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We present a general construction of a geometric notion of circuit complexity for Gaussian states (both
bosonic and fermionic) in terms of Riemannian geometry. We lay out general conditions that a Riemannian
metric function on the space of Gaussian states should satisfy in order for it to yield a physically reasonable
measure of complexity. This general formalism can naturally accommodate modifications to complexity
geometries that arise from cost functions that depend nontrivially on the instantaneous state and on the
direction on circuit space at each point. We explore these modifications and, as a particular case, we show
how to account for time-reversal symmetry breaking in measures of complexity, which is often natural from
an experimental (and thermodynamical) perspective, but is absent in commonly studied complexity
measures. This establishes a first step towards building a quantitative, geometric notion of complexity that
faithfully mimics what is experienced as “easy” or “hard” to implement in a lab from a physically motivated
point of view.
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I. INTRODUCTION

The notion of complexity quantifies the “hardness” of
performing a certain task, given some set amount of
relevant resources available. The concept originates in
computer science and information theory, where it refers
to the minimum cost (as measured by resources such as
memory usage or number of elementary operations) of a
given computation [1]. This notion is readily exportable to
quantum computing [2,3], where a natural measure of
complexity is provided by the so-called circuit complexity.
Given some fixed set of “simple” unitary transformations
(i.e., an elementary gate set), the circuit complexity of a
unitary Û is the minimum number of elementary gates
needed to build Û, and the circuit complexity of a state jψi
is the minimum number of elementary gates needed to
prepare jψi starting from some fiducial reference state jψ0i.
The focus on the cost associated with a given set of

transformations is the trademark of complexity, and is not
explicitly present in any other information measure. At a
practical level, this can be a rather useful tool in character-
izing one’s ability to perform information-processing tasks.
From a more foundational point of view, we now have also
come to understand that the physical limitations on how
information is processed and manipulated can actually play
an important role in fundamental aspects of physical

theories, which is why the notion of complexity has
appeared as a relevant concept in many areas of physics
extending far beyond quantum computing and quantum
information.
In many-body physics, complexity plays a central role in

understanding chaos and thermalization in closed quantum
systems [4–6], and it also serves as a powerful figure of
merit to characterize quantum phases of matter [7–9]. In
high energy physics, complexity has also been suggested as
an important element in establishing the regimes of validity
of quantum field theory in curved spacetimes, something
that has led to potential insights into the black hole
information loss problem and the nature of the black hole
interior in quantum gravity [10–15]. Finally, the concept of
complexity is also of great importance in the context of the
AdS/CFT correspondence, where a variety of different
geometric quantities of the bulk spacetime have been put
forward as potential candidates for the holographic dual of
the circuit complexity of the state on the boundary
conformal field theory (CFT) [16–21].
However, quantitatively characterizing complexity is a

very challenging task, since finding the optimal circuit that
implements a given unitary or prepares a given state is
highly nontrivial in general. In order to tackle this problem,
geometric methods of describing complexity have proven
to be very powerful. This has been made most concrete by
Nielsen’s geometric approach [22–24], which proposes to
reformulate circuit complexity fully in terms of differential
geometry. The idea is that by equipping the space of unitary
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operators with some notion of distance, the complexity of a
given unitary can be pictured as the length of a geodesic
connecting the identity operator to the unitary of interest.
Nielsen’s approach has recently been shown to be capable
of providing lower bounds to the complexity of typical
unitaries that improve upon previously known bounds [25].
It has also been very fruitful in establishing concrete
notions of complexity in quantum field theory both for
free/weakly interacting fields [26–29] and for CFTs
[30,31], which guides much of the recent work in holo-
graphic complexity in AdS/CFT (for a recent review, see
Ref. [32]). Another proposal for the geometrization of
complexity is based directly on the geometry on the Hilbert
space of quantum states provided by the Fubini-Study
metric [33,34]. Finally, in a similar spirit, a recent proof of
an important conjecture about the growth of complexity in
typical random circuits (which was originally motivated by
considerations on black holes [35,36]) was made possible
thanks to tools from differential topology and algebraic
geometry [37].
Despite all this progress, the inherent ambiguities in key

elements of the definition of circuit complexity (namely, in
the choices of reference state and elementary gate set, as
well as the cost associated to each elementary gate) are
sometimes seen as obstacles to a more complete under-
standing of complexity in quantum field theory (QFT) and
the various related geometrical quantities that are conjec-
tured to be dual to it in AdS/CFT [38]. The usual
philosophy when dealing with these issues in the context
of quantum information theory and quantum computing is
to formulate questions about complexity that are less
sensitive to these ambiguities. This is the basis, for
example, of the definition of quantum complexity classes,
which are only concerned with how the complexity of a
family of circuits, built with a common set of elementary
gates, scales with the size of the input [3]. In this paper,
however, we will adopt a complementary point of view
according to which these seemingly negative aspects of the
definition of circuit complexity are actually features of the
formalism that can encode relevant physics. After all, if
complexity quantifies the difficulty in performing a certain
task, it makes sense for it to be determined dynamically,
based on what physical operations objectively cost in terms
of available lab resources.
With this motivation in mind, in this paper we will show

how to formulate general Riemmanian metrics on the space
of pure Gaussian states (both for bosonic and fermionic
systems) which are sufficiently broad to accommodate all
physically relevant settings, while still having enough
structure to allow us to make concrete statements character-
izing state complexity. We will also propose an extension to
the notion of complexity geometry which allows for a
“nonreversible” cost—that is, we provide a concrete exam-
ple of a modified complexity measure which can assign
different costs to directions in circuit space related to each

other by time reversal. The goal is to yield an operationally
motivated measure of complexity that is directly connected
to an experimentalist’s view of what tasks would be
considered easy or hard in practice; this paper provides a
step in that direction. The choice of Gaussian states is
motivated by the plethora of powerful analytical techniques
and results that the assumption of Gaussianity provides, as
well as by the pervasiveness ofGaussian states in a variety of
different scenarios of physical interest ranging from quan-
tum field theory in curved spacetimes [39,40] to quantum
optics and quantum information with continuous variables
more broadly [41–43]. We should note, however, that it is
possible to extend this general strategy to other families of
circuits whose infinitesimal generators form a Lie algebra.
The paper is organized as follows:
(i) In Sec. II we review the main ingredients of

Nielsen’s geometric approach to circuit complexity
[22–24], which will be the basis for the formalism
employed in the paper. As a preparation for the
approach that will be taken later on, we also argue at
the end of the section why adaptations of Nielsen’s
complexity geometry which relax some of the usual
assumptions made about the complexity metric are
reasonable and physically motivated. Section III
presents the unified description of bosonic and
fermionic Gaussian states that we will make use
of, closely following the formalism of [27,29,44].
While not containing any substantially new material,
we believe that the content of Secs. II and III is
useful for fixing notation and terminology, and also
helps to contextualize the results to be presented
later in the paper with what is already known in the
literature.

(ii) Section IV describes the general conceptualization of
a Riemannian metric that can yield a notion of
complexity geometry for pure Gaussian states. The
main novel contribution of this section is the formu-
lation of a minimal, well-motivated assumption that
the metric will be required to satisfy, under which the
state complexity defined by any physically reasonable
metric on the space of Gaussian states can be
characterized in a unified way. This condition im-
posed on the (otherwise quite general) metric on
circuit space is well motivated by the preferred choice
of reference state relative to which we define the
complexity of the target state. This also extends
known results and methods in the literature to a much
more general set of metrics, with potentially arbitrary
cost functions assigned to a given elementary gate set.

(iii) In Sec. V we propose a new extension to the
complexity geometry which introduces a feature
of “nonreversibility” to the complexity measure
by assigning different costs to a given gate and its
inverse. This is another arguably very physical
feature of an experimentalist’s experience of what
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is easy or hard to be achieved in a lab, which is
however usually absent in most adopted measures of
complexity geometry. The particular new ingredient
proposed has a very intuitive physical interpretation
as a kind of vector potential, which modifies the
equation of motion for the optimal paths in a way
that directly reproduces the Lorentz force law
experienced by a charged particle in a background
electromagnetic field.

(iv) Finally, Sec. VI illustrates the general strategy with a
few simple examples where state complexity can
actually be computed in closed form, and Sec. VII
summarizes our main results and discusses potential
future directions.

