ35 i
related to S⊥. Its explicit form is given by the inclusion
of transverse and transverse-traceless projectors π and Π
acting on a tensor structure that is parametrized in terms of
a minimal number of independent form factors,

htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi
¼ Πμ1ν1

α1β1
ðp1ÞΠμ2ν2

α2β2
ðp2Þπμ3α3ðp3ÞXα1β1α2β2α3 ; ð2:14Þ

where Xα1β1α2β2α3 is a general rank five tensor built by
products of metric tensors, momenta and ε tensors with the
appropriate choice of indices. Indeed, as a consequence of

the projectors in (2.14), Xα1β1α2β2α3 can not be constructed
by using gαiβi , nor by piαi with i ¼ f1; 2; 3g. Using the
Schouten identities and imposing the symmetries of the
correlators, the general structure of the transverse-traceless
part is given by the simplified minimal expression [6],

htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi
¼ Πμ1ν1

α1β1
ðp1ÞΠμ2ν2

α2β2
ðp2Þπμ3α3ðp3Þ

h

A1ε
p1α1α2α3pβ1

2 p
β2
3 − A1ðp1 ↔ p2Þεp2α1α2α3pβ1

2 p
β2
3

þ A2ε
p1α1α2α3δβ1β2 − A2ðp1 ↔ p2Þεp2α1α2α3δβ1β2

þ A3ε
p1p2α1α2pβ1

2 p
β2
3 p

α3
1 þ A4ε

p1p2α1α2δβ1β2pα3
1

i
; ð2:15Þ

where A3 and A4 are antisymmetric under the exchange
ðp1 ↔ p2Þ. The expressions of the form factors Ai can be
derived in two ways. Either from the solutions of the
conformal Ward identities (CWIs), which are expressed
in terms of 3K integrals, i.e. parametric integrals of three
Bessel functions, or they can be extracted by resorting to the
perturbative expansion. The system of equations derived
from the CWIs is rather involved, but one can show that the
transverse-traceless sector is completely determined in
terms of the same coefficient a2 characterising the anomaly
constraint. Details can be found in [6].
Both the perturbative and nonperturbative procedures are

in complete agreement. In the next section, we will review
the former approach.

A. The action and the perturbative realization

The perturbative evaluation of the correlator at one-loop,
can be performed by working in a specific regularization
scheme. We define the vacuum partition function,

eiS½g� ≡
Z

½dΦ�eiS0½Φ;g�; ð2:16Þ

with the action given by
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S0 ¼
Z

ddx
e
2
eμa½iψ̄γaðDμψÞ − iðDμψ̄Þγaψ �; ð2:17Þ

where eμa is the vielbein, e is its determinant and Dμ is the
covariant derivative defined as

Dμψ ¼ ð∇μ þ igγ5AμÞψ ¼
�
∂μ þ igγ5Aμ þ

1

2
ωμabΣab

�
ψ ;

Dμψ̄ ¼ ð∇μ − igγ5AμÞψ̄ ¼
�
∂μ − igγ5Aμ −

1

2
ωμabΣab

�
ψ̄ :

ð2:18Þ

Σab are the generators of the Lorentz group in the case of a
spin 1=2-field, while the spin connection is given by

ωμab ≡ eνað∂μeνb − Γλ
μνeλbÞ: ð2:19Þ

The Latin and Greek indices are related to the (locally) flat
basis and the curved background respectively. Using the
explicit expression of the generators of the Lorentz group
one can reexpress the action S0 as follows:

S0 ¼
Z

ddxe

�
i
2
ψ̄eμaγað∂μψÞ −

i
2
ð∂μψ̄Þeμaγaψ − gAμψ̄e

μ
aγaγ5ψ þ i

4
ωμabe

μ
cψ̄γabcψ

�
; ð2:20Þ

with

γabc ¼ fΣab; γcg: ð2:21Þ

The explicit expressions of the vertices for such action are reported in Appendix A. Taking a first variation of the action with
respect to the metric one can construct the energy momentum tensor as

Tμν ¼ −
i
2
½ψ̄γðμ∇νÞψ −∇ðμψ̄γνÞψ − gμνðψ̄γλ∇λψ −∇λψ̄γ

λψÞ� − gψ̄ðgμνγλAλ − γðμAνÞÞγ5ψ : ð2:22Þ

We now proceed with the perturbative evaluation. For this, we use the Breitenlohner-Maison regularization scheme. The
topology of the diagrams is shown in Fig. 1.
The contribution of the triangle diagrams is given by

