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We present a detailed description of a quantum scalar field theory within a flat spacetime confined to a
cavity with perfectly reflecting moving boundaries. Moreover, we establish an equivalence between this
time-dependent setting and a field theory on an acoustic metric with static Dirichlet boundary conditions.
We discuss the classical and quantum aspects of the theory from the latter perspective, accompanied by the
introduction of novel numerical techniques designed for the (nonperturbative) computation of particle
production attributed to the dynamical Casimir effect, applicable to arbitrary boundary trajectories. As an
illustrative example of these methodologies, we compute the particle production for a massless field in
1þ 1 dimensions. Notably, our approaches readily extend to encompass scenarios involving massive fields
and higher dimensions.

DOI: 10.1103/PhysRevD.110.025007

I. INTRODUCTION

The study of linear field theories in flat spacetimes with
time-dependent boundary conditions has been a subject of
research for several decades and finds applications in
various fields. One of the most popular models involves
an accelerated mirror asymptotically approaching the speed
of light [1], leading to particle creation while the mirror
is accelerating. This phenomenon results in the formation
of a thermal state in the asymptotic limit. Moreover, there
are variations of this model, considering imperfect reflec-
tors [2,3], alternative mirror trajectories [4], leading to
applications in entanglement harvesting [5], and some of
them that are even relevant for holography [6–8].
The situation where the field is confined in a cavity

has also received considerable attention. If the boundaries
remain at rest, one can study the well-known static Casimir
effect [9]. It has served, for instance, as an example for the
study of a nontrivial renormalized stress-energy tensor in
quantum field theory on flat spacetimes. The more general
case in which one or both boundaries follow nontrivial
time-dependent trajectories has also received considerable
attention, leading to the so-called dynamical Casimir effect
(DCE). The simplest case under study has been a massless
1þ 1 scalar field theory [10–13]. It has also been

generalized to 3þ 1 dimensions [14], and for nonflat
scenarios [15,16] (see Refs. [17,18] for an extension to
more general curved spacetimes). These scenarios are also
a suitable and interesting arena for the study of relativistic
quantum information [19–26]. For a recent review on the
topic, we refer the reader to [27]. It is interesting to note that
DCE has been recently proposed as a phenomenon that can
be studied experimentally using coplanar wave guides
ended in superconducting quantum interference devices
(SQUIDS) [28–31] as well as in semiconductor sheets
irradiated by a pulsed laser [32,33].
Following the latter proposal we have recently shown [34]

that some configurations of the boundaries (within current
experimental capabilities) can mimic an accelerating mirror,
giving rise to nearly thermal particle production in some
frequency bands. With this in mind, our aim in this manu-
script is twofold. On one hand, we show that a 1þ 1 field
theory with moving cavities in a flat metric is equivalent to a
1þ 1 field theory with static cavities on a time-dependent
inhomogeneous metric. But more importantly, the resulting
1þ 1 spacetime line element is actually an acoustic metric,
of the kind considered in analog black hole models [35] for
the study of Hawking radiation in the laboratory. On the
other hand, we provide a refined formalism for the study
of the classical and quantum dynamics of this field theory,
with special interest in probing the nonperturbative regime,
namely, without the assumption that the boundaries move
with small amplitudes, velocities and/or accelerations.
We report here the numerical tools that we developed for
the study of these configurations in [34], which constitute the
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basis for the study of other nonperturbative regimes in
several interesting models already considered in the liter-
ature, see e.g. [25] and references therein.
Concretely, this manuscript is organized as follows. In

Sec. II we describe the equivalence between a 1þ 1 field
theory in Minkowski with moving boundaries and a 1þ 1
field theory in an acoustic metric with static boundaries.
In Sec. III we provide the canonical formulation of the
classical theory. We then provide a detailed quantization of
the theory in Sec. IV. Section V introduces the numerical
tools used to compute the particle production. We also
provide some examples where we apply them.We conclude
with Sec. VI. At the end, the reader can find two
Appendixes. The first of them contains a description of
the conformal transformation method which is an alter-
native method that we have used to contrast our results,
and the second one discusses the massive scalar field
theory in 3D.
Notation and conventions: We choose natural units in

which ℏ ¼ c ¼ 1, we use the convention of mostly plus
signs for the signature of the metric and we introduce the
bar notation denoting complex conjugation, e.g. z̄ repre-
sents the complex conjugate of z.

II. EQUIVALENCE BETWEEN MOVING
BOUNDARIES IN MINKOWSKI
AND ACOUSTIC METRICS

The system that we are going to study is a free real scalar
field ϕ in the (1þ 1)-dimensional Minkowski spacetime.
Its action is given as usual by

S ¼ −
1

2

Z
d2x

ffiffiffiffiffiffi
−η

p
ημν∂μϕ∂νϕ; ð1Þ

where ημν represents the flat spacetime metric in an
arbitrary coordinate system. A straightforward variation
of the action leads to the Klein-Gordon equation

1ffiffiffiffiffiffi−ηp ∂μð
ffiffiffiffiffiffi
−η

p
ημν∂νÞϕ ¼ 0: ð2Þ

We are interested in imposing time-dependent perfectly
reflecting boundary conditions, i.e., the problem of a
scalar field confined within the region bounded by the
trajectories of two moving “mirrors” (we will use inter-
changeably the word mirror and boundaries where perfectly
reflecting boundary conditions are imposed). To be more
explicit, we want to study the evolution of the field for
arbitrary times t∈ ð−∞;∞Þ, t being an inertial time
coordinate in Minkowski spacetime, for the region bounded
between to trajectories fðtÞ and gðtÞ such that the distance
among the two boundaries is always greater than zero
LðtÞ ¼ gðtÞ − fðtÞ. This means that the field ϕðt; xÞ
will be subjected to the Dirichlet boundary conditions
ϕðt; fðtÞÞ ¼ ϕðt; gðtÞÞ ¼ 0. As a final remark, we will limit

our discussion to trajectories of the boundaries that are at
rest at early times and become at rest also at late times. This
ensures that we have a well-defined and unique notion of in
and out vacua.
We will illustrate now how the boundary conditions

trivialize (i.e. they become time-independent) for a par-
ticular choice of coordinates. In those coordinates, the
metric acquires the form of an acoustic metric. Let us
consider the transformation,

τ ¼ t and ξ ¼ L0

x − fðtÞ
LðtÞ ; ð3Þ

where L0 is a dimensionful constant that we choose to
represent the distance of the plates at some asymptotic past
time where the plates are relatively at rest. In the following,
we make L0 ¼ 1 and take it as a reference length scale. The
flat spacetime metric ds2 ¼ −dt2 þ dx2 now becomes

ds2¼−ð1−V2ðτ;ξÞÞdτ2þ2LðτÞVðτ;ξÞdτdξþL2ðτÞdξ2;
ð4Þ

where

Vðτ; ξÞ ¼ ξL̇ðτÞ þ ḟðτÞ: ð5Þ

Here, the dot will represent differentiation with respect to
the time coordinate τ. The line element in Eq. (4) has the
form of an acoustic metric (see for instance Ref. [35]), with
Vðτ; ξÞ playing the role of the velocity of an effective fluid.
It is interesting to ask if this metric has acoustic horizons,

i.e. points at which Vðτ; ξÞ ¼ �1. The answer is in the
negative. For instance, if L̇ðτÞ ¼ 0, the horizon corresponds
to ḟðτÞ ¼ �1, which is not allowed since this implies that
the mirrors move at the speed of light. On the other hand,
if ḟðτÞ ¼ 0, then ξL̇ðτÞ ¼ �1. Since ḟðτÞ ¼ 0, it implies
L̇ðτÞ∈ ð−1; 1Þ. Together with ξ∈ ½0; 1�, the condition
ξL̇ðτÞ¼�1 will not be satisfied. Finally, if both ḟðτÞ≠0

and L̇ðτÞ ≠ 0, we have

ξL̇ðτÞ þ ḟðτÞ ¼ �1: ð6Þ

In this case, let us recall that LðτÞ ¼ gðτÞ − fðτÞ and hence
L̇ðτÞ∈ ð−2; 2Þ, since ġðτÞ∈ ð−1; 1Þ and ḟðτÞ∈ ð−1; 1Þ.
Then, since we also have ξ∈ ½0; 1�, we conclude that

0 <
�1 − ḟðτÞ
ġðτÞ − ḟðτÞ < 1; ð7Þ

but it is not difficult to see that there are no choices of
ġðτÞ∈ ð−1; 1Þ and ḟðτÞ∈ ð−1; 1Þ fulfilling the inequality.
Hence, no horizons will form. However, there are settings
in which it is possible to engineer an effective superluminal
motion of the boundaries. In such setup, it seems that
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acoustic horizons form. This setup is convoluted and rich
enough to deserve a dedicated study.

