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Data analysis of gravitational waves detected by LIGO–Virgo–KAGRA collaboration and future
observatories relies on precise modeling of the sources. In order to build, calibrate, and validate current
models, we resort to expensive simulations in numerical relativity (NR), the fully-fledged simulation of
Einstein’s equations. Since simulation costs and the dimensionality of parameter space are prohibitive to
perform a dense coverage, approximate models interpolate among the available simulation data. We put
forward the technique of Gaussian process active learning (GPAL), an adaptive, data-driven protocol for
parameter space exploration and training of gravitational wave approximants. We evaluate this proposal by
studying a computationally inexpensive scenario, in which we calibrate the approximant TEOBResumS
using the NR-informed model as a proxy for NR. In this case study, we find that GPAL reduces the
computational cost of training by a factor of 4 with respect to uniform or randomly distributed simulations.
Moreover, we consider a parallel implementation which reduces computational time, and hybrid strategies
which improve precalibrated models. The Gaussian process regression employed in this approach naturally
endows the algorithm with notion of model uncertainty. We comment on the implications of this feature for
data analysis.

DOI: 10.1103/PhysRevD.110.024080

I. INTRODUCTION

The detection of gravitational waves by LIGO–Virgo–
KAGRA collaboration in 2015 opened a new scientific era
[1]. This emerging multidisciplinary endeavour combines
detectors of exquisite precision and sophisticated data
analysis techniques [2]. Due to the large amount of
experimental noise, the most sensitive searches involve
matched filtering, in which one compares the data stream to
a large template bank of candidate signals [3]. Moreover,
the characterization of the physical sources is conducted via
parameter estimation, a Bayesian inference technique
which also compares the detected signal with theoretical
templates [4]. Both aspects highlight the crucial role of the
precise mathematical modeling of gravitational waves.
For concreteness, henceforth we restrict ourselves to the

case of binary black holes (BBHs) described by general
relativity. These are by far themost numerous events detected
to date, with 90 BBHs events recorded in the observational
campaign O3 [5], a number which will significantly increase
with the data currently being collected by O4 [6].
The fully fledged simulation of general relativity is

termed numerical relativity (NR), and it is by now a mature
field, at least in the absence of matter sources. The first
successful simulations of a black hole binary in 2005 [7–9]

paved the way for many developments which have materi-
alized in a series of end-to-end codes [10–13] which allow
researchers to carry out these simulations routinely. The
complexity of the problem at hand is that of exploring
a large parameter space—ten dimensions of intrinsic
parameters corresponding to the mass ratio, three relative
momenta, and six independent spin components—with
highly expensive simulations. As a conservative estimate,
we take the average cost for short quasicircular signals of
about 104 CPU hours [14]. The most common strategy to
alleviate this technical challenge is to resort to approx-
imants, i.e., analytic or semianalytic1 approximate models
which in turn require calibration by a reduced set of NR
simulations. Once properly trained, these models are fast to
evaluate and provide a good basis to build template banks.
We can distinguish three main families of approximants:
(i) phenomenological models [15–31]; (ii) effecive
one body [32–43], implemented via two subfamilies,

1Here by semianalytic we mean models that require solving
ordinary differential equations (ODEs). While requiring some
numerical computation, the cost of this is several orders of
magnitude smaller than that of NR which requires solving partial
differential equations (PDEs).
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SEOBNRv* [44–52] and TEOBResumS [53–64]; and
(iii) NR surrogates [65–69]. The details of the training
strategy depend on the family of approximants under
consideration. The typical procedure is to construct the
training set from preexisting NR databases, which are built
relying on domain expert knowledge, e.g., range of
parameters believed to be astrophysically relevant, techni-
cal feasibility of carrying out the simulations for certain
parameters, etc. The test set is also usually chosen from
existing NR simulation data, but sometimes other approx-
imants are used for validation in certain regimes. The main
NR open databases are the SXS [70–72], RIT [73–75],
CoRe [76,77], SACRA-MPI [78,79], Cardiff [80], and
MAYA [81] catalogues.
Our goal here is to describe a systematic protocol to

