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It has been shown that non-Abelian solitonic vortex string supported in four-dimensional (4D) N ¼ 2

supersymmetric QCD (SQCD) with the U(2) gauge group and Nf ¼ 4 quark flavors becomes a critical
superstring. This string propagates in the ten-dimensional space formed by a product of the flat 4D space
and an internal space given by a Calabi-Yau noncompact threefold, namely, the conifold. The spectrum of
low-lying closed string states was found and interpreted as a spectrum of hadrons in 4D N ¼ 2 SQCD. In
particular, the lowest string state appears to be a massless Bogomol’nyi-Prasad-Sommerfield (BPS) baryon
associated with the deformation of the complex structure modulus b of the conifold. It was recently shown
that the Coulomb branch of the associated string sigma model which opens up at strong coupling can be
described by N ¼ 2 Liouville theory. Building on these results we switch on quark masses in 4D N ¼ 2

SQCD and study the interpolation of the initial U(2) SQCD with Nf ¼ 4 quarks to the final SQCD with
the U(4) gauge group and Nf ¼ 8 quarks. To find the true string vacuum which arises due to the mass
deformation we solve the effective supergravity equations of motion associated with the deformed world
sheet Liouville theory. We show that the massless BPS baryon b survives the deformation and that finding
of the spectrum of low-lying massive hadrons in the final SQCD is linked to the Calogero problem.

DOI: 10.1103/PhysRevD.110.025004

I. INTRODUCTION

It was shown in [1] that the non-Abelian solitonic
vortex string in four-dimensional (4D) N ¼ 2 supersym-
metric QCD (SQCD) with the U(N ¼ 2) gauge group and
Nf ¼ 2N ¼ 4 flavors of quark hypermultiplets behaves
as a critical superstring. Non-Abelian vortices were first
found in N ¼ 2 SQCD with the gauge group UðNÞ and
Nf ≥ N flavors of quarks [2–5]. The non-Abelian vortex
string is 1=2 Bogomol’nyi-Prasad-Sommerfield (BPS)
saturated and, therefore, has N ¼ ð2; 2Þ supersymmetry
on its world sheet. In addition to four translational moduli
the non-Abelian string carries orientational moduli, as well
as the size moduli if Nf > N [2–5] (see Refs. [6–9] for
reviews). Their dynamics are described by the effective
two-dimensional (2D) sigma model on the string world
sheet, the so-called N ¼ ð2; 2Þ supersymmetric weighted
CP model [WCPðN;Nf − NÞ].

For Nf ¼ 2N the world sheet sigma model becomes
conformal. Moreover, for N ¼ 2 the number of the
orientational/size moduli is six and they can be combined
with four translational moduli to form a ten-dimensional
space required for a superstring to become critical [1,10].
In this case the target space of the world sheet theory on
the non-Abelian vortex string is R4 × Y6, where Y6 is a
noncompact six-dimensional Calabi-Yau (CY) manifold,
the conifold [11], see Ref. [12] for a review. Moreover, the
theory of the critical vortex string at hand was identified
as the superstring theory of type IIA [10]. The spectrum of
low-lying closed string excitation was found in [10,13].
A version of the string-gauge duality for 4D SQCD was

proposed [1]; at weak coupling this theory is in the Higgs
phase and can be described in terms of quarks and Higgsed
gauge bosons, while at strong coupling hadrons of this
theory can be understood as closed string states formed by
the non-Abelian vortex string. We call this approach a
“solitonic string-gauge duality”.
Most of massless and massive string modes have non-

normalizable wave functions over the conifold Y6, i.e., they
are not localized in 4D and cannot be interpreted as
dynamical states in 4D theory, in particular there are no
massless 4D gravitons in the physical spectrum [10].
However, an excitation associated with the deformation
of the complex structure modulus b of Y6 has
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(logarithmically) normalizable wave function and was
interpreted as a massless baryon in the spectrum of hadrons
of 4D N ¼ 2 SQCD [10].
To analyze the massive states, a different approach was

chosen similar to the one, used for little string theories (see
Ref. [14] for a review). It is based on the equivalence [15]
between the critical string on the conifold and non-critical
c ¼ 1 string containing the Liouville field and a compact
scalar at the self-dual radius (united into a complex scalar of
N ¼ 2 Liouville theory [16,17]).1 Later similar correspon-
dence was proposed (and treated as a holographic AdS/
CFT-type duality) for the critical string on certain non-
compact CY spaces with isolated singularity in so-called
double scaling limit, and noncritical c ¼ 1 string with an
additional Ginzburg-Landau N ¼ 2 superconformal sys-
tem [18,19]. In the conifold case, this extra Ginzburg-
Landau conformal field theory (CFT) is absent.
Recently this equivalence was demonstrated in a more

direct way. Namely, it was shown in [20] that Coulomb
branches of world sheet WCPðN;NÞ models on non-
compact toric CY manifolds with an isolated singularity
which open up at strong coupling can be described by
N ¼ 2 Liouville theory with background charge depend-
ing on N. This was shown first in the large-N approxima-
tion and then extrapolated to an exact equivalence.
The above equivalence was used in [13,21] to find the

low-lying spectrum of hadrons in 4D N ¼ 2 SQCD with
gauge group U(2) and Nf ¼ 4 quark flavors.
Although the solitonic string-gauge duality program

looks rather generic, one of its main limitations is that
so far only one example of 4D gauge theory supporting
non-Abelian strings which can be quantized using well-
developed string theory methods was found, namely
N ¼ 2 SQCD with gauge group U(2) and Nf ¼ 4 quark
flavors. The reason is that the string sigma model
[WCPðN;NÞ] living on the world sheet of non-Abelian
string is conformal for Nf ¼ 2N and its target space has
critical dimension equal to ten for N ¼ 2 [1].
In this paper we make a step towards broadening of the

class of 4D N ¼ 2 SQCDs where the solitonic string-
gauge duality can be applied, see also [22,23]. To this end
we introduce quark masses in N ¼ 2 SQCD and changing
values of mass parameters interpolate between SQCDs with
different gauge groups and numbers of quark flavors.
Quark masses in 4D SQCD induce so-called twisted

masses of fields in the world sheet WCPðN;NÞ model
breaking its conformal invariance. We repeat the derivation
in [20] and reduce the Coulomb branch of the mass-
deformed WCPðN;NÞ model to the deformed N ¼ 2
Liouville theory, where the mass deformation boils down
to a nontrivial metric of the target space. However, this
“classical” metric still cannot be used for the string

quantization since the conformal invariance of the model
is broken by the mass deformation.
To find a true string vacuum we solve effective super-

gravity equations using the classical metric of the mass-
deformedN ¼ 2 Liouville theory only as initial conditions
for the true metric at large values of the Liouville field ϕ,
where the mass deformation is small.
Solving the gravity equations of motion and finding the

true quantum metric and the dilaton for the mass-deformed
N ¼ 2 Liouville theory allows us to interpolate between
two 4D SQCDs. Namely, starting from N ¼ 2 SQCD with
gauge group U(2) and Nf ¼ 4 which supports critical non-
Abelian vortex string and reducing the mass parameter
“integrating extra quarks in” we interpolate to N ¼ 2
SQCD with gauge group U(4) and Nf ¼ 8 quark flavors.
We show that the b-baryon survives the deformation and
remains massless in the final SQCD. Instead massive states
“feel” the naked singularity which is present in the metric
and finding of their spectrum is linked to the Calogero
problem with the “falling to the center” 1=ϕ2-type potential
associated with the singularity.
The paper is organized as follows. In Sec. II we review

4D N ¼ 2 SQCD which supports non-Abelian strings and
WCPðN;NÞ models arising as world sheet theories on
these strings focusing on conformal cases Nf ¼ 2N. Next,
we describe our mass deformation which interpolates from
SQCD with U(2) gauge group and Nf ¼ 4 to SQCD with
U(4) gauge group andNf ¼ 8. We also review the massless
b-baryon associated with the complex structure modulus of
the conifold in the former theory. In Sec. III we review the
derivation ofN ¼ 2 Liouville theory from theWCPðN;NÞ
world sheet model at strong coupling and then describe its
mass deformation. In Sec. IV we study effective super-
gravity equations of motion associated with the mass-
deformed Liouville world sheet model and find their
solution which describes the true string vacuum. In
Sec. V we continue using the gravity approach and consider
the tachyon equation of motion for the vertex operators
of the mass-deformed theory. We show that the b-baryon
remains massless in the mass-deformed theory and discuss
qualitatively the structure of the spectrum of massive string
states pointing out that finding of this spectrum is related to
the Calogero problem. Section VI contains our conclusions.