III. CLASSICAL CANONICAL FORMULATION

This section is devoted to the analysis of the classical
theory. Our study departs from more conventional analysis
since we will adopt a Hamiltonian formulation since the
theory is amenable to be easily quantized. We will also
introduce the set of in and out modes that will be relevant
later for the discussion of particle production. We will
consider configurations that are stationary in the asymptotic
past and future. Hence, our results will be free of the typical
ambiguities one finds in general time-dependent settings as
we advanced before.
We start with an Arnowitt-Deser-Misner decomposition

of the (1þ 1)-dimensional spacetime metric [36]. The
spacelike “hypersurface” defined by τ ¼ const, yields the
lapse, shift and spatial sections metric,

N ¼ 1; Nξ ¼ ξLL̇þ Lḟ; hξξ ¼ L2; ð8Þ

respectively. Then, the conjugate momentum to the scalar
field is related to the field derivatives by

πϕ ≔ Lϕ̇ −
1

L
ðξL̇þ ḟÞϕ0: ð9Þ

Implementing the Legendre transformation, the original
action is written in terms of the field variable and the
momenta:

S ¼
Z

dτ

��Z
1

0

dξϕ̇πϕ

�
−HT

�
; ð10Þ

with the Hamiltonian being defined as

HT ¼
Z

1

0

dξ

�
N
2

π2ϕ
L

þ N
2L

ðϕ0Þ2 þ
�
ξ
L̇
L
þ ḟ
L

�
ϕ0πϕ

�
: ð11Þ

Here, the prime denotes differentiation with respect to the
spatial coordinate ξ. The canonical Poisson brackets at
equal times are

fϕðτ; ξÞ; πϕðτ; ξ̃Þg ¼ δðξ − ξ̃Þ: ð12Þ

For our purposes it is convenient to introduce the following
Fourier decomposition in phase space

ϕðτ; ξÞ ¼
X∞
n¼1

ϕnðτÞ sinðnπξÞ;

πϕðτ; ξÞ ¼
X∞
n¼1

πnðτÞ sinðnπξÞ: ð13Þ

which guarantees that the phase space variables fulfill the
boundary conditions, namely, ϕðξ ¼ 0Þ ¼ ϕðξ ¼ 1Þ ¼ 0.
This expansion for the field ϕðτ; ξÞ is such that it ensures
that the boundary conditions are obeyed ϕðτ; 0Þ ¼
ϕðτ; 1Þ ¼ 0. The momentum πϕðτ; ξÞ does not vanish on
the boundaries when they are in motion due to the second
term in Eq. (9). However, it is still convenient to use the
fsinðnπξÞg base to expand it. As long as we restrict
ourselves to observables away from the boundary, the
expansion is perfectly suited for every computation. A
thorough treatment of the boundary requires to treat care-
fully the boundary terms in the action and it is not within
the scope of this paper, see e.g. [37] for a discussion.
In terms of the Fourier modes, the action is given by

S ¼
Z

dτ

"X∞
n¼1

1

2
πnϕ̇n −HT

#
; ð14Þ

where now the Hamiltonian is also expressed in terms of
the Fourier amplitudes and modes as

HT ¼
X∞
n¼1

N
4L

½π2n þ ðnπÞ2ϕ2
n� −

L̇
4L

πnϕn

þ
X
m

ð1 − δnmÞ
nm

n2 −m2

×

�
ḟ
L
ðð−1Þnþm − 1Þ þ L̇

L
ð−1Þnþm

�
πmϕn: ð15Þ

(See [38,39] for similar analysis.) Here, the modes satisfy
the Poisson brackets structure

fϕn; πmg ¼ 2δnm: ð16Þ

The Hamilton equations of motion encoding the dynamics
of the field, derived within the previous framework are

ϕ̇n ¼
N
L
πn −

L̇
2L

ϕn þ 2
X
m

ð1 − δmnÞ
mn

m2 − n2

×

�
ḟ
L
ðð−1Þmþn − 1Þ þ L̇

L
ð−1Þmþn

�
ϕm; ð17Þ

π̇n ¼ −
N
L
ðnπÞ2ϕn þ

L̇
2L

πn þ 2
X
m

ð1 − δnmÞ
nm

m2 − n2

×

�
ḟ
L
ðð−1Þnþm − 1Þ þ L̇

L
ð−1Þnþm

�
πm: ð18Þ

From these equations of motion it becomes obvious that if
L̇ðτÞ ≠ 0 and/or ḟðτÞ ≠ 0 there will be dynamical mode
mixing. Its origin can be traced back to Eq. (11), where the
ϕ0πϕ coupling ensures that this mode mixing emerges.
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In that sense, this process is closer in spirit to particle
production in inhomogeneous cosmological spacetimes.
For many practical purposes, specially regarding the

quantization of the classical theory but also from the
classical viewpoint itself, it is useful to complexify
the phase space. At the end of the day, when one computes
observables, one only needs to ensure that the quantities of
interest are real. In our case, although we will be working
with the Fourier modes as if they were complex, they must
satisfy the reality conditions,

ϕ̄nðτÞ ¼ ϕnðτÞ; π̄nðτÞ ¼ πnðτÞ: ð19Þ

With this in mind, we can compute complex solutions to the
equations of motion (17) and (18), given suitable initial
data. Any solution can be written as a vector in phase space
with an infinite number of components (a pair configura-
tion and momenta for each mode). We will denote a
solution UðτÞ as

UðτÞ ¼ ðϕ1ðτÞ; π1ðτÞ;ϕ2ðτÞ; π2ðτÞ; � � �Þ; ð20Þ

and we will call SC the complexified space of solutions, i.e.
UðτÞ∈SC. Our space of solutions is endowed with a
natural Klein-Gordon product which is preserved under
the evolution, i.e. a map KG∶ SC × SC → C. Given two
complex solutions Uð1ÞðτÞ and Uð2ÞðτÞ, this product is
expressed as

hUð1ÞðτÞ;Uð2ÞðτÞi

¼ i ×
Z

1

0

dξ
�
ϕ̄ð1Þðτ; ξÞπð2Þϕ ðτ; ξÞ − π̄ð1Þðτ; ξÞϕð2Þðτ; ξÞ

�

¼ i
2

X∞
n¼1

ϕ̄ð1Þ
n ðτÞπð2Þn ðτÞ − π̄ð1Þn ðτÞϕð2Þ

n ðτÞ; ð21Þ

and since it is time independent, it is unaffected by the
choice of τ at which we decide to evaluate it. However, we
notice that this product is not positive definite and hence it
cannot be used straightforwardly to endow our complexi-
fied space of solutions with an actual inner product. The
standard procedure to do it is to choose a subspace of the
complex phase space where the Klein-Gordon product (21)
is positive definite. This subspace Sþ ⊂ SC is usually
called the positive frequency sector of the theory, since
in standard it is spanned by positive frequency plane waves
(i.e. modes whose time dependence with respect to an
inertial time coordinate are ∼e−iωt). The complementary
sector of the phase space where the inner product is
negative corresponds to the complex conjugate solutions
of the positive frequency one, the sector ∼eiωt. We can
endow such complementary space with an inner product
straightforwardly also simply by taking the opposite of the
Klein-Gordon product for such solutions. This space S−

turns out to be the complex conjugate space to Sþ.

It can be shown that this construction [40] based on the
Klein-Gordon product automatically gives rise to a decom-
position of the complexified space of solutions as a direct
sum of two orthogonal subspaces:

SC ¼ Sþ ⊕ S− ð22Þ
endowed with the inner product introduced above.1

Given this decomposition, we will now choose a
basis of (orthonormal) complex solutions. In general, we
will denote this basis of solutions as ðuðIÞ; ūðIÞÞ, with
I ¼ 1; 2;… This basis satisfies the following identities

huðIÞ;uðJÞi¼δIJ; huðIÞ;ūðJÞi¼0; hūðIÞ;ūðJÞi¼−δIJ:

ð23Þ
Any solution to the equations of motion can be expressed
as a linear combination of the elements of the basis but
since we are interested on real solutions, they must be of
the form,

UðτÞ ¼
X∞
I¼1

aIuðIÞðτÞ þ āIūðIÞðτÞ; ð24Þ

where āI and aI are the creation and annihilation variables.
In components, if we introduce the following notation, the
solutions will be

UnþϵðτÞ ¼
X∞
I¼1

aIu
ðIÞ
nþϵðτÞ þ āIū

ðIÞ
nþϵðτÞ; ð25Þ

with ϵ ¼ 0, 1, and n an integer that labels the corresponding
Fourier mode. Then, if ϵ ¼ 0 we have UnðτÞ ¼ ϕnðτÞ,
while for ϵ ¼ 1 we get Unþ1ðτÞ ¼ πnðτÞ.
Note that either combination (24) or (25) guaranties that

ŪnðτÞ ¼ UnðτÞ, for all n, in agreement with Eq. (19).
It is interesting to note that the creation and annihilation

variables can be defined as

aI ¼ huðIÞðτÞ;UðτÞi; āI ¼ −hūðIÞðτÞ;UðτÞi: ð26Þ

One can see that the Poisson algebra (16) together with the
relations in Eq. (23) imply

faI; āJg ¼ −iδIJ; faI; aJg ¼ 0 ¼ fāI; āJg: ð27Þ

Let us express the Poisson algebra in (16) as

fUnðτÞ; UmðτÞg ¼ 2Ωnm; ð28Þ

1This decomposition into positive and negative frequency
sectors is equivalent to choosing a complex structure; namely,
a linear symplectomorphism whose square is minus the identity,
which combined with the symplectic structure, provides an inner
product in that phase space.
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being Ωnm the elements of the block matrix

Ω ¼ lim
N→∞

⨁
N

n¼1

�
0 1

−1 0

�
: ð29Þ

Notice that the Poisson algebra (27) implies the closure
conditions [41]

i
2

X∞
I¼1

�
−uðIÞn ðτÞūðIÞm ðτÞ þ ūðIÞn ðτÞuðIÞm ðτÞ

�
¼ Ωnm: ð30Þ

Finally, given two basis with elements uðIÞðτÞ and wðIÞðτÞ,
respectively, they will be related by a Bogoliubov
transformation,

uðIÞðτÞ ¼
X∞
J¼1

αIJwðJÞðτÞ þ βIJw̄ðJÞðτÞ; ð31Þ

where αIJ and βIJ are the so-called Bogoliubov coeffi-
cients. They can be expressed in terms of the components
of the two solutions as

αIJ ¼ hwðJÞðτÞ;uðIÞðτÞi

¼ i
2

X∞
n¼1

wϕ̄ðJÞ
n ðτÞuπðIÞn ðτÞ − wπ̄ðJÞn ðτÞuϕðIÞ

n ðτÞ;

βIJ ¼ −hw̄ðJÞðτÞ;uðIÞðτÞi

¼ −
i
2

X∞
n¼1

wϕðJÞ
n ðτÞuπðIÞn ðτÞ − wπðJÞn ðτÞuϕðIÞ

n ðτÞ: ð32Þ

Conversely, the inverse relation to Eq. (31) is given by

wðIÞðτÞ ¼
X∞
J¼1

ᾱJIuðJÞðτÞ − βJIūðJÞðτÞ: ð33Þ

They satisfy several conditions. From the normalization
conditions of the basis ðuðIÞ; ūðIÞÞ, we obtain