choose a series of NR simulations for GW model calibra-
tion in order to make them as informative as possible, thus
reducing computational costs and alleviating human bias.
The key observation is that the problem of exploring
parameter space with expensive simulations is precisely
the goal of Experimental Design [82,83], a field of statistics
which is concerned with the determination of a series of
“experiments” (here NR simulations) which can best
inform and validate a given model (here the waveform
approximants). As we will describe, the methodology of
Gaussian process active learning (GPAL), developed in
Cognitive Science [84], can be readily adapted to the
problem of interest. This approach builds upon the exten-
sive literature in Bayesian optimization experimental
design [85] and active learning [86,87] within machine
learning.2 The main feature of this approach is to take a set
of existing simulations as Bayesian priors, and suggest the
next experiment as a posterior maximizing a certain
acquisition function, which captures the degree of new
information gained by performing this new experiment. In
this context, the natural acquisition function is the variance
of the Gaussian process (GP) regression [88–90] used to fit
the data, which intuitively captures the idea of maximizing
information at the regions of parameter space where the
variance is highest. This and related adaptivemethods have
proven useful to increase model accuracy and reduce
experimental costs in a variety of contexts [91–96] as
we also observe in our problem of interest.
As an interesting byproduct of this approach, the GP

variance can be used to construct a measure of model
uncertainty. We shall leverage this feature to endow the
approximant with a precise notion of local (input specific)
waveform uncertainty and error estimates in the time
domain. This has been previously noted in [69], which
modeled the strain time series as GP and used the variance
to provide error estimates in the time domain. The
relevance of this model uncertainty for parameter

estimation has been put forward in [97,98], and recently
considered in [99,100].
As a concrete example, we will calibrate the EOB model

TEOBResumS, taking as a proxy for NR simulations a
previously calibrated version of TEOBResumS itself. This
will serve as a proof of concept revealing the potential and
challenges of the approach, while reducing the computa-
tional costs to a minimum. Based on this case study, we
estimate that the active approach to build a training set of
NR simulations can reduce the computational cost by a
factor of 4 with respect to uniform or randomly chosen NR
simulations. We also discuss a parallel implementation of
the model which helps reduce computational time, and
hybrid strategies which could be used to improve previ-
ously calibrated models.
This paper is organized as follows. In Sec. II we review

the waveform model TEOBResumS, paying special atten-
tion to the internal parameters which require NR informa-
tion. We lay out the methodology in Sec. III, focusing on
the general use of the GPAL algorithm for time series, and
its applications to GW modeling. We present our results in
Sec. IV, showcasing the calibration improvements and
introducing the notion of waveform uncertainty. We con-
clude in Sec. V, summarizing the advantages of our
approach. We discuss some limitations of the scope of
our case study, and some potential limitations of the
algorithm itself in Sec. VI. Finally, we put forward some
concrete open problems suggested by the current study in
Sec. VII. We collect some relevant details of GP regression
and additional numerical results in the Appendices.

II. WAVEFORM MODEL

Our main tool in this study will be the EOB model
TEOBResumS, a state-of-the-art approximant for spinning
compact binaries [BBHs, binary neutron stars (BNSs), or
black hole–neutron star (BHNSs)] coalescing along generic
orbits. The EOB approach is based on the mapping of the
dynamics of the general relativistic two-body problem into
the motion of a test mass in an effective background metric.
By further resumming high order post-Newtonian results,
and augmenting them via NR information, TEOBResumS
can robustly and efficiently generate waveforms throughout
the entire inspiral-merger-postmerger phases of a coales-
cence. There are several versions of this model publicly
available. We will base our work on v3.0.0 of
TEOBResumS-GIOTTO [55,57,101]. Although this
version of the model is not the most developed for the case
of quasicircular (QC) orbits, all results obtained below can be
straightforwardly applied to the more recent versions of the
model. From now on, we shall refer to this model simply as
TEOBResumS. Within the QC case, we shall set the
precession to zero, which implies that the black hole spins
are aligned with the orbital angular momentum. Therefore,
themain physical input parameters forTEOBResumS are the
mass ratio q ¼ m1=m2 (where m1, m2 are the black hole
masses), and the two dimensionless spin parameters χ1, χ2,

2Note that this is unrelated to the Bayesian inference approach
employed in parameter estimation for gravitational waves.