II. NON-ABELIAN VORTEX STRING

A. Four-dimensional N = 2 SQCD

As was already mentioned, non-Abelian vortex strings
were first found in 4D N ¼ 2 SQCD with the gauge group
UðNÞ and Nf ≥ N quark flavors supplemented by the
Fayet-Iliopoulos (FI) term [24] with parameter ξ [2–5], see
for example, [8] for a detailed review of this theory. The
field content is as follows. The N ¼ 2 vector multiplet
consists of the U(1) gauge field and the SUðNÞ gauge field
which can be combined in the matrix ðAμÞkl plus complex

1In [15] this equivalence was shown for topological versions of
the string theories.
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scalar fields akl , and their Weyl fermion superpartners.
The Nf quark multiplets of the UðNÞ theory consist of the
complex scalar fields qkA and q̃Ak (squarks) and their
fermion superpartners, all in the fundamental representa-
tion of the SUðNÞ gauge group. Here μ ¼ 1;…; 4 is the 4D
Minkowski index, k; l ¼ 1;…; N are color indices, while A
is the flavor index, A ¼ 1;…; Nf. Below we briefly
describe how we can interpolate between SQCDs with
different gauge groups and number of quark flavors
considering different limits of quark masses.
At weak coupling g2 ≪ 1, this theory is in the Higgs

phase in which adjoint scalars develop vacuum expectation
values (VEVs)

hai ¼ −
1ffiffiffi
2

p

0
B@

m1 … 0

… … …

0 … mN

1
CA; ð2:1Þ

where we select a vacuum where the first N quark flavors
are massless at zero FI parameter ξ, while mA are quark
masses. Adjoint VEVs break UðNÞ gauge group down to
Uð1ÞN , masses of off-diagonal gauge bosons are given by
Mk

l ∼ jmk −mlj. If certain quark masses coincide adjoint
VEVs leave certain non-Abelian subgroups of UðNÞ
unbroken, see below. Masses of qkA and q̃Ak quarks are
equal to jmk −mAj.
At nonzero ξ following diagonal components of squarks

also develop VEVs

hqkki ¼
ffiffiffi
ξ

p
no summation; k ¼ 1;…; N; ð2:2Þ

with all other components equal to zero.
These VEVs break the UðNÞ gauge group Higgsing all

gauge bosons. The Higgsed gauge bosons combine with the
screened quarks to form long N ¼ 2 multiplets with mass
mG ∼ g

ffiffiffi
ξ

p
in the limit of zero quark masses.

In this limit the global flavor SUðNfÞ is also broken
down by quark VEVs to the so-called color-flavor locked
group. The resulting global symmetry is

SUðNÞCþF × SUðNf − NÞ × Uð1ÞB; ð2:3Þ

see Ref. [8] for more details.
The unbroken global Uð1ÞB factor above is identified

with a baryonic symmetry. Note that what is usually
identified as the baryonic U(1) charge is a part of our
4D theory gauge group. Our Uð1ÞB is an unbroken by
squark VEVs combination of two U(1) symmetries; the
first is a subgroup of the flavor SUðNfÞ, and the second is
the global U(1) subgroup of UðNÞ gauge symmetry.
In this paper we consider SQCDs with Nf ¼ 2N. In

these cases coupling constants in both the 4D SQCD and
the world sheet WCPðN;NÞ model on the non-Abelian
string does not run. However, the conformal invariance of

the 4D theory is explicitly broken by the FI parameter ξ,
which defines the VEVs of quarks. The FI parameter is not
renormalized. We also assume that N is even, N ¼ 2K,
where K is integer.
Below we consider a special choice of quark masses,

mAþN ¼mA; A¼ 1;…;N; ð2:4Þ

which ensures that “extra” quarkswithA ¼ ðN þ 1Þ;…; 2N
have the same masses as the first N ones. We also assume
that

mA ¼ 0; for A ¼ 1;…; K; mA ¼ M;

for A ¼ ðK þ 1Þ;…; N; ð2:5Þ

so we have only one quark mass parameterM to interpolate
between different SQCDs.
Consider first the limit M → ∞. In this limit gauge

fields ðAμÞkk0 and ðAμÞll0 are massless (at ξ ¼ 0), while ðAμÞkl
and ðAμÞlk together with their superpartners become infi-
nitely heavy and decouple, k; k0 ¼ 1;…; K, l; l0 ¼
ðK þ 1Þ;…; N. Therefore, the gauge group UðNÞ is broken
down to UðKÞ × UðKÞ. Similarly quarks qkB and qlA

together with their superpartners becomes infinitely heavy
and decouple, k ¼ 1;…; K, l ¼ ðK þ 1Þ;…; N and
A ¼ 1;…; K, B ¼ ðK þ 1Þ;…; N. As a result in this limit
our SQCD with gauge group UðNÞ and Nf ¼ 2N flavors
splits in two noninteracting SQCDs with gauge groups
UðKÞ and Nf ¼ 2K flavors. Eventually we will put K ¼ 2

so the starting point of our interpolation process will be
N ¼ 2 SQCD with the gauge group U(2) and Nf ¼ 4

quarks, which as we mentioned in the Introduction supports
the critical non-Abelian vortex string.
The final point of our interpolation process is the limit

M ¼ 0. In this limit our theory for K ¼ 2 becomes
massless N ¼ 2 SQCD with gauge group U(4) and
Nf ¼ 8 quark flavors.

B. World sheet sigma model

The presence of the color-flavor locked group
SUðNÞCþF in 4D N ¼ 2 SQCD with gauge group UðNÞ
is the reason for the formation of non-Abelian vortex
strings [2–5]. The most important feature of these vortices
is the presence of the orientational zero modes. As was
already mentioned, in N ¼ 2 SQCD these strings are 1=2
BPS saturated and preserve N ¼ ð2; 2Þ supersymmetry on
the world sheet. Their tension is determined exactly by FI
parameter,

T ¼ 2πξ: ð2:6Þ

Let us briefly review the model emerging on the world
sheet of the non-Abelian string [8].

FLOWING BETWEEN STRING VACUA FOR THE CRITICAL … PHYS. REV. D 110, 025004 (2024)

025004-3



The translational moduli fields are described by the
Nambu-Goto action and decouple from all other moduli.
Below we focus on internal moduli.
If Nf ¼ N the dynamics of the orientational zero modes

of the non-Abelian vortex, which become orientational
moduli fields on the world sheet, are described by 2D
N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ model.
If one adds additional quark flavors, non-Abelian vor-

tices become semilocal and they acquire size moduli [25].
In particular, for the non-Abelian semilocal vortex in UðNÞ
N ¼ 2 SQCD with 2N flavors, in addition to the complex
orientational moduli ni (here i ¼ 1;…; N), we must add N
complex size moduli ρj [where j ¼ ðN þ 1Þ;…; 2N], see
Refs. [2,5,25–28].
The effective theory on the string world sheet is a

two-dimensional N ¼ ð2; 2Þ supersymmetric WCPðN;NÞ
model, see review [8] for details. This model can be defined
as a low-energy limit of the U(1) gauge theory [29]. The
fields ni and ρj have charges þ1 and −1 respectively with
respect to theU(1) gauge field. The bosonic part of this gauge
linear sigma model (GLSM) action reads,

S ¼
Z

d2x

�
j∇αnij2 þ j∇̃αρ

jj2 − 1

4e20
F2
αβ þ

1

e20
j∂ασj2

þ 1

2e20
D2−

�� ffiffiffi
2

p
σ þmi

��2jnij2−�� ffiffiffi
2

p
σ þmj

��2jρjj2

þDðjnij2 − jρjj2 − ReβÞ − ϑ

2π
F01

�
;

α; β ¼ 1;…; 2; i ¼ 1;…; N;

j ¼ ðN þ 1Þ;…; 2N; ð2:7Þ

where

∇α ¼ ∂α− iAα; ∇̃α ¼ ∂αþ iAα: ð2:8Þ

The complex scalar σ is a superpartner of theU(1) gauge field
Aα and D is the auxiliary field in the vector supermultiplet.
These fields can be written in terms of the twisted chiral
superfield Σ [29]2

Σ¼ σþ
ffiffiffi
2

p
θRλ̄L−

ffiffiffi
2

p
θ̄LλRþ

ffiffiffi
2

p
θRθ̄LðD− iF01Þ: ð2:9Þ

The low-energy limit in this model corresponds to e20 → ∞
when components of the vector supermultiplet classically
decouple due to the Higgs mechanism.