Vμ1ν1μ2ν2μ3
1 ¼ −i3

Z
ddl
ð2πÞd

tr
�
Vμ1ν1
gψ̄ψ ðl − p1; lÞð=l − =p1ÞVμ3

Aψ̄ψð=lþ =p2ÞVμ2ν2
gψ̄ψ ðl; lþ p2Þ=l

	
ðl − p1Þ2ðlþ p2Þ2l2

þ exchange; ð2:23Þ

while the bubble diagrams are

Vμ1ν1μ2ν2μ3
2 ¼ −i2

Z
ddl
ð2πÞd

tr
�
Vμ1ν1μ3
gAψ̄ψ ð=lþ =p2ÞVμ2ν2

gψ̄ψ ðl; lþ p2Þ=l
	

ðlþ p2Þ2l2
þ exchange; ð2:24Þ

and

Vμ1ν1μ2ν2μ3
3 ¼ −i2

Z
ddl
ð2πÞd

tr
�
Vμ1ν1μ2ν2
ggψ̄ψ ðp1; p2; l − p1 − p2; lÞð=l − =p1 − =p2ÞVμ3

Aψ̄ψ=l
	

ðl − p1 − p2Þ2l2
: ð2:25Þ

After performing the integration, one can verify that Vμ1ν1μ2ν2μ3
2 vanishes. Lastly, the tadpole diagram is given by

FIG. 1. Topologies of Feynman diagrams appearing in the perturbative computation.
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Vμ1ν1μ2ν2μ3
4 ¼ −i

Z
ddl
ð2πÞd

tr
�
Vμ1ν1μ2ν2μ3
ggAψ̄ψ =l

	
l2

: ð2:26Þ

This last diagram vanishes since it contains the trace of two
γ’s and a γ5. The perturbative realization of the correlator
will be written down as the sum of all these amplitudes,
formally given by the expression,

hTμ1ν1Tμ2ν2Jμ35 i ¼ 4
X4
i¼1

Vμ1ν1μ2ν2μ3
i : ð2:27Þ

The perturbative realization of the correlator satisfies the
(anomalous) conservation and trace WIs. Thus, we can
decompose the perturbative correlator as described in
previous section in order to match the coefficient of the
anomaly a2 with the outcome obtained from the perturba-
tive evaluation. Therefore we reintroduce the two terms of
the L=T decomposition, now implemented at the pertur-
bative level,

hTμ1ν1Tμ2ν2Jμ35 ipert ¼ htμ1ν1tμ2ν2jμ35 ipert þ htμ1ν1tμ2ν2jμ35locipert:
ð2:28Þ

In particular, the anomalous pole is found to be

htμ1ν1tμ2ν2jμ35locipert ¼
g

96π2
pμ3
3

p2
3

ðp1 · p2Þ

×

��
εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�

þ ðμ1 ↔ ν1Þ
�
þ ðμ2 ↔ ν2Þ

�
; ð2:29Þ

which corresponds to Eq. (2.11) when we set

a2 ¼ −
ig

384π2
: ð2:30Þ

The transverse-traceless part htμ1ν1tμ2ν2jμ35 i can be
expressed in terms of four form factors as described in
Eq. (2.15). The perturbative calculation in four dimensions
gives

A1 ¼
gp2

2

24π2λ4

�
A11 þ A12 log

�
p2
1

p2
2

�
þ A13 log

�
p2
1

p2
3

�
þ A14C0ðp2

1; p
2
2; p

2
3Þ
�
;

A2 ¼
gp2

2

48π2λ3

�
A21 þ A22 log

�
p2
1

p2
2

�
þ A23 log

�
p2
1

p2
3

�
þ A24C0ðp2

1; p
2
2; p

2
3Þ
�
;

A3 ¼ 0;

A4 ¼ 0; ð2:31Þ

where C0 in Minkowski space is the master integral,

C0ðp2
1; p

2
2; p

2
3Þ≡ 1

iπ2

Z
ddl

1

l2ðl − p1Þ2ðlþ p2Þ2
; ð2:32Þ

and we have introduced the functions Aij, reported in the
Appendix B. At this stage, after performing the match of
the pole contribution with the perturbative expansion, we
proceed by decorating the diagrams with the new propa-
gators at finite density and temperature.