II. NIELSEN’S GEOMETRIC APPROACH
TO CIRCUIT COMPLEXITY

Let U be the set of all unitary operators that act on some
Hilbert space H describing the physical system of interest.
The first step in Nielsen’s geometric approach to circuit
complexity is to replace a discrete quantum circuit by a
continuous path ÛðtÞ in U, which can in general be
written as

ÛðtÞ ¼ T exp

�
−i

Z
t

t0

Ĥðt0Þdt0
�
: ð1Þ

The (in general time-dependent) operator ĤðtÞ (let us call it
“Hamiltonian” for short) can essentially be seen as equiv-
alent to the tangent vector to the trajectory ÛðtÞ, as Eq. (1)
is a solution to the differential equation

dÛ
dt

¼ −iĤðtÞÛðtÞ; ð2Þ

which defines the relation between the tangent vector
dÛ=dt and the Hamiltonian generator ĤðtÞ.
Nielsen’s geometric approach then replaces the notion of

a “number of gates” applied at each layer of the circuit by a
cost function cðÛ; V̂Þ which assigns to each infinitesimal
time step dt taken at a point Û with tangent vector dÛ=dt ¼
V̂ an infinitesimal cost

dC ¼ cðÛðtÞ; V̂ðtÞÞdt; ð3Þ

where the Hamiltonian ĤðtÞ that generates this step can be
given in terms of the tangent vector V̂ by inverting Eq. (1),

ĤðtÞ ¼ iV̂ðtÞÛ†ðtÞ: ð4Þ
The finite version of the cost of a given circuit is thus
given by

C ¼
Z

tf

t0

cðÛðtÞ; V̂ðtÞÞdt ð5Þ

and the complexity of a unitary ÛT is defined as

CðÛTÞ ¼ min

�Z
tf

t0

cðÛðtÞ; V̂ðtÞÞdt
�
; ð6Þ

where the minimization ranges over all the trajectories ÛðtÞ
in U satisfying the boundary conditions

Ûðt0Þ ¼ 1̂; ÛðtfÞ ¼ ÛT: ð7Þ

Similarly, one defines the state complexity of a target state
jψTi relative to a reference state jψRi as

CðjψRi; jψTiÞ ¼ min
ÛT

fCðÛTÞjÛT jψRi ¼ jψTig: ð8Þ

The most basic requirement that we would expect from
cðÛ; V̂Þ is that it should be a smooth and positive-definite
function—that is, for any unitary Û and any tangent vector
V̂ in the tangent space to Û, it holds that cðÛ; V̂Þ ≥ 0. It is
usual to demand that the inequality be saturated if and only
if V̂ ¼ 0. After all, it is natural to expect the cost of any
given infinitesimal step to be nonnegative, and only be zero
if no gates are applied at all. It also makes sense to require
that cðÛ; V̂Þ satisfy the triangle inequality in the second
argument, cðÛ;V̂1þV̂2Þ≤cðÛ;V̂1ÞþcðÛ;V̂2Þ. Intuitively,
this just tells us that we cannot decrease the cost of a given
step by decomposing the tangent vector at that point into a
given linear combination, and then evolving with each
component of the linear combination separately. Finally, if
we want the depth given by Eq. (5) to be invariant under
general reparametrizations t → fðtÞ that preserve the time
orientation of the path (that is, df=dt > 0), we would also
require that c be positive homogeneous of degree 1 in the
second argument,1 i.e., cðÛ; λV̂Þ ¼ λcðÛ; V̂Þ for every
λ ≥ 0. Under the assumption that Eq. (5) is reparametriza-
tion invariant, we can always choose the parameter t to be
such that the initial point of the curve ÛðtÞ is at t0 ¼ 0 and
the final point is at tf ¼ 1. That is the convention that we
will adopt for the rest of the paper.
The conditions we just provided give cðÛ; V̂Þ the

properties of a Finsler metric, which then equips the
unitary group with the structure of a Finsler manifold.
Finsler manifolds are a generalization of Riemannian
manifolds where one can still talk about lengths between
points, but the length functional is not necessarily derived
from a metric tensor. The interpretation of the cost function

1We only demand positive homogeneity [instead of requiring,
for instance, that cðÛ; λV̂Þ ¼ jλjcðÛ; V̂Þ for every λ∈R] because
we would also like to accommodate cases where the cost is not
invariant under time reversal. Although most of the examples
studied in practice do assign the same cost to a given elementary
gate and its inverse, in Sec. V we give an example where that is
not the case.
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as a Finsler metric allows us to see expression (5) as the
length of the curve ÛðtÞ between times t0 and tf, and the
optimal circuit that prepares a given unitary ÛT is nothing
more than the trajectory of minimum length—i.e., the
geodesic—connecting 1̂ and ÛT . The problem of comput-
ing circuit complexity then becomes a problem in varia-
tional calculus, where the full power of differential
geometry can be put in action.
In order to put this (somewhat abstract) notion of a

Finsler metric on the unitary group in closer contact with
the original idea of circuit complexity, it is customary to
expand the operator ĤðtÞ generating the circuit at each
instant of time in a fixed basis of Hermitian generators ÔI ,

ĤðtÞ ¼
X
I

YIðtÞÔI; ð9Þ

and express the cost function explicitly in terms of the
components YI in this basis. The interpretation of the
generators ÔI is that the unitaries ÛI ¼ eiεÔI form our
elementary gate set, with ε being some minimum timescale
for each gate to be applied.
If our complexity measure only cares about the number

of gates applied at each time step, then the cost function
evaluated at a given time t along the path in U will only
depend on the Hamiltonian ĤðtÞ generating the circuit at
that time. In more technical terms, this means that cðÛ; V̂Þ
defines a right-invariant Finsler metric, which satisfies

cðÛ; V̂Þ ¼ cð1̂; V̂Û†Þ: ð10Þ

If we parametrize the tangent vector V̂ in terms of the
Hamiltonian ĤðtÞ through Eq. (4) and we expand ĤðtÞ in a
given basis of generators as in (9), then the right invariance
of the Finsler metric as in Eq. (10) implies that the cost
function only depends on the components YI, and not on
the point Û; in short, cðÛ; V̂Þ≡ FðYÞ for some function F.
Simple examples of cost functions FðYÞ commonly con-
sidered in the literature include [22]

F1ðYÞ ¼
X
I

jYIj; ð11aÞ

F1pðYÞ ¼
X
I

pIjYIj; ð11bÞ

F2ðYÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

ðYIÞ2
r

; ð11cÞ

F2qðYÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

qIðYIÞ2
r

: ð11dÞ

The cost function (11a) (unoriginally named the F1-metric)
is the one that most closely matches the original idea of

counting the number of gates in the circuit. The F1p-metric
(11b) is a modification of (11a) that includes possibly
nontrivial penalty factors pI that may vary between differ-
ent gates. This can be used to enforce further physical
constraints in the complexity measure, for instance, by
making nonlocal gates more costly than local ones. Strictly
speaking, the F1-metric is not Finsler, since it violates the
smoothness requirement; as such, it is not immediately
amenable to the methods from variational calculus and
differential geometry. As already explained in e.g. [22], this
can be remedied by approximating F1 by a one-parameter
family of Finsler metrics that recover the F1 metric in some
limit. Another (more common) approach is to instead adopt
the F2-metric (11c), which has the natural interpretation of
a Riemannian metric that emerges from an Euclidean inner
product on the tangent space at each point of U. This is the
strategy most explored in applications of Nielsen’s frame-
work to complexity in quantum field theory [26,27,29].
Naturally, the F2q-metric (11d) is to F2 the same as F1p is
to F1.
In this paper, however, we are interested in a generali-

zation of geometric measures of complexity where the cost
function depends nontrivially on the point in circuit space
where it is being evaluated. In this case, the Finsler metric is
no longer right invariant, and therefore the measure of
complexity at hand is more detailed than a simple counting
of the number of gates in a circuit. Physically, this is very
well motivated: after all, it is possible to consider regimes
where, from the point of view of an experimentalist, the
ability to reliably apply a given infinitesimal transformation
will depend on the state of the system. One can imagine, for
instance, that increasing the entanglement between two
parties by a given amount may become harder if the state
you are acting on is already highly entangled, as compared
to when the two parties start in a product state.
Additionally, previous geometric complexity measure

proposals do not address the issue of nonreversibility of
complexity. For example, acting on the ground state of a
system to prepare some complex entanglement structure is
much more experimentally involved than starting from
some very entangled state and reaching the ground state,
since for the latter it just becomes a matter of waiting for the
system to decay to its ground state when coupled to some
cold enough environment. In terms of the actual lab
resources (e.g., money, graduate students, etc.) spent in
the experiment, the second scenario is arguably cheaper
than the first, and it would be relevant to have a measure of
complexity that mimics this feature.
As we will see shortly, several important features of the

geometry of the optimal circuit can be stated in a way that
does not actually depend on right-invariance, so it is
possible to extend known results and approaches for
right-invariant metrics to more general Riemannian metrics
on the space of unitaries. We will also see how to modify
the cost functional in order to incorporate physical features
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of irreversibility in the complexity measure in a very natural
geometrical way. This will establish the basis on which to
build a formalism for the systematic study of complexity
measures that are, in some sense, closer to an experimen-
talist’s view on what is easy or hard to perform.