The complexified inverse coupling in (2.7),

β ¼ Reβ þ i
ϑ

2π
; ð2:10Þ

is defined via 2D FI term (twisted superpotential),

−
β

2

Z
d2θ̃

ffiffiffi
2

p
Σ ¼ −

β

2
ðD − iF01Þ: ð2:11Þ

Twisted masses mi and mj of fields ni and ρj in (2.7)
coincide with quark masses of 4D SQCD, namely with
masses mA of the first N flavors, A ¼ 1;…; N and “extra”
flavors, A ¼ ðN þ 1Þ;…; 2N, respectively.
In the massless limit the number of real bosonic degrees

of freedom in the model (2.7) defines the dimension of its
target space (Higgs branch), given by

dimRH ¼ 4N − 1 − 1 ¼ 2ð2N − 1Þ; ð2:12Þ

where 4N is the number of real degrees of freedom of
ðni; ρjÞ fields and we subtract one real D-term constraint,

jnij2 − jρjj2 ¼ Reβ; ð2:13Þ

in the limit e20 → ∞, and one gauge phase is eaten by the
Higgs mechanism.
On the quantum level, the coupling β does not run in this

theory because the sum of charges of n and ρ fields
vanishes. Hence, it is superconformal in the limit of zero
masses. Therefore, its target space is Ricci-flat and [being
Kähler due to N ¼ ð2; 2Þ supersymmetry] represents a
(noncompact) Calabi-Yau manifold, see Refs. [12,30] for
reviews on toric geometry.
The dimension of the Higgs branch (2.12) determines the

central charge of the 2D conformal field theory (CFT) of
the CY manifold

ĉCY ≡ cCY
3

¼ dimCH ¼ 2N − 1; ð2:14Þ

just equal to its complex dimension. In N ¼ 2 case these
dimRH ¼ 2ð2N − 1Þ ¼ 6 internal degrees of freedom can
be combined with four translational moduli of the non-
Abelian vortex to form a 10D target space of a critical
superstring [1,10].
Consider now the classical vacuum structure of the

WCPðN;NÞ model (2.7). At Reβ > 0 we have N vacua

ffiffiffi
2

p
σ¼−mi0 ; jni0 j2 ¼Reβ; i0¼ 1;…;N: ð2:15Þ

Fields ni, i ≠ i0 and fields ρj have masses jmi −mi0 j and
jmj −mi0 j, respectively. The number of vacua stay intact in
the quantum theory because it is protected by Witten index
which is equal to N.

2Here spinor indices are written as subscripts, say θL ¼ θR,
θR ¼ −θL. We also defined the twisted measure d2θ̃ ¼ 1

2
dθ̄LdθR

to ensure that
R
d2θ̃θ̃2 ¼ R

dθ̄LdθRθRθ̄L ¼ 1.
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Let us discuss how our interpolation process is seen in
the world sheet theory. Consider the choice of masses given
by (2.4) and (2.5). In the limit M → ∞ we have K vacua
with σ ¼ 0 where one of ni0 , i0 ¼ 1;…; K develop VEV.
In these vacua fields ni with i ¼ ðK þ 1Þ;…; N and ρj,
j ¼ ðN þ K þ 1Þ;…; 2N become infinitely heavy (with
mass jMj) and decouple. The model (2.7) reduces to the
WCPðK;KÞ model with massless fields ni, i ¼ 1;…; K
and ρj, j ¼ ðN þ 1Þ;…; ðN þ KÞ. For K ¼ 2 the central
charge ĉCY ¼ 3 and the WCPð2; 2Þ model becomes a
sigma model on the conifold Y6. In this case the non-
Abelian vortex becomes a critical superstring. This will be
the starting point of our interpolating process.
The final point corresponds to the limit M ¼ 0. The

WCPð4; 4Þ model is still conformal, but does not have the
right central charge. We will show that the quantum world
sheet model for N ¼ 4 case is not given by WCPð4; 4Þ
model. As we already mentioned wewill find the true string
vacuum solving effective gravity equations.
Note, that in the limit M → ∞ we could also consider

anotherK vacua with
ffiffiffi
2

p
σ ¼ −M. This would give another

WCPðK;KÞ model as a starting point. In 4D this is
associated with UðNÞ SQCD reducing to two noninteract-
ing SQCDs with UðKÞ gauge groups, see the previous
subsection. Below for definiteness we will consider the first
option above.
To conclude this subsection we note that at β ¼ 0 the

world sheet WCPðN;NÞ model develop the Coulomb
branch with arbitrary value of σ in the massless limit.
This can be shown using the exact twisted superpotential
for the WCPðN;NÞ models as a function of twisted
superfield Σ. This exact twisted superpotential is a gener-
alization [31,32] of the CPðN − 1Þ model superpotential
[29,33–35] of the Veneziano-Yankielowicz type [36]. The
vacuum equation for σ obtained by differentiating of this
superpotential with respect to σ reads [20],

YN
i¼1

ð
ffiffiffi
2

p
σ þmiÞ ¼ e−2πβ

Y2N
j¼Nþ1

ð
ffiffiffi
2

p
σ þmjÞ: ð2:16Þ

At generic values of masses it gives just N distinct vacua
with certain fixed values of σ. In the limit mi ¼ mj ¼ 0

one gets,

σN ¼ e−2πβσN; ð2:17Þ

with the N-degenerate vacuum solution σ ¼ 0 for any
nonvanishing β. This means that fields n and ρ remain
massless (see two first terms in the second line in (2.7)) and
live on the Higgs branch of the theory. However, for both
β ¼ 0 and vanishing twisted masses the complex scalar σ
can have arbitrary value making ni and ρj massive. This
solution describes the Coulomb branch, which opens up at

β ¼ 0. As was shown in [20] this Coulomb branch can be
effectively described in terms of N ¼ 2 Liouville theory.
Note also that the value β ¼ 0 at strong coupling is

exactly what we are interested in for N ¼ 2 case. The so-
called “thin string conjecture” put forward in [1,10] implies
that only at β ¼ 0 we expect that the solitonic string-gauge
duality works and the world sheet WCPð2; 2Þ model
defines the right string theory for the critical non-
Abelian vortex in N ¼ 2 4D SQCD.

C. Massless 4D baryon

In this section we consider the conifold case taking
N ¼ 2 in the masslessWCPðN;NÞmodel (2.7) and briefly
review the only 4D massless state found in the string theory
of the critical non-Abelian vortex [10]. It is associated with
the deformation of the conifold complex structure. As was
already mentioned, all other massless string modes have
non-normalizable wave functions over the conifold. In
particular, the 4D graviton associated with a constant wave
function over the conifold Y6 is absent as expected [10].
We can construct the U(1) gauge-invariant “mesonic”

variables,

wij ¼ niρj; i ¼ 1; 2; j ¼ 3; 4: ð2:18Þ

These variables are subject to the constraint

det wij ¼ 0: ð2:19Þ

Equation (2.19) defines the conifold Y6. It has the Ricci-
flat Kähler metric and represents a noncompact Calabi-Yau
manifold [11,12,29]. It is a cone which can be parametrized
by the noncompact radial coordinate,

r̃2 ¼ Tr w̄w; ð2:20Þ

and five angles, see Ref. [11]. Its section at fixed r̃
is S2 × S3.
At β ¼ 0 the conifold develops a conical singularity, so

both spheres S2 and S3 can shrink to zero. The conifold
singularity can be smoothed out in two distinct ways; by
deforming the Kähler form or by deforming the complex
structure. The first option is called the resolved conifold
and amounts to keeping a nonzero value of β in (2.13). This
resolution preserves the Kähler structure and Ricci-flatness
of the metric. If we put ρK ¼ 0 in (2.13) we get the CPð1Þ
model with the sphere S2 as a target space (with the
radius

ffiffiffi
β

p
). The resolved conifold has no normalizable zero

modes. In particular, the Kähler modulus β which becomes
a scalar field in four dimensions has a non-normalizable
(quadratically divergent) wave function over the Y6 and
therefore is not dynamical [10].
If β ¼ 0 (i.e., exactly when the Coulomb branch opens

up) another option exists, namely a deformation of the
complex structure [12]. It preserves the Kähler structure
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and Ricci flatness of the conifold and is usually referred to
as the deformed conifold. It is defined by the deformation
of Eq. (2.19), namely,

det wij ¼ b; ð2:21Þ

where b is a complex parameter. Now the sphere S3 can not
shrink to zero, its minimal size is determined by b.
We see that the resolved conifold corresponds to the

