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We evaluate the possibility of the formation of naked singularities in the interaction of Kerr black holes
with test massless spin-2 fields. We analyze the scattering problem for both extremal and nearly extremal
black holes by incorporating the explicit form of the absorption probabilities. We show that extremal black
holes become nonextremal after the interaction with the modes with both positive and negative absorption
probabilities. For nearly extremal black holes the absorption probability for the challenging modes turns
out to be of the order ϵ5, where ϵ parametrizes the closeness to extremality. Though the highest absorption
probability for m ¼ 2 modes pertains to spin-2 fields, its drastically small value implies that the event
horizon is preserved without the need to employ the backreaction effects. The result can be qualitatively
extrapolated to hypothetical higher integer spin fields. We also review and extend our previous comments
on Sorce-Wald method. We show that the order magnitude problems can be avoided by abandoning the
nonphysical parameter λ. The conditions derived by Sorce-Wald can be legitimately used to incorporate the
backreaction effects by avoiding to multiply them by λ2, thereby preserving the magnitude of their
contribution. We apply this method to the problems of overcharging Reissner-Nordström black holes and
overspinning Kerr black holes, in a rough analysis ignoring absorption probabilities which could apply to
test bodies.
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I. INTRODUCTION

A generic feature of general relativity is the development
of singularities as a result of gravitational collapse [1]. The
collapse is expected to end up in a black hole surrounded by
an event horizon that is a one way membrane disabling
the causal connection between the singularity and the space-
time outside. If the distant observers do not encounter the
singularities or any effects propagating out of them, then the
smooth causal structure of the space-time can be preserved at
least outside the black hole region bounded by the event
horizon. Theweak form of the cosmic censorship conjecture
asserts that singularities should always be covered by event
horizons which causally disconnects them from the space-
time outside [2]. A concrete proof of the cosmic censorship
conjecture appears to be elusive.
The smooth structure of space-times would also be dis-

rupted if it was possible to destroy event horizons and
expose the singularity to outside observers in the inter-
actions of black holes with test particles and fields. In the
first of the thought experiments to check this possibility,
Wald has shown that particles carrying sufficiently large
angular momentum or charge to overspin/overcharge Kerr-
Newman black holes are not absorbed by the black holes
[3]. In the following decades many similar thought experi-
ments were constructed which involve test particles and

fields [4–41]. The analysis has also been extended to the
asymptotically de Sitter and anti–de Sitter cases [42–58]. It
turns out that cosmic censorship conjecture remains valid for
perturbations satisfying thenull energycondition, employing
the backreaction effects if necessary. We have derived some
counterexamples in alternative theories of gravity like Kerr-
modified gravity black holes [59]. However, this points to the
existence of somecaveats in the underlying theory rather than
the invalidity of the conjecture.
The validity of the cosmic censorship conjecture and the

laws of black hole dynamics for perturbations satisfying the
null energy equation relies on the fact that there exists a
lower bound for the energy of the perturbation to allow its
absorption by the black hole. For test fields this lower
bound corresponds to the superradiance limit where the
absorption probability vanishes. One cannot derive an
analogous limit for fermionic fields the energy momentum
tensor of which does not satisfy the null energy condition.
The absorption of the low energy modes is allowed, which
leads to problems regarding the validity of cosmic censor-
ship and the laws of black hole dynamics [60–64]. The
analyses for the cases that do and do not satisfy the null
energy condition are fundamentally different and the results
do not imply each other. (See [64] for a detailed comparison
of the perturbations that do and do not satisfy the null
energy condition.)
In this work, we evaluate the interaction of massless

spin-2 fields with Kerr black holes to search for tailored*koray.duztas@okan.edu.tr
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modes of the field that can overspin the black hole into a
naked singularity. The energy momentum tensor for spin-2
fields satisfies the null energy condition. There exists a
lower limit for the energy/frequency of a test field to
allow its absorption by the black hole. The modes with a
lower energy/frequency are reflected back to infinity with a
larger amplitude; i.e., they exhibit superradiant scattering.
Equivalently the absorption probability becomes zero and
negative as the frequency decreases. Here, we incorporate
the explicit form of the absorption probabilities into the
analysis. We use the absorption probabilities derived by
Page in his seminal work [65]. In a rough analysis we
would assume that the test field is entirely absorbed if the
frequency ω is larger than the superradiance limit mΩ.
However, only a small fraction of a test field with ω≳mΩ
is absorbed by the black hole. This fraction approaches zero
as the frequency approaches the superradiance limit. In
particular for spin (2) fields, as ω approaches mΩ, the
absorption probability decreases as ðω −mΩÞ5. Therefore
the incorporation of the absorption probabilities fundamen-
tally changes the course of the analysis for spin (2) fields.
There exist modes that could destroy the event horizon if
they were entirely absorbed. This destruction would be
fixed by the backreaction effects. However, a negligible
fraction of the challenging modes is absorbed by the black
hole. We show that the event horizon is preserved without
invoking the backreaction effects, when the absorption
probabilities are taken into consideration.
Recently Sorce and Wald developed an alternative

method and claimed to bring an ultimate solution to the
problem of cosmic censorship for perturbations satisfying
the null energy condition [66]. In [67] we have scrutinized
their derivation and explicitly demonstrated that it involves
order of magnitude errors. The order of magnitude errors in
fðλÞ, defined by Sorce and Wald, are manifest when one
considers the fact that δM is inherently a first order quantity
for test particles and fields. To avoid a potential misunder-
standing, we have not disputed the fact that cosmic
censorship remains valid for perturbations satisfying the
null energy condition. Our previous works and the current
work on spin-2 fields justify this claim. In this work we
extend our comments on Sorce-Wald method. We point out
that the conditions derived by Sorce and Wald for the first
order and second order perturbations are correct. They can
be used to derive and incorporate the backreaction effects
that contribute to the interaction to second order. One can
simply avoid the order of magnitude problems by aban-
doning fðλÞ defined by Sorce-Wald. In fðλÞ, the contri-
bution of the backreaction effects is multiplied by λ2, which
renders it fourth order. The correct path to follow is to
derive the backreaction effects from the Sorce-Wald con-
dition, and substitute these contributions without multiply-
ing them by λ2. Here, we use this method to reevaluate the
overcharging problem previously studied by Hubeny [4],
and the overspinning problem previously studied by
Jacobson-Sotiriou for test bodies [5] and Düztaş-Semiz

for test fields [29]. We adapt our previous methods to show
that backreaction effects derived from the Sorce-Wald
condition can be correctly incorporated and fix the over-
charging/overspinning problems in a rough analysis ignor-
ing the absorption probabilities.