ANDRADE, GAMBA, and TRENADO PHYS. REV. D 110, 024080 (2024)

024080-2



which takevalues between−1 and 1,where the sign accounts
for the orientation of the spin with respect to the orbital
angular momentum. The code can generate waveforms for
any value of mass ratio q ≥ 1 and spins jχ1;2j ≤ 1, and has
been validated against NR simulations up to values of q ¼
128 [102]. In addition, we can specify an initial frequency
f0—or alternatively an initial radial distance r0—which
controls the starting point of the dynamics. As such, this
quantity is not an intrinsic parameter of the source and does
not stand on the same footing as the mass ratio or spins. We
set the starting point to r0 ¼ 14M in geometric units without
loss of generality, corresponding to an initial frequency of
approximately 0.006. For given values of the initial data
ðχ1; χ2; qÞ, the code outputs a set of complex time series,
denoted asmodes, labeled by ðl; mÞ referring to the spherical
harmonic decomposition. Here we will focus on the leading
mode ðl; mÞ ¼ ð2; 2Þ, and omit the mode indices hence-
forth.3 We show some selected examples of the waveforms
in Fig. 1.
As mentioned above, the model depends on some

analytically known parameters (e.g., the EOB potentials
expressed as resummed post-Newtonian expansions), and
some free parameters which are fixed by calibrating (or
informing) the model by comparing the resulting wave-
forms to a set of NR simulations taken as “ground truth,”
i.e., strictly accurate and precise.4 More precisely, denoting
the initial data collectively as X, NR produces the ground

truth signals

hgtðX; tÞ ¼ hNRðX; tÞ: ð1Þ

Denoting the internal model parameters which require
calibration as ciðXÞ, the EOB model produces an approxi-
mate waveform h̃ðX; tÞ,

h̃ðX; tÞ ¼ hEOBðciðXÞ; tÞ: ð2Þ

The internal parameters of the model are given by smooth
functions of the mass ratio and spins, which typically
take the form of ratios of polynomials. In this work we will
focus on six internal parameters ci ¼ fAmrg;ωmrg; ANQC;
ωNQC; ȦNQC; ω̇NQCg (note that we suppress mode indices
since we focus on the 22 mode). The parameters Amrg;ωmrg

correspond to the amplitude and frequency at merger, while
the remaining parameters ensure that the waveforms are
smooth near the peaks; see, e.g., Refs. [58,101] for a
precise definition. The dependence of the model parameters
with the initial data is given by smooth, slowly varying
functions, which can be written as products of ratios of
polynomials that contain arbitrary coefficients to be fixed
upon informing the model with NR; see Appendix A.
Calibrating or informing the model amounts to
(i) Choosing a set of points fXgtrain, the training set,

representative of some region of parameter space the
phenomenology of which we want to capture.

(ii) Extracting the values of the internal parameters
ciðfXgtrainÞ.

(iii) Providing global fits ciðXÞ which interpolate among
the ciðfXgtrainÞ.

While minimizing one or more target metrics which
attempt to capture how similar h̃ðX; tÞ and hgtðX; tÞ
are evaluated over some test set fXgtest. A common
choice of such metrics is the unfaithfulness or mismatch
(see Appendix C). In addition to the unfaithfulness,
TEOBResumS aims to minimize the phase and amplitude
differences at merger [64], since it has proven useful to

FIG. 1. Selected waveforms with initial data X ¼ ðχ1; χ2; qÞ for a spinless binary with q ¼ 1 (left) and a spinning binary with q ¼ 5
(right).