Higgs branch of the GLSM (2.7) at N ¼ 2, while the
deformed conifold is associated with the Coulomb branch
of this theory, which opens up at β ¼ 0 [20].
The modulus b becomes a 4D complex scalar field. The

effective action for this field was calculated in [10] using
the explicit metric on the deformed conifold [11,37,38],

SkinðbÞ ¼ T
Z

d4xj∂μbj2 log
R̃2
IR

jbj ; ð2:22Þ

where R̃IR is the maximal value of the radial coordinate r̃
introduced as an infrared (IR)regularization of the loga-
rithmically divergent b-field norm. Here the logarithmic
integral at small r̃ is cut off by the minimal size of S3, which
is equal to jbj.
We see that the norm of the modulus b turns out to be

logarithmically divergent in the infrared [10,39]. Such
states at the borderline between normalizable and non-
normalizable modes are considered as physical states
“localized” in the 4D.
The field b being massless can develop a VEV. Thus, we

have a new Higgs branch in 4D N ¼ 2 SQCD which is
developed only for the critical value of the 4D coupling
constant τSW ¼ 1 associated with β ¼ 0 [40].
In [10] the massless state bwas interpreted as a baryon of

4D N ¼ 2 QCD. Its charge with respect to the baryonic
Uð1ÞB symmetry in (2.3) is QBðbÞ ¼ 2 [10].
To conclude this section, we make a comment on non-

normalizable strings modes. As was mentioned above
most of string modes have non-normalizable wave func-
tions over the conifold, i.e., they are not localized in 4D
and cannot be interpreted as dynamical states in 4D
theory. Technically this happens because infinite normali-
zation factor over the internal space appears in 4D kinetic
terms for these states making them nondynamical. These
modes play a role of coupling constants in 4D theory,
see Ref. [41] where the nature of non-normalizable
string modes which appear upon Calabi-Yau compactifi-
cations was discussed. The example of such a coupling
constant in the theory at hand is the inverse coupling β of
the world sheet sigma model (2.7) (it is related to 4D
gauge coupling [40]). As we discussed above it corre-
sponds to the Kähler form modulus of the conifold and has
quadratically non-normalizable wave function.

III. N = 2 LIOUVILLE THEORY
FROM WCPðN;NÞ MODEL

In this section we first briefly review the derivation of the
N ¼ 2 Liouville theory from the world sheet WCPðN;NÞ
model at β ¼ 0 [20] and then consider its deformation upon
switching on masses in the WCPðN;NÞ model.

A. Massless theory

Consider, first, the massless WCPðN;NÞ model (2.7) in
the large-N limit, N → ∞. As we discussed in Sec. II B at
β ¼ 0 the complex scalar σ can take arbitrary values on the
Coulomb branch of the theory. For σ ≠ 0 this makes the
fields n and ρ massive, and one can integrate them out. For
both nonsupersymmetric and N ¼ ð2; 2Þ supersymmetric
CPðN − 1Þ models this was done by Witten [42] (see
also [43]). He showed that the bare gauge coupling e20 taken
to be infinite in the classical limit is renormalized at one
loop and becomes finite. This means that the U(1) gauge
field introduced as an auxiliary field in the GLSM
formulation acquires a finite kinetic term and becomes
physical.
Almost the same calculation for WCPðN;NÞ model

gives the effective action for the vector multiplet (see
Ref. [20]). Focusing here on the most important kinetic
term for σ we get

Sσeff ¼
Z

d2x
1

e2
j∂ασj2; ð3:1Þ

where the classical gauge coupling e20 is corrected by the
one-loop contribution

1

e2
¼

�
1

e20
þ 2N

4π

1

2jσj2
�����

e2
0
→∞

¼ 2N
4π

1

2jσj2 : ð3:2Þ

The wave function renormalization comes from ni

and ρj fields (with their fermionic superpartners) propa-
gating in the loop. The loop integral is finite in the
ultraviolet (UV) region and is saturated in the IR region
at momenta of order of n and ρ “mass”

ffiffiffi
2

p jσj [see
Eq. (2.7)].3 The loop graph contains two vertices, each
proportional to the electric charge of a given n or ρ field
(equal to �1). Therefore, this graph is proportional to the
sum of squires of these electric charges, which is equal to
2N. The result (3.2) gives the leading term in the 1=N
expansion. We have

Sσeff ¼
2N
4π

Z
d2x

1

2

j∂ασj2
jσj2 ð3:3Þ

3We put “mass” in quotation marks, since in 2D theory σ does
not have a definite VEV, instead the ground-state wave function is
spread over the whole Coulomb branch, cf. [44].
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with the tube metric.4 Making a change of variables

σ ¼ e−
ϕþiY
Q ; ð3:4Þ

where we parametrized the modulus of σ by the real scalar
field ϕ (which will be the Liouville field) and its phase by
the real compact scalar Y with the periodicity condition,

Y þ 2πQ ∼ Y; ð3:5Þ
we arrive to the bosonic part of the effective action

Seff ¼
1

4π

Z
d2x

�
1

2
ð∂αϕÞ2 þ

1

2
ð∂αYÞ2

�
; ð3:6Þ

where the radius of the compact dimension

Q ≈
N→∞

ffiffiffiffiffiffiffi
2N

p
: ð3:7Þ

Other components of the vector supermultiplet can be
considered similarly, see Ref. [20]. For example, the U(1)
gauge field has no physical degrees of freedom in two
dimensions and can be integrated out together with the
D-field, see Ref. [20] for details.
Repeating the above calculation on the curved world

sheet we can restore the background charge of the Liouville
field [20],

Seff ¼
1

4π

Z
d2x

ffiffiffi
h

p �
1

2
hαβð∂αϕ∂βϕþ∂αY∂βYÞ−

Q
2
ϕRð2Þ

�
;

ð3:8Þ

where hαβ is the world sheet metric, Rð2Þ is the world sheet
Ricci scalar and h ¼ detðhαβÞ.
This is exactly the bosonic part of the N ¼ 2 Liouville

action (see Ref. [45] for a review). Note the linear dilaton
in (3.8),

Φ ¼ −
Q
2
ϕ; ð3:9Þ

with the background charge Q for the Liouville field ϕ
which coincides with the radius of the compact dimension
(as it should in the N ¼ 2 Liouville theory). In the large N
approximation Q is given by (3.7).
The action in (3.8) leads to the following holomorphic

stress tensor of the bosonic part of the theory,

T ¼ −
1

2
½ð∂zϕÞ2 þQ∂

2
zϕþ ð∂zYÞ2�: ð3:10Þ

The N ¼ 2 Liouville interaction superpotential (see
Ref. [45]) comes from the 2D FI term (2.11) in the
WCPðN;NÞ model,

Lint ¼ μ

Z
d2θ̃Σ ¼ μ

Z
d2θ̃e−

ϕþiY
Q ; ð3:11Þ

where we use parametrization (3.4) and promote scalars ϕ
and Y to (twisted) chiral superfields, see Ref. [20] for
details.5

This superpotential is a marginal deformation of the
N ¼ 2 Liouville theory (3.8). The conformal dimension
of σ is

Δ
�
σ ¼ e−

ϕþiY
Q

�
¼

�
1

2
;
1

2

�
; ð3:12Þ

which can be easily checked using the stress tensor (3.10).
The above outlined equivalence of the Coulomb branch

of WCPðN;NÞ model and N ¼ 2 Liouville theory
obtained in the large N approximation can be promoted
to the exact equivalence. It was argued in [20] that the
σ-dependence of the effective action (3.3) is fixed on
dimensional grounds and integrating fields ni and ρj

exactly rather then in the large N approximation we would
arrive to the same action (3.3) with the coefficient 2N
replaced by the exact coefficient Q2ðNÞ. To find the exact
dependence of Q2ðNÞ on N we can demand that central
charges of both CFTs (WCPðN;NÞ model and N ¼ 2
Liouville theory) should coincide. The central charge of the
N ¼ 2 Liouville theory is

ĉL ¼ 1þQ2: ð3:13Þ

Requiring that it should be equal to the central charge
ĉCY (2.14) gives the exact relation,

QðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 1Þ

p
; ð3:14Þ

which reduces to (3.7) in the large-N approximation.
Note also that as we already mentioned for the case

N ¼ 2 the Coulomb branch of WCPð2; 2Þ model is
associated with the deformed conifold. Therefore, the
coefficient μ in front of the marginal deformation (3.11)
should be identified with the conifold complex structure
parameter b [18–20],6

μ ∼ b: ð3:15Þ

4The metric looks singular, but actually there is no singularity
at the origin [44].