X∞
K¼1

αIKᾱJK − βIK β̄JK ¼ δIJ; ð34Þ

X∞
K¼1

αIKβJK − βIKαJK ¼ 0: ð35Þ

From the normalization conditions of the basis ðwðIÞ; w̄ðIÞÞ,
we get

X∞
K¼1

ᾱKIαKJ − βKIβ̄KJ ¼ δIJ; ð36Þ

X∞
K¼1

ᾱKIβKJ − βKIᾱKJ ¼ 0: ð37Þ

Moreover, if b̄I and bI are coefficients of the expansion
of a given solution in another basis, that we represent as
wðIÞðτÞ, then

bI ¼
X∞
J¼1

αJIaJ þ β̄JIāJ; ð38Þ

or equivalently,

aI ¼
X∞
J¼1

ᾱIJbJ − β̄IJb̄J: ð39Þ

In summary, the field ϕðτ; ξÞ and its momentum πðτ; ξÞ at
any time can be written as in Eq. (13), but replacing the
Fourier modes ϕn and πn by

ϕnðτÞ ¼
X∞
I¼1

aIu
ðIÞ
2n−1ðτÞ þ āIū

ðIÞ
2n−1ðτÞ;

πnðτÞ ¼
X∞
I¼1

aIu
ðIÞ
2n ðτÞ þ āIū

ðIÞ
2n ðτÞ; ð40Þ

As a final remark, let us introduce some special set of
modes specially suited for the kind of trajectories that we
will consider in this work. First of all, since we assume that
the plates are stationary in the past, before a given time τi at
which the motion of the boundaries begins, there is a
natural basis (the in basis) of orthonormal complex sol-
utions given by the solutions to the equations with initial
conditions,

uð1Þðτ0Þ ¼
�

1ffiffiffiffiffiffi
ω1

p ;−i
ffiffiffiffiffiffi
ω1

p
; 0; 0;…

�
;

uð2Þðτ0Þ ¼
�
0; 0;

1ffiffiffiffiffiffi
ω2

p ;−i
ffiffiffiffiffiffi
ω2

p
; 0; 0;…

�
;

..

.

uðIÞðτ0Þ ¼
�
0; 0;…;

1ffiffiffiffiffi
ωI

p ;−i
ffiffiffiffiffi
ωI

p
; 0; 0;…

�
;

..

. ð41Þ

and their complex conjugate, where ω1 ¼ π, ω2 ¼ 2π, …
are frequencies of the modes n ¼ 1; 2;…, respectively.
Notice that τ0 < τi as our working assumption. This set of
modes corresponds to standard plane waves in the past
region where the boundaries remain at rest. We will use
them later in order to perform a standard quantization of the
theory as we do in flat spacetime.
In the far future, the plates become at rest again at some

given time τf. Hence, we can also introduce a second basis
of modes representing plane waves in the far future region.
These modes are called out modes, and they are those
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defined by the initial conditions that have the same
functional form as in Eq. (41). However, notice that
now these initial conditions are given at times after the
motion has stopped τ0 > τf. Although it might seem on
first sight that these modes are equal to the in modes once
we evolve them throughout all the spacetime and obtain
their explicit τ-dependence, it is not the case due to the
nontrivial evolution that the modes undergo in the time
interval τ∈ ðτi; τfÞ.

IV. QUANTUM THEORY

This section is devoted to the quantization of the classical
theory presented in the previous section. We will first argue
how it is possible to associate a Fock space (and hence a
vacuum) with a given set of modes, and how observables
can be computed in such framework, providing explicit
expressions in terms of the classical modes for some of the
most relevant observables. We will illustrate how to
compute the particle creation due to the moving bounda-
ries. In fact, we will write down explicit expressions for all
the relevant observables (for different states of interest) in
terms of the Bogoliubov coefficients α and β relating the in
and out modes.
The quantization of a classical system is tantamount

to representing the classical canonical algebra (12) as an
algebra of operators acting on a Hilbert space. Actually, this
procedure allows us to represent only linear operators of the
theory. To represent nonlinear operators (evaluated at the
coincident spacetime points) we need to deal with renorm-
alization issues. Although we will consider product of
linear operators, i.e. n-point functions, we will avoid the
coincidence limit.
In the case at hand we want to represent the classical

algebra associated with the real scalar field; namely,

½ϕ̂ðτ; ξÞ; π̂ϕðτ; ξ̃Þ� ¼ iδðξ − ξ̃ÞÎ; ð42Þ

with Î the identity operator. Considering the Fourier
expansion in Eq. (13), the above commutation relations
yield

½ϕ̂nðτÞ; π̂mðτÞ� ¼ 2iδnmÎ: ð43Þ

Hence, if we encode the field and momentum operators
in the vector ÛðτÞ, and given any orthonormal basis of
positive frequency complex solutions ðuðIÞ; ūðIÞÞ, the cre-
ation and annihilation operators are easily obtained from

âI ¼ huðIÞðτÞ; ÛðτÞi; â†I ¼ −hūðIÞðτÞ; ÛðτÞi: ð44Þ

One can then straightforwardly seen that the commutation
relations (43) imply

½âI; â†J� ¼ δIJÎ; ½âI; âJ� ¼ 0 ¼ ½a†I ; a†J�; ð45Þ

for all I, J. The vacuum state is then defined as the one
which is annihilated by all the annihilation operators;
namely,

âIj0i ¼ 0; I ¼ 1; 2;…: ð46Þ

Interestingly, in this canonical framework, we can express
ϕ̂ðτ; ξÞ and π̂ϕðτ; ξÞ in terms of âI and â†I by means of the
classical expressions (13) and (40), just promoting the
annihilation and creation variables to quantum operators.
The basic observables in the quantum theory are the

n-point functions as we have already advanced. They are
the expectation values on a state ρ̂ of products of configu-
ration and momentum variables evaluated at different
positions and times. Actually, using the Hamilton equations
that relates configuration and momenta, one can obtain any
of them by taking time and spatial derivatives of the n-point
function,

Gρðτ1; ξ1;…; τn; ξnÞ ¼ Trðρ̂ ϕ̂ðτ1; ξ1Þ � � � ϕ̂ðτn; ξnÞÞ: ð47Þ

At the end of the day, after Fourier expansion, this n-point
function can be computed out of expectation values of
products of the creation and annihilation variables on the
state ρ̂. Below, we will discuss some particular states of
special interest. In all cases, we focus our attention on
boundaries at rest in the asymptotic past and future. Hence,
the set of modes introduced at the end of the previous
section can be used to define two different quantizations
and hence two different vacua, they are called the in and
out vacua. The former is the vacuum that an inertial
observer at early times, before the motion of the boundaries
starts, would probe. The second is the one associated with
inertial observers at late times, i.e. after the motion of the
boundaries stops. Hence, our main aim is to choose the
in-quantization, as well as a suitable state there (which
could be the vacuum or not) and compare it with the out-
quantization, i.e., with the out-vacuum. This will tell us the
amount of particles in the final state. We will denote the
in-vacuum as j0ini and the out-vacuum as j0outi. They will
be annihilated by the âI and the b̂I operators, respectively,
i.e. âIj0ini ¼ 0 and b̂Ij0outi ¼ 0. The relation among the
operators a and b is given by Eqs. (38) and (39).
Among the set of possible states that we could consider,

we will focus on the so-called Gaussian states. These states
are entirely characterized by their 1 and 2-point functions
[42,43]. They can be regarded as Gaussian probability
distributions. These states display many interesting proper-
ties, like for instance, the preservation of a Gaussian state
under time evolution if the Hamiltonian is, at most,
quadratic in the creation and annihilation operators (as it
is the case for us). Furthermore, many of the most relevant
states belong to this category; vacuum, squeezed, coherent
and thermal states.
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We will now compute the most relevant observables
that capture particle production due to the motion of the
boundaries once they become at rest in the future. We will
take any of the previous Gaussian states as initial state.
The two independent quadratic observables that are more
relevant for our purposes are

Ôð1Þ
IJ ¼ b̂Ib̂J; Ôð2Þ

IJ ¼ b̂†I b̂J; ð48Þ

with their expectation values computed as

hÔð1Þ
IJ i ¼ Tr½ρ̂b̂Ib̂J�; hÔð2Þ

IJ i ¼ Tr½ρ̂b̂†I b̂J�; ð49Þ

in some state ρ̂. All the other quadratic operators are related
to these ones through hermitian conjugation or directly
from the canonical commutation relations. We also notice
that knowing these expectation values is equivalent to
knowing the 2-point function as introduced in (47). The

diagonal part of hÔð2Þ
II i (no sum over I) is specially relevant

since it corresponds to the number of produced particles on
the mode labeled by I.

A. Vacuum state

For linear field theories in the vacuum state ρ̂vac ¼
j0inih0inj, the moving boundaries create particles in pairs.
Hence, only even powers of products of annihilation and
creation variables will contribute to the n-point functions.
As an example, we compute the simplest nontrivial expect-
ation values, encapsulated in Eq. (49). One can easily verify
that they are given by

hÔð1Þ
IJ ivac ¼

X∞
K¼1

αKI β̄KJ; ð50Þ

hÔð2Þ
IJ ivac ¼

X∞
K¼1

βKI β̄KJ: ð51Þ

The diagonal part of this expectation value, namely I ¼ J,
can be identified with the number of particles in the mode I,
as we have already advanced. It acquires the standard
expression for particle production; a sum of the squared
modulus of the β-coefficients,

hN̂Iivac ¼
X∞
K¼1

jβIKj2: ð52Þ

B. Thermal state

Another important family of states are those of thermal
equilibrium at a finite temperature T (in natural units).
For these states the particle production due to the DCE is
known to be enhanced [14]. However, the enhancement is
basically because the DCE acts as an amplifier, in the sense

that if there is an already existing number of particles, the
final number of particles grows linearly with the initial
number. For thermal states, which are states that lack
quantum correlations and behave classically, the particle
creation departs from the spontaneous particle creation in
vacuum. In that sense, it is hard to determine whether the
resulting number of particles has a purely quantum origin.
Let us particularize this discussion to our setup.
Consider that, for τ < τi, both mirrors are at rest and

we prepare the field in a thermal state at a temperature T.
As the distance between the mirrors is finite, the mode
spectrum will be discrete and we will be able to describe
such state in terms of a density matrix of the Gibbs
type, i.e.,

