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The integrated correlator of four superconformal stress-tensor primaries in SUðNÞ N ¼ 4 super Yang-
Mills (SYM) theory in the perturbative limit takes a remarkably simple form, where the L-loop coefficient
is given by a rational multiple of ζð2Lþ 1Þ. In this paper, we extend the previous analysis of expressing the
perturbative integrated correlator as a linear combination of periods of f-graphs, graphical representations
for loop integrands, to the nonplanar sector at four loops. At this loop order, multiple zeta values make their
first appearance when evaluating periods of nonplanar f-graphs, but cancel nontrivially in the weighted
sum. The remaining single zeta value, along with the rational number prefactor, makes a perfect agreement
with the prediction from supersymmmetric localization.

DOI: 10.1103/PhysRevD.110.025003

I. INTRODUCTION

The exact results of integrated correlators for four stress-
tensor operators in SUðNÞN ¼ 4 super Yang-Mills (SYM)
have been recently proposed in [1,2] for finite gYM coupling
and finite N (see also the review [3] and earlier works for
large-N [4,5]), based on the techniques from supersym-
metric localization [6–8]. Having these exact results pro-
vides great insights into perturbative and nonperturbative
physics; e.g., as shown in [1,2,9], the weak coupling
expansion of the integrated correlator [see Ref. (5)] exhibits
an extremely simple pattern, where only single zeta values
show up at each loop order. This claim has been explicitly
verified up to four loops in the planar limit in [10], by
making contact with periods of Feynman integrals whose
integrands were constructed in [11,12] by graphical meth-
ods, so called f-graphs (see also [13,14] for integrands up
to ten loops in the planar limit). Unlike the planar sector, the
nonplanar part of physics is less explored. In view of that,
we extend the construction in [10] to the nonplanar sector at
four loops, confirming the prediction from localization by a
direct computation of Feynman periods. The four-loop
nonplanar integrand was given in [12] with the coefficients
fixed in [15,16]. Despite this integrand explicitly given, it
still remains challenging to evaluate those periods at
higher-loop orders [18]. To circumvent this, we found
particularly good choices (23) by utilizing Gram determi-
nant conditions; as a result, all the difficult integrals are

eliminated, with leftover ones easily being evaluated by the
Maple program HyperLogProcedures [20].

II. INTEGRATED CORRELATOR
IN N = 4 SYM

The observable of interest is the four-point correlation
with all four operators in the stress-tensor multiplet.

hO2ðx1; Y1Þ…O2ðx4; Y4Þi

¼ free partþ 1

x412x
4
34

I4ðU;V;YiÞT ðU;VÞ: ð1Þ

The weight-two half-BPS operator is defined as (see also
the review [21])

O2ðx; YÞ ≔ tr
�
ΦIðxÞΦJðxÞ�YIYJ; ð2Þ

where ΦIðxÞ are the six fundamental scalars in the N ¼ 4
SYM theory contracting with the null vectors YI . The four-
point function has been separated into the free and dynamic
parts, the latter taking a factorized form with all Yi depend-
ence packaged in awell-known prefactorI4ðU;V;YiÞ that is
fixed by the superconformal symmetry [22,23], and the four-
point cross ratios are

U ¼ x212x
2
34

x213x
2
24

; V ¼ x214x
2
23

x213x
2
24

: ð3Þ

The integrated correlator is defined as integrating
T ðU;VÞ over spacetime coordinates U and V, along with
a specific measure [6,8,24], which results in a function of ’t
Hooft couplings λ ¼ g2YMN as the following:
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CðλÞ ≔ I2½T ðU;VÞ�

¼ −
8

π

Z
∞

0

dr
Z

π

0

dθ
r3 sin2 θ

U2
T ðU;VÞ; ð4Þ

where and r, θ are linked to cross ratios as U ¼ 1þ r2 −
2r cos θ and V ¼ r2. As shown in [1,2], the perturbative
expansion of the integrated correlator in (4), i.e., small g2YM
and finite N, has the following form:

CpertðλÞ ¼ 4c

�
3ζð3Þa

2
−
75ζð5Þa2

8
þ 735ζð7Þa3

16

−
�
6615ζð9Þ

32
þ P1

�
a4 þOða5Þ

�
; ð5Þ

where c ¼ N2−1
4

and a ¼ λ=ð4π2Þ. The nonplanar terms
start to contribute at four loops,

P1 ¼
2

7N2
×
6615ζð9Þ

32
; ð6Þ

which we later show is indeed the correct numerical factor
to be consistent with the nonplanar data in [15].