5The fact that the Liouville interaction is given by a twisted
superpotential is just a matter of conventions since there are no
untwisted chiral fields in the effective theory.

6The unit power of b in the rhs of (3.15) was fixed in [13] using
the baryonic U(1) symmetry.

FLOWING BETWEEN STRING VACUA FOR THE CRITICAL … PHYS. REV. D 110, 025004 (2024)

025004-7



On the CY side, parameter b smooths the conifold
singularity at small r̃, i.e., provides a UV regularization.
In the Liouville theory the Liouville superpotential
(the Liouville wall) at nonzero μ also provides a UV
regularization preventing field ϕ from penetrating to
the region of large negative values. With the identifica-
tion (3.15) the conifold complex structure modulus which
was not seen in the GLSM description (2.7) becomes
manifest in the Liouville description.
To conclude this subsection, we note that the dilaton

has a linear dependence on the Liouville coordinate ϕ, see
Eq. (3.9). Therefore, the string coupling constant gs ¼ eΦ

would become large at large negative ϕ. On the other hand
at nonzero b the Liouville wall prevents field ϕ from
penetrating to the region of large negative values. In fact,
the maximum value of the string coupling is gs ∼ 1=jbj for
Q ¼ ffiffiffi

2
p

. In this paper we keep b large to ensure that the
string coupling is small and the string perturbation theory is
reliable, see Refs. [18,21]. In particular, we can use the
tree-level approximation to obtain the string spectrum.
In terms of 4D SQCD taking b large means moving

along the Higgs branch far away from the origin.

B. Primary operators

In this subsection we review primary operators in the
N ¼ 2 Liouville theory. For N ¼ 2 case they describe
physical string states interpreted as hadrons in 4D SQCD,
see Ref. [13] for details.
Primary operators for the N ¼ 2 Liouville theory are

constructed in [18], see also [19,46]. For large positive ϕ
(where the Liouville interaction is small) primaries take
the form,

Tj;mL;mR
¼ eQ½jϕþiðmLYL−mRYRÞ�; ð3:16Þ

where we split Y into left and right-moving parts.
Parameters mL and mR for left-moving and right-moving
sectors are given by

mL ¼
1

2
ðn1þkn2Þ; mR¼

1

2
ðn1−kn2Þ; ð3:17Þ

where n2 and n1 are integers corresponding to momentum
and winding numbers along the compact dimension Y.
The primary operator (3.16) is related to the wave

function on the target space as follows:

Tj;mL;mR
¼ gsΨj;mL;mR

ðϕ; YÞ; ð3:18Þ

where the string coupling gs ¼ eΦ depends on ϕ, see
Eq. (3.9). Thus,

Ψj;mL;mR
ðϕ; YÞ ∼ eQðjþ1

2
ÞϕþiQðmLYL−mRYRÞ: ð3:19Þ

We will look for string states with normalizable along the
noncompact Liouville dimension wave functions. These
states are localized in 4D and can be interpreted as hadrons
in 4D SQCD. The condition for the states to have normal-
izable wave functions reduces to

j ≤ −
1

2
: ð3:20Þ

We include the case j ¼ − 1
2
which is at the borderline

between normalizable and non-normalizable states.
The conformal dimension of the primary operator (3.16) is

Δj;m ¼ Q2

2
fm2 − jðjþ 1Þg: ð3:21Þ

Unitarity implies that the conformal dimension (3.21)
should be positive,

Δj;m > 0: ð3:22Þ

Moreover, to ensure that conformal dimensions of left- and
right-moving parts of the vertex operator (3.16) are the
same we impose that mR ¼ �mL.
TheN ¼ 2 Liouville theory has a mirror description [47]

in terms of a supersymmetric version of the two-dimensional
black hole with the cigar geometry [48], which is the
N ¼ 2 SLð2;RÞ=Uð1Þ coset Wess-Zumino-Novikov-
Witten (WZNW) theory [15,18,46,49] at the level

k ¼ 2

Q2
: ð3:23Þ

of the Kač-Moody algebra.
The spectrum of the allowed values of j and m in (3.16)

was exactly determined using the Kač-Moody algebra for
the mirror description of the theory in [46,50–53], see
Ref. [54] for a review. Both discrete and continuous
representations were found. Parameters j and m determine
the global quadratic Casimir operator and the projection of
the spin on the third axis,

J2jj;mi¼−jðjþ1Þjj;mi; J3jj;mi¼mjj;mi: ð3:24Þ

We have
(i) Discrete representations with

j¼−
1

2
;−1;−

3

2
;…; m¼�fj;j−1;j−2;…g:

ð3:25Þ
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(ii) Principal continuous representations with

j¼−
1

2
þ is; m¼ integer or m¼ half-integer;

ð3:26Þ

where s is a real parameter.
We see that discrete representations include normalizable

and borderline-normalizable states localized near the tip of
the cigar. This nicely matches our qualitative expectations.
Consider now the N ¼ 2 Liouville theory with N ¼ 2,

Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 1Þp ¼ ffiffiffi

2
p

. This corresponds to k ¼ 1 in
the mirror description on the cigar. Take the primary
operator (3.16) with j ¼ −1=2 and mL ¼ �1=2. Its con-
formal dimension is

Δj¼−1
2
;m¼�1

2
¼ 1

2
; ð3:27Þ

[see Eq. (3.21)] so it is marginal and describes a massless
string state in 4D. As was noticed in [13] this massless
state corresponds to the complex structure modulus b for
the string compactification on the conifold. Two possible
values of m ¼ �1=2 corresponds to two real degrees of
freedom of the complex scalar field b. The associated string
state has a logarithmically normalizable wave function over
the conifold in terms of the radial coordinate r̃ [10,39], see
Eq. (2.22). On the Liouville side this corresponds to the
borderline normalization of the massless state (3.16) with
j ¼ − 1

2
, m ¼ � 1

2
(see Ref. [13] for details).

The discrete spectrum (3.25) gives rise to physical
hadron states in 4D SQCD. In particular, the mass spectrum
of massive 4D states created by vertex operators (3.16) with
j ¼ − 1

2
has the form [13],

M2
4D

8πT
¼ Δj;m −

1

2
; ð3:28Þ

where Q ¼ ffiffiffi
2

p
.

To conclude this subsection, let us make a comment on
the principal continuous representation (3.26) of string
states, which represents plane waves in the noncompact
Liouville dimension. In [13,40] it was suggested an
interpretation of these states: they correspond to multi-
particle states associated with decay of normalizable 4D
states. This interpretation is motivated by the observation
that spectra of continuous states for half-integer m start
from thresholds given by masses of (borderline) normal-
izable states. This issue however needs future clarification.

C. Mass deformation

Now consider WCPðN;NÞ model (2.7) with non-
zero twisted masses starting with the large N approxi-
mation. Integrating out ni and ρj fields at β ¼ 0 we,

instead of (3.3), get

Sσeff ¼
1

4π

Z
d2x

X2N
A¼1

j∂ασj2
j ffiffiffi

2
p

σ þmAj2

¼ 1

4π

Z
d2x

1

2

j∂ασj2
jσj2

X2N
A¼1

1��1þ mAffiffi
2

p
σ

��2 ð3:29Þ

for the effective action of the field σ.
Consider the choice of masses given by (2.4) and (2.5).