ρ̂T ¼ Z−1 expf−Ĥ=Tg ð53Þ

with Z ¼ Tr½exp f−Ĥ=Tg� being the partition function and
Ĥ the Hamiltonian of the free field. We recall that the
Hamiltonian is time independent before the motion of the
boundaries starts. Note that it is not possible in general
for infinite volume systems to write down Gibbs states, as
the partition function may not be well-defined since the
Hamiltonian is not of trace class. In this case, another
approach must be taken to represent the notion of a thermal
state, for instance introducing the Kubo-Martin-Schwinger
(KMS) conditions (see for instance Chapter 22 of [44]).
However, in our case since the spatial direction is bounded
because of the mirrors, the Hamiltonian is of trace class and
we can use interchangeably thermal and Gibbs states, and
the KMS condition is also obeyed.
We can expand the Gibbs density matrix ρ̂T in Fock

states of the field at τ < τi, associated with the initial modes
given by (41), as we have discussed before. The two-point
functions of the operators annihilating the in vacuum
characterize this thermal state since

tr½ρ̂Tâ†I âJ� ¼
δIJ

eEI=T − 1
: ð54Þ

Now, for τ > τi the boundaries start to move in such a way
that system will no longer remain at thermal equilibrium at
very late times. In order to see this we proceed as before,
namely, we compute the number of particles that an
asymptotic observer would detect at late times. This is
given by the expression

hN̂IiT ¼ tr½ρ̂Tb̂†I b̂I�; ð55Þ
that we can express in terms of the α and β coefficients as

hN̂IiT ¼
X
J

jβJIj2 þ
X
J

ðjαJIj2 þ jβJIj2Þ
1

eEJ=T − 1
. ð56Þ

This expression has the expected limit as T → 0 for an
initial vacuum state, i.e. it reduces to the one computed in
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Eq. (52). On the other hand, at high temperatures, the final
state will be nearly thermal as long as jαJIj2 ∼ δIJ and
jβJIj2 ≪ 1. This is what we observe in our numerical
simulations (see next section) as long as the amplitudes ϵ1
and ϵ2 are small, and the duration of the bump function (59)
is short enough. However, we have probed configurations
where the mirrors can actually induce a strong mode-
mixing and particle production in the final state such that
some modes will not follow a thermal distribution, even in
the limit of very large temperatures.

V. SOLVING THE DYNAMICS:
NUMERICAL TOOLS

In this section we will sketch the numerical method that
we use to solve the dynamics of the system and compute
observables. We will then apply them to some particular
configurations of the system that have been considered
before in the literature [45,46], showing that our findings
are in very good agreement with the results reported there.
For the sake of completeness and comparison, we present
the method that is used in those references in Appendix A.
The method that we adopt is based on finite differences.
In the general case, all the modes are coupled among
themselves and a truncation to consider a finite number
of modes is required to solve the equations numerically.
We optimize this approach by performing a Richardson
extrapolation to the infinite tower of modes. Both of the

approaches lead to results that are in excellent agreement,
although the uncertainty of the finite difference method
approach combined with the Richardson extrapolation can
be kept under control in an easier way.
The adaptive finite difference methods that we use to

solve Eqs. (17) and (18) are similar to the ones presented
in [47–50]. We are solving the equations with the initial
conditions introduced in Eq. (41). However, there are some
differences that are worth remarking. First of all, we adopt
an explicit embedded Prince-Dormand (8,9) method of the
GNU scientific library, which belongs to the family of the
Runge-Kutta methods. These algorithms carry two types of
errors (the absolute and the relative ones) whose value can
be specified. In our simulations we set the absolute error to
be between 10−10 and 10−12 and the relative error to zero.
Besides, we compute our solutions for N ¼ 128, N ¼ 256
and N ¼ 512 modes, and extrapolate to the limit N → ∞
adopting a Richardson extrapolation. It allowed us to check
that our methods have a good convergence in that asymp-
totic limit.
Moreover, in order to test the accuracy of each run with

a fixed number of modes N, we compute the basis of
solutions uðIÞðτÞ with initial data given in Eq. (41), and
compute at all times the inner products in Eq. (23) as well
as the closure conditions in Eq. (30). To track the errors
induced only by the integration of the truncated set of
equations, we compute the following error indicators:

Δð1ÞðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN
I;J¼1

	huðIÞðτÞ;uðJÞðτÞi − δIJ


2

vuut ;

Δð2ÞðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN
n;m¼1

 
i
2

X∞
I¼1

�
−uðIÞn ðτÞūðIÞm ðτÞ þ ūðIÞn ðτÞuðIÞm ðτÞ

�
− Ωnm

!
2

vuut : ð57Þ

Below we will provide precise numbers for them.
Let us now consider some concrete examples. In

particular, we will assume that the boundaries follow the
simple damped oscillatory trajectories,

gðtÞ ¼ 1þ ϵ1BðtÞðsinðqπtþ ϕÞ − sinðϕÞÞ;
fðtÞ ¼ ϵ2BðtÞ sinðqπtÞ; ð58Þ

in coordinates ðt; xÞ, where ϵ1 and ϵ2 control the amplitudes
of the oscillations of the boundaries, q is an integer that
controls their frequency, ϕ is a relative phase, and BðtÞ is
the bump function,

BðtÞ ¼
(

1
σð1− 1

ð1−ðt=Γ−1Þ2ÞÞ t∈ ð0; 2ΓÞ
0 t ∉ ð0; 2ΓÞ

; ð59Þ

with the parameters σ and Γ controlling the steepness and
duration of the bump function. This is a suitable function to
represent the motion in a finite interval of time t∈ ð0; 2ΓÞ
since the function identically vanishes for t ∉ ð0; 2ΓÞ and it
is C∞ everywhere. For simplicity, we report here only the
examples in which Γ ¼ 1, and hence the function BðtÞ will
be identically zero for t ≤ 0 and t ≥ 2. Thus, the dynamics
outside such interval is trivial. The other choices that we
have studied for which the trajectory looks qualitatively the
same have lead also to similar results.

A. One moving boundary: ϵ2 = 0

Let us start with the left boundary at rest by setting
ϵ2 ¼ 0, namely, fðtÞ ¼ 0. Besides, let us consider that the
other boundary oscillates with frequency given by q ¼ 10,
amplitude ϵ1 ¼ 1=40 and phase ϕ ¼ π. Moreover, in the
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bump function we set σ ¼ 1=10, namely, the boundary
oscillates with nearly constant amplitude in the interval
t∈ ½0; 2� several times, and remains at rest at gðtÞ ¼ 1 for
t ≤ 0 and t ≥ 2. We set the field in the natural static vacuum
state at times t ≤ 0. After the boundary becomes at rest
again at t ≥ 2, the system is not in the natural vacuum state
at late times. Actually, in Fig. 1 we show the modulus of
some of the Bogoliubov coefficients relating the in and out
states. We clearly see that the coefficients reach a maximum
value at concrete frequencies where resonances occur. For
instance, we see that for the solution uðIÞðτÞ, with I ¼ 1,
which amounts the solution exciting the mode n ¼ 1 in the
past, at late times, the Bogoliubov coefficients αIJ reach
local maxima (resonances) at frequencies IðpÞ ¼ p1qþ J,
with p1 being a natural number and q the integer control-
ling the frequency of oscillation of the boundary. In these
cases, the mode mixing becomes very efficient (this can be
seen as a beam splitter transformation). One can see that

this pattern is present for I ¼ 2; 3;…. For the βIJ, we see
that the maxima appear instead at IðpÞ ¼ p2q − J. This
implies that particles are created more efficiently in modes
satisfying that relation. This resonance structure has already
been discussed, for instance, in [14,51].

B. Two moving boundaries

We have also studied the case in which the two
boundaries move. Here, we set ϵ1 ¼ ϵ2 ¼ 1=40. We set
the frequencies of the boundaries q ¼ 10. For the bump
function we set σ ¼ 1=10. We start with the case ϕ ¼ π;
namely, the boundaries oscillate with opposite phases. One
can see that in this case L̇ ¼ 2ḟ. In Fig. 2 we see again a
resonance structure similar to the previous case, with only
one boundary moving. However, in this case, it is interest-
ing to note that jαIJj2 and jβIJj2 are negligible whenever
I þ J is odd. This is a new feature with respect to the
previous case. This is direct consequence of equations of

FIG. 1. Bogoliubov coefficients: Upper panel: we show the
modulus squared of the αIJ coefficient. Lower panel: we plot the
modulus squared of the βIJ coefficient. These plots correspond
to the trajectories given by Eqs. (58) and (59), with ϵ1 ¼ 1=40,
ϵ2 ¼ 0, q ¼ 10, ϕ ¼ π and σ ¼ 1=10.

FIG. 2. Bogoliubov coefficients: Upper panel: we plot the
modulus squared of the αIJ coefficient. Lower panel: we show the
modulus squared of the βIJ coefficient. These plots correspond to
the trajectories given by Eqs. (58) and (59), with ϵ1 ¼ ϵ2 ¼ 1=40,
q ¼ 10, ϕ ¼ π and σ ¼ 1=10.
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motion (17) and (18). Concretely, by direct inspection,
one can show that the even and the odd modes decouple
as L̇ → 2ḟ.
We have also studied the case in which the two

boundaries oscillate in phase, namely, ϕ ¼ 0. In this case,
L̇ ¼ 0. The result is depicted in Fig. 3. We appreciate also a
resonance structure in both the jαIJj2 and the jβIJj2
coefficients. In this case, the particle production is quanti-
tatively smaller than in the two previous cases. One can see,
for instance, that the diagonal coefficients jαIIj2 ≃ 1, while
the off-diagonal coefficients are bounded by jαIJj2 ≲ 1=10,
when I ≠ J, decaying fast to zero as jI − Jj increases.