III. PARAMETRIZATION OF PURE
GAUSSIAN STATES

Our analysis in this paper will focus a general description
of complexity geometry for a special class of states known
as Gaussian states. These can be generally interpreted as
squeezed, coherent, thermal states of systems with quad-
ratic Hamiltonians. Thanks to the fact that the Hamiltonian
governing the dynamics of every system close to equilib-
rium can be approximated as quadratic, Gaussian states are
ubiquitous in the study of a wide range of systems in a
variety of areas of physics. Applications range from
foundational aspects of quantum field theory in curved
spacetimes [39,40] to experimental implementations of
quantum information protocols with quantum optics
[45,46]. The mathematical formalism for dealing with
Gaussian states for both bosonic and fermionic systems
is also very well developed, and forms the basis for much of
the results in quantum information and many-body physics
with continuous variables [41,42,47].
We will closely follow a strategy employed in [27,29]

which parametrizes pure Gaussian states as equivalence
classes of an appropriately chosen matrix group describing
the space of unitaries of interest. As we will see shortly, this
approach is very powerful and natural for considerations
about Gaussian state complexity.
Consider a quantum system with N degrees of freedom

(or modes), described by 2N quadrature operators ξ̂a. These
consist of a set of Hermitian operators,

ξ̂a ¼ ðQ̂1; P̂1;…; Q̂N; P̂NÞ⊺; ð12Þ

which, in the case of bosons, satisfy the canonical com-
mutation relations

½Q̂i; P̂j� ¼ iδij1̂;

½Q̂i; Q̂j� ¼ ½P̂i; P̂j� ¼ 0; ð13Þ

or, in the case of fermions, the anticommutation relations

fQ̂i; P̂jg ¼ 0;

fQ̂i; Q̂jg ¼ fP̂i; P̂jg ¼ δij1̂. ð14Þ

Referring to the phase-space operators ξ̂a as “quadratures”
is standard in the literature for bosonic systems; for
fermionic systems, one might find it more usual to call
this basis of Hermitian generators “Majorana modes.”
However, since most of what we will present in what

follows will apply both to fermionic and bosonic systems
in a unified fashion, we will use “quadratures” to refer to
both cases at once, in line with the conventions used
e.g. in [48].
A Gaussian state ρ̂ is fully characterized by the one-point

and two-point correlators of the quadratures,

za ≔ hξ̂aiρ̂; ð15Þ

Wab ≔ hξ̂aξ̂biρ̂ ¼
1

2
ðσab þ iΩabÞ þ zazb; ð16Þ

where we have defined

σab ¼ hξ̂aξ̂b þ ξ̂bξ̂aiρ̂ − 2zazb; ð17Þ

Ωab ¼ −ihξ̂aξ̂b − ξ̂bξ̂aiρ̂: ð18Þ

Higher-order n-point correlators are then directly obtained
from these one- and two-point correlators (16) via Wick
contractions. Note that for fermions, the one-point func-
tion always vanishes.2 In this case, the formalism sim-
plifies, as we can restrict ourselves to the two-point
function only.
Considered as tensors on phase space, the real part σab of

the two-point correlator defines a metric (in the sense that it
is a symmetric, positive-definite bilinear map), and the
imaginary antisymmetric part Ωab defines a symplectic
form (in the sense that it is a antisymmetric and non-
degenerate bilinear map). Due to the commutation
(anticommutation) relations of the quadratures in bosonic
(fermionic) systems, only the real (imaginary) part of the
two-point function actually carries nontrivial information
about the correlations in the Gaussian state, with the
remaining part being fully state independent and fixed
by the algebra of the quadratures. It is common to refer
to the state-dependent part of the correlations in a
Gaussian state (σab for bosons, and Ωab for fermions) as
the covariance matrix. We can then combine the state-
dependent and state-independent parts of the correlations in
a Gaussian state into a single phase-space operator which
we call the complex structure,

Jab ≔
�−σacΩcb for bosons

Ωacσcb for fermions
; ð19Þ

2We should note that there is such a thing as coherent states for
fermionic systems, where one can have a nonzero displacement
za as a Grassman-valued vector. While these can be useful
calculational tools, there are no actually physical fermionic
Gaussian states [44]. Therefore, we will only assume nonzero
one-point functions the description of bosonic Gaussian trans-
formations, as it is common in phase space quantum mechanics.
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where we have defined σab and Ωab as the matrix inverses
of σab and Ωab, respectively,3

σab ≔ ðσ−1Þab; ð20Þ
Ωab ≔ ðΩ−1Þab: ð21Þ

For pure Gaussian states—which will be our main focus in
this paper—it turns out that the two (in principle different)
definitions for Jab in (19) actually coincide: namely, for
both fermions and bosons, σacΩcb ¼ −Ωacσcb if the state is
pure. In this case, the operator defined in (19) satisfies
J2 ¼ −1 (or JacJcb ¼ −δab in index notation), which
justifies calling it a complex structure. For mixed states
the equality no longer holds, but it is somewhat customary
to keep the name regardless.
Unitary dynamics preserving Gaussianity (in short,

unitary Gaussian transformations) are generated by
Hamiltonians that are at most quadratic in the phase-space
variables ξ̂a, and act as affine operators on phase space. One
can thus view Gaussian dynamics as implemented by pairs
ðv;MÞ, where v∈R2N is a phase-space displacement
vector, and M∈GLð2N;RÞ is some invertible matrix.
A Gaussian transformation labeled by ðv;MÞ will act on
the quadratures (in the Heisenberg picture) as

ξ̂a ↦ Ma
bξ̂

b þ va1̂: ð22Þ
The vector of means therefore evolves as

za ↦ Ma
bzb þ va; ð23Þ

and the matrices σab and Ωab evolve as

σab ↦ Ma
cσ

cdMb
d; ð24Þ

Ωab ↦ Ma
cΩcdMb

d; ð25Þ
or, in matrix notation,

z ↦ Mzþ v; ð26Þ
σ ↦ MσM⊺; ð27Þ
Ω ↦ MΩM⊺; ð28Þ

where M⊺ is the transpose of M, with matrix elements
ðM⊺Þba ¼ Ma

b. Finally, the complex structure J trans-
forms as

J ↦ MJM−1: ð29Þ
Since the canonical commutation/anticommutation rela-

tions between the quadratures are state independent, the

matrices M that implement unitary Gaussian transforma-
tions must preserve either the symplectic form (in the case
of bosons) or the metric given by σ (in the case of
fermions). Gaussian transformations for systems of bosons
are therefore represented on phase space by pairs ðv;MÞ
where v is a general vector in R2N and M is an element of
the symplectic group,

Spð2N;RÞ ¼ fM∈GLð2N;RÞjMΩM⊺ ¼ Ωg: ð30Þ

The set of pairs ðv;MÞ∈R2N ⋊ Spð2N;RÞ forms a new
Lie group, with group multiplication being given by

ðv1;M1Þ · ðv2;M2Þ ¼ ðM1v2 þ v1;M1M2Þ: ð31Þ

For fermions, there are no displacements, since the one-
point function of the quadratures is taken to always vanish.
Therefore, fermionic Gaussian transformations are ele-
ments of the orthogonal group with respect to the inner
product defined by the symmetric, positive-definite
matrix σ,

Oð2NÞ ¼ fM∈GLð2N;RÞjMσM⊺ ¼ σg: ð32Þ

The set of all unitary Gaussian transformations acting in
a system of 2N quadratures thus forms a finite-dimensional
group G, both for bosons and for fermions. In the case of
bosons, the group is given by G ¼ R2N ⋊ Spð2N;RÞ. For
fermions, since we are mostly interested in the subset of
orthogonal transformations that can be continuously con-
nected to the identity, we will take G ¼ SOð2NÞ instead of
the full orthogonal group. If our elementary generators
fÔIg from (9) only contain operators that are at most
quadratic in ξ̂a, then the space of available unitary trans-
formations acting on the Hilbert space of either bosons or
fermions can be identified, in a one-to-one fashion up to a
global phase, with the group G, and the at-most quadratic
generators ÔI can be mapped to elements of the Lie algebra
g of G. This renders the description of trajectories on the
space of Gaussian transformations effectively finite dimen-
sional, since G is a finite-dimensional group. The simpli-
fications that arise from this fact represent the main reason
behind the power of the analytical treatments of Gaussian
states—especially in the case of bosons, whose unrestricted
Hilbert space is infinite dimensional.
Now that we have mapped Gaussian unitary transfor-

mations to elements of a finite dimensional group G, let us
briefly turn our attention to states. Bosonic Gaussian states
can be identified with pairs ðJ; zÞ, where J is a complex
structure and z is the vector of means of the quadratures. In
the case of fermions, the vector of means is always taken to
be zero, so the complex structure J alone already encodes
all the information about the fermionic Gaussian state. In
either case, for any two pure Gaussian states—labeled by
ðJ1; z1Þ and ðJ2; z2Þ in the case of bosons, or simply J1 and