K first n fields are massless,K last n fields are massive with
the same mass M, N ¼ 2K, while masses of ρ fields are
equal to masses of n fields, see Eq. (2.4). The action (3.29)
takes the form,

Seff ¼
1

4π

Z
d2xgclðϕ; YÞ

�
1

2
ð∂αϕÞ2 þ

1

2
ð∂αYÞ2

�
; ð3:30Þ

where we use the parametrization (3.4), and the “classical”
warp factor of the target space metric is7

gclðϕ; YÞ ¼ 1þ 1���1þ Mffiffi
2

p e
ϕþiY
Q

���2 ; ð3:31Þ

while the radius of the compact dimension

Q ≈
K→∞

ffiffiffiffiffiffiffi
2K

p
: ð3:32Þ

We also drop the dilaton term in (3.30) which we will
restore later.
As we already mentioned nonzero twisted masses break

conformal invariance in the world sheet model
WCPðN;NÞ. Therefore, we cannot use the mass-deformed
model (3.30) for the string quantization. To find the true
string vacuum we will solve the effective supergravity
equations of motion in the next section. To find this
solution we will use the expansion of the classical target
space metric in (3.30) just as initial conditions at ϕ → ∞
where the deformation is small. Namely, expanding (3.30)
at large ϕ we write the classical warp factor (3.31) as

gclðϕ; YÞ ≈ 1þ 2

jMj2 e
−2ϕ

Q þ � � � ; ð3:33Þ

and use this expression in the next section as initial
conditions for the true quantum warp factor at ϕ → ∞.
It just shows the initial “position” and the “velocity”, in
which the true quantum metric is pushed by the mass

7A comment on dimensions is in order. The canonical
dimension of σ is unity. We can introduce dimensionless field
σ0 ¼ σ=

ffiffiffiffiffiffiffiffiffi
4πT

p
and use parametrization (3.4) for σ0. Then dimen-

sionless M0 ¼ M=
ffiffiffiffiffiffiffiffiffi
4πT

p
appears in (3.31). Below we consider

dimensionless quantities dropping primes to simplify notations.
We also remind that 2πT ¼ 1=α0.
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deformation, while the true ”trajectory” should be found by
solving the gravity equations of motion.
As initial conditions for the dilaton at large ϕ we use the

linear dilaton in (3.9),

Φ ≈ −
Q
2
ϕþ � � � : ð3:34Þ

The starting point of our interpolation procedure is the
limit M → ∞ where the world sheet theory reduces to
WCPðK;KÞ model and its Coulomb branch at β ¼ 0 is
given by the N ¼ 2 Liouville theory. As we mentioned
above this equivalence is exact in K and we relax the large
K condition using exact expression,

QðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK − 1Þ

p
; ð3:35Þ

see Eq. (3.14). For the case K ¼ 2 when non-Abelian
vortex string become a critical superstring this gives

Q ¼
ffiffiffi
2

p
: ð3:36Þ

We also assume that boundary conditions (3.33) and (3.34)
depend on K via QðKÞ (3.35) and extrapolate Eqs. (3.33)
and (3.34) to K ¼ 2.

IV. SOLUTIONS OF GRAVITY EQUATIONS

In this section we study effective gravity equations for
the mass-deformed superstring background and find their
solutions.

A. The setup

The bosonic part of the action of the type-II supergravity
in the string frame is given by

S¼ 1

2κ2

Z
dDx

ffiffiffiffiffiffiffi
−G

p
e−2ΦfRþ4GMN

∂MΦ∂NΦNþ�� �g;

ð4:1Þ

where GMN is the D-dimensional metric and we keep
in (4.1) only the metric and the dilaton terms,
M;N ¼ 1;…; D. Here 2κ2 ¼ ð2πÞðD2−2Þg2s=TD−2

2 .
Einstein’s equations of motion following from the

action (4.1) have the form

RMN þ 2DMDNΦ ¼ 0; ð4:2Þ

while the equation for the dilaton reads

R ¼ 4GMN
∂MΦ∂NΦ − 4GMNDMDNΦþ p; ð4:3Þ

where p ¼ D−10
2

(in dimensionless units) is included
if D ≠ 10.
We assume that our space-time is a direct product of the

flat 4D Minkowski space and an internal space which has

the nontrivial metric of the target space of the N ¼ 2
deformed Liouville theory. Thus, D ¼ 6 and the ansatz for
the internal metric is

ds2int ¼ gðϕ; YÞfd2ϕþ d2Yg: ð4:4Þ

It is inspired by the calculation in Sec. III C.
Let us note that in the limitM → ∞ equations of motion

are satisfied by the flat internal metric with g ¼ 1 and the
linear dilaton (3.9). Einstein’s equation is satisfied because
the Ricci tensor is zero for the flat metric and covariant
derivatives in (4.2) reduce to ordinary ones, so the second
term in the lhs of (4.2) gives zero on the linear dilaton.
Equation (4.3) is satisfied for Q ¼ ffiffiffi

2
p

and p ¼ −2
[see Eq. (3.36)].

B. Solutions to the gravity equations

In this section we find a solution to the gravity Eqs. (4.2)
and (4.3) which satisfy initial conditions (3.33) and (3.34).
Flat Minkowski part of equations is trivial and decouples
so we are left with gravity equations for the internal part.
Due to N ¼ ð2; 2Þ supersymmetry the metric of the
internal space is Kähler. Therefore, we introduce complex
coordinates,

s¼ϕþ iY; s̄¼ϕ− iY: ð4:5Þ
In terms of these coordinates the metric (4.4) takes the form

ds2int ¼ gðs; s̄Þdsds̄; gs̄s¼ gss̄¼
1

2
gðs; s̄Þ: ð4:6Þ

For this metric the only nonzero Christoffel symbols are

Γs
ss ¼

1

g
∂sg; Γs̄

s̄ s̄¼
1

g
∂s̄g; ð4:7Þ

and nonzero Ricci tensor components take the form

Rss̄ ¼ Rs̄s ¼ −∂s∂s̄ ln g; ð4:8Þ
while the Ricci scalar reads

R ¼ −
4

g
∂s∂s̄ ln g: ð4:9Þ

Then Einstein equations (4.2) with ss̄ and ss indices
reduce to

−∂s∂s̄ ln gþ 2∂s∂s̄Φ ¼ 0 ð4:10Þ
and

∂s∂sΦ −
1

g
∂sg∂sΦ ¼ 0; ð4:11Þ

respectively, while the equation with s̄ s̄ indices is just a
complex conjugate of (4.11).
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The dilaton equation (4.3) reads

1

g
∂s∂s̄ ln gþ

4

g
∂sΦ∂s̄Φ −

4

g
∂s∂s̄Φþ p

4
¼ 0: ð4:12Þ

The solution to Eq. (4.10) has the form,

Φ ¼ −
Q
4
ðsþ s̄Þ þ 1

2
ln g; ð4:13Þ

where we use initial conditions (3.34). In principle, we can
add to the rhs of (4.13) arbitrary holomorphic function of s
plus its complex conjugate. However it is easy to see that
this corresponds just to a reparametrization of the variable
s. We fix the gauge assuming that this function is zero.
Substituting (4.13) in the Einstein equation (4.11) and

the dilaton equation (4.12) gives

∂
2
s ln g − ð∂s ln gÞ2 þ

Q
2
∂s ln g ¼ 0 ð4:14Þ

and

− ∂s̄∂s ln gþ
Q2

4
þ p

4
g −

Q
2
ð∂s ln gþ ∂s̄ ln gÞ

þ ∂s ln g∂s̄ ln g ¼ 0; ð4:15Þ

respectively.
Equation (4.14) is a first-order equation for the variable

∂s ln g and admits separation of variables. One gets

∂s ln g ¼
Q
2

1

1 − fðs̄ÞeQ
2
s
; ð4:16Þ

where fðs̄Þ is a function of s̄. To fix this function we use the
complex conjugate of Eq. (4.14). This gives

∂s ln g ¼ ∂s̄ ln g ¼
Q
2

1

1 − Ae
Q
2
ðsþs̄Þ ; ð4:17Þ

where A is a constant. Integrating this equation we
finally get

g ¼ 1

1 − 1
A e

−Q
2
ðsþs̄Þ ; ð4:18Þ

where we put the integration constant to zero using the
initial condition g ¼ 1 at s → ∞. It is easy to check that this
solution satisfies also the dilaton equation (4.15) for
Q ¼ ffiffiffi

2
p

and p ¼ −2.
The warp factor (4.18) can be written as

gðϕÞ ¼ 1

1 − 1
A e

−Qϕ ¼ 1

1 − e−Qðϕ−ϕ0Þ ; ð4:19Þ

while the solution for the dilaton takes the form,

ΦðϕÞ ¼ −
Q
2
ϕ −

1

2
ln

�
1 −

1

A
e−Qϕ

�

¼ −
Q
2
ϕ −

1

2
ln ½1 − e−Qðϕ−ϕ0Þ�; ð4:20Þ

where we use (4.13). Here we introduce ϕ0 ¼ − 1
Q lnA. We

see that the warp factor of the metric and the dilaton
are functions of the Liouville field ϕ and do not depend
on Y.
Observe now that precisely for our case Q ¼ ffiffiffi