C. Particle production for a thermal state

We have also studied the effects of mode mixing and
particle production on initially populated states following
a thermal distribution with temperature T, as defined in
Eq. (53). For the trajectories already considered, we have

computed the particle number hN̂IiT once the mirrors
become at rest at late times. In Fig. 4 we show this
observable for two different configurations of the mirrors
and several initial temperatures. In these cases, despite most
of the infrared modes remain almost in a thermal state, there
are (anti)resonant modes with less occupation number,
regardless of the value of the initial temperature. This is to
be compared with what occurs with high-frequency modes;
for those modes we see that their population is higher
than in a thermal state, but the spectrum still exhibits
some (anti)resonant structure for some modes that are less
populated than what a naive interpolation taking their
neighbors as data would predict. This phenomenon can
be explained by looking at the nonobvious behavior of the
Bogoliubov coefficients. In general, we observe that the
mode mixing and the particle creation of the (anti)resonant
modes, i.e. I ¼ rq with r a positive integer, conspire in
such a way that the particle number in those modes I do not

FIG. 3. Bogoliubov coefficients: Upper panel: we show the
modulus squared of the αIJ coefficient. Lower panel: we plot the
modulus squared of the βIJ coefficient. These plots correspond to
the trajectories given by Eqs. (58) and (59), with ϵ1 ¼ ϵ2 ¼ 1=40,
q ¼ 10, ϕ ¼ 0 and σ ¼ 1=10.

FIG. 4. Particle number: We show the particle number hN̂IiT
for an initial thermal state with different temperatures, and the
simulation corresponding to the trajectories given by Eqs. (58)
and (59), with q ¼ 10, and σ ¼ 1=10. Upper panel: here we set
ϵ1 ¼ 1=40, ϵ2 ¼ 0, and ϕ ¼ π. Lower panel: here we set
ϵ1 ¼ ϵ2 ¼ 1=40, and ϕ ¼ π.

ALBERTO GARCÍA MARTÍN-CARO et al. PHYS. REV. D 110, 025007 (2024)

025007-10



follow a nearly thermal distribution. For instance, let us
consider the resonant mode I ¼ 10. In Fig. 5, we see that
for I ≠ 10 and I ∼ 10, and J ≤ I, either jαIJj2 or jβIJj2 are
always one order of magnitude larger than those coeffi-
cients for I ¼ 10, the (anti)resonant mode. We have seen
that this behavior is general for all the other (anti)resonant
modes I ¼ 20; 30;… This particular behavior of the
Bogoliubov coefficients of the (anti)resonant modes is
the responsible for the particle number to be below the
naive expectation. In order to confirm that this is the case,
we have carried out simulations where the cavities oscillate
away from resonant frequencies, i.e. q not being an integer.
Actually, the less resonant cases are those in which q
is a semi-integer. Concretely, we have analyzed the cases
q ¼ 2.5, q ¼ 4.5 and q ¼ 10.5. Although in these cases we
still observe a strong mode mixing, it does not manifest in
the occupation number of modes close to the frequency of
oscillation since they remain close to their thermal state
value. The UV modes behave in a similar way; occupation

number increases considerably (they “warm up”). Hence, in
the case of nonresonant frequencies of the cavities, the
mode mixing is not as efficient to cool down the infrared
modes as in the resonant cases.
We also want to note that the spontaneous creation of

particles (T ¼ 0) remains several orders of magnitude
below the occupation number of the (anti)resonant modes,
and therefore its contribution to the total particle production
is negligible. As a final comment, the configuration of the
mirrors with ϵ1 ¼ ϵ2 ¼ 1=40, q ¼ 10, ϕ ¼ 0 and σ ¼ 1=10
does not show such a strong mode mixing, and the
Bogoliubov coefficients behave nearly as jαJIj2 ∼ δIJ and
jβJIj2 ≪ 1 (see Fig. 3).

D. Error estimation

As a final remark, we analyze the accuracy of our
numerical simulations. The strategy we adopt here is the

FIG. 5. Bogoliubov coefficients: We show the Bogoliubov
coefficients for the modes I ¼ 9, 10, 11 for the simulation
corresponding to the trajectories given by Eqs. (58) and (59),
with q ¼ 10, σ ¼ 1=10, ϵ1 ¼ ϵ2 ¼ 1=40, and ϕ ¼ π. Upper
panel: α-coefficient. Lower panel: β-coefficient.

FIG. 6. Error indicators in Eq. (57) for the simulation corre-
sponding to N ¼ 256 and for the configuration of the mirrors
studied in Sec. VA. Upper panel: numerical values of the
indicator Δð1Þ. Lower panel: numerical values of the indicator
Δð2Þ. The error does not increase for τ > 2 since all the nontrivial
dynamics occurs for τ∈ ð0; 2Þ.
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following. First, we compute the basis of complex solutions
uðIÞðτÞ at all times τ for the truncated theory, i.e. we
consider a finite number of modes N that is sufficiently
large. Then, we compute the error indicators introduced in
Eq. (57) at all times. In Fig. 6 we show the results for the
simulation carried out in Sec. VA, namely, the case in
which one of the boundaries is at rest in coordinates ðt; xÞ.
The errors we obtain when computing these quantities
for simulations involving N ¼ 256 modes are always well-
below 10−9 at all times. This can be seen in Fig. 6.

VI. CONCLUSIONS

In summary, we have shown that a 1þ 1 field theory in
Minkowski spacetime confined in a cavity with moving
boundaries is in one to one relation with a 1þ 1 field theory
on a (flat) acoustic metric with static boundaries. To the best
of our knowledge, this analogy has not been suggested
before. Besides, we provide a detailed quantum theory of the
model, where the dynamics is solved numerically in non-
perturbative regimes, e.g. situations where the speed and
accelerations of the boundaries are relativistic. Our numeri-
cal tools allow to compute all the relevant observables at late
times, providing precise and accurate results. Among the
most interesting ones, we have found that, in the non-
perturbative regime and for initially populated thermal states,
there are configurations of the mirrors producing a strong
mode-mixing and particle production that makes some (anti)
resonant modes to lose particles in their occupation number,
reaching a final state that is not thermal, regardless of the
temperature of the initial state. This phenomenon has already
been reported in the literature, for instance, in Refs. [27,52],
as an effective cooling down of the infrared modes. Strictly
speaking, denoting this decreasing in the occupation num-
bers of some modes as an “effective cooling down” is not
accurate, since the final state is not thermal and has no
temperature associated with. However, we use this nomen-
clature for simplicity. Besides, it has only been discussed for
concrete configurations of the mirrors: (i) one of the mirrors
remaining static at all times; and (ii) for particular resonant
frequencies of oscillation of the cavity (corresponding to its
fundamental mode and the first overtone). Here, we show
that the effective cooling down reported in [27] appears in
higher resonant frequencies, and also when the two mirrors
oscillate in phase opposition.
The content of this paper provides the theoretical

grounds and the numerical methods that we have used
to obtain the results achieved in [34]. Here, we have applied
our tools to the case of oscillating boundaries, either only
one or both of them.
A comment regarding the relevance of the analysis

presented here for experimental proposals is in order. In
Ref. [53] it is proposed an experimental setting that probes
the dynamical Casimir effect induced on an electric field
propagating in a CPW by means of effective boundaries
due to SQUIDs that can oscillate with frequencies smaller

than ωp ¼ 37.3 GHz, which corresponds to the plasma
frequency of the SQUIDs. The phase field inside these
cavities fulfills Robin boundary conditions. However, in the
approximation in which δL ≪ L, or equivalently, for
modes satisfying λ ≫ δL, Robin boundary conditions are
well-approximated by Dirichlet boundary conditions, the
ones we consider in our manuscript. Hence, our results
straightforwardly apply whenever these approximations
are valid. Moreover, let us also note that the length of
the CPW in these experiments can be as large as
L0 ¼ 10.0 cm and the change in size can be as large as
δL ¼ 0.25 cm. In addition, the speed of propagation of the
phase field (the time integral of the electric field) propa-
gating in the CPW is v ≃ 1010 ðcm=sÞ. With all this in mind,
one can easily see that the (driving) frequency of the
oscillation of the boundaries in our simulations will
correspond to ωd ¼ 31.4 GHz. This clearly implies
ωd ∼ ωp. Therefore, the configurations explored in this
manuscript are close but exceed the experimental capabil-
ities, that require ωd < ωp. One way out of this limitation is
to work with waveguides with smaller speeds of propaga-
tion v of the phase field, by one or two orders of magnitude,
where one could work with driving frequencies fulfilling
ωd < ωp. However we stress that our numerical tools can
still be used to analyze the experimental setups proposed in
the literature, e.g. the one in Ref. [53].
Finally, regarding future directions of work, we are

currently working on extending our methods to other boun-
dary conditions, namely Neumann boundary conditions or
even the most general Robin boundary conditions. They are
specially relevant for the waveguides systems that we have
discussed above. It will be also interesting to explore
geometries of the boundaries that are different from the ones
presented in the Appendix B (which are the ones for a
parallelepiped) for example, those of a cylinder (which are
relevant for somewave guides) or a sphere. Another direction
that is worth exploring is the study of the entanglement
generated in the process (in the lines of Ref. [54], specially
for the resonant trajectories. In fact, it would be particularly
interesting to study the resilience of the entanglement
generated against thermal noise in the system, as well as
other aspects concerning the thermodynamical properties of
the quantum vacuum [55]. Finally, we plan to investigate
possible cooling protocols for the infrared sector of the
system, something that could be useful to enhance some of
the quantum aspects of the phenomenon.
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APPENDIX A: CONFORMAL
TRANSFORMATION METHOD

Let us introduce the so-called conformal transformation
method in which we reduce the problem to solving Moore’s
equations [10]. This can be reduced to an algebraic problem
of finding the roots of some equations, and hence it is
possible to solve the dynamics in a simple way.
The approach that we will describe here to solve the

system

ð∂2t − ∂
2
xÞϕðt; xÞ ¼ 0;

ϕðt; fðtÞÞ ¼ ϕðt; gðtÞÞ ¼ 0; ðA1Þ

is based on a conformal transformation to a new set of
coordinates ðs; wÞ:

sþ w ¼ Gðtþ xÞ; s − w ¼ Fðt − xÞ ðA2Þ

which preserves the form of the equation of motion for the
scalar field (A1) up to a conformal factor,