3For mixed fermionic Gaussian states, it might happen thatΩab

is not invertible. In this case, Ωab is defined as the pseudoinverse
of Ωab with respect to σab—i.e., we invert Ωab only on the
subspace that is orthogonal (in the sense of the inner product
defined by σab) to its kernel [48,49].
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J2 for fermions—it is always possible to find a pair
ðv;MÞ∈R2N ⋊ Spð2N;RÞ (for bosons) or an orthogonal
matrix M∈Oð2NÞ (for fermions) such that

ðJ2; z2Þ ¼ ðMJ1M−1;Mz1 þ vÞ ðbosonsÞ; ð33Þ
J2 ¼ MJ1M−1 ðfermionsÞ: ð34Þ

For the case of fermions, if we restrict G to only include
elements of SOð2NÞ instead of Oð2NÞ, then a Gaussian
transformation connecting two fermionic Gaussian states
exists as long as both states belong to the same parity
sector—i.e., both have the same fermion parity number
[27]. However, in all cases, fixing the initial and final states
does not uniquely fix the Gaussian transformation mapping
one to the other. In particular, if a given matrix M (in the
symplectic group for bosons, or in the orthogonal group for
fermions) is such that MJ1M−1 ¼ J2, then so is MS,
whenever the matrix S satisfies

SJ1S−1 ¼ J1: ð35Þ
Therefore, if the initial and final states have vanishing
vector of means, then the transformation mapping between
the two is only defined up to the right action of matricesM
which commute with the complex structure of the ini-
tial state.
For a given complex structure J, the set of all S satisfying

(35) defines a subgroup of the set of Gaussian trans-
formations which we call the stabilizer of J, denoted by
StaJðNÞ. More precisely, we define

StaJðNÞ ≔
� fS∈SOð2NÞ; ½S; J� ¼ 0g
fð0; SÞjS∈Spð2N;RÞ; ½S; J� ¼ 0g ; ð36Þ

where the first line above applies to fermions and the
second line applies to bosons.
In words, StaJðNÞ simply corresponds to the subset of

Gaussian transformations represented by linear operators
on phase space that leave the covariance matrix of the
system invariant. Since the covariance matrix defines a
metric in the case of bosons and a symplectic form in the
case of fermions, we conclude that, for any choice of J used
as reference, the subgroup StaJðNÞ is isomorphic to the
intersection Spð2N;RÞ ∩ SOð2NÞ. For a Gaussian state
described by the complex structure J and vanishing vector
of means, StaJðNÞ simply consists of the Gaussian trans-
formations that do not change the physical state.
Note that for the case of bosonic Gaussian states with

z ≠ 0, the action of StaJðNÞ will change the physical state,
as it will in general change the vector of means by z → Sz.
We could have defined the stabilizer as including a nonzero
displacement that undoes this shift in z; however, we
believe that the choice of stabilizer not containing any
displacements is more physically motivated. The intuitive
idea is that we want the action of the stabilizer to represent
some kind of “free evolution” that can act on the reference

state at no cost, as long as the structure of correlations
present in the reference state is preserved. If we picture this
“free evolution” as being generated by some Hamiltonian,
then we consider that having only quadratic terms in the
Hamiltonian (i.e., harmonic couplings between the quad-
ratures) is more natural than including both quadratic and
linear terms (which we would normally picture as coming
from some additional driving force on the quadratures). The
subgroup generated only by a family of purely quadratic
Hamiltonians, with no linear terms, that preserves the
structure of correlations in the initial state, is precisely
the definition of StaJðNÞ as written in (36). It is worth
noting, however, that the formal aspects of the framework
that we are about to describe would remain largely
unaltered if we had chosen to define the stabilizer as the
subset of bosonic Gaussian transformations given by pairs
of the form ðð1 − SÞz; SÞ, where ½S; J� ¼ 0.
We thus have the following parametrization of the space

of pure Gaussian states. First, without loss of generality and
for simplicity, we take one zero-mean state jJRi as a
reference (so that the elements of the stabilizer leave it
invariant). Then, we note that all pure Gaussian states can
be obtained from jJRi through the action of an element of
G, but two elements M1;M2 ∈G characterize the same
state if they differ by the right action of some element of
StaJRðNÞ. Therefore, pure Gaussian states can be described
as equivalence classes of Gaussian transformations, where
right action by an element of StaJRðNÞ defines the equiv-
alence relation. This means that, once we pick a particular
state jJRi as a reference, we can endow the group G of
Gaussian transformations with the structure of a fiber
bundle, where the fibers are orbits of the stabilizer of
the reference state, and the base manifold—which is
isomorphic to the space of pure Gaussian states—is the
quotient G=StaJRðNÞ. This is the setting that we will use to
parametrize the space of Gaussian states, and eventually
characterize state complexity, in the following section.

IV. GENERAL FEATURES OF GAUSSIAN
STATE COMPLEXITY GEOMETRY

So far, none of what we have said depends on a metric on
the group G. The stabilizer subgroup, and therefore the
characterization of Gaussian states as equivalence classes
of Gaussian transformations, are functions of only the
reference state. The next step in order to define a geometric
notion of complexity is to equip G with notions of lengths
and angles so that we can turn the question of circuit
complexity into a problem in Riemannian geometry.
Let g be a Riemannian metric on G. This is a tensor field

which assigns, at each point p∈G, a bilinear map

gp∶ T pG × T pG → R

ðVp;WpÞ ↦ gpðVp;WpÞ ð37Þ
that is symmetric and positive definite,
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gpðVp;WpÞ ¼ gpðWp; VpÞ ∀Vp;Wp ∈ T pG;

gpðVp; VpÞ > 0 ∀Vp ≠ 0: ð38Þ

The norm of a vector with respect to this metric is then just
given by the usual expression, kVpk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gpðVp; VpÞ
p

.4

Having this additional structure on G, we assign
the length of a trajectory γ∶R → G between two end
points γð0Þ and γð1Þ, with its associated tangent vector
dγ=dt ≔ γ̇ðtÞ, as

lγ ¼
Z

1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gγðtÞðγ̇; γ̇Þ

q
¼

Z
1

0

dtkγ̇ðtÞk: ð39Þ

The complexity of some element M∈G is then simply
defined as the geodesic length between the identity and M,

CðMÞ ¼ min
γ
flγjγð0Þ ¼ 1; γð1Þ ¼ Mg: ð40Þ

This associates a value of “complexity” to a given Gaussian
transformation.
However, this is not enough to talk about the complexity

of a given Gaussian state. To define state complexity, a
second minimization is necessary, since there is more than
one Gaussian transformation that connects the reference
and target states. Recall that for bosons, general Gaussian
transformations take the form M ¼ ðv; SÞ, where v∈R2N

and S is a symplectic matrix. Now, given a bosonic
Gaussian state jJR; 0i≡ jJRi as a reference, and taking
another bosonic Gaussian state jJT; zTi as a target (possibly
with nonzero displacement), the state complexity of
jJT; zTi relative to jJRi is defined as

CðjJRi; jJT; zTiÞ ¼ min
S
fCðzT; SÞjJT ¼ SJRS−1g; ð41Þ

where S ranges over the symplectic group. Note that the
displacement part of the Gaussian transformation is univ-
ocally determined by the vector of means of the target state,
but the symplectic transformation is only fixed up to the
action of an element of the stabilizer of JR—which is why
the minimization over S above is required. For fermions,
we do not have to consider displacements, and the state
complexity of a given target state jJTi relative to the
reference state jJRi is just given by

CðjJRi; jJTiÞ ¼ min
O

fCðOÞjJT ¼ OJRO−1g; ð42Þ

where O is an element of the special orthogonal group, and
we assume that both reference and target in this case belong
to the same parity sector [27]. Equations (41) and (42) are

just the minimal geodesic length between the identity and
the submanifold given by the equivalence class of Gaussian
transformations that prepare the target state taking the
reference state as the starting point. In all cases, the
differential equations imposing the extremization of
the length between reference and target (40)–(42) in any
given coordinate chart γi for the group manifoldG is simply
the good old geodesic equations,

d2γi

ds2
þ 1

2
gilð∂jgkl þ ∂kglj − ∂lgjkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡Γi
jk

dγj

ds
dγk

ds
¼ 0; ð43Þ

where s is an affine parameter along the curve γðsÞ (that is,
a parameter such that the norm of the tangent vector to the
trajectory is kept constant), and Γi

jk are the standard
Christoffel symbols.
Given a metric tensor on the group manifold G, we can

define the Riemannian exponential map from tangent
vectors at the identity (which we identify with elements
of the Lie algebra g of G) to points on the manifold, which
we will denote by exp. More specifically, the Riemannian
exponential is a function that assigns to every tangent

vector V ∈T1G ≃ g a group element expðVÞ ¼ γðRÞV ð1Þ,
where γðRÞV ðtÞ is the geodesic that starts from γðRÞV ð0Þ ¼ 1

