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We study numerically the existence in a false vacuum of magnetic monopoles that are “thin walled,” i.e.,
which correspond to a spherical region of radius R that is essentially trivial surrounded by a wall of
thickness Δ ≪ R, hence the name thin wall, and finally an exterior region that essentially corresponds to a
pure Abelian magnetic monopole. Such monopoles were dubbed false monopoles and can occur in non-
Abelian gauge theories where the symmetry-broken vacuum is actually the false vacuum. This idea was
first proposed in Kumar et al. [Phys. Rev. D 82, 025022 (2010)]; however, the proof of the existence of
thin-wall, false monopoles given there was incorrect. Here, we fill this lacuna and demonstrate numerically,
for an appropriately modified potential, the existence of thin-wall false monopoles. The decay via quantum
tunneling of the false monopoles could be of importance to cosmological scenarios that entertain epochs in
which the Universe is trapped in a symmetry-broken false vacuum.
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I. INTRODUCTION

Magnetic monopoles correspond to soliton solutions of
non-Abelian gauge field theories with scalar matter fields,
where a simply connected simple gauge group symmetry is
spontaneously broken to a smaller gauge symmetry where
the gauge group has a Uð1Þ factor. The topological pos-
sibility of the existence of monopoles requires that the
homotopy group Π2ðG=HÞ be nontrivial [1]. It is well
understood that, from the short exact sequence Π2ðGÞ →
Π2ðG=HÞ → Π1ðHÞ → Π1ðGÞ, and the fact thatΠ2ðGÞ ¼ 0
and that Π1ðGÞ ¼ 0 implies Π2ðG=HÞ ¼ Π1ðHÞ. But
H ¼ Uð1Þ and it is trivially known that Π1ðUð1ÞÞ ¼ Z;
hence, Π2ðG=HÞ ¼ Z, and the integer characterizing the
configuration is the monopole charge. However, it can be
that the symmetry breaking is temporary and that the
symmetry-breaking vacuum is a false vacuum that will
eventually decay to the true vacuum. Such a scenario adds
new dynamical aspects to the monopole solution. The
Universe can be trapped in this false vacuum phase for an
interminably long period. Indeed, cosmological solutions

coming from string theory [2] in fact propose that the present
Universe is in a false vacuum, that, in principle, has a very,
very, long lifetime (hence the justification that it has
survived for 13 billion years, the age of the Universe).
However, topological solitons occurring in the false vacuum
will promote the decay of the false vacuum, as we have
shown in a series of papers [3–9]. Precocious decay of the
false vacuum would have undesirable consequences, if
presumably, we are living in one.
In this paper, we concentrate on the case of magnetic

monopoles in a false vacuum. In [3], it was analyzed how
thin-wall monopoles could arise in the gauge field/Higgs
field dynamics. However, the analysis presented there
relied on the proposition that the gauge field dynamics
would essentially follow the Higgs field dynamics, which
was not rigorously established and seems not to be the case.
In this paper, we analyze numerically the magnetic monop-
ole solutions that exist in a false vacuum. The main
difference is that the core of the monopole is in the true
vacuum and hence provides an outward pressure causing
the monopole to be thin walled. Classically the monopole is
stable; however, it can tunnel quantummechanically [10] to
a classically unstable state, essentially where the radius of
the core is large enough so that the core will expand
uncontrollably, converting the false vacuum in the exterior
to the true vacuum in the interior. This tunneling amplitude
was computed in [3] the computation that relied only on the
requirement that the monopole be thin walled.
The analysis in [3] assumed that the dynamics of the

gauge field simply followed the dynamics of the Higgs
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field. This does not seem to be correct, and hence, the proof
of the existence of thin-walled monopoles given there is not
accurate. In this paper, we perform the required numerical
analysis to confirm the existence of thin-walled monopoles
for an appropriate choice of the scalar field potential.