ð∂2t − ∂
2
xÞϕ ¼ F0G0ð∂2s − ∂

2
wÞϕ ¼ 0; ðA3Þ

with F0; G0 ≠ 0, i.e., both F and G need to be monotonic
functions on their argument. We choose the functions G
and F so that, in the new coordinates, the Dirichlet
boundary conditions become trivial, i.e., independent of
the new time coordinate:

ϕðt; fðtÞÞ ¼ 0 ¼ ϕðs; w ¼ 0Þ;
ϕðt; gðtÞÞ ¼ 0 ¼ ϕðs; w ¼ 1Þ: ðA4Þ

Such conditions will be satisfied if and only if,

wðt; fðtÞÞ≡ 1

2
½Gðtþ fðtÞÞ − Fðt − fðtÞÞ� ¼ 0; ðA5Þ

wðt; gðtÞÞ≡ 1

2
½Gðtþ gðtÞÞ − Fðt − gðtÞÞ� ¼ 1; ðA6Þ

for all t. The previous equations, also known as (general-
ized) Moore’s equations [10], allow for the explicit deter-
mination of the functions G and F once the trajectories
of the mirrors are known. Also, for time-independent
Dirichlet boundary conditions, the Klein-Gordon equation
is easily solved using the new coordinates. Hence, a
complete basis set of solutions for the problem will be
given by uIðx; tÞ ¼ δInψnðt; xÞ, where

ψnðt; xÞ ¼
iffiffiffiffiffiffiffiffi
4πn

p ½e−iπnGðtþxÞ − e−iπnFðt−xÞ�: ðA7Þ

Indeed, such modes satisfy both the field equation and the
boundary conditions.
Notice that although the coordinates ðτ; ξÞ introduced in

Sec. II also trivialize the boundary conditions, they do not
preserve the structure of the equations of motion up to a
conformal factor. In that sense, the change of coordinates
done here is different. Also, finding the change of coor-
dinates in this case is tantamount to solving the classical
dynamics, whereas in the ðτ; ξÞ the dynamical equations of
motion are still highly convoluted.
The geometrical derivation of GðzÞ and FðzÞ is based

on tracing back along a sequence of null lines from each
point z ¼ xþ t or z ¼ x − t until a null line intersects the
time axis in the static region ½−∞;Λf� (for G) or ½−∞; 0�
(for F) where these functions can be evaluated directly
(see Refs. [45,46,56,57]). For example, as we illustrate in
Fig. 7, to determine Gðz ¼ xþ tÞ at a given point ðx0; t0Þ,
we trace back a ray until it intersects the right mirror at the
point ðt1; gðt1ÞÞ. The value of t1 can be obtained since the
light cone coordinate u ¼ xþ t is constant along the path
of left-moving light rays, so that

x0 þ t0 ¼ t1 þ gðt1Þ; ðA8Þ

FIG. 7. Null ray propagation inside a cavity with oscillating
walls.
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and we may solve for t1. If the intersection does not occur in
the static region, we must determine the next reflection
point, this time with the left mirror. Again, as v ¼ x − t is
constant along right-moving light rays, we may obtain t2
from this property since

t1 − gðt1Þ ¼ t2 − fðt2Þ: ðA9Þ

The process is repeated until the static region is reached.
Then, we may reconstruct the function GðzÞ in the
following way:
(1) Let z ¼ x0 þ t0. Then, GðzÞ ¼ Gðt1 þ gðt1ÞÞ.
(2) From the second one of Moore’s equations, we have

Gðt1 þ gðt1ÞÞ ¼ Fðt1 − gðt1ÞÞ þ 2 together with
Fðt1 − gðt1ÞÞ þ 2 ¼ Fðt2 − fðt2ÞÞ þ 2.

(3) From the first Moore’s equation we have
GðzÞ ¼ Fðt2 − fðt2ÞÞ þ 2, as well as condition
Fðt2 − fðt2ÞÞ þ 2 ¼ Gðt2 þ fðt2ÞÞ þ 2.

(4) Define z ¼ fðt2Þ þ t2 and repeat the process until a
null line reflecting off the right mirror enters the F0s
static region ½−∞; 0� (case 1); or a null line reflecting
off the left one enters the G0s static region ½−∞;Λ�
(case 2).

(5) Every time there is a reflection off the right mirror,
the value of GðzÞ increases by 2. Thus GðzÞ will be
two times the number of reflections off the right
mirror plus the value of G evaluated in the region
½−∞;Λ� or that of F in ½−∞; 0�:

GðzÞ¼2nþtf
Λ
;

tf¼
(
z−2½Pn

i¼1gðt2i−1Þ−
P

n−1
i¼0 fðt2iÞ�; ðcase1Þ;

z−2
�P

n
i¼1gðt2i−1Þ−

P
n
i¼0fðt2iÞ

�
; ðcase2Þ:

ðA10Þ

The main limitations of this method appear when the
mirrors undergo sharp accelerations or when the mirrors
reach speeds close to the speed of light. In these cases, we
found numerical difficulties finding the intersections
between light rays and the mirrors. We hence loss consid-
erable precision. This is also the case if one tries to explore
the ultraviolet limit of the model. Besides, we can only
apply this method to a massless field in 1þ 1 dimensions.
In other words, we do not know how to extend it to the
massive or higher-dimensional cases. The advantage of this
method, on the other hand, relies in the simplicity. Our
numerical simulations show that it is much faster than the
finite differences method discussed in the main text.
Besides, this method is very useful for analytical or
semianalytical calculations that involve the functions G
and F, and its derivatives, as long as they are of low order.
Once the expressions for the functions F and G have

been obtained, we are able to calculate any observable of
the system. For this purpose, it is very useful to give the

Bogoliubov coefficients. Indeed, let us start with a static
pair of mirrors separated a distance Λi, and at t ≤ ti ¼ 0
both mirrors start to move with trajectories fðtÞ and gðtÞ.
At this time, there is a well-defined basis of initial states

uI
iðx; tÞ ¼ δInψ

ðiÞ
n ðx; tÞ, with

ψ ðiÞ
n ðx; tÞ ¼ 1ffiffiffiffiffiffi

πn
p sin

�
nπ
Λi

x

�
e−i

nπ
Λi
t

¼ iffiffiffiffiffiffiffiffi
4πn

p
�
e−i

nπ
Λi
ðtþxÞ − e−i

nπ
Λi
ðt−xÞ�: ðA11Þ

On the other hand, at times t ≥ tf ¼ T, both mirrors
come to rest at their final positions, fðtÞ¼0 and gðtÞ ¼ Λf.
For t∈ ½T;∞Þ, there is a well-defined vacuum state,
associated to a set of modes given by uI

fðx; tÞ ¼
δInψ

ðfÞ
n ðx; tÞ, with

ψ ðfÞ
n ðx; tÞ ¼ 1ffiffiffiffiffiffi

πn
p sin

�
nπ
Λf

x
�
e
−inπΛft

¼ iffiffiffiffiffiffiffiffi
4πn

p
�
e
−inπΛfðtþxÞ − e

−inπΛfðt−xÞ
�
: ðA12Þ

As we have seen, in the interval ½0; T�, the elements of the
basis uI

iðx; tÞ evolve nontrivially due to the time-dependent
boundary conditions. The evolved modes are written in
terms of the functions GðzÞ and FðzÞ as in Eq. (A7). The
nontrivial evolution of these field modes implies that the
initial vacuum state may also evolve into a state which
differs from the vacuum state in the final, static region. In
that case, we say that there have been a particle creation
process. The number of particles created in the final state
will be a function of the Bogoliubov coefficients α and β
that relate the original, evolved modes to the final vacuum
modes. If we express

ψ ðiÞ
m ¼

X
n

αnmψ
ðfÞ
n − βnmψ̄

ðfÞ
n ; ðA13Þ

these Bogoliubov coefficients are defined by means

of the Klein-Gordon products αnm ¼ hψ ðfÞ
n ;ψ ðiÞ

m i and βnm ¼
hψ̄ ðfÞ

n ;ψ ðiÞ
m i; namely,

αnm ¼ −i
Z

gðtÞ

fðtÞ

�
ψ̄ ðfÞ
n ∂tψ

ðiÞ
m − ψ ðiÞ

m ∂tψ̄
ðfÞ
n

�
dx;

βnm ¼ −i
Z

gðtÞ

fðtÞ

�
ψ ðfÞ
n ∂tψ

ðiÞ
m − ψ ðiÞ

m ∂tψ
ðfÞ
n

�
dx: ðA14Þ

The integrals in (A14) are time independent (up to an
irrelevant phase),2 so we may choose to calculate them

2Due to the fact that the Klein-Gordon product between
solutions is time independent.
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at t ¼ T. Let us define ψ̃n ¼ iðe−inπG þ e−inπFÞ= ffiffiffiffiffiffiffiffi
4πn

p
. Then, we have ∂tψ

ðfÞ
n ¼ ∂xψ̃n and write

αnm ¼ −i
Z

gðtÞ

fðtÞ

�
ψ̄ ðfÞ
n ∂tψ

ðiÞ
m − ψ ðiÞ

m ∂x
¯̃ψn

�
dx ¼ −i

Z
gðtÞ

fðtÞ

�
ψ̄ ðfÞ
n ∂tψ

ðiÞ
m þ ∂xψ

ðiÞ
m ¯̃ψn

�
dx

¼ 1

2Λf

ffiffiffiffi
m
n

r Z
Λf

0

n
e
−iπ½mðtþxÞ

Λf
−nGðtþxÞ� þ e

−iπ½mðt−xÞ
Λf

−nFðt−xÞ�o
dx; ðA15Þ

βnm ¼ −i
Z

gðtÞ

fðtÞ

�
ψ ðfÞ
n ∂tψ

ðiÞ
m − ψ ðiÞ

m ∂xψ̃n

�
dx ¼ −i

Z
gðtÞ

fðtÞ

�
ψ ðfÞ
n ∂tψ

ðiÞ
m þ ∂xψ

ðiÞ
m ψ̃n

�
dx

¼ 1

2Λf

ffiffiffiffi
m
n

r Z
Λf

0

n
e
−iπ½mðtþxÞ

Λf
þnGðtþxÞ� þ e

−iπ½mðt−xÞ
Λf

þnFðt−xÞ�o
dx; ðA16Þ

where we have integrated by parts and used the boundary conditions. Defining the new variables u ¼ ðxþ tÞ=Λf and
v ¼ ðt − xÞ=Λf, we may rewrite these expressions as