with tangent vector γ̇ðRÞV ðtÞjt¼0 ¼ V. Equivalently, expðVÞ
corresponds to the end point of a geodesic that starts at 1
with tangent vector V and has total length kVk.
The fact that G is a Lie group also equips it with another

notion of exponentiation, namely the Lie exponential map.
For a given element V of the Lie algebra, we define the Lie

exponential of V as the point eV ¼ γðLÞV ð1Þ, where γðLÞV ðtÞ is
the flow line of the right-invariant vector field on G whose

value at the identity is γ̇ðLÞV ðtÞjt¼0 ¼ V.
Note that these exponentials (the Riemannian exponen-

tial here denoted by expðVÞ, and the Lie exponential
denoted by eV) are two distinct maps. The Lie exponential
is a purely group-theoretical concept which does not
depend on a metric at all, whereas the Riemannian
exponential is only defined once the manifold is equipped
with a metric. For a completely general Riemannian metric,
the Riemannian and Lie exponentials will not coincide; in
fact, they are only guaranteed to be equal if the metric is bi-
invariant (that is, both left and right invariant) under the
group action. In the case of fermions this can be achieved
by taking the metric to be the negative of the Killing form
on the group manifold SOð2NÞ. For bosons, on the other
hand, this is not an option, since the Killing form on
Spð2N;RÞ does not have a definite sign, so it cannot be
used to define a Riemannian metric.
For our purposes, however, we actually do not want both

exponentials to match in general. Even for the case of
fermions (where a bi-invariant metric can be defined),

4We emphasize that this Riemannian metric g is completely
different from the metric on phase space that could be defined, for
instance, via the symmetric, positive-definite matrix σ associated
with the reference state.
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we would still like to accommodate for a complexity
measure that is not right invariant, due to the considerations
made at the end of Sec. II. Instead, all that we will demand
is that the two maps coincide only for some properly
chosen subgroup of the Lie algebra g, which we now
describe.
Consider the tangent space to the identity of G, which is

identified with the Lie algebra g. Pick a reference state
characterized by a complex structure JR, which, as
explained in Sec. III, selects a stabilizer StaJRðNÞ ⊂ G.
From now on, to avoid too much clutter in the notation, we
will omit the subscript JR from the stabilizer, and just keep
in mind that all statements that depend in some way on the
stabilizer will implicitly depend on the choice of reference
state. The stabilizer subgroup StaðNÞ, being a Lie group of
its own, also possesses a Lie algebra, which we will denote
by staðNÞ ⊂ g. For the purposes of defining a geometric
measure of complexity, it is very natural to at least expect
that the image of both exponential maps is the same when
acting on staðNÞ. After all, if this were not the case, there
would be elements of the stabilizer whose lowest-cost
preparation included Gaussian transformations that are not
part of the stabilizer—which does not make a lot of sense,
since we would like to have circuits that act nontrivially on
the reference state to have strictly larger costs than those
which do not.
We are now in a position to establish the one condition

that we will assume the metric on G should satisfy:
(1) The metric must be such that, for every V ∈ staðNÞ,

the trajectory MðtÞ ¼ etV is a geodesic, and the
parallel transport along that geodesic of an arbitrary
vector from 1 to MðtÞ is given by right translation
by MðtÞ.

This condition is more restrictive than just requiring that
both the Riemannian and Lie exponentials span the same
submanifold when acting on staðNÞ. For one, we are
prescribing how parallel transport acts also on elements of
g, that do not belong to staðNÞ. Moreover, we are assuming
that for every V in the Lie algebra of the stabilizer,
expðVÞ ¼ eV—in other words, the images of both maps
acting on staðNÞ are the same element by element. We
nevertheless consider these constraints to be very natural:
the stabilizer group ultimately corresponds to the “trivial”
directions on the space of Gaussian operations from the
point of view of state complexity. Therefore, imposing
these constraints on the metric for the stabilizer is not a
strong restriction, and it will still allow us to define a
geometric measure of complexity in full power. Namely,
we note that we still have enough degrees of freedom to
meaningfully choose a complexity metric for a given
general setup, since we have not specified the parallel
transport along geodesics that are not contained in the
stabilizer. This is precisely where we have the freedom to
apply physical constraints on the available resources in
order to build the complexity geometry.

Equipped with the metric at the identity, we can split g as
a direct sum staðNÞ ⊕ sta⊥ðNÞ, where sta⊥ðNÞ is the
orthogonal complement of staðNÞ,

sta⊥ðNÞ¼ fK∈g;g1ðK;VÞ¼ 0 ∀V∈staðNÞg: ð44Þ

We can then locally foliate G near the identity element in
terms of the cylinderlike surfaces defined by

Cr¼fexpðVÞSjV∈sta⊥ðNÞ;kVk¼ r;S∈StaðNÞg: ð45Þ

Recall that due to the assumption previously made,
expðtVÞS is precisely the geodesic starting from S at
t ¼ 0 with tangent vector equal to the parallel transport
of V from the identity to S—which is orthogonal to StaðNÞ
and has the same norm as V because parallel transport
preserves inner products. Therefore, in plain English, Cr is
a codimension-1 surface generated by taking the submani-
fold StaðNÞ, and then shooting off geodesics of length r in
the orthogonal directions to StaðNÞ.
This setup allows us to talk about the state complexity of

a given state relative to a reference state in terms of the
radial coordinate r defined in (45) as follows. Note that the
map ðV; SÞ ↦ expðVÞS provides a local coordinate chart
from some local neighborhood of the zero vector5 in
sta⊥ðNÞ (times the stabilizer group) to some local neigh-
borhood of the identity element on the group manifold G.
By the way the coordinate chart is constructed, two points
in the same equivalence class by the action of the stabilizer
have the same V coordinates; in particular, they belong to
the same cylinder Cr. But the distance of every point of the
cylinder to the identity is lower bounded by the cylinder’s
radius, and there always exist trajectories whose length is
precisely equal to that radius—namely, those that emanate
from the identity in the orthogonal direction to staðNÞ and
whose tangent vector has magnitude equal to r. We have
therefore shown that the radial coordinate is the state
complexity. A geometric visualization of the strategy is
displayed in Fig. 1.
This construction draws on and extends the strategy

introduced in [27,29] to a much wider range of
Riemannian metrics defining the complexity geometry of
Gaussian states. In particular, it highlights that the key
feature which made the proof of their complexity bound
possible—namely, the fact that every Gaussian transforma-
tion on the same equivalence class belonged to the
same cylinder Cr—did not actually depend on the
assumption of right invariance or on the definition of
the inner product at the identity. This observation is
ultimately what allowed us to leverage that construction

5Whether or not the Riemannian exponential map defines a
coordinate chart in a given neighborhood of the identity of G
depends on whether the Riemann curvature causes caustics or
not. We will make the reasonable assumption that caustics are not
present within the range of target states we wish to consider.
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and generalize the characterization of state complexity to
more general (and potentially more physically motivated)
complexity metrics.

V. A NONREVERSIBLE MEASURE
OF COMPLEXITY

A common feature in the examples of geometric mea-
sures of complexity found in the literature as well as
those mentioned so far in this paper is that they are all
“time-reversal symmetric”—i.e., the complexity is invari-
ant if the roles of reference and target states are reversed.6

This is a simple consequence of the fact that all cost
functions presented thus far assign the same cost to the
direction V and to the time-reversed direction −V, for
every tangent vector V at any given point in the group
manifold G.
From an experimentalist’s point of view, however, it is

natural to imagine contexts in which the “difficulty” in
connecting two given states is not symmetric under swap-
ping the roles of reference and target states. This may
happen due to some effectively irreversible interaction with
an external environment which drives the system to some
preferred state: if there is some decay mechanism by which

the system tends to spontaneously flow to the ground state
of its free Hamiltonian, for instance, it is reasonable to
conceive of a complexity measure which would naturally
assign a lower cost to the circuit that starts at an excited
state and ends at the aforementioned ground state than to
the circuit that goes the other way around. It is therefore
interesting to ask what new structures could be added to our
geometrical measure of complexity, in order to encode
some form of time reversal symmetry breaking.

A. Formalism for pure states

Although loss of time reversal symmetry is often tied to
interactions with an uncontrollable environment that
makes the dynamics irreversible, experimental asymme-
tries in the generation of different states appears even in
cases where we model state preparation with unitary
dynamics. It should therefore be possible to incorporate
this feature in models which retain unitarity from the
perspective of the system of interest. A simple complexity
measure that readily achieves this is given by the following
“generalized length” functional to the curve γðtÞ on the
group manifold:

Cγ ¼
Z

1

0

dtkγ̇ðtÞk −
Z

1

0

dt AiðγðtÞÞγ̇i: ð46Þ

In addition to the metric g, this cost functional also depends
on a background 1-form Ai. Since the metric is assumed to
be nondegenerate, this 1-form can equivalently be seen as
arising from a background vector field Ai ≡ gijAj, so
that (46) becomes

FIG. 1. Pictorial representation of the geometrical ingredients involved in defining state complexity from a metric in the group
manifold. After fixing the reference state [and thus the stabilizer subgroup StaðNÞ in G], one shoots off geodesics in the orthogonal
directions to the generators of the stabilizer at the identity, thus constructing the submanifold expðsta⊥ðNÞÞ. The state complexity of the
target state jψTi given by the equivalence class of some Gaussian transformation M∈G is then visualized as the length of the geodesic
connecting 1 to the point where the equivalence class [M] intersects expðsta⊥ðNÞÞ.