III. PERTURBATIVE INTEGRATED
CORRELATOR AS FEYNMAN PERIODS

To compute the integrated correlator in theweak coupling
limit, we start with the dynamic part in the integrand (4), i.e.,
the unintegrated correlator T ðU;VÞ, which in the perturba-
tive expansion is related to a familiar expression,FðLÞðxiÞ ¼
FðLÞðx1; x2; x3; x4Þ in [11,12], through the following:

T ðU;VÞ ¼ 2c
U
V

X∞
L¼1

aLx213x
2
24F

ðLÞðxiÞ: ð7Þ

In principle, one could plug the unintegrated correlator (7)
into (4) to compute the integrated one. However, this will
involve complicated expressions of polylogarithms, and the
analytical results are best knownup to three loops [25]. To go
beyond the three-loop order in (5), an observation was made
in [10] that the CpertðλÞ are simply given by a linear
combination of the periods of f-graphs, where f-graphs
are provided up to ten loops in the planar limit [13,14].More
importantly, the nonplanar f-graphs at four loops are given
in [12], where the coefficients were later fixed by [15].
In [10], the perturbative integrated correlators are shown

to be the following:

I2½T ðU;VÞ� ≔ 4c
X
L≥1

aLI02½FðLÞðxiÞ�

¼ −4c
X
L≥1

aL

L!ð−4ÞL
XnL
α¼1

cðLÞα P
fðLÞα

; ð8Þ

where the first equality is simply plugging (7) into (4),
and the second equality makes use of the relation between
FðLÞðxiÞ and fðLÞðxiÞ ¼ fðLÞðx1; x2;…; x4þLÞ as the
following:

FðLÞðxiÞ ¼
Q

1≤i<j≤4x
2
ij

L!ð−4π2ÞL
Z

d4x5 � � � d4x4þLfðLÞðxiÞ: ð9Þ

The function fðLÞðxiÞ is written as a linear combination of

fðLÞα ðxiÞ with the subscript α denoting different topologies,
and the coefficients are fixed by certain physical require-
ments [12–14],

fðLÞðxiÞ ¼
XnL
α¼1

cðLÞα fðLÞα ðx1; x2;…; x4þLÞ: ð10Þ

Each function fðLÞα ðxiÞ, being totally symmetric under
exchange of any pair of coordinates xi and xj due to
hidden symmetry, is defined as [11,12]

fðLÞα ðx1; x2;…; x4þLÞ ¼
PðLÞ
α ðx1; x2;…; x4þLÞQ

1≤i<j≤4þLx
2
ij

; ð11Þ

where PðLÞ
α is a homogeneous polynomial in x2ij of degree

ðL − 1ÞðLþ 4Þ=2, and it can be graphically determined by

the so-called P-graphs [12]. The period of fðLÞα (see
Refs. [26–32] for more discussions on Feynman periods)
is defined as the following:

P
fðLÞα

≔
1

ðπ2ÞLþ1

Z
d4x1 � � �d4x4þL

vol½SOð2;4Þ� f
ðLÞ
α ðx1;x2;…;x4þLÞ:

ð12Þ

Now we review the results of computing the first
three orders in (5) by using standard field theory tech-

niques (8) [10]. Note that the function fðLÞα at the first
three-loop order has only one planar topology; therefore,
we omit the subscript α for L ≤ 3,

fð1ÞðxiÞ ¼
1Q

1≤i<j≤5x
2
ij
;

fð2ÞðxiÞ ¼
1
48
x212x

2
34x

2
56Q

1≤i<j≤6x
2
ij
þ S6;

fð3ÞðxiÞ ¼
1
20
x412x

2
34x

2
45x

2
56x

2
67x

2
37Q

1≤i<j≤7x
2
ij

þ S7; ð13Þ

where the numeric factors in the numerators, i.e.,
the PðLÞ polynomials, are to mod out the trivial S4þL

permutations. The periods of the above three fðLÞ
functions can be easily computed by the Maple programs
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HyperLogProcedures [20] and HyperInt [31],
which we give in the Appendix (A1).
The integrated correlator expanded at the first three-loop

orders can be obtained by using (8) and (A1) as

I02½Fð1ÞðxiÞ� ¼ −
1

1!ð−4Þ1 × Pfð1Þ ¼
3ζð3Þ
2

;