II. FALSE MAGNETIC MONOPOLES
AND THEIR TUNNELING DECAY

The monopole is constructed with a variation of the
standard ’tHooft-Polyakov monopole where the field con-
tent consists of a triplet scalar ðϕ⃗Þi, i ¼ 1, 2, 3 and the
corresponding gauge field A⃗μ of local SOð3Þ gauge
invariance. The potential for the scalar field, as treated
in [3], was a sixth order potential, writing h ¼ jϕ⃗j

VðϕÞ ¼ λh2ðh2 − a2Þ2 þ γ2h2 − ϵ: ð1Þ

The potential has the form given in Fig. 1, and comprises
of a true vacuum at h ¼ 0 and a false vacuum of the
symmetry broken type at h ¼ η, where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4λ2 − 3γ2λ

p
3λ

s
: ð2Þ

The parameters of the potential are chosen so that the
energy density difference is ϵ, which normalizes the
potential so that the false vacuum has energy density zero,
evidently Vðh ¼ 0Þ ¼ −ϵ. Our idea was to mimic the thin-
wall instanton analysis done by Coleman [11] in his study
of false vacuum decay via the tunneling formation of thin-
walled bubbles of the true vacuum within the false vacuum.

The spherically symmetric ansatz is

ϕa ¼ r̂ahðrÞ

Aa
μ ¼ ϵμabr̂b

1 − KðrÞ
er

A0 ¼ 0; ð3Þ

and the equations of motion giving rise to the monopole
solution are given by

h00 þ 2

r
h0 −

2h
r2

K2 −
∂V
∂h

¼ 0; ð4Þ

K00 −
K
r2

ðK2 − 1Þ − e2h2K ¼ 0: ð5Þ

For the original ’tHooft-Polyakov monopole configuration
[12,13], the potential has a maximum at h ¼ 0 and a
symmetry-breaking minimum at h ¼ a ≠ 0, which is the
global minimum of the potential. For the false monopoles
that we are considering, the potential has a global minimum
at h ¼ 0, which does not break the symmetry and is the true
vacuum, and has a local minimum at h ¼ η ≠ 0, which
corresponds to the false vacuum.
We imagine that the Universe is trapped in the false

vacuum, which is a standard scenario [14]. However, as the
vacuum is not given by a single value of the scalar field but
in fact a whole manifold of values, the manner in which the
Universe is trapped could vary from spatial point to point.
This allows for the possibility of topologically nontrivial
configurations, within the false vacuum. We have dubbed
such monopoles “false monopoles,” and they are seen,
through our analysis [3], to be unstable. The sixth order
potential (1) with the appropriate choice of parameters does
correspond to a potential with a true minimum at h ¼ 0 and
a false minimum at h ¼ η where ϵ, the difference of energy
density, can be taken to be arbitrarily small.
The thin-walled false monopole solution that we are

looking for would be classically stable. We informally
divide space into the interior and the exterior of the
monopole. The exterior is where the fields are essentially
Abelian, while the interior of the monopole contains the full
non-Abelian structure. The topological twisting of the
scalar field in the exterior region at spatial infinity requires
that the scalar field must vanish in the interior of the
monopole for the configuration to be nonsingular. Hence,
there is a region in the interior where the configuration is
essentially in the true vacuum. This region would naturally
be unstable to expand, as it has negative energy density, −ϵ,
compared to the false vacuum in the exterior that has been
normalized to have vanishing energy density. For a solution
of the thin-wall type, this expansion is arrested because the
energy in the wall increases as the radius squared, while the
negative energy increases as the radius cubed. For the small
radius, the positive contribution to the energy dominates,

FIG. 1. Inverted potential of Eq. (1) for the scalar field at
generic values of the parameters.
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but eventually, for the large radius, it is clear that the
negative contribution to the energy is dominant. The size
of the interior region is stable under collapse due to
the Coulomb energy of the monopole. The energy in
the Abelian magnetic field will diverge inversely with
the radius of the interior region consequently arresting the
collapse. The eventual instability of the false monopole is
due to quantum tunneling. The radius of the bubble can
tunnel out to a larger radius at which the negative energy
density of the true vacuum becomes dominant and the
monopole size expands without bound, converting false
vacuum into true vacuum.
The equations of motion (4) and (5) can be interpreted as