II. OVERSPINNING PROBLEM AND THE
ABSORPTION PROBABILITIES

In this section we describe how to incorporate the
explicit form of the absorption probabilities into the over-
spinning problem. We start with a Kerr black hole the mass
(M) and the angular momentum (J) parameters of which
satisfy

M2 − a2 ≥ 0; ð1Þ

where a ¼ ðJ=MÞ. We envisage that a test field is incident
on the black hole from infinity. The test field is partially
absorbed by the black hole and partially gets reflected back
to infinity. In the test field approximation, the space-time
settles to a new Kerr solution with modified parameters,
after a sufficiently long time. If the final parameters of the
space-time violate the main inequality (1) at the end of the
interaction, the event horizon ceases to exist. The space-
time parameters represent a naked singularity that is in
causal contact with the distant observers. Note that the
function ðM2 − a2Þ becomes positive, negative, or zero
whenever the simpler function ðM2 − JÞ is positive, neg-
ative, or zero. Therefore it is customary to evaluate the
simpler function ðM2 − JÞ.
The energy ðδMÞ and the angular momentum ðδJÞ of the

test field contribute to the mass and angular momentum
parameters of the black hole. In a stationary and axisym-
metric space-time, the wave function can be separated in
the form

Ψ ¼ fðr; θÞeimϕe−iωt:

The contributions to the mass and the angular momentum
parameters are related by

δJ ¼ m
ω
δM: ð2Þ

In [67] we pointed out that only the fraction of the test field
that is absorbed by the black hole contributes to the space-
time parameters. The fact that this fraction can be very small
for challenging modes fundamentally alters the course of the
analysis. The fraction that will be absorbed by the black hole
is given by the absorption probability of the relevant mode.
The final parameters of the space-time take the form

Mfin ¼ M þ ΓδM;

Jfin ¼ J þ δJ ¼ J þm
ω
ΓδM; ð3Þ
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where Γ is the absorption probability of the test field that
is incident on the black hole, and we have expressed δJ in
terms of δM using (2). The absorption probabilities for a
classical scattering problem were derived by Page in a
seminal work [65]. For integer spin test fields, the absorption
probability is given by

Γ ¼
�ðl − sÞ!ðlþ sÞ!
ð2lÞ!ð2lþ 1Þ!!

�
2Yl
n¼1

�
1þ

�
ω −mΩ

nκ

�
2
�

× 2

�
ω −mΩ

κ

��
Aκ
2π

ω

�
2lþ1

; ð4Þ

where ω is the angular frequency of the test field, Ω is the
angular velocity of the event horizon, κ is the surface gravity,
and A is the surface area of the black hole. Notice that
the absorption probability becomes negative for modes with
ω < mΩ. These modes are reflected back to infinity with a
larger amplitude, in the well-known process of superra-
diance. The value ω ¼ mΩ constitutes the lower bound for
the frequency of the test field for which the test field will be
absorbed by the black hole. This lower bound exists for all
integer spin test fields the energymomentum tensor of which
satisfy the null energy condition. The fact that the low
frequencymodes are not absorbed by the black hole is crucial
to prevent the formation of a naked singularity. The low
frequency modes contribute to the angular momentum
parameter much more than the mass parameter. The absorp-
tion of these modes would lead to the violation of the main
inequality (1) and the destruction of the event horizon. For
fermionic fields the absorption probability is always positive.
A lower bound for the frequency to allow the absorption of
the test field does not exist. This follows from the fact that the
energy momentum tensor does not satisfy the null energy
condition and leads to problems for the validity of cosmic
censorship and the laws of black hole mechanics.
The contribution of a test field to the angular momentum

parameter of the space-time is related to its azimuthal
number m. Each field encompasses modes l ¼ 0; 1; 2…,
m ¼ 0; 1; 2…. The modes with m ¼ 0 do not contribute to
the angular momentum parameter, and the magnitude of the
contribution increases asm increases. Naively, one may ask
the question what is the essential difference between a spin-
0 and a spin-2 field regarding their contribution to angular
momentum, if they can both have m ¼ 2? The difference
lies in the absorption probabilities. For a spin-0 field the
highest absorption probability pertains to l ¼ s ¼ 0modes.
For the modes with m ¼ 1 (l ≥ 1), the absorption proba-
bility acquires a factor 1=ð3Þ2 ¼ 1=9. [Check the expres-
sion in the square brackets in (4).] For m ¼ 2 this factor
becomes 1=ð90Þ2. Therefore the contribution of these
modes is negligible. However, for spin-2 fields the modes
with l ¼ s ¼ 2 have the highest absorption probability. In
this case, these modes become our primary concern, and we
let m ¼ 2 to maximize their contribution to the angular
momentum parameter. Actually the highest absorption

probability for m ¼ 2 modes pertains to spin-2 fields. In
that respect, one may expect that spin-2 fields are more
likely to destroy the event horizon compared to spin-0 and
spin-1 case due to the absorption ofm ¼ 2modes. Here, we
check if the absorption of m ¼ 2 modes of the spin-2 fields
lead to overspinning by considering the explicit form of the
absorption probabilities.
An explicit form for the absorption probabilities for spin

(2) fields is derivedbyPage in [65], by substituting l ¼ s ¼ 2
in (4) and keeping only the lowest order terms in ω. (The
dominant contribution comes from l ¼ s modes.) This
implies ω ≪ mΩ which renders this form of the absorption
probability inappropriate for our analysis where we require
that the test field is absorbed by the black hole, i.e.,ω ≥ mΩ.
To derive a general form for the absorption probability for
spin-2 fields we simply substitute l ¼ s ¼ 2 in (4)

Γ ¼
�

2

225

�
ðω −mΩÞ

�
Aω
2π

�
5

×

�
κ4 þ 5κ2

4
ðω −mΩÞ2 þ ðω −mΩÞ4

4

�
: ð5Þ

Using this form of the absorption probability we may
proceed to evaluate the validity of cosmic censorship for
extremal and nearly extremal black holes. From our
previous works we know that ðω −mΩÞ must be a small
number for overspinning to occur, and the surface gravity κ
is small for a nearly extremal black hole. We mentioned that
the highest absorption probability for m ¼ 2 modes per-
tains to spin-2 fields. However, (5) implies that the highest
probability involves the fifth power of a small number
which may render it negligible.

III. EXTREMAL BLACK HOLES

In this section we attempt to drive an extremal black hole
into a naked singularity by sending in test spin-2 fields
from infinity. By definition, extremal black holes saturate
the inequality (1).