3The relative importance of the subleading modes depends on
the intrinsic parameters, being higher for high mass ratios. For the
highest mass ratio considered here, q ¼ 6, the maximum value of
the amplitude of the (2,2) mode is 3.5 times larger than the first
subleading mode (3,3). Extra information about the extrinsic
parameters such as binary orientation is needed to assess the
impact of the higher modes in the full strain computed as the sum
of modes weighted by the corresponding spherical harmonics. In
any case, all methods developed here equally apply to subleading
modes, with little modification.

4There are of course sources of inaccuracy and imprecision in
NR waveforms, but these are usually assumed to be under control
and much smaller than those of the approximants.
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incrementally improve different aspects of the model. The
version of the model used here has been informed with
about 130 simulations; see [58] for details.

III. METHODOLOGY

As stated above, calibration of a given model requires
carrying out NR simulations in a judiciously chosen
training set fXgtrain. Here we consider GPAL, an imple-
mentation of Bayesian optimal experimental design which
deploys active learning in combination with Gaussian
process regression. In particular, this strategy selects the
training set fXgtrain iteratively, maximizing the variance of
the Gaussian process fits performed on the parameter space
after each iteration. This captures the intuitive idea that
every new simulation is the one that provides more
“information” about the system.

A. GPAL for time series

Let us briefly describe the GPAL algorithm and the
relevant modifications we introduce for our study. For a
given target fðXÞ—the function to be fitted or “learned”—
defined on a domain DðXÞ, the GPAL algorithm can be
summarized as follows. As the initial step, give prior values
f̃ðXÞ and an initial variance σðXÞ. Then, iterate over the
following:
(1) Evaluate f at the maximum of σðXÞ, X0.
(2) Taking into account the newly extracted value

fðX0Þ, compute the posterior of fpostðXÞ as the
Gaussian process regression of the function on
DðXÞ, with new variance σpostðXÞ.

(3) Update f̃ðXÞ ¼ fpostðXÞ and σðXÞ ¼ σpostðXÞ.
Thus, after each iteration, we obtain a training set fXgtrain,
and approximate function f̃ðXÞ and a variance σðXÞ.
We have used GP regression with kernel (covariance
function) Matern52, with σ ¼ 1, implemented in the library
GPY [103]; see Appendix B for details.
In the application at hand, we use GPAL to evaluate the

internal model parameters ciðXÞ which play the role of the
function fðXÞ in the discussion above.5 This has allowed us
to deploy this strategy to the case of time series. Note that,
as opposed to [69,97,98], we are not describing the time
series as GP, but as given by the fixed (time) functional
forms specified by the model at hand from the onset.
The algorithm easily allows for other ways of selecting

the evaluation points, or acquisition functions, instead of
maximizing σðXÞ. One that appears particularly useful in
the case where there is high variability in a particular region
of parameter space is the norm of the gradient of f (or even

f̃, to reduce evaluation costs). We leave this investigation
for future work.

B. EOB as proxy for NR

In order to carry out an in-depth study of the calibration
process with minimal computational cost, we shall take
EOB as a proxy for NR. More specifically, we take the
NR informed approximant TEOBResumS as the ground
truth, i.e.,

hgtðX; tÞ ¼ hEOBðciðXÞ; tÞ; ð3Þ

and use it to calibrate an uninformed version of the model

h̃ðX; tÞ ¼ hEOBðc̃iðXÞ; tÞ: ð4Þ

Note that the ground truth and approximate models in (3)
and (4) only differ by the values for the internal parameters,
which are chosen as the calibrated values ciðXÞ, and
initialized to random values c̃iðXÞ. As mentioned above,
we only change the calibrated values of the internal para-
meters corresponding to ci ¼ fAmrg;ωmrg; ANQC;ωNQC;
ȦNQC; ω̇NQCg, keeping the remaining parameters fixed to
the previously calibrated values. Since these affect more
strongly the late inspiral and ring down of the waveforms,
we restrict our study to a time interval ð−100M; 100MÞ
centered at the peak of the absolute value of each signal.
We extract the internal parameters for the EOB approx-

imant simply by calling the output of the code. This
eliminates uncertainties in the extraction, which are present
in a realistic case.6 We will discuss some of the limitations
of our approach in Sec. VI.