2
p

, which
corresponds to K ¼ 2 the warp factor (4.19) satisfy initial
conditions (3.33) associated with the mass deformation.
Now we can identify the parameter A in terms of the
mass M. We have

A ¼ M2

2
; ϕ0 ¼ −

1

Q
ln

�
M2

2

�
: ð4:21Þ

Note also that the first nontrivial term in the expansion of
the warp factor (4.19) at large ϕ gives rise to the following
deformation operator,

ð∂zϕ − i∂zYÞð∂z̄ϕþ i∂z̄YÞe−Qϕ: ð4:22Þ

This operator has j ¼ −1, m ¼ 0 and is marginal with
conformal dimensionΔ ¼ ð1; 1Þ. It is the bosonic part of so
called nonchiral marginal deformation of N ¼ 2 Lioville
theory, see Ref. [45] for a review. We see that (4.19)
and (4.20) represent exact solutions for the mass deforma-
tion which, infinitesimally, is associated with the nonchiral
marginal operator (4.22).
Solutions (4.19) and (4.20) define the true quantum

vacuum of the mass-deformed string theory. Namely, the
bosonic part of the mass-deformed N ¼ 2 Liouville world
sheet theory takes the form,

Sws ¼
1

4π

Z
d2x

ffiffiffi
h

p �
gðϕÞ

�
1

2
ð∂αϕÞ2 þ

1

2
ð∂αYÞ2

	

þΦðϕÞRð2Þ þ Lint

�
; ð4:23Þ

where the metric warp factor gðϕÞ and the dilaton ΦðϕÞ are
given by (4.19) and (4.20). Also we will show in the next
section that the Liouville superpotential (3.11) is still a
marginal deformation of the theory therefore, Lint in (4.23)
is not modified and is still given by (3.11).
Thus, the action (4.23) defines a continues family of

CFTs with the same central charge ĉL ¼ 3 [see Eq. (3.13)]
parametrized by the mass parameterM which we can use as
world sheet theories for the string quantization.
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C. Scales of the deformed Liouville theory

Let us discuss some properties of our solution. The
metric warp factor (4.19) develop a naked singularity at
ϕ ¼ ϕ0,

gjϕ→ϕ0
≈

1

Qðϕ − ϕ0Þ
; ð4:24Þ

with the Ricci tensor given by

Rss̄ ¼ −
Q2

4

Ae
Q
2
ðsþs̄Þ


1 − Ae
Q
2
ðsþs̄Þ�2

����
ϕ→ϕ0

≈
1

4

1

ðϕ − ϕ0Þ2
: ð4:25Þ

Thus, the geometry is defined only at ϕ > ϕ0.
Note that our exact solution for the metric warp

factor (4.19) has some qualitative similarity with the
“classical” warp factor (3.31) obtained by integration out
massive n and ρ fields in the WCPðN;NÞ model. Namely,
the classical warp factor (3.31) also has a singularity at
ϕ ¼ ϕ0 if we take Y ¼ πQ; however, the type of the
singularity is different. Solving gravity equations of motion
allows us to find a true quantum string vacuumwhich arises
due to the mass deformation.
The deformed N ¼ 2 Liouville theory (4.23) has

two scales. The first one is associated with the
Liouville wall [the superpotential (3.11)] which prevents
field ϕ from penetrating to the region of large negative
values. The Liouville interaction becomes of order of
unity at

ϕwall ∼ −Q ln
1

jbj ; ð4:26Þ

where we used (3.15) for K ¼ 2. The Liouville wall
prevents ϕ from penetrating far below this value.
The second scale is associated with the singularity of the

target space metric at ϕ ¼ ϕ0.
As we start our interpolating process at M → ∞,

ϕ0 → −∞ and is much smaller then ϕwall, ϕ0 ≪ ϕwall so
the geometry is almost flat in the allowed region of ϕ. The
string spectrum associated with the Liouville world sheet
theory found in [13] describes hadrons of N ¼ 2 SQCD
with U(2) gauge group and Nf ¼ 4 quark flavors. As
the mass M reduces the geometry gets deformed and at
ϕ0 ∼ ϕwall (M2 ∼ 1=jbj2) we expect a transition to the
region of small M.
In the opposite limit ϕ0 ≫ ϕwall in the region of smallM

the effect of the Liouville wall can be neglected and the
string background given by (4.19) and (4.20) determines
the string spectrum. In this limit our string theory is
expected to describe hadrons of N ¼ 2 SQCD with U(4)
gauge group and Nf ¼ 8 quark flavors.
In the next section we take a first glance at the string

spectrum leaving its detail study for a future work.

V. A FIRST GLANCE AT THE
STRING SPECTRUM

In this section we develop an effective gravity approach
which can be used to study the string spectrum associated
with the mass-deformed N ¼ 2 Liouville world sheet
theory (4.23). In particular, we show that massless 4D
baryon b survives the mass deformation.

A. Tachyon equation

Primary tachyon vertex operators (3.16) can be described
as scalar fields in the effective supergravity (4.1).8 To take
them into account we add the tachyonic term,

Stachyon ¼
1

2κ2

Z
dDx

ffiffiffiffiffiffiffi
−G

p
e−2Φ

× f−GMN
∂MT̄j;m∂NTj;m þ jTj;mj2g; ð5:1Þ

to the gravity action (4.1), cf. [55]. This gives the equation
for the tachyon field,

DNDNTj;m − 2∂NΦ∂
NTj;m þ Tj;m ¼ 0; ð5:2Þ

and we neglect the backreaction of tachyons on the metric
and the dilaton.
Dressing the tachyon with the dependence on the 4D

coordinates

eipμxμTj;m; ð5:3Þ

we rewrite the tachyon equation (5.2) in the form,

4

g
f∂s∂s̄Tj;m − ∂sΦ∂s̄Tj;m − ∂s̄Φ∂sTj;mg

þ
�
1þM2

4D

4πT

�
Tj;m ¼ 0; ð5:4Þ

where we used complex coordinates (4.5). Here the mass
squared of the physical state in 4D is

M2
4D ¼ −pμpμ; ð5:5Þ

where the Minkowski 4D metric with the diagonal entries
ð−1; 1; 1; 1Þ is used.
To conclude this subsection let us solve Eq. (5.4) in the

limitM → ∞ when g ¼ 1 and the dilaton is given by (3.9).
In this limit the solution of the equation (5.4) can be written
in the form,

Tj;m ¼ eQ½jϕþimY� ¼ eQ½JþsþJ−s̄�; ð5:6Þ

where

8These states are, of course, not tachyonic in 4D, but we will
use the standard terminology and refer to them as “tachyons”.
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Jþ ¼ 1

2
ðjþmÞ; J−¼

1

2
ðj−mÞ ð5:7Þ

and we consider, say, the momentum modes along the
compact dimension, m≡mL ¼ −mR for definiteness.
Substituting this to Eq. (5.4) gives

M2
4D

4πT
¼ 2Δj;m − 1; ð5:8Þ

where the conformal dimension Δj;m is given by (3.21).
This coincides with the result in (3.28) obtained by world
sheet methods, see Ref. [13] for details.
Note that the Liouville interaction (3.11) is not taken into

account in the tachyon action (5.1). Therefore, we cannot
find the spectrum of allowed values of j [see Eqs. (3.25)
and (3.26)] from Eq. (5.4). This spectrum is determined by
the reflection from the Liouville wall.
Note also that the result (5.8) together with the expres-

sion (3.21) for the conformal dimension of Tj;m is exact. To
see this consider the region of large s, s → ∞ in Eq. (5.4)
where g → 1. In this region we can look for the solution for
Tj;m in the form (5.6) and repeat the same derivation as
above to get (5.8). Of course, at finite ϕ, where g becomes
nontrivial, the expression for Tj;m gets modified. Moreover,
we expect that the spectrum of allowed values of j is also
modified in the mass-deformed theory and depends
on ðϕwall − ϕ0Þ.