αnm ¼ 1

2

ffiffiffiffi
m
n

r 
Z
t=Λfþ1

t=Λf

e−iπ½mu−nGðΛfuÞ�duþ
Z

t=Λf

t=Λf−1
e−iπ½mv−nFðΛfvÞ�dv

�
; ðA17Þ

βnm ¼ 1

2

ffiffiffiffi
m
n

r 
Z
t=Λfþ1

t=Λf

e−iπ½muþnGðΛfuÞ�duþ
Z

t=Λf

t=Λf−1
e−iπ½mvþnFðΛfvÞ�dv

�
: ðA18Þ

We should keep in mind that these expressions are valid
only for t ≥ T, namely, at times where both mirrors come
to rest at their final positions, fðtÞ ¼ 0 and gðtÞ ¼ Λf.
Besides, the coefficients will be trivial if and only if
GðuÞ ¼ u and FðvÞ ¼ v for all u and v.
We have checked that the Bogoliubov coefficients

obtained via the conformal transformation method agree
with those obtained solving Hamilton’s equations up to a
certain numerical accuracy for some simple trajectories.
Here, we show the first confirguration discussed in
Sec. V B. This is illustrated in Fig. 8 by comparing the
(squared) Bogoliubov β coefficients obtained from both
methods for a trajectory similar to Eq. (58), but with the
switching function BðtÞ being a simple Gaussian (instead of
compactly supported bump function that gives rise to some
numerical issues for the conformal method). An estimation
of the numerical error of the conformal method can be
obtained by computing how well Moore’s equations (A5)
and (A6) are satisfied throughout the evolution. We plot
such conditions in Fig. 9. The resulting Moore’s functions
FðzÞ and GðzÞ, with FðzÞ ¼ GðzÞ for this particular
configuration of the boundaries, present the characteristic
stairlike shape during the period of nontrivial acceleration
of the mirror, and again becomes trivial after the mirror
reaches the static phase. Although we have restricted our

analysis to the study of observables that do not require
renormalization, the conformal method is well-suited to
study semianalytically some of the observables that require
renormalization, for instance the components of the renor-
malized stress-energy tensor (RSET). Indeed, following
Fulling and Davies [58], we can write the components of
the RSET as

hT00i ¼ −½fGðtþ xÞ þ fFðt − xÞ� ¼ hT11i; ðA19Þ

hT01i ¼ fGðtþ xÞ − fFðt − xÞ ¼ hT10i; ðA20Þ

with

fG ¼ 1

24π

�
G000

G0 −
3

2

�
G00

G0

�
2

þ 1

2
π2ðG0Þ2

�
; ðA21Þ

fF ¼ 1

24π

�
F000

F0 −
3

2

�
F00

F0

�
2

þ 1

2
π2ðF0Þ2

�
: ðA22Þ

In Fig. 10 we plot the renormalized energy density
hT00ðt; x ¼ gðtÞÞi as a function of time. We clearly see
that the energy flux is peaked in the regions of large
acceleration of the mirror.
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APPENDIX B: MASSIVE 3 + 1 THEORY

Our analysis and codes can be straightforwardly extended
to the 3þ 1 massive scalar field theory inside a box with the
shape of a parallelepiped (see Fig. 11 for a representation).
More general geometries can also be considered since they are
relevant for some of the current experiments and constitute
ongoing work. Among the six boundaries that our system
displays, just two opposite boundaries of it will move. We
choose those boundaries to be orthogonal to the x̂ direction,
while the boundaries orthogonal to the directions ŷ and ẑ
are fixed.
The action that we will study now is

S ¼ −
1

2

Z
dt
Z

d3x
ffiffiffiffiffiffi
−η

p ðημν∂μϕ∂νϕþm2ϕ2Þ; ðB1Þ

leading to the equations of motion

1ffiffiffiffiffiffi−ηp ∂μð
ffiffiffiffiffiffi
−η

p
ημν∂νÞϕ −m2ϕ ¼ 0: ðB2Þ FIG. 10. Renormalized energy density at the right boundary

x ¼ gðtÞ and trajectory as a function of time.

FIG. 9. Accuracy of Moore’s equations throughout the evolu-
tion of the quantum field during the relevant period in which one
mirror is moving (upper panel) and resulting Moore function
(lower panel).

FIG. 8. Comparison of the spectral density jβIJj2 as obtained
from the conformal (upper panel) and canonical (lower panel)
methods.
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The range of the coordinates now is t∈R, x∈ ðfðtÞ;
gðtÞÞ for a given t, y∈ ð0; LyÞ and z∈ ð0; LzÞ. Now, we
have the following boundary conditions for the field:
ϕðt;fðtÞ;y;zÞ¼ϕðt;gðtÞ;y;zÞ¼ϕðt;x;0;zÞ¼ϕðt;x;Ly;zÞ¼
ϕðt;x;y;0Þ¼ϕðt;x;y;LzÞ¼0. Therefore, we still can apply
the coordinate transformation in Eq. (3) in the ðt; xÞ sector
and move to new coordinates ðτ; ξ; y; zÞ. As in the 1þ 1
case described above, we assume that fðtÞ ¼ 0 and
gðtÞ ¼ L0 when t → −∞. Hence, we will again measure
everything in units of L0, putting it to one. Repeating the
same change of coordinates that we introduced for the
(1þ 1)-dimensional setup in the ðt; xÞ coordinates we can
write the metric as the product of the metric from Eq. (4)
and two flat directions,

ds2 ¼ −ð1 − V2ðτ; ξÞÞdτ2 þ 2LðτÞVðτ; ξÞdτdξ
þ L2ðτÞdξ2 þ dy2 þ dz2: ðB3Þ

Now the Hamiltonian contains some additional terms
associated with the additional flat directions and the
nonzero mass,

HT ¼
Z
V
dV
�
N
2

π2ϕ
L

þ N
2L

ð∂ξϕÞ2 þ
�
ξ
L̇
L
þ ḟ
L

�
ð∂ξϕÞπϕ

þ ð∂yϕÞ2 þ ð∂zϕÞ2 þ
1

2
m2ϕ2

�
; ðB4Þ

where we have introduced the notation

Z
V
dV ¼

Z
Lz

0

dz
Z

Ly

0

dy
Z

1

0

dξ: ðB5Þ

They satisfy the Poisson brackets at equal times

fϕðτ; ξ; y; zÞ; πϕðτ; ξ̃; ỹ; z̃Þg ¼ δðξ − ξ̃Þδðy − ỹÞδðz − z̃Þ:
ðB6Þ

If we expand in normal modes,

ϕðτ; ξ; y; zÞ ¼
X
n

ϕnðτÞ sinðn1πξÞ

× sin

�
n2πy
Ly

�
sin

�
n3πz
Lz

�
;

πϕðτ; ξ; y; zÞ ¼
X
n

ðτÞπn sinðn1πξÞ

× sin

�
n2πy
Ly

�
sin

�
n3πz
Lz

�
; ðB7Þ

where n ¼ ðn1; n2; n3Þ, with ni ∈Nþ. This Fourier trans-
form and the canonical Poisson brackets amount to

fϕnðτÞ; πn0 ðτÞg ¼ 2δnn0 : ðB8Þ

One can easily write the Hamiltonian (B4) in terms of the
Fourier modes, and compute the Hamilton’s equations of
motion. In this case we get

ϕ̇n¼
1

L
πn−

L̇
2L

ϕnþ2
X
m1

ð1−δm1n1Þ
m1n1
m2

1−n21

×

�
ḟ
L
ðð−1Þm1þn1 −1Þþ L̇

L
ð−1Þm1þn1

�
ϕðm1;n2;n3Þ ðB9Þ

π̇n¼−
1

L

�
ðn1πÞ2þ

ðn2πÞ2
L2
y

þðn3πÞ2
L2
z

þm2

�
ϕn

þ L̇
2L

πnþ2
X
m1

ð1−δn1m1
Þ n1m1

m2
1−n21

×

�
ḟ
L
ðð−1Þn1þm1 −1Þþ L̇

L
ð−1Þn1þm1

�
πðm1;n2;n3Þ: ðB10Þ

It is interesting to note that there are not any modes with
vanishing momentum on the perpendicular directions to the
moving boundary, and hence all the created particles carry
momentum on those transverse directions.
The basis of orthonormal complex solutions to the

above equations of motion will be denoted by uðIÞðτÞ,
with I ¼ ðI1; I2; I3Þ. The inner product between two
elements of the basis will be now given by

huðIÞðτÞ;uðJÞðτÞi ¼ i
2

X
n

ϕ̄ðIÞ
n ðτÞπðJÞn ðτÞ − π̄ðIÞn ðτÞϕðJÞ

n ðτÞ:

ðB11Þ

Since the solutions are orthonormal, and given the pro-
perties of the inner product, they will again satisfy

FIG. 11. Pictorial representation of the setup we explain in the
text. Shaded in blue we display the two moving boundaries,
corresponding to the boundaries that have x̂ as their normal
direction.
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huðIÞðτÞ;uðJÞðτÞi ¼ δIJ, huðIÞðτÞ;ūðJÞðτÞi¼0 and hūðIÞðτÞ;
ūðJÞðτÞi ¼ −δIJ. The remain of the canonical analysis is
completely parallel to the one we have introduced in Sec. II.
One just needs to replace the indexes ðI; J;…Þ by ðI; J;…Þ
and ðn;m;…Þ by ðn;m;…Þ. We highlight that the con-
formal transformation method cannot be used to solve now

the problem (not even on the massless case). However,
the numerical solution in which the number of modes is
truncated and then extrapolated to an arbitrary number
of modes can still be used though the complexity
clearly increases due to the growth in the number of
coupled modes.