C. Calibration strategies

To benchmark the GPAL strategy, we consider two
alternative approaches consisting of uniformly spaced grids
and random grids in parameter space. We will compare the
results provided by these different choices using the
same number of training points in each approach.
We choose the input parameters in the range −0.85 ≤
χ1;2 ≤ 0.85, 1 ≤ q ≤ qmax, and study how the algorithm
behaves as we vary 2 ≤ qmax ≤ 6. We discretize the space
of parameters by choosing a uniform grid with 643 points in
the directions χ1, χ2, q.
We initialize the active algorithm by choosing flat priors

for all internal parameters ciðXÞ ¼ 1 and their variance
σðXÞ ¼ 1, and picking the first iteration to be a random
point. We observe that the subsequent iterations tend to lie
at the boundaries of the computational domain. After a

5We have done so by fitting each parameter individually as a
function of X. Other “multioutput” choices are possible in which
one can take into account correlations among the various
functions to be approximated [104].

6For example, in order to extract the amplitude of the wave-
form at merger, we would have to evaluate the value of the
waveform at the amplitude peak. It turns out that there are minor
differences between the direct output value and the extracted
value, which introduce extra difficulties in the calibration.

ANDRADE, GAMBA, and TRENADO PHYS. REV. D 110, 024080 (2024)

024080-4



certain number of iterations, internal points get selected.7

We choose the uniform training grids by specifying points
on the boundary of the domain and subsampling each
direction by the same number of points, e.g., for a 1d grid of
64 points, a subsampling of 32 yields three equally spaced
nodes in each direction, so that the number of training
points is 33. The points of the random grid are selected
without restrictions, so they may or may not cover the
regions near the edges of the domain. The test set for each
numerical experiment is chosen to be the reciprocal lattice
of the corresponding homogeneous training grid, including
boundary points equidistant from it.
In this setup, we monitor how the performance and

uncertainty of the algorithm changes as we vary the number
of training points. For our numerical experiments we take
the subsampling of the uniform grid, number of training
points, and size of test set as given in Table I. We depict the
resulting training sets for N ¼ 125 in Fig. 2.

D. Model assessment

At the end of each calibration round, we compute various
performance and uncertainty metrics, as we now describe.
For a given point in the test set X, we extract the ground
truth model parameters ciðXÞ and the fitted values c̃iðXÞ,
and evaluate the ground truth and approximate signals
using (3) and (4). We then align—adjust the relative time
and phases—the so-obtained signals with respect to one
another using the Python package PyCBC [105].
The main performance metric we consider is the

unfaithfulness between the ground truth and approximate
signals

F̄ ðXÞ ¼ F̄ ðhgtðXÞ; h̃ðXÞÞ: ð5Þ

This is a standard quantity to characterize the notion of
“distance” between two waveforms in the context of GW
data analysis. In addition, we consider the amplitude δAðXÞ
and phase differences δϕðXÞ at merger between the ground
truth and approximate signals at a given point in parameter
space X, similarly to (5). As argued in [64], these merger

differences provide useful guidance in waveform modeling.
See Appendix C for the precise definition of these quan-
tities. These metrics are chosen such that a model with
perfect performance has F̄ ðXÞ ¼ δAðXÞ ¼ δϕðXÞ ¼ 0
across the entire test set.
The variance of the Gaussian fits, σðXÞ endows the