B. Massless b-baryon

In this subsection we show that the massless in 4D
b-baryon associated with the complex structure modulus of
the conifold survives the mass deformation. In terms of the
Liouville theory it corresponds to the tachyon Tj;m with
j ¼ − 1

2
m ¼ � 1

2
. Let us consider the case m ¼ − 1

2
for

definiteness. The J− ¼ 0 for this state and it is described by
a holomorphic function of s at least in the limitM → ∞. In
other words it is a chiral primary field.
Let us extrapolate this property to arbitrary M and look

for the holomorphic solution TbðsÞ≡ Tj¼m¼−1=2ðsÞ.
Equation (5.4) reads in this case,

Tb −
4

g
∂s̄Φ∂sTb ¼ 0; ð5:9Þ

where we put the 4D mass M4D to zero. Calculating ∂s̄Φ
using (4.13) and (4.17) we get

∂s̄Φ ¼ −
Q
4
g: ð5:10Þ

Then Eq. (5.9) takes the simple form,

Tb þQ∂sTb ¼ 0: ð5:11Þ

Observe now, that the metric warp factor disappeared from

Eq. (5.11). Thus, its solution is the same as in the
undeformed theory. Namely, we have

Tb ¼ e−
ϕþiY
Q : ð5:12Þ

It coincides with the vertex Tj;m in (5.6) with j ¼ m ¼ − 1
2

forQ ¼ ffiffiffi
2

p
. The case ofm ¼ 1

2
corresponds to the complex

conjugate of Tb.
Let us check the normalization of the b-baryon state

over the Liouville dimension. Calculating its wave func-
tion (3.18) we get for Q ¼ ffiffiffi

2
p

,

Ψb¼ e−Φe−
ϕþiY
Q ¼ 1ffiffiffi

g
p e−

iY
Q ; jΨbj2 ¼

1

g
; ð5:13Þ

where we used (4.13). Then its norm isZ
dϕdYgjΨj2 ¼ 2πQ

Z
dϕ; ð5:14Þ

where the factor g arises due to the square root of the
determinant of the metric.
Thus, this state is on the borderline between normal-

izable and non-normalizable states much in the same way
as in the undefomed theory, see Sec. III B. In terms of the
conifold radial coordinate this corresponds to the logarith-
mically normalized state, see Eq. (2.22) and [13] for details.
We see that massless 4D baryon survives the mass

deformation and is present in the 4D SQCD at all values
of mass M. The (dressed) tachyon operator Tj¼−1

2
;m¼�1

2

describes two scalar components of the BPS hypermultiplet
in the 4DN ¼ 2 SQCD [21]. This leads us to the conclusion
that the transition between regions of large and smallM is a
smooth crossover rather then a sharp phase transition. The
BPS state is not affected (so analyticity is preserved), while
the spectrum of non-BPS states associated with Tj;m ≠ Tb is
expected to change as a function of ðϕwall − ϕ0Þ.
Another related property of the solution (5.12) is that the

conformal dimension of the operator in (5.12) is equal to
1=2 and therefore, as we mentioned in the end of Sec. IV B,
the Liouville superpotential (3.11) is not modified and
remains a marginal deformation of the mass-deformed
Liouville theory, see Eq. (4.23).

C. Schrödinger equation

In this section we rewrite the tachyon equation (5.4) in
the form of the Schrödinger equation. Substituting (5.10)
into (5.4) we get

4

g
∂s∂s̄Tj;mþQð∂s̄Tj;mþ∂sTj;mÞþ2Δj;mTj;m¼ 0: ð5:15Þ

To get rid of terms with first derivatives we write,

Tj;m ¼ eΦΨ̃j;m; ð5:16Þ
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where the dilaton Φ is given by (4.13). With this sub-
stitution the equation for Ψ̃ reads,

−ð∂2ϕþ∂
2
YÞΨ̃j;mþQ2g

��
jþ1

2

�
2

−m2−
1

4
ðg−1Þ

	
Ψ̃j;m¼0:

ð5:17Þ

Since the warp factor g does not depend on Y we can
look for solutions of (5.17) using the ansatz

Ψ̃j;mðϕ; YÞ ¼ eiQmYΨj;mðϕÞ: ð5:18Þ

This gives the Schrödinger equation for the wave function
Ψj;mðϕÞ,

−∂2ϕΨj;m þ VeffðϕÞΨj;m ¼ EjΨj;m; ð5:19Þ

where the potential is given by

VeffðϕÞ ¼ −Q2ðg − 1Þ
�
m2 −

�
jþ 1

2

�
2

þ g
4

	
; ð5:20Þ

while energy levels are determined by j,

Ej ¼ −Q2

�
jþ 1

2

�
2

: ð5:21Þ

As we already mentioned in Sec. VA the Liouville
interaction (3.11) is not taken into account in the tachyon
action (5.1), therefore we cannot determine energy levels
and the spectrum of allowed j from this equation in the
region of large M, where the Liouville interaction is
essential. Instead we can use it in the region of small M
at ϕwall ≪ ϕ0 or M2 ≪ 1=jbj2. In this region the Liouville
interaction can be neglected and the energy levels and the
spectrum of allowed j can be found solving Eq. (5.19). This
will give the 4D mass spectrum via Eq. (5.8) which we
interpret as a spectrum of hadrons in N ¼ 2 SQCD with
gauge group U(4) and Nf ¼ 8.
The potential (5.20) is attractive for ½m2 − ðjþ 1

2
Þ2 þ

1
4
� > 0 and tends to zero at ϕ → ∞. Therefore, one may
expect the continues spectrum with j ¼ − 1

2
þ is [see

Eq. (3.26)] with positive Ej and the discrete spectrum
with negative Ej.

9 However, the problem turns out to be
more complicated because near the singularity at ϕ → ϕ0

the potential (5.20) is of the Calogero type [56] with the
“falling to the center” behavior,

VeffðϕÞjϕ→ϕ0
≈

α

ðϕ−ϕ0Þ2
; α¼−

1

4
; ð5:22Þ

where we used (4.24).
The Hamiltonian with this potential has the scale

invariance and therefore seems to have no discrete spec-
trum. However, the accurate definition of what is the
self-adjoint Hamiltonian leads to a well-defined setup
of the Calogero problem [57]. It turns out that the
spectrum crucially depends on the coefficient α in front
of 1=ðϕ − ϕ0Þ2. For example “falling to the center” occurs
at α < − 1

4
when the discrete spectrum is not bounded from

below. The coefficient α ¼ − 1
4
[see Eq. (5.22)] represents

a very special case. In this case there is only one discrete
level [57].
Thus, we expect that our Schrödinger equation (5.19) has

exactly one discrete level for each value of m allowed by
the representation (3.17) and Gliozzi-Scherk-Olive projec-
tion. The detailed study of the string spectrum associated
with this Calogero problem is left for a future work.

VI. CONCLUSIONS

In this paper we considered the mass deformation of the
string theory for the critical non-Abelian vortex supported
inN ¼ 2 SQCD with gauge group U(2) and Nf ¼ 4 quark
flavors. Our mass deformation interpolates in four dimen-
sions between the above mentioned theory and N ¼ 2
SQCD with gauge group U(4) and Nf ¼ 8 quark flavors.
Building on previous results that the Coulomb branch of the
world sheet theory for the critical non-Abelian string in
N ¼ 2 SQCD with gauge group U(2) and Nf ¼ 4 flavors
is described by N ¼ 2 Liouville theory we switch on the
quark mass parameterM and study the mass deformation of
the Liouville theory, which boils down to theM-dependent
metric of its target space and the M-dependent dilaton.
To find the mass-deformed metric and the dilaton for the

true string vacuum we solve the effective supergravity
equations of motion. The solution shows the presence of
the naked singularity of the metric. Nevertheless, we show
that the massless b-baryon associated with the deformation
of the complex structure of the conifold does not “feel”
the metric deformation and remains massless in the mass-
deformed theory.
Next we present the Schrödinger equation for tachyon

vertex operators which at j ≤ − 1
2
describes normalizable

and borderline normalizable string states. These states
correspond to hadrons living in 4D N ¼ 2 SQCD. We
give a qualitative discussion of the structure of the mass
spectrum of tachyon states. In particular, we show that in
the region of small M finding the string spectrum is linked
to the Calogero problem.
As a directions of future research we can mention the

detail study of the string spectrum and its dependence on
the mass parameterM. In particular, in the limit of smallM

9Note that we are looking for the spectrum of normalizable and
borderline normalizable states.
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this spectrum gives the mass spectrum of hadrons in 4D
N ¼ 2 SQCD with gauge group U(4) and Nf ¼ 8 flavors
of quarks.
Another challenging problem is to understand the

physical nature of the naked singularity of the Liouville
target space metric and its possible resolution.
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