6Strictly speaking this is not exactly true in the example of
coherent states that will be considered in Sec. VI B, since we
assumed by convention that the reference state would always be
chosen to have vanishing vector of means. In that case, reverting
the roles of reference and target states must also be accompanied
by a trivial overall displacement that centers the new reference
state back at the origin, which results in the modification from
ðjJRi; jJT; zTiÞ to ðjJTi; jJR;−zTiÞ as reference and target. It is
clear that the state complexity (67) is invariant under this
replacement as well.
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Cγ ¼
Z

1

0

dtkγ̇ðtÞk −
Z

1

0

dt gγðtÞðA; γ̇Þ: ð47Þ

In order for the cost function implied by Eq. (47) to be
positive definite, it suffices for the norm of the background
vector field Ai according to the metric g to be smaller than
or equal to 1. This is because the Cauchy-Schwarz inequal-
ity guarantees that

jgðA; γ̇Þj ≤ kAkkγ̇k; ð48Þ

and therefore demanding kAk ≤ 1 everywhere in the group
manifold is enough to ensure that

kγ̇k − gðA; γ̇Þ ≥ 0; ð49Þ

which in turn guarantees that the cost function in Eq. (46) is
always nonnegative. It is also clear that this modified cost
function is smooth, satisfies the triangle inequality, and is
positive homogeneous in γ̇, but it is not invariant under time
reversal since the costs of going in the direction γ̇ or its
reverse −γ̇ now differ by the inner product −2Aiγ̇

i. Note
that in the limiting case where kAk ¼ 1 at a given point p in
the group manifold, there is one nontrivial direction at that
p with zero cost—namely, the trajectory with tangent
vector parallel to Ai at p.
One can immediately recognize the complexity func-

tional (46) as mathematically identical to the action of a
charged particle moving in a background electromagnetic
field, with the 1-form Ai being analogous to the vector
potential. The equation of motion for the trajectory on
circuit space that extremizes (46) thus takes the same form
as the Lorentz force law in a generally curved background
metric,

d2γi

ds2
þ Γi

jk
dγj

ds
dγk

ds
¼ Fi

j
dγj

ds
; ð50Þ

where Γi
jk is given by the same expression as in (43), and

we have Fi
j ≡ gikFkj, with Fij the usual standard electro-

magnetic field strength,

Fij ¼ ∂iAj − ∂jAi: ð51Þ

B. Generalizations to mixed states

The formalism from Sec. VA can be readily adapted to
also include mixed states. The usual strategy to define
complexity for mixed states is to consider the so-called
purification complexity [50]. Given a Hilbert space H
describing the system of interest, for any two density
matrices ρ̂R and ρ̂T corresponding to the reference and
target states, the purification complexity of ρ̂T relative to ρ̂R
is given by

Cðρ̂R; ρ̂TÞ ¼ min
jψRi;jψTi

fCðjψRi; jψTiÞg ð52Þ

where the minimization ranges over states jψRi; jψTi in an
enlarged Hilbert space H ⊗ H0 such that

ρ̂R ¼ TrðjψRihψRjÞH0 ; ð53Þ

ρ̂T ¼ TrðjψTihψT jÞH0 : ð54Þ

If both the reference and target states are Gaussian, then it is
common to further restrict the minimization above to
only consider purifications that are also Gaussian
[51,52]. In this case, one might call the complexity measure
given by Eq. (52) the Gaussian complexity of purification.
It is clear that, once we have a generalized cost functional
that displays some feature of nonreversibility for pure
states—given, for instance, by the additional background
structure described in Sec. VA—the same feature will be
generally transported to the case of mixed states according
to the definition above. A similar logic also applies for
alternative approaches to the geometrization of complexity
based on directly defining a notion of distance on the space
of density matrices via the Bures metric [53], which
generalizes the approach based on the Fubini-Study metric
[33] to the case of mixed states.

VI. EXAMPLES

We will consider here four examples. For illustration
purposes, the first one reviews an example already analyzed
in the literature [27,29]. The second example extends the
first, by including the case of bosonic coherent states. This
has also been analyzed in the past through slightly different
techniques [54], but here we will be able to provide an
easily computable closed expression for the geometric
Gaussian complexity of general coherent states based on
minimal assumptions. Finally, the last two examples con-
sider simple extensions of the geometric complexity
formalism that may capture features of the difficulty of
physical state preparation in a lab that right-invariant
metrics cannot.

A. Right-invariant metric on the group manifold

The first example we will present serves the purpose of
illustrating how the general machinery laid out in previous
sections is enough to provide closed-form expressions for
circuit complexity. This example will closely follow the
work in [27,29], which was the main inspiration for the
generalization we presented in Sec. IV.
In [27,29], the authors considered pure Gaussian states

with vanishing vector of means, and therefore the group G
for bosons is reduced to just Spð2N;RÞ. They then apply
this generalized cylindrical foliation to evaluate the state
complexity derived from a Riemannian metric which, at the
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Lie algebra g ≃ T1G [in this case equal to soð2NÞ for
fermions, and spð2N;RÞ for bosons], is given by

g1ðV;WÞ ¼ 1

2
TrðVσRW⊺σ−1R Þ; ð55Þ

with σR being the symmetric part of the two-point corre-
lator of the quadratures in the chosen reference state. The
metric is extended to all points M∈G of the group
manifold by demanding right invariance,

gMðV;WÞ ¼ g1ðVM−1;WM−1Þ: ð56Þ

In some sense this is a natural choice of inner product in
the Lie algebra, as it does not require anything beyond the
group structure and some minimal information about the
reference state. For fermions, σR is actually independent of
the state, and fully fixed by the anticommutation relations
of the quadratures. In this case, Eq. (55) is nothing but the
negative of the Killing form in SOð2NÞ. For bosons, the
metric unavoidably depends on the choice of reference
state, as there is no canonically defined positive-definite
form on Spð2N;RÞ that only depends on the group
structure of the symplectic group.
It is important to emphasize once again that, in general,

one should not expect this measure of complexity to
accurately quantify actual physical limitations based on
any realistic lab resources. We would expect, for instance,
that an experimentally motivated measure of complexity
would depend nontrivially on the reference state even in the
case of fermions. For bosons, Eq. (55) includes some
dependence on the reference state through its covariance
matrix σR, but the complexity measure is still not able to
account for other physically motivated features such as lack
of time-reversal symmetry. However, in the absence of
more detailed models for the emergence of a physically
motivated complexity measure, it has been common to
take (55) as a paradigmatic definition of complexity
geometry in the literature, which is why we are reviewing
this example first before considering any modifications.
The choice of metric defined by Eqs. (55)–(56) allows

for a very explicit verification of the general strategy laid
out in Sec. IV. In particular, it is possible to write a closed-
form expression for the shortest path connecting the
identity to the equivalence class of Gaussian transforma-
tions that prepare a given target state, and thus obtain an
analytical solution to the problem of computing Gaussian
state complexity. Given the complex structures JR and JT
defining the reference and target states respectively, one can
always define the so-called relative complex structure

Δ ¼ JTJ−1R : ð57Þ

Then, the geodesic that leads to the target state can be given
in the space of Gaussian transformations as

MðτÞ ¼ eτ logðΔÞ=2: ð58Þ

One can directly verify that the generator logðΔÞ=2∈ g is in
the orthogonal complement of the Lie algebra of the
stabilizer of the reference state JR according to the inner
product of Eq. (55), and that Mð1ÞJRMð1Þ−1 ¼ JT . With
this, the Gaussian state complexity of both fermionic and
bosonic Gaussian systems is simply given in terms of the
relative complex structure as [44]