algorithm with a natural measure of uncertainty at each
point in parameter space. In order to make this more
easily interpretable in the context of GW data analysis, we
introduce the notion of waveform uncertainty uðXÞ by
considering the unfaithfulness between the approximate
signal at zero variance and the most uncertain signal
given the variance of all internal parameters, h̃ðα0ÞðXÞ;
see Appendix C for a precise definition. The waveform
uncertainty can be expressed as

uðXÞ ¼ F̄ ðh̃ðXÞ; h̃ðα0ÞðXÞÞ: ð6Þ
Finally we consider the fit accuracy, defined as the
Euclidean norm of the difference between the ground truth
values of the parameters and the fitted ones, which we
denote as δcðXÞ.
We will typically be interested in the average values of

these metrics on the test set, which we denote as

hMi ¼ 1

Ntest

XNtest

i¼1

MðXiÞ ð7Þ

with M being any of the aforementioned metrics, and i
running over the Ntest points in the test set fXgtest.

TABLE I. Subsample step size in each direction of the grid,
number of training points, and number of test points for each
epoch of our numerical experiments.

1d subsample 32 22 16 13 11 9 8

Ntrain 27 64 125 216 343 512 729
Ntest 64 125 216 343 512 729 1000

FIG. 2. Training and test sets for N ¼ 125, projected on the 2D
slice ðχ1; qÞ.

7Since we take σðXÞ to be the acquisition function and
initialize the algorithm with flat priors, the selected training
points and fit variance are independent of the functions being
fitted; see Appendix B. In particular, this means that the variance
is the same for each internal parameter ci.
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IV. RESULTS

A. Performance and calibration cost

We compare the three training strategies, active, uniform,
and random, by carrying out each training with a given
number of points, and evaluating the performance and
uncertainty metrics.
We begin discussing the average values of the metrics

over the test set, constructed as explained in Sec. III D. In
Fig. 3 we show the dependence of all metrics with the
number of training points for qmax ¼ 6. We clearly appre-
ciate that the active training strategy outperforms the
uniform and random strategies. Interestingly, we observe
an approximate power-law dependence with Ntrain in most
of these quantities, with the exception of those associated to
random training. We expect that averaging over realizations
would bring the dependence of these quantities closer to
power laws. We obtain qualitatively similar results for
smaller values of qmax, although the performance difference
between the active and other training protocols increases
with qmax.
Taking as a reference target value F̄ ¼ 0.01, we inter-

polate the performance curves and extract the number of

training points NðtypeÞ�
train required to achieve this performance

target, with type ¼ active; uniform; random. We can then
estimate the cost reduction provided by the active strategy

with respect to the uniform/random ones, by computing the
number of training points required to achieve the corre-
sponding targets, and taking their ratio.8 Carrying out the
same analysis with the amplitude and phase differences at
merger with reference values δA ¼ 0.1, δϕ ¼ 0.06 yields
the results in Fig. 4. We observe a maximum cost reduction
of around 4 for all the metrics considered.
We have also studied the dependence of the various

metrics as a function of the location in parameter space.
We observe that performance and uncertainty metrics
deteriorate significantly near the edges of the domain;
see Appendix E.
We consider extra alternative test and training sets in

Appendix D. In particular, we monitor the effect of
altering the test set by removing boundary points and
making it fully random. Moreover, we consider a training
set given by Chebyshev nodes along all directions,
allowing a more dense coverage of the regions near
the boundary. In all cases we see robust results for the
supremacy of the active training, with a cost reduction of
roughly 4 times in most cases.

FIG. 3. Dependence of the average performance (top) and uncertainty metrics (bottom) with number of training points. All plots are in
log-log scale.