III. THE PERTURBATIVE REALIZATION
AT FINITE TEMPERATURE AND DENSITY

In order to compute the finite density and temperature
corrections to the gravitational anomaly we need to con-
sider the same Feynman diagrams defined in the vacuum
case. However, now we have to replace the usual fermionic
propagator with its generalization in a hot medium in the
real time formulation. We use the expression,

SF ≡ ð=kþmÞGF ¼ ð=kþmÞ
�

1

k2 −m2
þ 2πiδðk2 −m2Þ

�
θðk0Þ

eβðE−μÞ þ 1
þ θð−k0Þ
eβðEþμÞ þ 1

��
; ð3:1Þ

with the fermion mass m set to zero. Such expression can also be formulated covariantly by introducing the four-vector η,
defining the velocity of the heath-bath. The contribution of the triangle diagrams is now given by

Vμ1ν1μ2ν2μ3
1 ¼ −i3

Z
ddl
ð2πÞd tr½V

μ1ν1
gψ̄ψ ðl − p1; lÞð=l − =p1ÞVμ3

Aψ̄ψ ð=lþ =p2ÞVμ2ν2
gψ̄ψ ðl; lþ p2Þ=l�GFðl − p1ÞGFðlþ p2ÞGFðlÞ

þ exchange; ð3:2Þ
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while the bubble diagrams are

Vμ1ν1μ2ν2μ3
2 ¼ −i2

Z
ddl
ð2πÞd tr

�
Vμ1ν1μ3
gAψ̄ψ ð=lþ =p2ÞVμ2ν2

gψ̄ψ ðl; lþ p2Þ=l
	
GFðlþ p2ÞGFðlÞ þ exchange; ð3:3Þ

and

Vμ1ν1μ2ν2μ3
3 ¼ −i2

Z
ddl
ð2πÞd tr

�
Vμ1ν1μ2ν2
ggψ̄ψ ðp1; p2; l − p1 − p2; lÞð=l − =p1 − =p2ÞVμ3

Aψ̄ψ=l
	
GFðl − p1 − p2ÞGFðlÞ: ð3:4Þ

As previously mentioned, in the case of zero temperature
and density, V2 vanishes. The proof relies on Lorentz
symmetry, which is violated by temperature and density
effects. Consequently, V2 now exhibits nonvanishing ther-
mal contributions that cannot be discarded. Furthermore,
the presence of V2 is essential to demonstrate the cancel-
lation of all diagram contributions to the gravitational
anomaly. Lastly, similar to the scenario of zero temperature
and density, the tadpole diagram vanishes as it contains the
trace of two γ’s and a γ5.
We can now decompose GF into a standard contribution

to the Fermi propagator G0 and the finite density and
temperature corrections G1,

GF ¼ G0 þG1; G0 ¼
1

k2 −m2
;

G1 ¼ 2πiδðk2 −m2Þ
�

θðk0Þ
eβðE−μÞ þ 1

þ θð−k0Þ
eβðEþμÞ þ 1

�
: ð3:5Þ

Then, we can split the hTTJ5i correlator into four different
parts depending on the number of G1 contained in the loop
integrals,

hTTJ5i ¼ hTTJ5ið0Þ þ hTTJ5ið1Þ þ hTTJ5ið2Þ þ hTTJ5ið3Þ:
ð3:6Þ

hTTJ5ið0Þ represents the zero density and temperature part
that was computed in the previous section, hTTJ5ið1Þ
contains only one G1 and so on. Note that the triangles
diagrams contribute to all the four terms on the right-hand
side of Eq. (3.6), while the bubble diagrams to not
contribute to hTTJ5ið3Þ since they contain two fermionic
propagators GF.