M2 − J ¼ 0 ð6Þ
At the end of the interaction with the test spin-2 field, the
mass and the angular momentum parameters of the black
hole will be modified in the form (3). We search for modes
of the field the contribution of which to the angular
momentum parameter exceeds its contribution to the mass
parameter so that the main inequality (3) may be violated at
the end of the interaction. Since the relative contribution to
the angular momentum parameter increases as the angular
frequency ω decreases, it seems plausible to employ low
frequency modes. However, the absorption probability (5)
dictates that there exists a lower bound to allow the
absorption of the test field by the black hole:

ω ≥ mΩ; ð7Þ
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which is the well-known superradiance limit. For extremal
black holes (7) takes the form

ω ≥
1

M

�
Ω ¼ 1

2M

�
: ð8Þ

Note that, we have substituted m ¼ 2 in (8) to maximize
the contribution of the test field to the angular momentum
parameter. Actually, the absorption probability for the
modes in the lower limit ω ¼ mΩ, is zero. In the classical
picture, the fields in these modes will be entirely reflected
back to infinity without modifying the space-time param-
eters. The modes with ω < mΩ get scattered back to
infinity with a larger amplitude borrowing the excess
energy from the angular momentum of the black hole.
Therefore, we are restricted in the range ω > mΩ if we aim
to increase the angular momentum parameter.
For extremal black holes the surface gravity and the area

are given by

κ ¼ 0; A ¼ 8πM2: ð9Þ

The absorption probability (5) can be simplified (κ ¼ 0),

Γ ¼
�

1

450

��
Aω
2π

�
5

ðω −mΩÞ5: ð10Þ

The absorption probability (10) is drastically small for
the challenging modes ω≳mΩ. To give the reader an
idea, we can consider a test spin-2 field with frequency
ω ¼ 1.01ð1=MÞ, which satisfies (7). The absorption prob-
ability for this field is Γ ¼ 2.39 × 10−10, which implies that
it is almost entirely reflected back to infinity.
We proceed to evaluate the possibility to destroy the

event horizon. After the field is partially absorbed by the
black hole and partially reflected back to infinity, the final
parameters of the space-time satisfy

M2
fin − Jfin ¼ Γ2ðδMÞ2 þ ðδMÞ

�
2ΓM −

2

ω
Γ
�
; ð11Þ

where we have used (3) with m ¼ 2, and substituted M2 −
J ¼ 0 for the initial parameters. We may analyze the
problem in three categories, depending on the value of
ω. First we evaluate the potentially challenging case
ω > ð1=MÞ, for which the absorption probability is pos-
itive (Γ > 0). Only the last term on the right-hand side of
(11) is negative. One observes that

ðδMÞ
�
2ΓM −

2

ω
Γ
�

> 0

�
Γ > 0; ω >

1

M

�
:

Therefore

M2
fin − Jfin > 0 for ω > ð1=MÞ: ð12Þ

We have started with an extremal black hole and ended
up with a nonextremal black hole, with Mfin > M and
Jfin > J. The event horizon was preserved and the black
hole has been driven away from extremality at the end of the
interaction.
Next we evaluate the case ω ¼ mΩ ¼ ð1=MÞ. The

absorption probability is zero and the final parameters of
the space-time satisfy:

M2
fin − Jfin ¼ 0 for ω ¼ ð1=MÞ: ð13Þ

This test field has been entirely reflected back to infinity,
without contributing to the space-time parameters. We
started with an extremal black hole and ended up with
the same extremal black hole.
We can also evaluate the behavior of the superradiant

modes ω < mΩ ¼ ð1=MÞ. It is well known that super-
radiant modes borrow the excess energy from the rotational
parameter of the black hole and drive the black hole away
from extremality. Apparently these modes do not challenge
the validity of cosmic censorship. We will include them in
the analysis just for completeness. For these modes the
absorption probability is negative (Γ < 0). Again we focus
on the last two terms of (11). This time the second term
gives a negative contribution, while the third term gives a
positive contribution

ðδMÞ
�
2ΓM −

2

ω
Γ
�

> 0

�
Γ < 0; ω <

1

M

�

for (Γ < 0) and ω < ð1=MÞ. Again, we have

M2
fin − Jfin > 0 for ω < ð1=MÞ: ð14Þ

We started with an extremal black hole and ended up with a
nonextremal black hole with Mfin < M and Jfin < J. The
superradiant modes are scattered back with a larger ampli-
tude. In this process both the mass and the angular momen-
tum parameters of the black hole decrease. However, the
angular momentum parameter decreases by a larger amount.
The superradiant modes borrow most of the required energy
from the rotational energy of the black hole.
We conclude that extremal Kerr black holes cannot

be overspun into naked singularities by spin-2 fields.
The event horizon is preserved and the cosmic censorship
conjecture remains valid after the interaction.

IV. NEARLY EXTREMAL BLACK HOLES
AND SPIN-2 FIELDS

We start our analysis for nearly extremal black holes by
parametrizing the closeness of the black hole to extremality
by a dimensionless parameter ϵ. The initial parameters of
the nearly extremal black hole satisfy

M2 −
J2

M2
¼ M2ϵ2; ð15Þ
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which implies

M2 − J ¼ M2ðϵ2=2Þ; ð16Þ

where we assume ϵ ≪ 1, so that the black hole is
sufficiently close to extremality to be possibly overspun
by a test field. After the test field is partially absorbed by
the black hole and partially reflected back to infinity, the
final parameters of the space-time will take the form

Δfin ≡M2
fin − Jfin;

¼ M2
ϵ2

2
þ Γ2ðδMÞ2 þ ðδMÞ

�
2ΓM −

2

ω
Γ
�
; ð17Þ

where we have defined Δfin, and substituted m ¼ 2. We
should search for the modes of the test field that could make
Δfin negative. Equation (17) implies that Δfin cannot be
negative unless ω < ð1=MÞ. We should also demand that
the absorption probability for the relevant mode is positive,
i.e., ω > mΩ. These are the upper and the lower bounds
which constitute and interval for the frequency of the
test field that could possibly overspin the nearly extremal
black hole.

mΩ < ω <
1

M
: ð18Þ

Note that, for a nearly extremal black hole parametrized as
(16),

a2 ¼ M2ð1 − ϵ2Þ; r� ¼ Mð1� ϵÞ: ð19Þ

Ω can be written in the following form:

Ω ¼ a
r2þ þ a2

¼ J
2M2rþ

¼ 1 − ϵ2=2
2Mð1þ ϵÞ : ð20Þ

Therefore the frequency of a test field that could possibly
overspin the black hole is restricted in the narrow range:

1 − ϵ2=2
Mð1þ ϵÞ < ω <

1

M
; ð21Þ

where the lower bound is equal to mΩ ¼ 2Ω. In most of
the previous works the explicit form of the absorption
probability is not taken into consideration. It is assumed
that Γ ∼ 1 as long as it is positive. Here, we incorporate
the explicit form of the absorption probabilities. We con-
sider the absorption probability given in (5) and evaluate
it for the modes with frequency in the range (21). To second
order in ϵ, the lower bound of the frequency can be
written as

1 − ϵ2

ð1þ ϵÞ ∼ 1 − ϵþ ϵ2=2;

where we have substituted M ¼ 1. (From now on we
proceed with M ¼ 1.) With these substitutions, (21)
implies that the frequency should be in the range

1 − ϵþ ϵ2=2 < ω < 1: ð22Þ

To first order, the maximum value of ðω −mΩÞ is equal to
ϵ, which was introduced to parametrize the closeness to
extremality. We proceed by calculating the absorption
probability for this value. First, note that, using (19), the
surface gravity κ can be written as

κ ¼ rþ − r−
2ðr2þ þ a2Þ ¼

ϵ

2ð1þ ϵÞ ;

which implies κ ≲ ϵ. Let us focus on the terms appearing in
parenthesis in the absorption probability (5)