the equations governing the position of two particles, h and
K, as a function of “time” corresponding to r. The h
dynamics correspond to movement in the presence of the
inverted potential −V, as depicted in Fig. 1, but also in
the presence of a positive impulse due to the K dependent
term 2hK2=r2 and a time-dependent “drag” term −2h0=r.
The drag term is called so because normally friction is
included, in an otherwise conservative equation of motion,
through just such a first derivative term. Both of these
nonstandard terms disappear as r becomes large. The K
equation of motion does not directly depend on the
potential; however, it does implicitly do so through its
dependence on h. Intuitively, we expect that the h field will
remain at or near h ¼ 0 if it starts very near h ¼ 0 or starts
directly at h ¼ 0 with a very small initial velocity. By
changing the values of the parameters, we can adjust how
long the field remains at h nearly zero. If r becomes large,
both the impulse term that depends on the K field and the
drag term that depends on the derivative h0 become
negligible, as they are multiplied 1=r2 and 1=r, respec-
tively. The subsequent motion is conservative and can be
easily analyzed.
In [3], it was invoked that the K evolution would simply

follow the h evolution; hence, if the h field stayed for a
long time at h ¼ 0, then the K field would stay at K ¼ 1
until the h field started its nontrivial evolution. This was
apparently not true. Numerical studies show that it is
largely the boundary conditions for large r that govern the
behavior of the K field, and even though the h field
remains zero, the K field begins its trajectory toward a
vanishing value independently of the value of the h field.
Furthermore, it was found that even though we can make
the initial potential as flat as we like near h ¼ 0, it still does
not give rise to a thin-wall solution. The h field simply
starts to move up to its asymptotic value h ¼ η from r ≈ 0.
The reason for this behavior has to do with the impulse
term 2h

r2 K
2, which pushes the h field along immediately

at r ¼ 0. Therefore, the idea of obtaining a thin wall
monopole with the potential Eq. (1) was not correct.
The content of this paper is to show how to modify the
potential in order to obtain a thin-wall, false monopole
solution.

III. MODIFIED POTENTIAL

The potential can be modified in an infinite number of
ways, as we are not concerned with renormalizability.
We are primarily motivated by the desire to exhibit a
potential for which the false monopoles will present
themselves as thin-wall monopoles. However, we find that
the modifications are justified with respect to current
models of cosmology. Our modification will give rise to
a false vacuum that is not only classically stable but also is
comprised of a very wide flat region. Such false vacua with
wide flat regions have been considered in many viable
cosmological models. For example, the KKLT solution for
a cosmology coming from string theory [2] obtains that
the present Universe is actually in a false vacuum phase
where the very wide flat aspect of the potential gives
that the tunneling probability to the true vacuum is much
longer than the present age of the Universe. In super-
symmetric models, the existence of flat directions is generic
and required, [15]. However, nonperturbative effects and
supersymmetry breaking can slightly lift degeneracies of
supersymmetric vacua, giving rise to just the kind of very
flat vacua that we will be modeling. In the inflationary
cosmology scenario, the notion of slow-roll inflation
requires a false vacuum to be very flat such that the scalar
field slowly rolls down a potential rather than tunneling out
of it [16,17]. Inflation occurs if the roll is slow compared
to the expansion of the Universe. However, eventually, the
roll speeds up, arrests the inflationary phase, and gives rise
to particle creation. Hence, these scenarios all require a
very flat false vacuum, the kind of false vacuum that wewill
be studying. Indeed, if the disintegration of the false vacuum
that we are investigating is in fact relevant in cosmological
scenarios where the Universe is in a false vacuum for an
appreciable amount of time, itwould require serious readjust-
ments of those scenarios that rely on a long period in which
the Universe is trapped in such a false vacuum.
The potential that we use should simply be thought of as

an effective potential. The potential should have an
absolute minimum at h ¼ 0 and additionally a local
minimum (false vacuum) at h ¼ a; the energy density
difference between the minima should be an adjustable
parameter. The energy density of the false vacuum is
normalized to zero. We consider the following form for
the potential:

VðhÞ ¼ λ

�
ðh2 − a2Þ2

�
h2 −

ϵ
1

2nþ1

a4

��
2nþ1

; ð6Þ

as shown in Fig. 2. The potential is symmetric under
h → −h; however, we are only interested in the range

h ≥ 0. Here, the potential has two roots at hi ¼
ffiffiffiffiffiffiffiffi
ϵ

1
2nþ1

p
a2 and

at h ¼ a.
For ϵ

1
2nþ1 < a6, the potential rises up from −λϵ at h ¼ 0 to

an inflection point (and root) at hi followed by a maximum
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at h̄ and then followed by a local minimum (and root) at
h ¼ a. Afterward, it rises up to þ∞. This is depicted in
Fig. 2. However, the three critical points can exchange
their order.
For ϵ

1
2nþ1 > a6, we get the order interchanged. This is

depicted in Fig. 3. We are not interested in a potential with
this behavior; therefore, we will restrict ourselves to the
region ϵ

1
2nþ1 < a6.