IV. THE GRAVITATIONAL ANOMALY AT FINITE
TEMPERATURE AND DENSITY

In this section, we examine the longitudinal anomalous
sector of J5, showing that it is protected from finite density
and temperature effects. To achieve this, we dissect the terms
associated with finite density and temperature corrections in
Eq. (3.6) separately. We will illustrate that each of these
terms vanishes upon contraction with the momentum of the
axial current, pμ3

3 . The sole surviving term is the zero density
and temperature one which showcases the effect of the
gravitational anomaly,

p3μ3hTμ1ν1Tμ2ν2Jμ35 i ¼ p3μ3hTμ1ν1Tμ2ν2Jμ35 ið0Þ

¼ 4ia2ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

�
: ð4:1Þ

The proof of such statement may appear miraculous, as
exceedingly long expressions cancel out. Furthermore, in
order to achieve this, we do not need to specify the explicit
form of G1, except for the fact that it contains a Dirac delta.
There is also no requirement to perform the loop integral
since the cancellations occur within the integrand itself.
This procedure has been previously applied to the more

simple case of the gauge chiral anomaly [26,30]. As wewill
see, in the case of the gravitational chiral anomaly, the

computations are significantly lengthier and require the use
of Schouten identities, which relate different tensor struc-
tures. We now proceed with our proof.

A. hTTJ5ið1Þ
We start by considering hTTJ5ið1Þ (see Fig. 2). The terms

contributing to hTTJ5ið1Þ contain only one thermal correc-
tion G1 but with different momenta as arguments,
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G1ðlÞ; G1ðlþ p1Þ; G1ðl − p1Þ; G1ðlþ p2Þ; G1ðl − p2Þ;
G1ðlþ p3Þ; G1ðl − p3Þ; G1ðl − p1 þ p2Þ; G1ðlþ p1 − p2Þ: ð4:2Þ

However, since we are dealing with finite integrals, we can
perform multiple shifts in the loop momentum to ensure
that the terms inside hTTJ5ið1Þ only have one single
dependence, for example G1ðlÞ. We can then write the
contracted correlator in the following form:

p3μ3hTμ1ν1Tμ2ν2Jμ35 ið1Þ ¼
Z

ddl
ð2πÞd W

μ1ν1μ2ν2
1 ðp1; p2; lÞG1ðlÞ:

ð4:3Þ

The dependence on the temperature and chemical potential
in the integral above is contained only in G1ðlÞ.Wμ1ν1μ2ν2

1 is
a parity-odd tensor constructed with the momenta p1 p2

and l. It is symmetric under the exchange fμ1 ↔ ν1g and
fμ2 ↔ ν2g and fðμ1; ν1; p1Þ ↔ ðμ2; ν2; p2Þg. The explicit
initial expression for Wμ1ν1μ2ν2

1 is extremely long but one
can significantly simplify it by utilizing a set of tensorial
relations, known as Schouten identities, which are detailed
in Appendix C. These identities arise from the dimensional

degeneracies of tensor structures, given that we are working
in d ¼ 4.
Surprisingly, by applying all the Schouten identities

reported in the Appendix C and then setting l2 ¼ 0 due
to the δðl2Þ contained in G1ðlÞ, one is able to prove that

0 ¼ Wμ1ν1μ2ν2
1 jl2¼0: ð4:4Þ

Therefore,

p3μ3hTμ1ν1Tμ2ν2Jμ35 ið1Þ ¼ 0; ð4:5Þ

which means that the hTTJ5ið1Þ contributions do not
modify the axial anomalous Ward identity.

B. hTTJ5ið2Þ
The procedure for hTTJ5ið2Þ is very similar to the one

followed in the previous subsection (see Fig. 3).
Considering our parametrization of the loop integral, the
combinations in which the thermal correctionsG1 appear in
hTTJ5ið2Þ are

G1ðlÞG1ðlþ p1Þ; G1ðlÞG1ðlþ p2Þ; G1ðlÞG1ðlþ p3Þ;
G1ðlÞG1ðl − p2Þ; G1ðlÞG1ðl − p1Þ; G1ðlþ p1ÞG1ðl − p2Þ; G1ðl − p1ÞG1ðlþ p2Þ: ð4:6Þ