�
κ4 þ 5κ2

4
ðω −mΩÞ2 þ ðω −mΩÞ4

4

�
:

For (ω −mΩ ¼ ϵ), each term in the parentheses is of the
order ϵ4 (actually less than ϵ4). With the extra ðω −mΩÞ
term outside the parenthesis, we observe that the absorption
probability is less than ϵ5:

Γ≲ ϵ5: ð23Þ

It turns out that the absorption probability is very small for
challenging modes. Let us substitute this absorption prob-
ability in (17) to check if it is possible to make Δfin
negative. Only the last term in (17) gives a negative
contribution, which is

2

ω
δMΓ ∼ 2δMΓ:

Substituting Γ≲ ϵ5, we observe that the absolute value of
the last term can never be larger than or equal to the first
term M2ðϵ2=2Þ

M2ðϵ2=2Þ ≫ 2

ω
δMΓ: ð24Þ

In other wordsΔfin cannot be made negative by test spin (2)
fields. For nearly extremal black holes there exist frequen-
cies that could potentially challenge the validity of the
cosmic censorship conjecture. However these frequencies
are restricted to a very narrow range bounded below by the
limiting frequency ω ¼ mΩ. Therefore ðω −mΩÞ is very
small, which implies that the absorption probability is
much smaller as it depends on ðω −mΩÞ5. A negligible
fraction of these challenging modes are absorbed by the
black hole which will not be sufficient to surpass the gap of
width ∼ϵ2 to drive the black hole to extremality and
beyond. The changes in the black hole parameters occur
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to sixth order considering the fact that δM is also a first
order quantity for test fields. This follows from the
involvement of the explicit form of the absorption prob-
abilities. The cosmic censorship conjecture remains valid
without employing the backreaction effects.
We can also evaluate the cases ω ¼ mΩ and ω < mΩ,

as we did for extremal black holes. For ω ¼ mΩ, the
absorption probability is zero; Γ ¼ 0. The mass and the
angular momentum parameters of the space-time remain
identically the same after the interaction. For ω < mΩ, and
Γ < 0, the argument made in the previous section for
extremal black holes applies, i.e., 2ΓM − ð2=ωÞΓ > 0.
The nearly extremal black hole is driven further from
extremality

M2
fin − Jfin > M2ðϵ2=2Þ for ω < ð1=MÞ: ð25Þ

It is not possible to destroy the event horizon of a Kerr
black hole by test spin-2 fields. When one considers the
absorption probabilities, the derivation does not require the
involvement of the backreaction effects.
In the extremal case the angular velocity of the horizon

is Ω ¼ ð1=2MÞ. In this case the superradiance limit
(ω ¼ mΩ) coincides with the upper limit of frequencies
ω ¼ ð1=MÞ, that can overspin the black hole. The range of
frequencies that can be used to overspin the black hole
vanishes. For nearly extremal black holes, there exists a
range of frequencies ½mΩ < ω < ð1=MÞ�, that could lead to
overspinning. The closeness to extremality also determines
the closeness of the angular velocity to the critical value
Ω ¼ ð1=2MÞ. Therefore the range of frequencies that could
lead to overspinning has width ϵ, which also parametrizes
the closeness to extremality. The width of the range
determines the maximum value of the absorption proba-
bility for the modes that would be absorbed by the black
hole and lead to the destruction of the event horizon,
ignoring the backreaction effects. We showed that the
absorption probability for the challenging modes is of
the order ϵ5, which implies that M2

fin − Jfin is always
positive. Had we also ignored the explicit form of the
absorption probabilities and only avoided the superradiant
range, we would have derived that the test fields with
frequency in the range given in (21) could lead to the
overspinning of the black hole. For Γ ∼ 1, δM ¼ Mη ∼Mϵ,
M2

fin − Jfin would vanish to first order for ω ¼ ð1=MÞ, and
it would be negative for lower values. However, this
overspinning would not be generic. We would be able to
fix it by employing the backreaction effects, such as the
self-energy of the test field and the induced increase in the
angular velocity of the black hole which were suggested by
Will [68]. Both of these effects would work in favour of
cosmic censorship. However, by incorporating the explicit
form of the absorption probabilities, we showed that the
event horizon is preserved without employing backreaction
effects.

V. SORCE-WALD METHOD

In this section we review our previous comments on
Sorce-Wald method [66], which first appeared in [67]. We
start with a brief review of subject. Previously, Hubeny [4]
and Jacobson-Sotiriou [5] attempted overcharge/overspin
nearly extremal black holes by test bodies, in their well-
known works. We also evaluated the same problem in
a relatively well-known work involving test fields [29].
In these thought experiments, one starts with a nearly
extremal Reissner-Nordström black hole parametrized in
the form M2 −Q2 ∼M2ϵ2 for the overcharging process,
and a nearly extremal Kerr black hole parametrized as
M2 − a2 ∼M2ϵ2 for the overspinning process. Then one
sends in a test particle or field from infinity with respective
magnitudes δQ ∼Qϵ and δM ∼Mϵ. In these works the
same small parameter was used to parametrize the close-
ness to extremality and the magnitude of the perturbation.
Physically, such a choice is plausible provided that we stay
in the test particle/field limit. In these works, the result is
that though extremal black holes cannot, nearly extremal
black holes can be overcharged or overspun neglecting
backreaction effects. The overcharging and overspinning
processes observed in these examples are not generic.
Quantitatively one finds

M2
fin −Q2

fin ∼ −Mfinϵ
2 and M2

fin − a2fin ∼ −Mfinϵ
2;

which suggests that the negativeness of the right-hand sides
can be fixed by backreaction effects that contribute to
second order in δQ and δM. With the parametrization
δQ ∼Qϵ and δM ∼Mϵ, the backreaction effects contribute
to second order in ϵ. The backreaction effects involve the
self-energy of the test particle or field, the induced increase
in the angular velocity of the event horizon, or different
effects depending on the particular problem. Indeed, it was
shown that backreaction effects can fix the problem of
overcharging and overspinning of nearly extremal black
holes by test bodies [6,7]. Recently we have also shown
that the induced increase in the angular velocity of the event
horizon prevent the overspinning of Kerr black holes by test
scalar fields [59].
Backreaction effects are usually difficult to identify and

compute, and the derivations are often restricted to order of
magnitude estimates. To bring an ultimate solution to this
problem, Sorce and Wald developed an alternative method
to evaluate the contribution of the second order perturba-
tions in cases satisfying the null energy condition. For that
purpose Sorce and Wald first derived an expression for the
minimum energy of the perturbation to allow its absorption
by the black hole:

δM − ΩδJ −ΦδQ ≥ 0: ð26Þ

Actually they have rederived a well-known relation in black
hole physics. The first derivation known to this author is by
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Needham in 1980 [69]. The same condition was also deri-
ved by Natario, Queimeda, and Vicente in a study involving
test fields in 2016 [31]. Needham’s condition (26) deter-
mines the lower limit for the energy of perturbations
satisfying the null energy condition. It identically leads
to the same results derived by Hubeny and Jacobson-
Sotiriou for the lower bound of the energy in the Reissner-
Nordström and Kerr cases, who used different methods to
derive the results. For bosonic test fields with energy δM
and angular momentum δJ ¼ ðm=ωÞδM, it precisely gives
the superradiance condition ω ≥ mΩ.
Sorce and Wald have also derived a condition for the

second order perturbations.