In order to confirm the described behavior of the
potential, we first compute its derivative. Writing ϵ̄¼ϵ

1
2nþ1,

we have

V 0ðhÞ ¼ λð2nþ 1Þ
�
ðh2 − a2Þ2

�
h2 −

ϵ̄

a4

��
2n

×

��
2ðh2 − a2Þ

�
h2 −

ϵ̄

a4

�
þ ðh2 − a2Þ2

��
2h

¼ λð2nþ 1Þðh2 − a2Þ4nþ1

�
h2 −

ϵ̄

a4

�
2n

×

�
3h2 −

�
2ϵ̄

a4
þ a2

��
2h; ð7Þ

and one can read off the critical points V 0ðhÞ ¼ 0 at
0; hi ¼

ffiffiffī
ϵ

p
=a2; h̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ϵ̄=a4 þ a2Þ=3

p
, and a.

(1) The global minimum at h ¼ 0 is simple with
Vð0Þ ¼ −λϵ and clearly V 00ð0Þ ¼ λð2nþ 1Þ×
a2ϵ̄2nð2ϵ̄=a4 þ a2Þ > 0.

(2) The critical point at hi is an inflection point and a
root of order 2nþ 1. We find

V2nþ1ðhiÞ ¼ λð2nþ 1Þ!ðh2i − a2Þ4nþ2ð2hiÞ2nþ1;

which gives the leading contribution in the Taylor
expansion of the potential as ∼ðh − hiÞ2nþ1. This is

an odd power h − hi changing sign on either side of
hi, implying an inflection point.

(3) The critical point at h̄ is a simple local maximum.
We find V 00ðh̄Þ by differentiating the term 3h2 −
ð2ϵ̄a4 þ a2Þ in V 0ðhÞ and setting h ¼ h̄ afterward. The
contributions from differentiating the other terms of
course vanish as the term vanishing at h ¼ h̄ is
intact. Thus, we find

V 00ðh̄Þ ¼ −λð2nþ 1Þ24nþ1ðða2 − ϵ̄=a4Þ=3Þ6nþ112h̄:

We observe that the sign of the first factor changes
from positive to negative as ϵ̄ passes from below a6

to above as the power 6nþ 1 is odd. The other
factors do not change sign. Hence, for ϵ̄ < a6, the
region that we are interested in, we have V 00ðh̄Þ < 0,
i.e., a maximum at h̄.

(4) The critical point at h ¼ a is also a 4nþ 2 order root,
i.e., VðhÞ ∼ ðh − aÞð4nþ2Þ with the first nonvanishing
derivative of even order, Vð4nþ2ÞðaÞ ≠ 0. Differenti-
ating VðhÞ, 4nþ 2 times and then evaluating at
h ¼ a only gives a nonvanishing contribution when
the derivative acts on the h − a factor. We easily
find V4nþ2ðaÞ¼ λð4nþ2Þ!ð2aÞ4nþ2ða2− ϵ̄=a4Þ2nþ1,
which, if ϵ̄ < a6, is positive signifying a local
minimum.

IV. NUMERICAL RESULTS

The equations of motion Eqs. (4) and (5) correspond to
dynamics in minus the potential and as if r is the time. We
have experimented with various values of ϵ, a, and n. We
are able to find thin-wall type (false) monopole solutions.
The work is numerical, using a Matlab code to find

the solution, which is included in the Supplemental

FIG. 2. Potential for the scalar field with n ¼ 1, a ¼ 1.43,
λ ¼ 0.1, and ϵ ¼ 0:4.