Since the integrals are finite, we can perform multiple shifts to the loop momentum, reducing all the combinations above to
only three terms,

p3μ3hTμ1ν1Tμ2ν2Jμ35 ið2Þ ¼
Z

ddl
ð2πÞd W

μ1ν1μ2ν2
2;1 ðp1; p2; lÞG1ðlÞG1ðlþ p1Þ

þWμ1ν1μ2ν2
2;2 ðp1; p2; lÞG1ðlÞG1ðlþ p2Þ þWμ1ν1μ2ν2

2;3 ðp1; p2; lÞG1ðlÞG1ðlþ p3Þ: ð4:7Þ

FIG. 2. Topologies of diagrams contributing to hTTJ5ið1Þ. The bar on the fermions’ lines denotes the insertion of a hot propagator G1.
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The dependence on the temperature and chemical potential
in the integrals above is contained in G1. The tensors
Wμ1ν1μ2ν2

2;i are constructed with the momenta p1 p2 and l.
They are parity-odd and symmetric under the exchange
fμ1 ↔ ν1g and fμ2 ↔ ν2g. Moreover, due to the Bose
symmetry, we can write

Wμ1ν1μ2ν2
2;1 ðp1; p2; lÞ ¼ Wμ2ν2μ1ν1

2;2 ðp2; p1; lÞ;
Wμ1ν1μ2ν2

2;3 ðp1; p2; lÞ ¼ Wμ2ν2μ1ν1
2;3 ðp2; p1; lÞ: ð4:8Þ

The explicit initial expression for Wμ1ν1μ2ν2
2;i is extremely

long but one can significantly simplify it by utilizing the
Schouten identities. Indeed, by applying all the identities
reported in the Appendix C and using the fact that G1

contains delta functions, we can prove that all three terms in
Eq. (4.12) vanish individually,

0 ¼ W2;1jl2¼ðlþp1Þ2¼0; 0 ¼ W2;2jl2¼ðlþp2Þ2¼0;

0 ¼ W2;3jl2¼ðlþp3Þ2¼0: ð4:9Þ

Therefore, we have

p3μ3hTμ1ν1Tμ2ν2Jμ35 ið2Þ ¼ 0; ð4:10Þ

which means that the hTTJ5ið2Þ contributions do not
modify the axial anomalous Ward identity.

C. hTTJ5ið3Þ
Only triangle diagrams contribute to hTTJ5ið3Þ since the

bubble diagrams have only two fermionic propagators (see
Fig. 4).
The combination of momenta that appear as arguments of
G1 are

G1ðlÞG1ðl − p1ÞG1ðlþ p2Þ;
G1ðlÞG1ðlþ p1ÞG1ðl − p2Þ: ð4:11Þ

Such combination of G1 can not be further reduced by shift
in the loop momentum as in the previous case. Therefore,
we can write

p3μ3hTμ1ν1Tμ2ν2Jμ35 ið3Þ ¼
Z

ddl
ð2πÞd W

μ1ν1μ2ν2
3;1 ðp1; p2; lÞG1ðlÞG1ðl − p1ÞG1ðlþ p2Þ

þWμ1ν1μ2ν2
3;2 ðp1; p2; lÞG1ðlÞG1ðlþ p1ÞG1ðl − p2Þ: ð4:12Þ

Wμ1ν1μ2ν2
3;i are parity-odd tensors that depend on the

momenta p1 p2 and l. They are symmetric under the
exchange fμ1 ↔ ν1g and fμ2 ↔ ν2g. Moreover, they are
related to each other due to the Bose symmetry,

Wμ1ν1μ2ν2
3;1 ðp1; p2; lÞ ¼ Wμ2ν2μ1ν1

3;2 ðp2; p1; lÞ: ð4:13Þ

Once again, we can use the Schouten identities and the fact
that G1 contains delta functions in order to prove that

0¼W3;1jl2¼ðl−p1Þ2¼ðlþp2Þ2¼0; 0¼W3;2jl2¼ðlþp1Þ2¼ðl−p2Þ2¼0:

ð4:14Þ

Therefore, we have

p3μ3hTμ1ν1Tμ2ν2Jμ35 ið3Þ ¼ 0: ð4:15Þ

This completes the proof that the longitudinal axial WI is
not modified with respect to the vacuum part and the

FIG. 3. Topologies of diagrams contributing to hTTJ5ið2Þ. They
are characterized by the insertion of two hot propagators G1.

FIG. 4. Topology of diagram contributing to hTTJ5ið3Þ.
Such diagram is characterized by the insertion of three hot
propagators G1.
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solution of the longitudinal equation is still given by the
exchange of an anomaly pole, as shown in (4.1).