δ2M − Ωδ2J −Φδ2Q ≥ −
κ

8π
δ2A ð27Þ

where κ is the surface gravity and A is the surface area of a
Kerr-Newman black hole. The Sorce-Wald condition (27)
provides a formal recipe to identify and calculate back-
reaction effects. However the conditions (26) and (27)
should be used correctly to evaluate the interaction of black
holes with test particles and fields. As we shall argue below,
the incorporation of a nonphysical parameter λ leads to
order of magnitude problems.
Sorce and Wald parametrize a nearly extremal black hole

as usual:

M2 −Q2 − ðJ2=M2Þ ¼ M2ϵ2: ð28Þ
Then they define the function

fðλÞ ¼ MðλÞ2 −QðλÞ2 − JðλÞ2=MðλÞ2: ð29Þ
Next fðλÞ is expanded to second order in λ:

fðλÞ ¼ ðM2 −Q2 − J2=M2Þ

þ 2λ

�
M4 þ J2

M3
δM −

J
M2

δJ −QδQ

�

þ λ2
�
M4 þ J2

M3
δ2M −

J
M2

δ2J −Qδ2Qþ 4J
M3

δJδM

−
1

M2
ðδJÞ2 þ

�
M4 − 3J2

M4

�
ðδMÞ2 − ðδQÞ2

�
: ð30Þ

Sorce and Wald proceed by imposing the Needham’s
condition (26) to ensure that the test particle or field is
absorbed by the black hole. They use the Sorce-Wald
condition (27) to eliminate the second variations. To second
order in λ, fðλÞ takes the form

fðλÞ ≥ M2ϵ2 þ 2

M4 þ J2
ððJ2 −M4ÞQδQ − 2JM2δJÞλϵ

þ 1

M2ðM4 þ J2Þ2 ððJ
2 −M4ÞQδQ − 2JM2δJÞ2λ2:

ð31Þ

In attempts to overspin or overcharge black holes, the
main assumption is that the space-time metric retains its
structure after the interaction, while the parameters in the
metric are modified. Therefore δM and δQ are inherently
first order quantities. Otherwise the test particle/field
approximation is violated and the main assumption is
not satisfied. Considering this fact, we apply an order of
magnitude analysis to fðλÞ:

fðλÞ ∼Oðϵ2Þ −OðλϵðδMÞÞ þOðλ2ðδMÞ2Þ: ð32Þ

The terms that are first order and second order in λ
contribute to fðλÞ to third and fourth order, respectively.
The parameters can be expressed in the form δM ¼ Mη and
δQ ¼ Qη, where η ≪ 1. In general the small parameters ϵ
and η need not be equal. However, overspinning and
overcharging occurs around η ∼ ϵ in the thought experi-
ments conducted by Hubeny, Jacobson-Sotiriou, and
Düztaş-Semiz. In that case fðλÞ takes the form

fðλÞ ¼ M2ϵ2 −Oðλϵ2Þ þOðλ2ϵ2Þ: ð33Þ

The claim of Sorce and Wald is that fðλÞ becomes negative
for the first order terms in λ, then it becomes positive again
due to the contribution of the second order terms in λ, in
accord with the previous results. However, a simple order
of magnitude analysis reveals that fðλÞ is simply equal to
M2ϵ2 to second order. Contrary to the claim of Sorce and
Wald, the terms that are first order in λ cannot make fðλÞ
negative since their contribution is of the order ðλϵ2Þ, and
the terms that are second order in λ cannot fix anything
as their contribution is actually of the order Oðλ2ϵ2Þ.
Apparently fðλÞ defined by Sorce and Wald does not
reproduce the previous results by Hubeny, Jacobson-
Sotiriou, and Düztaş-Semiz. This is the order of magnitude
problem we referred to in [67]. The order of magnitude
problem in fðλÞ is a brute algebraic fact, not subject to
controversy.
The main contribution of Sorce and Wald in [66] is the

derivation of the Sorce-Wald condition (27) for the second
order perturbations. However, the backreaction effects
described by this condition are rendered ineffective as
they are multiplied by λ2 in fðλÞ. To elucidate this point,
consider the second order perturbation for a Kerr black hole
perturbed by a charged particle, derived in [66],

δ2M ≥
ðδQÞ2
2M

: ð34Þ

The result appears correct as it suggests that the back-
reactions contribute to the interaction to second order, i.e.,
the order ðδQÞ2. However, by introducing fðλÞ, one is
forced to multiply the contribution of the backreaction
effects by the square of an extra nonphysical parameter.
This renders the effect of the backreactions to become

SPIN-2 FIELDS AND COSMIC CENSORSHIP PHYS. REV. D 110, 024081 (2024)

024081-7



fourth order and effectively vanish. We argue that the
backreaction effects can be derived from the Sorce-
Wald condition (27), and legitimately incorporated into
the analysis preserving the magnitude of their contribution.
For that purpose, one should simply avoid multiplying their
magnitude by λ2.

VI. THE CORRECT APPLICATION
OF SORCE-WALD CONDITIONS

We pointed out that the conditions derived by Sorce and
Wald are correct and it is possible to use these conditions to
evaluate the possibility to destroy the event horizons in
Wald-type problems. For that purpose one simply abandons
the nonphysical parameter λ. One can define the function

Δfin ¼ ðM þ δM þ δ2MÞ2 − ðJ þ δJ þ δ2JÞ2
ðM þ δM þ δ2MÞ2

− ðQþ δQþ δ2QÞ2 ð35Þ
as it is done by Semiz and Düztaş. One then imposes the
Needham’s condition (26) to ensure that the test particle or
field is absorbed by the black hole. Then one can use the
Sorce-Wald condition (27) to evaluate the impact of the
backreaction effects. If Δfin can still be made negative, one
can conclude that the event horizon can be destroyed.
Let us apply this procedure to the overcharging problem

studied by Hubeny. We start with a Reissner-Nordström
black hole which satisfies M2 −Q2 ¼ M2ϵ2. We send in a
test particle from infinity with energy δM and charge δQ.
The lowest energy for the test particle which would allow
its absorption by the black hole is given by the Needham’s
condition (26):

δM ¼ QðδQÞ
rþ

¼ QðδQÞ
M

ð1 − ϵþ ϵ2Þ;

where we have substituted rþ ¼ Mð1þ ϵÞ. At the end of
the interaction Δfin takes the form