FIG. 3. Potential for the scalar field with n ¼ 1, a ¼ 0:82,
λ ¼ 1, and ϵ ¼ 1.5.
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Material [18]. We find the monopole profiles have a thin-
wall behavior as defined by the energy density of the
configuration. The field profiles for h andK are given in the
Fig. 4. These profiles correspond to thin-wall solutions
when we look at the total energy density shown in Fig. 5.
The total energy density starts at zero and descends as
∼ − r2, which we confirm numerically. This is expected as
the potential energy in the scalar field is −λϵ when h ≈ 0.
Then the energy density should behave simply as −λϵr2
including the contribution of the volume element. There
is a competing positive contribution from the magnetic
field energy density as K starts to descend from K ¼ 1;
however, in the interior, the total energy density seems to
be dominated by the negative scalar potential energy. The
descent of the total energy density is arrested when the
scalar field begins to move away from h ¼ 0. This is where
the wall starts in Fig. 5, and implicitly from the profiles in
Fig. 4, we see that the increase in the energy density is
rather brusque. This allows for a well-defined value for the
inner radius of the wall. The outer radius of the wall starts
once the total energy density begins to get its dominant

contribution from the Coulomb energy of the exterior
Abelian magnetic field. This magnetic field is constructed
from the non-Abelian magnetic field and the covariant
derivatives of the scalar field. The contribution to the total
energy density from the scalar field potential becomes
negligible as the scalar field assumes its value at the false
vacuum (which has been normalized to zero energy
density) in the exterior. The magnetic field behaves as
∼1=r2; hence, the total energy density behaves as
∼r2ð1=r2Þ2 ¼ 1=r2. To exhibit this numerically, we con-
sider the log of the total energy density squared, lnðEðrÞÞ2.
We take the square so that the log acts on a positive
function. The slope of this function should behave as ≈4 in
the interior region and as ≈ − 4 in the exterior region, with
a complicated interpolation between these values within the
wall region. In Fig. 6, we plot the derivative (with respect to
ln r) of the log of the total energy density squared. We see
clearly that the interior value is indeed about þ4, while the
exterior value is −4 as expected. Additionally, we see that
the wall thickness Δ, over which the behavior of the energy
density interpolates from ∼ − r2 to ∼1=r2, is relatively
small compared to the wall radius.
The non-Abelian magnetic energy density behaves in a

complicated way in the interior and as a 1=r2 contribution
in the exterior, as can be seen from Figs. 7 and 8. The
magnetic field energy density rises up to a peak at the wall
and then descends downward to the expected ∼1=r2
behavior from its Coulomb tail. The derivative by ln r of
the log of the magnetic field energy density squared
asymptotes to −4 confirming that the magnetic field energy
density behaves like ∼1=r2 in the exterior.
In Fig. 9, we plot the energy density in the covariant

derivative of the scalar field and in Fig. 10, the derivative by
ln r of the log of its contribution to the energy density
squared. We observe a vanishing contribution in the
interior, then a brusque rise up at the inner wall radius,
and then an interpolation to the exterior energy density
contribution, which behaves exactly like ∼1=r2 as seen

FIG. 4. The profiles for h=a and K for various values of ϵ and
for λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.

FIG. 5. The total energy density for the profiles in Fig. 4 for
various values of ϵ and for λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.

FIG. 6. The derivative of the log of the total energy density
squared with respect to the log of r, for ϵ ¼ 15 and for λ ¼ 0.1,
a ¼ 1.4, and n ¼ 4.
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from the exterior behavior in Fig. 10, which assumes the
corresponding asymptotic value of −4.
We end this section with Fig. 11 of multiple profiles for

the solutions for h and K for various values of ϵ. All the
values of the parameters satisfy the condition that ϵ̄ < a6 as
is required. The values of n range from ϵ ¼ 8 in Fig. 4, to
ϵ ¼ 800 in Fig. 11. Explicitly for the values at the two
extremes, we have ϵ ¼ 8, λ ¼ 0.1 a ¼ 1.4, and n ¼ 4,

FIG. 7. The magnetic energy density for ϵ ¼ 15 and for
λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.

FIG. 8. The log of the magnetic energy density squared and its
derivative (by ln r) for ϵ ¼ 15 and for λ ¼ 0.1, a ¼ 1.4,
and n ¼ 4.

FIG. 9. The covariant derivative energy density for ϵ ¼ 15 and
for λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.

FIG. 10. The derivative by ln r of the log of the covariant
derivative energy density squared for ϵ ¼ 15 and for λ ¼ 0.1,
a ¼ 1.4, and n ¼ 4.

FIG. 11. Multiple solutions for h and K for various values of ϵ
and for λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.