I02½Fð2ÞðxiÞ� ¼ −
1

2!ð−4Þ2 × Pfð2Þ ¼ −
75ζð5Þ

8
;

I02½Fð3ÞðxiÞ� ¼ −
1

3!ð−4Þ3 × Pfð3Þ ¼
735ζð7Þ

16
: ð14Þ

The above results up to three loops are in total agreement
with supersymmetric localization (5) as demonstrated
in [10]. We stress again the simplicity of using period to
compute a perturbative integrated correlator; e.g., the
L ¼ 3 result in (14) is a single-line computation using
Pfð3Þ (with specialist packages for periods [20,31]). In
contrast, using the original prescription (4) will inevitably
involve the complicated expression of Fð3Þ [25], which
makes the computation infeasible.

IV. FOUR-LOOP INTEGRATED CORRELATOR

As pointed out in [12], starting at four loops, the loop
integrand and corresponding f-function split into planar
and nonplanar parts.

fð4ÞðxiÞ ¼ fð4Þg¼0ðxiÞ þ
1

N2
fð4Þg¼1ðxiÞ; ð15Þ

where fð4Þg¼0 consists of planar f-graphs only, while fð4Þg¼1

includes both planar and nonplanar f-graphs, i.e., f-graphs
with genus either 0 or 1. In the following subsections, we
discuss the integrated correlator at L ¼ 4 in a separated
form,

I02½Fð4ÞðxiÞ� ¼ I02½Fð4Þ
g¼0ðxiÞ� þ

1

N2
I02½Fð4Þ

g¼1ðxiÞ�; ð16Þ

where the planar and nonplanar contributions are obtained

the summing periods of fð4Þg¼0 and fð4Þg¼1, respectively.

A. Planar sector: Periods of f ð4Þg = 0

The planar four-loop correlator is expressed as sum of
three topologies [12],

fð4Þg¼0ðxiÞ ¼
X3
α¼1

cð4Þ0;αf
ð4Þ
α ðx1;…; x8Þ

¼
X3
α¼1

cð4Þ0;α

Pð4Þ
α ðx1;…; x8ÞQ

1≤i<j≤8x
2
ij

; ð17Þ

where the list of three coefficients is

cð4Þ0;α ¼ f1; 1;−1g; ð18Þ

and the numerators Pð4Þ
α ðxiÞ are given by

Pð4Þ
1 ðxiÞ ¼

1

24
x212x

2
13x

2
16x

2
23x

2
25x

2
34x

2
45x

2
46x

2
56x

6
78 þ S8;

Pð4Þ
2 ðxiÞ ¼

1

8
x212x

2
13x

2
16x

2
24x

2
27x

2
34x

2
38x

2
45x

4
56x

4
78 þ S8;

Pð4Þ
3 ðxiÞ ¼

1

16
x212x

2
15x

2
18x

2
23x

2
26x

2
34x

2
37x

2
45x

2
48x

2
56x

2
67x

2
78

þ S8: ð19Þ

According to (8), the integrated correlator at four loops
(planar sector) is then given by

I02½Fð4Þ
g¼0ðxiÞ� ¼ −

1

4!ð−4Þ4 ×
�
P

fð4Þ
1

þ P
fð4Þ
2

− P
fð4Þ
3

	

¼ −
6615ζð9Þ

32
; ð20Þ

where we have used the periods of fð4Þα given as the
following:

P
fð4Þ
1

¼ 8! ×
1

24
× 252ζð9Þ;

P
fð4Þ
2

¼ 8! ×
1

8
× 252ζð9Þ;

P
fð4Þ
3

¼ 8! ×
1

16
× 168ζð9Þ: ð21Þ

The result of planar part (20) agrees with supersymmetric
localization (5) as shown in [10].