Δfin ¼ ðM þ δM þ δ2MÞ2 − ðQþ δQþ δ2QÞ2: ð36Þ

The contribution of the backreaction effects to Δfin is

2ðMδ2M −Qδ2QÞ: ð37Þ

Ignoring the backreaction effects Δfin takes the form

Δfin ¼ M2ϵ2 − 2QðδQÞϵþOð3Þ: ð38Þ

Note that both terms in (38) are second order, since δQ is a
first order quantity for test particles and fields. We para-
metrize it as δQ ¼ Qη. We observe that Δfin becomes
negative for η > ðϵ=2Þ. In particular for η ∼ ϵ one finds

Δfin ¼ −M2ϵ2 ¼ −Q2ϵ2; ð39Þ

which implies that the black hole is overcharged into a naked
singularity if one ignores the backreaction effects. Now we
incorporate the backreaction effects by using the Sorce-Wald
condition (27). For aReissner-Nordsömblack hole perturbed
by a test object with charge δQ, one derives that

δ2M −
Q
rþ

δ2Q ≥
ðδQÞ2
M

: ð40Þ

The derivation is given in the Appendix. Using the Sorce-
Wald condition, the contributionof thebackreaction effects is
directly calculated:

2ðMδ2M −Qδ2QÞ ≥ 2ðδQÞ2: ð41Þ

The backreaction effects contribute to Δfin to second order.
As we argued above, this contribution should not be
multiplied by the square of an extra parameter, in which
case it would vanish. Taking the effect of backreactions into
the account one derives that

Δfin ¼ M2ϵ2 − 2QðδQÞϵþ 2ðδQÞ2: ð42Þ

When one incorporates the backreaction effects and sub-
stitutes δQ ¼ Qη, one observes that Δfin cannot become
negative since the expression

2η2 − 2ηϵþ ϵ2

has no real roots for η. Δfin attains its minimum value at the
critical point η ¼ ðϵ=2Þ, which implies

Δfin ≥ M2
ϵ2

2
: ð43Þ

The overcharging problem is fixed by the employment of the
backreaction effects, which contributed to second order. The
magnitude of their contribution is preserved and directly
incorporated into the analysis, as we avoided to multiply
them by λ2.
We can also apply the corrected form of Sorce-Wald

method to the overspinning problem previously studied by
Jacobson-Sotiriou and Düztaş-Semiz for test bodies and
test fields, respectively. As usual we start with a Kerr black
hole satisfying

M2 −
J2

M2
¼ M2ϵ2

Again we define Δfin:

Δfin ¼ ðM þ δM þ δ2MÞ2 − ðJ þ δJ þ δ2JÞ2
ðM þ δM þ δ2MÞ2 ð44Þ

We want to check if Δfin can be negative at the end of the
interaction. For that purpose, it suffices to check the sign of
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the simpler function:

Δ0
fin ¼ ðM þ δM þ δ2MÞ2 − ðJ þ δJ þ δ2JÞ: ð45Þ

We drop “prime” and proceed with the modified form of
Δfin. Note that the initial parameters satisfy

J2 ¼ M4ð1 − ϵ2Þ → M2 − J ¼ M2ðϵ2=2Þ;

where we used ð1 − ϵ2Þ1=2 ≃ ð1 − ϵ2=2Þ. Also note that for
a nearly extremal black hole

Ω ¼ a
r2þ þ a2

¼ J
Mð2MrþÞ

¼ ð1 − ϵ2=2Þ
2Mð1þ ϵÞ : ð46Þ

Next we impose the Needham’s condition to maximize the
contribution to the angular momentum parameter for a test
particle or field that is absorbed by the black hole:

δJ ¼ δM
Ω

¼ 2MδMð1þ ϵþ ϵ2=2Þ: ð47Þ

We can evaluate Δfin, for this perturbation

Δfin ¼ M2
ϵ2

2
þ ðδMÞ2 − 2MðδMÞϵ −MδMϵ2

þ ð2Mδ2M − δ2JÞ: ð48Þ

First we ignore the contribution of the backreaction effects
and evaluate the possibility to make Δfin negative. We
use the same parametrization as the overcharging case
δM ¼ Mη. Δfin takes the form

Δfin ¼ M2

�
ϵ2

2
þ η2 − 2ηϵþOð3Þ

�
: ð49Þ

The expression in (49) has two roots for η:

η1;2 ¼ ϵ

�
1� 1ffiffiffi

2
p

�
: ð50Þ

Δfin becomes negative between these two roots for η. It
attains its minimum value exactly at η ¼ ϵ, which equals

Δfin−min ¼ Δfinðη ¼ ϵÞ ¼ −M2
ϵ2

2
: ð51Þ

Now, we incorporate backreaction effects. The Sorce-Wald
condition for a Kerr black hole yields

δ2M − Ωδ2J ≥
ðδJÞ2
4M3

: ð52Þ

The derivation of (52) is also given in the Appendix. The
expression on the right-hand side of (52) is identical with

the self-energy derived fromWill’s argument [68] based on
the induced increase in the angular velocity of the event
horizon:

δΩ ¼ δJ
4M3

; E1
self ¼

ðδJÞ2
4M3

:

We previously used these backreaction effects in the
overspinning problems involving bosonic and fermionic
fields [59,63,64]. The fact that the two results coincide
lends credence to the validity of the methods to derive the
backreaction effects.
For a nearly extremal black hole Ω is slightly less than

1=2M. Using this with the Sorce-Wald condition (A8), we
evaluate the contribution of the second order perturbations,
i.e., the backreaction effects:

2Mδ2M − δ2J ≥
ðδJÞ2
2M2

: ð53Þ

We would like to calculate the backreaction effects for
η ¼ ϵ, in which case Δfin acquires its minimum value given
in (51). If the backreaction effects can fix the overspinning
problem for the minimum value of Δfin, then we can
conclude that it is not possible to destroy the event horizon.
Substituting δM ¼ Mη ¼ Mϵ, one derives

δJ ¼ 2M2ϵð1þ ϵþ ϵ2=2Þ;
ðδJÞ2 ¼ 4M4ϵ2 þOð3Þ: ð54Þ

Substituting this value in (53)

2Mδ2M − δ2J ≥ 2M2ϵ2; ð55Þ

which implies that the minimum value of Δfin becomes
positive when one incorporates the backreaction effects.
Namely

Δfin ≥ ð3=2ÞM2ϵ2: ð56Þ

The backreaction effects contributes toΔfin to second order,
and fixes the overspinning problem. Note that η ∼ ϵ is not a
simply a ubiquitous choice. Overspinning occurs in a small
range around η ∼ ϵ and Δfin acquires its minimum value at
the critical point η ¼ ϵ. For this problem fðλÞ takes the
form (33), and equals to M2ϵ2 to second order. The first
order and second order perturbations (δM and δ2M) do not
contribute to fðλÞ. In that respect fðλÞ defined by Sorce and
Wald does not convey any information about the interaction
of the black hole with test particles and fields. Therefore
one should avoid using fðλÞ and directly incorporate the
backreaction effects, following the line of research devel-
oped by Semiz and Düztaş.
In our previous works, we have received comments

claiming that Sorce and Wald may not have missed the
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order of magnitude errors in fðλÞ, but the Sorce-Wald
method applies to more general cases with λ − ϵ having
different orders. First we should note that assigning differ-
ent orders to λ and ϵ does not change the fact that λϵ2 ≪ ϵ2.
Moreover it would be a logical mistake to identify fðλÞ as
general, while it clearly does not represent the interaction in
the relevant range η ∼ ϵ where overspinning/overcharging
occurs.