CðjJRi; jJTiÞ ¼
1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðjlogðΔÞj2Þ

q
: ð59Þ

B. Complexity of coherent states

In the case of bosons, we can generalize the example in
Sec. VI A to include coherent states, where the target state
contains some nonzero displacement zT . This can be
motivated, for example, by the fact that many important
proposals for the implementation of quantum information
in continuous-variable systems are based on encoding the
logical information in the displacement vector, and not in
the covariance matrix [45,55–57]. Our next example will
thus consist of a simple extension of the formulas of
Sec. VI A to the case where the target state is a coherent
state.
In parallel to what we did before, all we need to do now

is to define an inner product at the tangent space of the
identity, with the minimal modification of now including
tangent vectors that generate displacements. This inner
product is then transported to the rest of the group manifold
by the analog of Eq. (56), with the group element now
being a pair ðv;MÞ∈R2N ⋊ Spð2N;RÞ. A natural7 choice
of inner product at the identity can be taken as

gð0;1Þððv;VÞ;ðw;WÞÞ¼σ−1R ðv;wÞþ1

2
TrðVσRW⊺σ−1R Þ ð60Þ

where V;W ∈ spð2N;RÞ, and

σ−1R ðv;wÞ ¼ ðσ−1R Þabvawb: ð61Þ

Then, given a reference state jJR; 0i≡ jJRi and a target
state jJT; zTi, the optimal circuit ðMðτÞ; zðτÞÞ can be
parametrized as

MðτÞ ¼ eτ logðΔÞ=2; ð62Þ

zðτÞ ¼ ðMðτÞ − 1ÞðMð1Þ − 1Þ−1zT; ð63Þ

where we recall Δ ¼ JTJ−1R is the relative complex struc-
ture from the reference to the target state. Represented as a

7Following the same logic as with the example in Sec. VI A,
this is the simplest way to define the complexity metric in the
displacement sector that does not add any extra structure.
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unitary operator on the Hilbert space, the trajectory above
simply corresponds to the time evolution implemented by

ÛðτÞ ¼ e−iĤτ; ð64Þ

where the time-independent Hamiltonian Ĥ is defined as

Ĥ ¼ 1

2
Fabξ̂

aξ̂b þ αaξ̂
a;

Fab ¼
1

2
ΩacðlogΔÞcb;

αa ¼
1

2
ΩacNc

dðzTÞd: ð65Þ

In (65), N is given by

N ¼ logðΔÞð
ffiffiffiffi
Δ

p
− 1Þ−1 ð66Þ

and we recall that the symplectic matrix Ωab is the inverse
of Ωab as defined in (18)—which, for bosonic systems,
is state independent and fixed by the algebra of the
quadratures.
We thus obtain the state complexity

CðjJRi; jJT; zTiÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðjlogðΔÞj2Þ

2
þ GðzT; zTÞ

r
; ð67Þ

where Gðz; zÞ ¼ Gabzazb, and the bilinear form G is
defined by

G ¼ N⊺σ−1R N; ð68Þ

with N defined as in (66). The case where target and
reference states share the same complex structure and only
differ by the displacement zT is readily accommodated as
the limit when Δ ¼ 1. In this case, we have N ¼ 2 · 1, the
optimal path on the space of displacements reduces to a
straight line,

zðτÞ ¼ τzT; ð69Þ

and the state complexity reduces to

CðjJRi; jJR; zTiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ−1R ðzT; zTÞ

q
: ð70Þ

C. Weyl transformation of right-invariant metric

It would also be interesting to have an example of
complexity metric which does not have as much symmetry
as the metrics presented in Secs. VI A or VI B. After all, it
is reasonable to expect that a measure of complexity that is
motivated by constraints from physical limitations will not
be represented by a right-invariant metric but will depend
more nontrivially on the state on which a given elementary
gate set is acting.

A very simple example of a metric that is no longer right
invariant, but for which most of the existing closed-form
expressions of Sec. VI A will still be greatly useful, is
obtained if we perform a Weyl transformation on the
previously right-invariant metric. That is, we define a
new metric in the group manifold in terms of the metric
presented in Sec. VI A by

g̃MðV;WÞ ¼ e2ωðrÞgMðV;WÞ: ð71Þ

In the Weyl transformation above, we are assuming
that ωðrÞ is a function only of the generalized radial
coordinate r—which, in this case, for any Gaussian trans-
formation in the equivalence class labeled by a given
complex structure J, is just the state complexity given
by Eq. (59) with JT ¼ J. Heuristically, the metric (71)
describes a simple model where the cost of acting with a
certain gate may change depending on how complex the
circuit already is at the time the gate is applied.
Mathematically, the importance of ωðrÞ being only a

function of r stems from the observation that, in this case,
the path given in Eq. (58) is also a geodesic of the modified
metric. To see this, first note that the geodesic equation (43)
for a curve with tangent vector V can be written in more
compact form as

Vi∇iVj ¼ 0; ð72Þ

where ∇i above denotes the Levi-Civita connection asso-
ciated to gij—i.e., the covariant derivative that is torsion-
free and compatible with the metric gij. Under a general
Weyl transformation gij ↦ g̃ij ¼ e2ωgij, the Christoffel
symbols transform as

Γi
jk ↦ Γ̃i

jk ¼ Γi
jk þ δij∇kωþ δik∇jω − gjkgil∇lω: ð73Þ

Therefore, if the trajectory MðτÞ with tangent vector
V ¼ dM=dτ was a geodesic of the metric gij, the same
trajectory (with the same parametrization), for the case of
the Weyl-transformed metric, will now satisfy

Vi∇̃iVj ¼ 2ðVi∇iωÞVj − kVk2ggij∇iω; ð74Þ

where ∇̃i is the Levi-Civita connection associated to the
new metric g̃ij, and kVk2g corresponds to the squared norm
of V according to the old metric, kVk2g ¼ gijViVj.
Equation (74) certainly does not look like the geodesic

equation for arbitrary ω and for a general geodesic of the
old metric. However, if we take the geodesic (58) and we
assume that ω ¼ ωðrÞ, the problem simplifies greatly, since
in this case we have that, along the trajectory (58), it holds
that gij∇jω ∝ Vi. This is because the tangent vector V
satisfies V ∝ ∂r, the conformal factor ω is such that
dω ∝ dr, and the vector field ∂r along the trajectory (58)
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is orthogonal to the cylinders of constant r (see
Refs. [27,29]), so gij∇jω ∝ ð∂rÞi. We can thus simply write

∇iω ¼ �kdωkg
kVkg

Vi; ð75Þ

where kdωkg corresponds to the norm of the 1-form dω
according to the metric g, kdωk2g ¼ gijð∇iωÞð∇jωÞ. The
plus-or-minus choice in (75) just accommodates the cases
where ω increases or decreases with increasing r, with the
plus sign applying to the former and the minus sign
applying to the latter. In both cases, substituting this back
into (74), we obtain

Vi∇̃iVj ¼ ðVi∇iωÞVj;

≡ΩðτÞVj; ð76Þ

which is of the form of a nonaffinely parametrized geodesic
curve, Vi∇̃iVj ∝ Vj, with the proportionality factor ΩðτÞ
being given by ΩðτÞ ¼ Vi∇iω ¼ dω=dτ. In the last equa-
tion, ωðτÞ should be understood as the pullback of ωðrÞ to
the trajectory (58). A new affine parameter s [such that the
associated tangent vector Ṽ ¼ dM=ds satisfies the geodesic
equation in the form (72) for the new metric g̃ij] is then
obtained by noting that, if both Ṽ and V are tangent vectors
for the same curve, we can write

V ¼ dM
dτ

¼ ds
dτ

dM
ds

¼ ds
dτ

Ṽ: ð77Þ

Plugging this back into Eq. (76) and demanding that
Ṽi∇̃iṼj ¼ 0 then gives us a differential equation for s,

1

f
df
dτ

¼ dω
dτ

; fðτÞ ¼ ds
dτ

: ð78Þ

We obtain a unique solution to (78) by demanding that
sðτ ¼ 0Þ ¼ 0 and sðτ ¼ 1Þ ¼ 1, so that the new affine
parameter also ranges from 0 to 1 between the reference
and target states. This gives us

sðτÞ ¼ 1R
1
0 dτ

0eωðτ0Þ

Z
τ

0

dτ0eωðτ0Þ: ð79Þ

Putting all of this together with the results reviewed in
Sec. VI A, we conclude that the state complexity derived
from the metric given by (71) is simply

C̃ðjJRi; jJTiÞ ¼
1

2
ffiffiffi
2

p
Z

1

0

dτ eωðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðjlogðΔÞj2Þ

q
: ð80Þ

In fact, once we knew that the original geodesics were
purely radial and the conformal factor was only a function
of r, there was an elementary argument that would also

have led to Eq. (80). The new line element in the radial
direction after the Weyl transformation is dl ¼ eωðrÞdr,
which once integrated from r0 ¼ 0 to r0 ¼ r gives us the
new proper length

l ¼
Z

r

0

dr0 eωðr0Þ ¼ r
Z

1

0

dτ eωðτÞ; ð81Þ

where we have renormalized the limits of integration by
setting τ ¼ r0=r, and used the slight abuse of notation
ωðrðτÞÞ ¼ ωðτÞ. By then remembering that the radial
coordinate associated to the target state is precisely given
by (59), the result from Eq. (81) is exactly what we
obtained in Eq. (80).