B. Nonplanar sector: Periods of f ð4Þg = 1

The nonplanar part of the four-loop correlator consists of
32 topologies, including the first three planar ones in (19),
which can be expressed as

fð4Þg¼1ðxiÞ ¼
X32
α¼1

cð4Þ1;αf
ð4Þ
α ðx1;…; x8Þ

¼
X32
α¼1

cð4Þ1;α

Pð4Þ
α ðx1;…; x8ÞQ

1≤i<j≤8x
2
ij

; ð22Þ

where the 32 polynomials, Pð4Þ
α , are defined in (C.1)

of [12].
As mentioned in the Introduction, the original nonplanar

data provided in [15] involve integrals that are hard to
evaluate; to resolve this, we have chosen an alternative
set of coefficients that is equivalent to the one in the
reference (the validity will be justified shortly using Gram
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determinant conditions). We choose the set of coefficients
to be the following:

cð4Þ1;α ¼ 2×f12;10;−14;8;−4;6;0;−1;−4;0;4;−2;−1;05;
4;−2;4;0;−2;02;−2;06g; ð23Þ

where a shorthand notation is adopted to express a list of k

zeros as 0k. The periods of fð4Þα that contribute to (22), i.e.,

with nonzero cð4Þ1;α, are given in (21) and (B1) in the
Appendix.

As mentioned earlier, our choice of coefficients cð4Þ1;α

differs from the one given in [15], Eq. (3.2) therein (the

JHEP version) is

2q̃α ¼ 2 × f6; 6;−6; 8; 0; 6; 0;−1;−2; 02; 2;−1; 04;
2; 2;−2;−4; 0;−2; 03;−48;−4; 0; 4; 02g: ð24Þ

The coefficients cð4Þ1;α and q̃ are related by adding Gram
polynomials that vanish in strictly four dimensions, i.e.,

0¼
X32
α¼1

ak;αP
ð4Þ
α ðx1;…;x8Þ; for k¼ 1;2;3; ð25Þ

where ak;α are three sets of 32 coefficients given as [33]

a1;α ¼ f6; 16;−8; 8;−10; 24; 0;−4; 8; 6;−2; 4;−4;−6; 3;−9; 0; 3; 4;−5;−2;−18;−2; 3;−3; 1; 06g;
a2;α ¼ f−9;−18; 12;−8; 12;−24; 0; 4;−7;−6; 0;−2; 4; 6;−3; 9; 0;−2;−5; 5;−2; 18; 2;−3; 3; 0;−24;−2; 0; 2; 02g;
a3;α ¼ f−1; 4; 2; 4;−2; 12; 0;−2; 5; 2;−4; 4;−2;−2; 1;−3;−1; 2; 1;−1;−6;−6; 0; 1; 02;−36; 0; 1; 0;−1; 1g: ð26Þ

One can easily check

X32
α¼1

cð4Þ1;αP
ð4Þ
α ðx1;…; x8Þ

¼
X32
α¼1

�
2q̃α − 4ða1;α þ a2;αÞ

�
Pð4Þ
α ðx1;…; x8Þ: ð27Þ

With the good choice of cð4Þ1;α in (23) (instead of q̃), all the

periods of fð4Þα in (22) with nonzero coefficients can be
directly evaluated by HyperLogProcedures [20], and
the results of the list of periods are given in (B1) in the
Appendix.
Finally, using expressions (22), (23), and values of

periods (21), (B1), the integrated correlator at four loops
for the nonplanar sector is given as

I02½Fð4Þ
g¼1ðxiÞ� ¼ −

1

4!ð−4Þ4 ×
1

N2
×
X32
α¼1

cð4Þ1;αPfð4Þα

¼ −
2

7N2
×
6615ζð9Þ

32
; ð28Þ

which, together with the planar part (20), perfectly match
the result from supersymmetric localization (5). In particu-
lar, periods for the four-loop nonplanar f-graphs P

fð4Þα

contain different zeta values, including multizeta values
such as ζð5; 3Þ in P

fð4Þ
4

and P
fð4Þ
12

in (B1),

P
fð4Þ
4

¼ 8! ×
1

16
×

�
432

5
ζð5; 3Þ þ 252ζð5Þζð3Þ − 58π8

2625

�
;

P
fð4Þ
12

¼ 8! ×
1

4
×

�
432

5
ζð5; 3Þ − 36ζð3Þ2 þ 360ζð5Þζð3Þ

þ 189ζð7Þ
2

−
131ζð9Þ

2
−
58π8

2625

�
;

while the ζð5; 3Þ parts above cancel out since c1;4 ¼ 8;
c1;12 ¼ −2, and the remaining products of zeta values will
further cancel in the linear combination in (28).