FIG. 12. Graph of the potential (including a zoom around
r ¼ 1), for ϵ ¼ 8, λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.
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giving ϵ̄ ¼ 1.26 < 7.53 ¼ a6 and for ϵ ¼ 800, λ ¼ 0.1,
a ¼ 1.4, and n ¼ 4, giving ϵ̄ ¼ 2.1 < 7.53 ¼ a6. Figure 11
gives the monopole profiles of h and K for six different
values of ϵ and fixed values of λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.
It could be clarifying to see the potential explicitly that
gives rise to the thin-walled monopoles. Here, in Figs. 12
and 13, we give the graph of the potential for the two
extreme values, ϵ ¼ 8 and ϵ ¼ 800.

V. CONCLUSIONS

We will make several observations. First, the idea that ϵ
should be small is not the appropriate criterion, it seems.
Indeed, we get thin-wall type solutions as we take ϵ to be
quite large, as can be seen in Fig. 11, although we always
remain in the region ϵ̄ < a6. Second, the thin-wall nature of
the solution is quite different than in the case of thin-wall
instantons that give rise to vacuum bubbles [11]. With the
vacuum bubbles, the interior of the bubble was a quiescent
true vacuum. In our case, the energy density of the true
vacuum is dominant and normalized to be negative;
however, the gauge field does give a nonzero contribution.
This is reminiscent of the false vortices and cosmic strings
that have been studied in a similar context [5,9] where the
interior contains nontrivial magnetic fields. The profiles
show an energy density that behaves as ∼r2 in the interior.
Here, the scalar field remains in the true vacuum, h ≈ 0
until it starts its trajectory up to the false vacuum, where the
wall nominally begins. The gauge field, however, immedi-
ately begins its descent from K ¼ 1 giving a contribution to
the energy density, which behaves as ≤r2. However, the
negative energy density of the true vacuum of the scalar
field gives a contribution to the energy density that behaves
as ∼−λϵr2, and it dominates over the contribution to the
energy density from the gauge fields for ϵ sufficiently large.
The wall region has a sharply defined inner radius,
essentially where the scalar field begins to move away
from h ¼ 0, but the exact outer boundary is not as sharp.
However, eventually, in the exterior, the behavior of the
energy density is that of the Coulomb energy of the Abelian
magnetic field.
With this understanding of the existence of the thin-wall

false monopoles, we can imagine that the further analysis

done in [3] is perfectly justified. The interior of the
monopole will give a contribution to the total energy that
behaves as three terms, the interior negative energy propor-
tional to the volume, the positive wall energy proportional
to the area, and the exterior Coulomb energy proportional
to the inverse of the radius.

EðRÞ ¼ −αR3 þ 4πσR2 þ C
R
; ð8Þ

where α, σ, and C are calculable parmeters. The function
EðRÞ descends from þ∞ at R ¼ 0 to −∞ at R ¼ þ∞, but
it will have a classically stable minimum corresponding to a
thin-wall false monopole as long its derivative has two
positive critical points. The first critical point corresponds
to a local minimum, which gives the radius of the false
thin-wall monopole, while the second corresponds to the
position at the height of the barrier under which the
wall must tunnel to render the false vacuum unstable.
E0ðRÞ ¼ 0 at the critical points, which gives the equation
−3αR2 þ 8πσR − C

R2 ¼ 0. Multiplying by R2 and dividing
through by −C yields the quartic

3α

C
R4 −

8πσ

C
R3 þ 1 ¼ 0: ð9Þ

For a small C, which is reasonable for small gauge
coupling, the equation is equivalent to

AR4 − BR3 þ 1 ¼ 0; ð10Þ

with A;B≫1. This equation is easily, analytically solved by
symbolic algebraic manipulation software (Mathematica)
and yields four solutions. A clear discriminant must be
positive to have any real solution

−256A3 þ 27B4 ≥ 0; ð11Þ

i.e.,

C ≤
ð4πσÞ3
16α3

: ð12Þ

Furthermore, if Eq. (12) is satisfied, it can be easily seen that
in the limit 8πσ

C ; 3αC ≫ 1, there are always two real positive
solutions.
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FIG. 13. Graph of the potential for ϵ ¼ 800 (including a zoom
around r ¼ 1), λ ¼ 0.1, a ¼ 1.4, and n ¼ 4.
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