[1] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1984).

[2] N. Obadia and R. Parentani, Phys. Rev. D 64, 044019
(2001).

[3] J. Haro and E. Elizalde, J. Phys. A 41, 032002 (2008).
[4] D. Su, C. T. M. Ho, R. B. Mann, and T. C. Ralph, New J.

Phys. 19, 063017 (2017).
[5] W. Cong, E. Tjoa, and R. B. Mann, J. High Energy Phys. 06

(2019) 021; 07 (2019) 051(E).
[6] I. A. Reyes, Phys. Rev. Lett. 127, 051602 (2021).
[7] I. Akal, T. Kawamoto, S.-M. Ruan, T. Takayanagi, and Z.

Wei, J. High Energy Phys. 08 (2022) 296.
[8] P. Kumar, I. A. Reyes, and J. Wintergerst, Phys. Rev. D 109,

065010 (2024).
[9] K. A. Milton, The Casimir Effect (World Scientific,

Singapore, 2001).
[10] G. T. Moore, J. Math. Phys. (N.Y.) 11, 2679 (1970).
[11] M. Castagnino and R. Ferraro, Ann. Phys. (N.Y.) 154, 1

(1984).
[12] D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. A 59, 3049

(1999).
[13] A. M. Fedotov, Y. E. Lozovik, N. B. Narozhny, and A. N.

Petrosyan, Phys. Rev. A 74, 013806 (2006).
[14] M. Crocce, D. A. R. Dalvit, and F. D. Mazzitelli, Phys. Rev.

A 64, 013808 (2001).
[15] L. C. Celeri, F. Pascoal, and M. H. Y. Moussa, Classical

Quantum Gravity 26, 105014 (2009).
[16] M. P. E. Lock and I. Fuentes, New J. Phys. 19, 073005

(2017).
[17] L. C. Barbado, A. L. Báez-Camargo, and I. Fuentes, Eur.

Phys. J. C 80, 796 (2020).
[18] L. C. Barbado, A. L. Báez-Camargo, and I. Fuentes, Eur.

Phys. J. C 81, 953 (2021).
[19] N. Friis, D. E. Bruschi, J. Louko, and I. Fuentes, Phys. Rev.

D 85, 081701 (2012).
[20] P. M. Alsing and I. Fuentes, Classical Quantum Gravity 29,

224001 (2012).
[21] D. E. Bruschi, J. Louko, D. Faccio, and I. Fuentes, New J.

Phys. 15, 073052 (2013).
[22] J. Lindkvist, C. Sabín, I. Fuentes, A. Dragan, I.-M.

Svensson, P. Delsing, and G. Johansson, Phys. Rev. A
90, 052113 (2014).

[23] C. Sabín and G. Adesso, Phys. Rev. A 92, 042107
(2015).

[24] I. Romualdo, L. Hackl, and N. Yokomizo, Phys. Rev. D 100,
065022 (2019).

[25] S. Bosco, J. Lindkvist, and G. Johansson, Phys. Rev. A 100,
023817 (2019).

[26] N. F. Del Grosso, F. C. Lombardo, and P. I. Villar, Phys.
Rev. D 102, 125008 (2020).

[27] V. V. Dodonov, MDPI Phys. 2, 67 (2020).
[28] D. T. Alves, C. Farina, and E. R. Granhen, Phys. Rev. A 73,

063818 (2006).
[29] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori,

Phys. Rev. A 82, 052509 (2010).
[30] J. Doukas and J. Louko, Phys. Rev. D 91, 044010 (2015).
[31] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J.

Hakonen, Proc. Natl. Acad. Sci. U.S.A. 110, 4234 (2013).
[32] A. Agnesi, C. Braggio, G. Bressi, G. Carugno, G. Galeazzi,

F. Pirzio, G. Reali, G. Ruoso, and D. Zanello, J. Phys. A 41,
164024 (2008).

[33] W. Naylor, S. Matsuki, T. Nishimura, and Y. Kido, Phys.
Rev. A 80, 043835 (2009).

[34] A. García Martín-Caro, G. García-Moreno, J. Olmedo,
and J. M. Sánchez Velázquez, Phys. Rev. D 108,
L061701 (2023).

[35] C. Barcelo, S. Liberati, and M. Visser, Living Rev. Rela-
tivity 8, 12 (2005).

[36] R. L. Arnowitt, S. Deser, and C.W. Misner, in Gravitation:
An Introduction to Current Research, edited by L. Witten
(Wiley, New York, 1962).

[37] A. Calogeracos and G. Barton, Ann. Phys. (N.Y.) 238, 268
(1995).

[38] C. K. Law, Phys. Rev. A 49, 433 (1994).
[39] R. Schützhold, G. Plunien, and G. Soff, Phys. Rev. A 57,

2311 (1998).
[40] R. M. Wald, Quantum Field Theory in Curved Spacetime

and Black Hole Thermodynamics, Chicago Lectures in
Physics (University of Chicago Press, Chicago, IL, 1994).

[41] I. Agullo, J. Olmedo, and V. Sreenath, Phys. Rev. D 101,
123531 (2020).

[42] G. Adesso, S. Ragy, and A. R. Lee, Open Syst. Inf. Dyn. 21,
1440001 (2014).

[43] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (CRC Press, Boca Raton, 2017).

[44] F. Strocchi, Symmetry Breaking (Springer, New York,
2021), Vol. 643.

[45] L. Li and B.-Z. Li, Phys. Lett. A 300, 27 (2002).
[46] L. Ling and L. Bo-Zang, Chin. Phys. Lett. 19, 1061 (2002).
[47] M. Ruser, J. Opt. B 7, S100 (2005).

ALBERTO GARCÍA MARTÍN-CARO et al. PHYS. REV. D 110, 025007 (2024)

025007-18

https://doi.org/10.1103/PhysRevD.64.044019
https://doi.org/10.1103/PhysRevD.64.044019
https://doi.org/10.1088/1751-8113/41/3/032002
https://doi.org/10.1088/1367-2630/aa71d1
https://doi.org/10.1088/1367-2630/aa71d1
https://doi.org/10.1007/JHEP06(2019)021
https://doi.org/10.1007/JHEP06(2019)021
https://doi.org/10.1007/JHEP07(2019)051
https://doi.org/10.1103/PhysRevLett.127.051602
https://doi.org/10.1007/JHEP08(2022)296
https://doi.org/10.1103/PhysRevD.109.065010
https://doi.org/10.1103/PhysRevD.109.065010
https://doi.org/10.1063/1.1665432
https://doi.org/10.1016/0003-4916(84)90139-8
https://doi.org/10.1016/0003-4916(84)90139-8
https://doi.org/10.1103/PhysRevA.59.3049
https://doi.org/10.1103/PhysRevA.59.3049
https://doi.org/10.1103/PhysRevA.74.013806
https://doi.org/10.1103/PhysRevA.64.013808
https://doi.org/10.1103/PhysRevA.64.013808
https://doi.org/10.1088/0264-9381/26/10/105014
https://doi.org/10.1088/0264-9381/26/10/105014
https://doi.org/10.1088/1367-2630/aa7651
https://doi.org/10.1088/1367-2630/aa7651
https://doi.org/10.1140/epjc/s10052-020-8369-9
https://doi.org/10.1140/epjc/s10052-020-8369-9
https://doi.org/10.1140/epjc/s10052-021-09737-x
https://doi.org/10.1140/epjc/s10052-021-09737-x
https://doi.org/10.1103/PhysRevD.85.081701
https://doi.org/10.1103/PhysRevD.85.081701
https://doi.org/10.1088/0264-9381/29/22/224001
https://doi.org/10.1088/0264-9381/29/22/224001
https://doi.org/10.1088/1367-2630/15/7/073052
https://doi.org/10.1088/1367-2630/15/7/073052
https://doi.org/10.1103/PhysRevA.90.052113
https://doi.org/10.1103/PhysRevA.90.052113
https://doi.org/10.1103/PhysRevA.92.042107
https://doi.org/10.1103/PhysRevA.92.042107
https://doi.org/10.1103/PhysRevD.100.065022
https://doi.org/10.1103/PhysRevD.100.065022
https://doi.org/10.1103/PhysRevA.100.023817
https://doi.org/10.1103/PhysRevA.100.023817
https://doi.org/10.1103/PhysRevD.102.125008
https://doi.org/10.1103/PhysRevD.102.125008
https://doi.org/10.3390/physics2010007
https://doi.org/10.1103/PhysRevA.73.063818
https://doi.org/10.1103/PhysRevA.73.063818
https://doi.org/10.1103/PhysRevA.82.052509
https://doi.org/10.1103/PhysRevD.91.044010
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1088/1751-8113/41/16/164024
https://doi.org/10.1088/1751-8113/41/16/164024
https://doi.org/10.1103/PhysRevA.80.043835
https://doi.org/10.1103/PhysRevA.80.043835
https://doi.org/10.1103/PhysRevD.108.L061701
https://doi.org/10.1103/PhysRevD.108.L061701
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.1006/aphy.1995.1022
https://doi.org/10.1006/aphy.1995.1022
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.57.2311
https://doi.org/10.1103/PhysRevA.57.2311
https://doi.org/10.1103/PhysRevD.101.123531
https://doi.org/10.1103/PhysRevD.101.123531
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1016/S0375-9601(02)00674-6
https://doi.org/10.1088/0256-307X/19/8/310
https://doi.org/10.1088/1464-4266/7/3/014


[48] M. Ruser, J. Phys. A 39, 6711 (2006).
[49] M. Ruser, Phys. Rev. A 73, 043811 (2006).
[50] P. I. Villar and A. Soba, Phys. Rev. E 96, 013307

(2017).
[51] C. Sabín, D. E. Bruschi, M. Ahmadi, and I. Fuentes, New J.

Phys. 16, 085003 (2014).
[52] V. Dodonov, Phys. Lett. A 213, 219 (1996).
[53] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori,

Phys. Rev. A 82, 052509 (2010).

[54] G. de Oliveira and L. C. Céleri, Phys. Rev. A 109, 012807
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