V. SUMMARY AND OUTLOOK

In this paper, we perform a first principle calculation
of perturbative integrated correlators in terms of Feynman
periods, with a focus on the nonplanar sector at four
loops (28), which confirms the prediction from super-
symmetic localization (5). It is natural to consider
second type of integrated correlator with a different
measure [5,8,34], where some results (up to first three
loops) have been investigated in [10], which also displays
a simple pattern of zeta value at each loop order.
Furthermore, it will be interesting to study integrated
correlators involving more generic weights, such as
h22ppi in [35–37], and hp1p2p3p4i in [38] by utilizing
ten-dimensional (10D) conformal symmetry [39], with
possibilities to extend the nonplanar limit. It will be
fascinating to consider other types of integrated correlators,
such as those involving a Wilson line [40,41], or determi-
nant operators [42,43]. It is also worth mentioning the
potential extension to N ¼ 2 SYM, where the integrated
correlators have been studied in [44,45]. Finally, it will be
desirable to have an explanation of the simplicity of
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perturbative integrated correlator, i.e., only single zeta
values allowed (5), from a pure mathematical point of
view; for example, the properties of periods and Galois
coaction could play an important role [30,46–48].
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APPENDIX A: PERIODS OF f -GRAPHS
UP TO THREE LOOPS

Here, we give the periods of fðLÞα for L ≤ 3 computed by
HyperLogProcedures [20] and HyperInt [31],

which can be applied to evaluate the perturbative integrated
correlator at the first three orders (14),

Pfð1Þ ¼ 5! ×
1

120
× 6ζð3Þ;

Pfð2Þ ¼ 6! ×
1

48
× 20ζð5Þ;

Pfð3Þ ¼ 7! ×
1

20
× 70ζð7Þ; ðA1Þ

where the ð4þ LÞ! factor in each PfðLÞ is due to the S4þL

permutations in (13), which give the same value of period
for a given topology.

APPENDIX B: PERIODS OF NONPLANAR
f -GRAPHS AT FOUR LOOPS

We present the periods of fð4Þα that contribute to (22), see

also the periods for planar fð4Þα (where α ¼ 1, 2, 3)
presented in (21),

P
fð4Þ
4

¼ 8! ×
1

16
×

�
432

5
ζð5; 3Þ þ 252ζð5Þζð3Þ − 58π8

2625

�
;

P
fð4Þ
5

¼ 8! ×
1

4
×

�
8ζð3Þ3 þ 1063ζð9Þ

9

�
;

P
fð4Þ
6

¼ 8! ×
1

12
× ð120ζð5Þζð3ÞÞ;

P
fð4Þ
8

¼ 8! ×
1

2
×

�
8ζð3Þ3 þ 1567ζð9Þ

9

�
;

P
fð4Þ
9

¼ 8! ×
1

4
× ð168ζð9ÞÞ;

P
fð4Þ
11

¼ 8! ×
1

4
×

�
−36ζð3Þ2 þ 108ζð5Þζð3Þ þ 189ζð7Þ

2

�
;

P
fð4Þ
12

¼ 8! ×
1

4
×

�
432

5
ζð5; 3Þ − 36ζð3Þ2 þ 360ζð5Þζð3Þ þ 189ζð7Þ

2
−
131ζð9Þ

2
−
58π8

2625

�
;

P
fð4Þ
13

¼ 8! ×
1

2
×

�
−24ζð3Þ3 þ 120ζð5Þζð3Þ þ 727ζð9Þ

6

�
;

P
fð4Þ
19

¼ 8! ×
1

4
×
�
16ζð3Þ3 þ 72ζð3Þ2 þ 24ζð5Þζð3Þ − 189ζð7Þ þ 2126ζð9Þ

9

�
;

P
fð4Þ
20

¼ 8! ×
1

4
×

�
−16ζð3Þ3 þ 72ζð3Þ2 þ 144ζð5Þζð3Þ − 189ζð7Þ þ 1906ζð9Þ

9

�
;

P
fð4Þ
21

¼ 8! ×
1

8
× ð120ζð5Þζð3ÞÞ;

P
fð4Þ
23

¼ 8! ×
1

8
×

�
48ζð3Þ3 − 72ζð3Þ2 þ 216ζð5Þζð3Þ þ 189ζð7Þ − 388ζð9Þ

3

�
;

P
fð4Þ
26

¼ 8! ×
1

16
×

�
96ζð3Þ3 þ 288ζð3Þ2 þ 96ζð5Þζð3Þ − 756ζð7Þ þ 1228ζð9Þ

3

�
: ðB1Þ
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The multiple zeta value is defined by

ζðnd;…; n1Þ ¼
X

kd>���>k1≥1

1

kndd � � � kn11
; nd ≥ 2: ðB2Þ
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