D. Nonreversible complexity for a single bosonic mode

Finally, as a simple example to illustrate a setting that
also includes nonreversibility, let us consider a single
bosonic degree of freedom, and restrict ourselves to the
subset of pure Gaussian states with vanishing vector of
means. In this case, the full space of pure Gaussian states
under consideration can be characterized by 2 × 2 covari-
ance matrices σ. Without loss of generality, we can set the
covariance matrix of the reference state to just be the
identity,

σR ¼
�
1 0

0 1

�
: ð82Þ

We then recall that the symplectic matrix for bosons is state
independent and given by

Ω ¼
�

0 1

−1 0

�
; ð83Þ

so the reference state can equivalently be characterized by a
complex structure which, in the simple choice of canonical
basis where σR becomes the identity, is just represented as

JR ¼
�

0 1

−1 0

�
: ð84Þ

Thanks to the simplicity of the setup, all of the general
ingredients developed in the previous sections can be
readily worked out in full detail. The stabilizer subgroup
StaðJRÞ associated to the complex structure (84) is simply
the orthogonal group in two dimensions, whose Lie algebra
staðJRÞ ≃ soð2Þ is one dimensional and generated by the
single element iσy, where σy is the second Pauli matrix. The
orthogonal complement to staðJRÞwithin spð2;RÞ accord-
ing to the standard choice of inner product (55) can be
parametrized as
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sta⊥ðJRÞ ¼
�
r

�
cosϕ sinϕ

sinϕ − cosϕ

�����0 ≤ ϕ < 2π; r ≥ 0

�
:

ð85Þ

The exponentiated version of these elements of the Lie
algebra then provides us with elements of the symplectic
group which can be recognized as general single-mode
squeezings Sðr;ϕÞ, where ϕ determines the orientation of
the squeezing, and r quantifies its magnitude. The param-
eters r and ϕ serve as coordinates on the space of pure
Gaussian states of a single bosonic mode with vanishing
vector of means. The fact that the squeezing magnitude is
notated as r is particularly convenient, as it is simple to
verify—with the complexity geometry defined by the
metric of Sec. VI A—that r corresponds precisely to the
complexity of the state obtained by acting on the complex
structure of the reference state with the squeezing operator
Sðr;ϕÞ as J ¼ Sðr;ϕÞJRSðr;ϕÞ−1. In other words, the
squeezing magnitude r is also the radial coordinate char-
acterizing state complexity according to the right-invariant
metric defined by Eqs. (55)–(56) in the case of a single
bosonic degree of freedom. That same metric restricted to
the ðr;ϕÞ plane gives us the line element

ds2 ¼ dr2 þ coshð2rÞ sinh2ðrÞdϕ2: ð86Þ

In this case, a very natural addition that reflects some level
of nonreversibility would be, for instance, to assign
directions of increasing r a higher cost than those of
decreasing r. As suggested in Sec. V, this can be achieved
by simply adding to the cost function the contribution from
a vector potential of the form

A ¼ −fðr;ϕÞdr; ð87Þ

for some positive function fðr;ϕÞ. In the simplest case
where f is only a function of r, the vector potential is just a
total derivative, and can be written as A ¼ −dh for some
hðrÞ such that f ¼ dh=dr. A vector potential of this form
does not change what the optimal path is, since in this case
Fij ¼ 0 and therefore the equation of motion (50) is the
same as if there were no vector potential at all. It does
however change the actual value of the complexity (46) by
an additional term of Δh ¼ hðrfÞ − hð0Þ, with rf being the
squeezing parameter of the final state relative to the
reference state. If the roles of reference and target are
reversed, then the contribution from this term changes to
−Δh, and therefore some notion of nonreversibility is
already present. If f also depends on ϕ, then on top of
the asymmetry between reference and target states, we also
get some nontrivial modification to the equation of motion
(50), analogous to an external magnetic field orthogonal to
the ðr;ϕÞ plane.

As a final note, we remark that including a conformal
factor of the form discussed in Sec. VI C in this case has a
very intuitive interpretation as well: namely, it means that
applying the same gate to the state of the system becomes
harder the more squeezed the state already is (something
that any quantum optician may confirm since it becomes
extremely difficult to achieve squeezing beyond 15 dB in
quantum optics [58,59]).

VII. CONCLUSIONS

In this paper we have proposed a geometric notion of
circuit complexity for Gaussian states of both bosonic and
fermionic systems that has a built-in way of accounting for
(1) the presence of possible inhomogeneities (which
change the cost of a given gate depending on what state
it acts on), and (2) the presence of nonreversibilities (which
assign different costs to paths related by time reversal). This
allows us to build a geometric complexity measure that can
capture features of the physical complexity of state prepa-
ration that one can experience in practice.
Instead of focusing on one particular choice of complex-

ity measure, we kept as much generality as possible in the
form of complexity functional based on Riemannian
metrics on the group of Gaussian transformations. This
allowed us to highlight a set of minimal assumptions that
the Riemannian metric should satisfy in order to potentially
be a good physical measure of how complex a given state
is. With that, we were then able to generalize a previous
characterization of state complexity considered in the
literature [27,29,44] thanks to a generalized cylindrical
foliation of the space of Gaussian transformations that
applies to any Riemannian metric satisfying the assump-
tions of Sec. IV. This shows how to preserve/adapt a lot of
the techniques and results from [27,29,44], while at the
same time being more flexible with the specifics of the
complexity metric—which, among many other things, can
naturally model the fact that in quantum optics, for
instance, squeezing can be more or less costly depending
on how squeezed the state already is.
We also proposed an extension to the framework that

includes an additional term in the cost functional which
makes directions on the space of Gaussian transformations
that are connected by time-reversal have different costs. We
consider this to be a well-motivated feature that a physical
measure of circuit complexity (understood as a quantifier of
the “hardness” of preparing a given state or unitary) may
display: after all, from an experimentalist’s perspective,
given two states jψ1i and jψ2i, it is not uncommon to
encounter situations where the experienced difficulty in
preparing jψ1i starting from jψ2i is not the same as starting
from jψ1i and then preparing jψ2i. This is realized in the
model proposed in Sec. V through the addition of a
background 1-form on the space of Gaussian transforma-
tions which behaves like a background vector potential.
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Despite the fact that Gaussian dynamics is restricted to
systems with quadratic Hamiltonians, the reasoning
employed in this paper may also apply equally well to more
general cases (potentially including interactions) as long as
the generators of the elementary gate set formaLie algebra. It
would be particularly interesting to see how this plays out in
the case of CFTs, especially due to its possible repercussions
on considerations about holographic complexity. In particu-
lar, this general class of complexity functionals could
potentially serve as a concrete boundary counterpart to the
recent “Complexity ¼ Anything” proposal for holographic
complexity in the AdS/CFT correspondence [20,21]. In this
context, the infinite family of gravitational observables in
asymptotically anti–de Sitter (AdS) spacetimes proposed
as candidate duals to circuit complexity of the CFT state
would be interpreted as arising from the infinite family of
complexity geometries that can be assigned to the boundary
theory.
An important problem to be pursued next is to see how to

provide a class of measures of complexity in quantum field
theory that is explicitly derived/motivated by constraints on
the physical operations (and their associated costs) that can
act on the field. This was our main motivation for starting
this work, and we consider that this paper establishes the
first step in that direction. More specifically, we aim to
understand whether considerations about the action of local
probes interacting with the field can provide some notion of
complexity in quantum field theory. The use of local probes
as a handle to the study of information-theoretic properties
of QFT is at the heart of the field of relativistic quantum
information, where local probes (often called particle
detectors in this context) have been shown to provide
important insights into several aspects of the interface
between quantum information and quantum field theory,
while also directly modelling experimentally realizable
setups (see, e.g., [60]). Examples of the use of particle
detectors in relativistic quantum information as proxies of

fundamental properties of QFT include the formulation of a
measurement theory for relativistic QFTs [61], an opera-
tional approach to entanglement in field theory [62–65] and
the inference of general properties of the background
spacetime from the statistics of detectors [66,67], among
many others. It is therefore natural to consider that similar
considerations about local probes may also shed light into
some notion of complexity in QFT, by providing an
operationally motivated sense of complexity associated
to a given family of gates that can be implemented in
the field through local probes. It should be interesting to
know whether the features of the dynamics between fields
and probes can yield some equation of motion that
privileges a subset of the metrics among those satisfying
the constraints of Sec. IV, as well for the background vector
potential introduced in Sec. V.
Finally, it would also be important to understand how

such motivated measures of complexity from local probes
may be potentially related to other proposals for definitions
of complexity from first principles. Examples include a
notion of complexity defined in connection with resource
theories [68], which is also motivated by the need to
accommodate constraints on what realistic agents can
accomplish, and emergent concepts of complexity in the
context of AdS/CFT [69–72]. We expect this to be subject
of further study in the near future.
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