V. CONCLUSIONS

In this paper, we have examined the gravitational
anomaly vertex hTTJ5i in a hot and dense medium. We
have shown that the anomaly is protected from finite
density and temperature corrections.
It would be interesting to investigate how dilatations and

special conformal transformations are broken in this con-
text [40].
Our result has application to the decay of an axion or any

axionlike particle into gravitational waves, as well as in the
production of chiral currents from gravitational waves, in
very dense and hot environments. Furthermore, the pro-
tection of the gravitational axial anomaly against finite
density and temperature corrections presents intriguing
experimental opportunities within condensed matter theory,
particularly in the context of topological materials. We

hope to return to the investigation of these topics in
another work.
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APPENDIX A: VERTICES

In this section we list the explicit expression of all the
vertices needed for the perturbative analysis of the hTTJ5i
correlator. The momenta of the gravitons and the axial
boson are all incoming as well as the momentum indicated
with k1. The momentum k2 instead is outgoing. In order to
simplify the notation, we introduce the tensor components,

Aμνρσ ≡ gμνgρσ −
1

2
ðgμρgνσ þ gμσgνρÞ

Bμνρσαβ ≡ gαβgμνgρσ − gαβðgμρgνσ þ gμσgνρÞ

Cμνρσαβ ≡ 1

2
gμνðgαρgβσ þ gασgβρÞ þ 1

2
gρσðgαμgβν þ gανgβμÞ

Dμνρσαβ ≡ 1

2
ðgασgβμgνρ þ gαρgβμgνσ þ gασgβνgμρ þ gαρgβνgμσÞ

þ 1

4
ðgαμgβσgνρ þ gαμgβρgνσ þ gανgβσgμρ þ gανgβρgμσÞ

Gαβγ ≡ γαγβγγ − γβγαγγ þ γγγαγβ − γγγβγα: ðA1Þ

The vertices can then be written as
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APPENDIX B: DEFINITIONS FOR THE SOLUTION OF THE VACUUM CORRELATOR

In this section, we provide a list of definitions for the functions introduced in Eq. (2.31). They are described as follows:

A11 ¼ −λ
h
2p10

1 − p8
1ðp2

2 þ p2
3Þ− 2p6

1ð5p4
2 − 48p2

2p
2
3 þ 5p4

3Þ þ 4p4
1ðp2

2 þ p2
3Þð4p4

2 − 23p2
2p

2
3 þ 4p4

3Þ

− 8p2
1ðp2

2 − p2
3Þ2ðp4

2 þ 4p2
2p

2
3 þ p4

3Þ þ ðp2
2 − p2

3Þ4ðp2
2 þ p2

3Þ
i

A12 ¼ þ2p2
2

h
p2
3ðp2

3 − p2
2Þ5 þ p10

1 ð38p2
3 − 12p2

2Þ þ p8
1ð18p4

2 þ 41p2
2p

2
3 − 121p4

3Þ− 4p6
1ð3p6

2 þ 46p4
2p

2
3 − 38p2

2p
4
3 − 26p6

3Þ

þ p4
1ðp2 − p3Þðp2 þ p3Þð3p6

2 þ 95p4
2p

2
3 þ 215p2

2p
4
3 þ 11p6

3Þ þ 14p2
1p

2
3ðp2

2 − p2
3Þ3ðp2

2 þ p2
3Þ þ 3p12

1

i

A13 ¼ þ2p2
3

h
3p12

1 þ 2p10
1 ð19p2

2 − 6p2
3Þ þ p8

1ð−121p4
2 þ 41p2

2p
2
3 þ 18p4

3Þ þ 4p6
1ð26p6

2 þ 38p4
2p

2
3 − 46p2

2p
4
3 − 3p6

3Þ

− 14p2
1p

2
2ðp2

2 − p2
3Þ3ðp2

2 þ p2
3Þ− p4

1ðp2 − p3Þðp2 þ p3Þð11p6
2 þ 215p4

2p
2
3 þ 95p2

2p
4
3 þ 3p6

3Þ þ p2
2ðp2

2 − p2
3Þ5

i

A14 ¼ −24p4
1p

2
2p

2
3

h
ðp2

1 − p2
2Þ3ð2p2

1 þ 3p2
2Þ − 3p4

3ðp4
1 þ 4p2

1p
2
2 − 4p4

2Þ− 3p2
3ðp6

1 − 6p4
1p

2
2 þ 4p2

1p
4
2 þ p6

2Þ

− 3p8
3p

6
3ð7p2

1 − 3p2
2Þ
i

A21 ¼ −λ
h
2p6

3ð3p2
1 þ p2

2Þ þ 4p2
1p

4
3ð3p2

2 − 2p2
1Þ þ ðp2

1 − p2
2Þ4 þ 2p2

3ðp1 − p2Þðp1 þ p2Þðp4
1 þ 8p2

1p
2
2 þ p4

2Þ− p8
3

i

A22 ¼ −2p2
2p

2
3

h
−17p8

1 þ p6
1ð28p2

2 þ 26p2
3Þ − 4p4

1ðp4
2 þ 15p2

2p
2
3Þ þ ðp2

2 − p2
3Þ4 − 2p2

1ðp2
2 − p2

3Þ2ð4p2
2 þ 5p2

3Þ
i
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A23 ¼ þ2p2
3

h
2p10

1 − p8
1ðp2

2 þ 6p2
3Þ þ p6

1ð−10p4
2 þ 46p2

2p
2
3 þ 6p4

3Þ − 2p2
1ð4p2

2 þ 5p2
3Þðp3

2 − p2p2
3Þ2 þ p2

2ðp2
2 − p2

3Þ4

þ 2p4
1ð8p6

2 − 21p4
2p

2
3 − 18p2

2p
4
3 − p6

3Þ
i

A24 ¼ −12p4
1p

2
2p

2
3

h
p4
3ð3p2

2 − 5p2
1Þ þ ðp2

1 − p2
2Þ3 þ p2

3ðp4
1 þ 4p2

1p
2
2 − 5p4

2Þ þ 3p6
3

i
; ðB1Þ

with the Källen λ-function given by

λ≡ λðp1; p2; p3Þ ¼ ðp1 − p2 − p3Þðp1 þ p2 − p3Þðp1 − p2 þ p3Þ:ðp1 þ p2 þ p3Þ: ðB2Þ

APPENDIX C: SCHOUTEN IDENTITIES

When examining the gravitational anomaly corrections
at finite density and temperature, we have introduced the
rank-4 tensors Wμ1ν1μ2ν2

i;j . Such tensors are parity-odd and
depend on the graviton momenta p1 and p2, as well as the
momentum of the fermionic loop l. There is a set of
tensorial relations, known as Schouten identities, which can
be used to reduce the expression of Wμ1ν1μ2ν2

i;j . These
identities arise from the dimensional degeneracies of tensor
structures, given that we are working in d ¼ 4. In particu-
lar, in this case we can construct such identities starting
from the following format:

0 ¼ ε½lp1p2μ1δμ2�α: ðC1Þ

Since we are antisymmetrizing over five indices and we are
working in four dimensions, the result must vanish. The
index α can be contracted with a momentum, obtaining

0 ¼ ε½lp1p2μ1pμ2�
1

0 ¼ ε½lp1p2μ1pμ2�
2

0 ¼ ε½lp1p2μ1lμ2�; ðC2Þ

or we can pick α ¼ fν1; ν2g,

0 ¼ ε½lp1p2μ1δμ2�ν1

0 ¼ ε½lp1p2μ1δμ2�ν2 : ðC3Þ

Note that we do not need to consider Schouten identities
where both μ1 and ν1 are antisymmetrized since the energy-
momentum tensor (and therefore Wμ1ν1μ2ν2

i;j ) is symmetric
under the exchange μ1 ↔ ν1. The same is true for the
indices μ2 and ν2.
The identity (C2) and (C3) relates tensors with rank less

than four. Therefore, we need to complete them with the
remaining indices. As an example we can pick the first
identity in Eq. (C3), which is a rank-3 equation, and we
multiply it with pν2

1 , p
ν2
2 or lν2 ending up with three relations

between rank-4 tensors. Proceeding in such way, we end up
with 36 identities. Moreover, we can also get new identities
from this 36 ones by exchanging μ1 ↔ ν1 and/or μ2 ↔ ν2.
Therefore, the total number of Schouten identities is
36 × 4 ¼ 144. All these identities can be used to simplify
the structures appearing in the W tensors.
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