VII. CONCLUSIONS

In this work we have evaluated the possibility to destroy
the event horizons of Kerr black holes by sending in test
spin-2 fields from infinity. Conventionally, the superradiant
modes are excluded in the scattering problems involving
test fields. However the explicit form of the absorption
probabilities is ignored for regular modes. Namely, the
absorption probability is assumed to be equal to unity as
long as it is positive. Here, we have incorporated the
explicit form of the absorption probabilities into the
analysis.
First, we considered the interaction of test fields with

extremal black holes. We showed that for regular modes we
ended up with a nearly extremal black hole with Mfin > M
and Jfin > J. Both parameters increase in such a way that
the black hole is driven away from extremality. We also
analyzed the superradiant modes. In this case the final
parameters of the space-time satisfyMfin < M and Jfin < J.
In this case both parameters decrease. However the angular
momentum decreases by a larger amount. Again, we end up
with a nearly extremal black hole. In the limiting case
ω ¼ mΩ, the absorption probability is zero. The field is
entirely reflected back to infinity. The background param-
eters of the space-time remain identically the same after the
interaction. In the conventional approach the modes with
the limiting frequency are accepted as the most challenging
modes. However, when one considers the fact that the
absorption probability of these modes is zero, the analysis
of these modes become trivial.
We analyzed the case of nearly extremal black holes

defining the closeness to extremality to be second order in
the small parameter ϵ. We derived a range of frequencies
that could overspin the nearly extremal black hole if the
absorption probability was of the order of unity. This is a
narrow range of width ∼ϵ bounded below by ω ¼ mΩ and
above by ω ¼ ð1=MÞ. We mentioned that the highest
absorption probability for m ¼ 2 modes pertains to spin-
2 fields. In that respect one may expect spin-2 fields to be a
better candidate for the possibility to destroy the event
horizon. However, we showed that the maximum value of
the absorption probability for these challenging modes is of
the order ϵ5. A very small fraction of the test field is
absorbed by the black hole. Therefore the contribution to
the mass and the angular momentum parameters is very
small. It is not possible to surpass the gap of width ∼ϵ2 to
drive the black hole to extremality or beyond. When one

incorporates the absorption probabilities, the cosmic cen-
sorship conjecture remains valid without the need to
employ the backreaction effects.
The absorption probability for m ¼ 2 modes for spin-2

fields is even higher than hypothetical spin-3 fields since
the major contribution comes from l ¼ s modes. For the
same reason the highest absorption probability for m ¼ 3
modes pertains to spin-3 fields. The natural question here is
how we can extrapolate our results for the spin-2 case to
hypothetical higher integer spin fields. In particular for
spin-3 fields the absorption probability for m ¼ 3 modes
will involve a term like ðω −mΩÞ7, therefore it will be of
the order ϵ7. Though this is the highest probability for m ¼
3modes, it practically implies thatm ¼ 3modes will not be
absorbed by the black hole. Therefore the results derived in
this work imply that spin-3 and higher integer spin fields do
not challenge the validity of cosmic censorship.
We also reviewed and extended our previous comments

on Sorce-Wald method. Previously we stated that the
function fðλÞ defined by Sorce and Wald involves order
of magnitude problems, as one is forced to multiply the
contribution of the second order perturbations by the square
of an extra nonphysical parameter λ [67]. Here, we pointed
out that the conditions derived by Sorce and Wald correctly
describe the interaction of black holes with test particles
and fields. The first condition (26) was first derived by
Needham in 1980 [69] (and independently by different
authors, see, e.g., [31]). The condition on the second order
perturbations (27) is an original contribution by Sorce and
Wald. The backreactions effects can be derived by using
the Sorce-Wald condition and incorporated into the analy-
sis. To remedy the order of magnitude problems, one
simply abandons fðλÞ and follows the line of research
developed by Semiz and Düztaş. We applied this method to
the problems of overcharging Reissner-Nordström black
holes and overspinning Kerr black holes. First we derived
the Sorce-Wald condition for Reissner-Nordström and Kerr
black holes. It turns out that the condition for Kerr black
holes is identical with the self-energy derived from Will’s
argument [68], which we have used in our previous works.
We showed that overcharging and overspinning is possible
when one ignores backreaction effects, and backreaction
effects derived from the Sorce-Wald condition fixes
the problem, in accord with previous results derived by
Hubeny [4], Jacobson-Sotiriou [5], and Düztaş-Semiz [29].
Overspinning and overcharging occurs in the range δM ∼ ϵ,
for which fðλÞ defined by Sorce and Wald acquires an
invariant value of M2ϵ2 and conveys no information about
the interaction of black holes with test particles and fields.
The legitimate way to make use of the Sorce-Wald
conditions is to abandon fðλÞ and directly incorporate
the backreactions into the analysis.
Needham’s condition gives the lower bound for the energy

of the perturbation to allow its absorption by the black hole.
However, one cannot directly infer that the energy of the
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optimal perturbations should have the value of the lower
bound. In a more subtle approach, one discerns that the
perturbations with the lowest energy are entirely reflected
back to infinity since their absorption probability is zero. For
a test field, Needham’s condition implies that the lower
bound for the frequency is ω ¼ mΩ. In the classical picture
this field is entirely reflected back to infinity. Therefore the
absorption probability should be taken into consideration to
identify the optimal perturbations. In the examples using
Needham and Sorce-Wald conditions in Sec. VI, we ignored
the absorption probabilities. In that case the derivation for the
overspinning problem would be identical for test bodies, test
particles, and test fields with spin-0, spin-1, and spin-2. A
more accurate derivation should involve the explicit form of
the absorption probabilities as executed in Secs. III and IV.
The problem is that the absorption probability is not well
defined for test bodies and the probabilities for test fields do
not apply to test particles. (The latter is a subtle point which
we elucidated in [28].) The validity of the results ignoring the
absorption probabilities is restricted to test bodies for which
the absorption probability appears least relevant.
Finally we would like to point out that the results for the

perturbations that do and do not satisfy the null energy
condition should not be confused. For perturbations sat-
isfying the null energy condition, there exists a lower bound
for the energy to allow the absorption of the test particle or
the field by the black hole. The lower bound can be derived
from Needham’s condition (26) which preassumes that the
null energy condition is satisfied. Fermionic fields do not
satisfy the null energy condition and there exists no lower

bound for the energy of the perturbation to allow its
absorption by the black hole. An equivalent statement is
that superradiance does not occur for fermionic fields. To
be more precise the absorption probability is always
positive, as justified by Page’s results [65]. The contribu-
tion of the lower energy modes to the angular momentum or
charge parameters is much larger than their contribution to
the mass parameter. The absorption of these modes by the
black hole leads to a generic violation of the cosmic
censorship conjecture which cannot be fixed by back-
reaction effects [60–64]. This does not contradict the fact
that cosmic censorship remains valid for perturbations
satisfying the null energy condition, which can be consid-
ered complete with the results for spin-2 fields derived in
this work.

APPENDIX: SORCE-WALD CONDITION
FOR REISSNER-NORDSTRÖM
AND KERR BLACK HOLES

In this section we evaluate the Sorce-Wald condition (27)
for a Reissner-Nordström and a Kerr black hole para-
metrized as (28). The surface gravity is given by [see
Eq. (116) in [66]]:

κ ¼ M3

M4ð1þ ϵ2Þ þ J2
ϵ: ðA1Þ

The second order variation in the area of the black hole is
given by [see Eq. (113) in [66]]:

δ2A ¼ −
8π

M8ϵ3
fðδMÞ2½J4 þ ð2þ ϵ2ÞJ2M4 −M8ð1þ ϵÞð−1þ ϵþ 2ϵ2Þ�

þ ðδQÞ2½M6Q2 þM8ð1þ ϵÞϵ2� þ ðδJÞ2½J2M2 þM6ϵ2�
þ ðδMδJÞ½−2J3M − 2JM5ð1þ ϵ2Þ� þ ðδJδQÞð2JM4QÞ
þ ðδMδQÞ½−2J2M3Qþ 2M7Qð−1þ ϵ2Þ�g: ðA2Þ

First we consider a Reissner-Nordström black hole perturbed by a test particle with energy δM and charge δQ. Note
that J ¼ 0 and δJ ¼ 0 in this case. The lowest energy to allow the absorption of the particle is given by the Needham’s
condition (26):

δM ¼ QðδQÞ
rþ

¼ QðδQÞ
M

ð1 − ϵþ ϵ2Þ; ðA3Þ

where we have used rþ ¼ Mð1þ ϵÞ. Using the expression for ðδMÞ and the parametrization Q2 ¼ M2ð1 − ϵ2Þ,
Q ¼ Mð1 − ϵ2=2Þ, one derives

ðδMÞ2 ¼ Q2ðδQÞ2
M2

ð1 − 2ϵþ 3ϵ2Þ ¼ ðδQÞ2ð1 − 2ϵþ 2ϵ2Þ;

ðδMδQÞ ¼ QðδQÞ2
M

ð1 − ϵþ ϵ2Þ ¼ ðδQÞ2ð1 − ϵþ ϵ2=2Þ:

We evaluate the terms in curly brackets in (A2) for J ¼ 0 and δJ ¼ 0. ðδMÞ2, ðδQÞ2, and ðδMδQÞ terms contribute to δ2A.
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To second order their contributions are given by

− ðδMÞ2M8ð1þ ϵÞð−1þ ϵþ 2ϵ2Þ ¼ ðδMÞ2M8ð1 − 3ϵ2Þ ¼ ðδQÞ2M8ð1 − 2ϵ − ϵ2Þ;
ðδQÞ2ðM8ð1 − ϵ2Þ þM8ϵ2Þ ¼ ðδQÞ2M8;

ðδMδQÞ½2M7Qð−1þ ϵ2Þ� ¼ ðδQÞ2M8ð−2þ 2ϵþ 2ϵ2Þ:

The zeroth order and the first order terms in ϵ cancel. The total contribution of the terms in the curly brackets is ðδQÞ2M8ϵ2.
For the Reissner-Nordström case δ2A reduces to

δ2ARN ¼ −
8π

M8ϵ3
fðδQÞ2M8ϵ2g ¼ −

8πðδQÞ2
ϵ

: ðA4Þ

We can evaluate the Sorce-Wald condition for Reissner-Nordström black holes:

δ2M −Φδ2Q ≥
−1
8π

�
M3

M4ð1þ ϵ2Þ ϵ
��

−
8πðδQÞ2

ϵ

�
≥

ðδQÞ2
Mð1þ ϵ2Þ ;

which directly implies

δ2M −Φδ2Q ≥
ðδQÞ2
M

: ðA5Þ

Next, we evaluate the Sorce-Wald condition for Kerr black holes. In this case the Needham’s condition gives

δM ¼ ΩδJ: ðA6Þ

Recall (46) for the angular velocity of the event horizon

Ω ¼ ð1 − ϵ2=2Þ
2Mð1þ ϵÞ ¼

1

2M
ð1 − ϵþ ϵ2=2Þ:

This leads to

ðδMÞ2 ¼ ðδJÞ2
4M2

ð1 − 2ϵþ 2ϵ2Þ;

ðδMÞðδJÞ ¼ ðδJÞ2
2M

ð1 − ϵþ ϵ2=2Þ:

With δQ ¼ 0, ðδMÞ2, ðδJÞ2, and δMδJ terms contribute to δ2A. First we focus on the ðδMÞ2 terms. We substitute the J2 and
J4 terms in the parenthesis:

ðδMÞ2½M8ð1 − 2ϵ2Þ þ ð2þ ϵ2ÞM4ð1 − ϵ2ÞM4 −M8ð1þ ϵÞð−1þ ϵþ 2ϵ2Þ�;

which equals (to second order)

ðδJÞ2
4M2

ð1 − 2ϵþ 2ϵ2ÞM8ð4 − 6ϵ2Þ ¼ ðδJÞ2M6ð1 − 2ϵþ ϵ2=2Þ:

Next we evaluate the ðδJÞ2 terms:

ðδJÞ2ðJ2M2 þM6ϵ2Þ ¼ ðδJÞ2M6:

We proceed with ðδMÞðδJÞ terms. First note that

J3 ¼ M6ð1 − ϵ2Þð1 − ϵ2=2Þ ¼ M6

�
1 −

3

2
ϵ2
�
:
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The contribution of the ðδMÞðδJÞ terms can be calculated as

ðδJÞ2
2M

�
1 − ϵþ ϵ2

2

��
−2M7

�
1 −

3

2
ϵ2
�
− 2M7ð1þ ϵ2Þð1 − ϵ2=2Þ

�
;

which equals (to second order)

ðδJÞ2M6ð−2þ 2ϵÞ:

Again, the zeroth order and the first order terms in ϵ cancel. The total contribution of the terms in the curly brackets is
ðδJÞ2M6ðϵ2=2Þ. For the Kerr case δ2A takes the form

δ2AKerr ¼ −
8π

M8ϵ3

�
ðδJÞ2M6

ϵ2

2

�
: ðA7Þ

We can evaluate the Sorce-Wald condition for Kerr black holes:

δ2M −Ωδ2J ≥
−1
8π

�
M3

M4ð1þ ϵ2Þ þ J2
ϵ

��
−

8π

M8ϵ3

��
ðδJÞ2M6

ϵ2

2

�
;

which exactly gives

δ2M −Ωδ2J ≥
ðδJÞ2
4M3

: ðA8Þ
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