8Note that this estimate assumes that the cost of all simulations
is the same, which is not the case in a realistic scenario; see
Sec. VI.
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B. Parallelization and calibration time

In principle, the GPAL strategy as described above
should be followed serially. However, it is possible to
parallelize it by partitioning the computational domain to
obtain the training points, and performing a global fit at
the end. For concreteness, we partition the domain in
Nq ¼ 17 two-dimensional slices of constant q, correspond-
ing to approximately fqig ¼ 1þ 5=16i, with i¼ 0…16,

explore each slice in parallel with Nð2dÞ
train ¼ 6, 8, 10, 12, 14,

16, 18 simulations, and finally perform a global GP
regression in the 3D domain. We then study the perfor-
mance of the algorithm as we vary the total number of

simulations Nk
train ¼ NqN

ð2dÞ
train keeping Nq fixed. We show

our results in Fig. 5. We observe that in order to achieve the

same performance as the one with Ntrain ¼ 125 we require

about Ntrain ¼ 187 (corresponding to Nð2dÞ
train ¼ 11), i.e.,

around 50% more simulations to reach the same perfor-
mance considering all metrics.
Let us call the computation time per simulation tsim.

In Sec. IVA we found that the performance achieved with
Nactive

train ¼ 125 is comparable to the one resulting from

Nuniform
train ¼ 512. Assuming that we can carry out Nð2dÞ

train ¼
17 simulations in parallel, the time it takes to calibrate the
model with a uniform grid is Tuniform ¼ 512=17tsim ∼
30tsim. On the other hand, since we found that

Nð2dÞ
train ¼ 11, building the training set in the parallel imple-

mentation takes Tk
active ¼ Nð2dÞ

traintsim ¼ 11tsim, approximately
one third of the time required by the uniform grid
calibration.

C. Hybrid strategy and model improvement

The active approach can be also deployed to improve a
model previously calibrated with a different strategy, as we
will now illustrate.
For concreteness, consider the case qmax ¼ 6 discussed

in Sec. IVA, focusing on the active and uniform grid cases.
Instead of utilizing the active strategy from the onset, we
can take as a starting point for the active algorithm a model
calibrated with Ntrain ¼ 125 using a uniform grid, and then
switching to active training.
We see the outcome of this hybrid procedure in Fig. 6,

which also shows for comparison the purely active and
purely uniform results. We observe that the hybrid training
quickly catches up with the active one, and even outper-
forms it for large training sets. For the average unfaithful-
ness, we see an order of magnitude performance gain for
Ntrain ¼ 216 of the hybrid protocol over the uniform one,
and almost a two order of magnitude gain for Ntrain ¼ 729.
The phase and amplitude differences at merger show a
significant but slightly lower increase.

D. Waveform uncertainty

As explained above, the variance of the Gaussian fits
provides a natural way of capturing the model uncertainties
across parameter space. Moreover, this can be translated
into waveform uncertainties as explained in Sec. III D. We
have seen in Fig. 3 that the average waveform uncertainty
as a function of training points decreases much faster with
the active approach compared to uniform and random grids.
In particular, we see that only for the active approach this
uncertainty goes below the target unfaithfulness F̄ ¼ 0.01
in the ranges of parameters we have considered in
this study.
In Appendix E we show a histogram of the waveform

uncertainties resulting from all training strategies at the
maximum number of training points Ntrain ¼ 729. This
again shows the better accuracy of the active approach, with
only very few cases exceeding F̄ ¼ 0.01.

FIG. 4. Average performance gain for all performance metrics,
as a function of qmax. We obtain the error bars for each data point
by varying the baseline values by �30%, computing all inter-
cepts, and keeping the highest and lowest values.

FIG. 5. Relative performance between the parallel and serial
versions of our active training strategy, expressed as ratios of the
performance metrics versus number of training points.
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Using this notion of uncertainty, we can provide error
bars for the waveforms in the time domain, as shown in
Fig. 7. We leave for future work a careful consideration of
the implications of this feature for data analysis.

V. CONCLUSIONS

We propose the use active learning to systematically
construct the training sets upon which waveform approx-
imants are built. More precisely, we put forward the idea of
adapting the technique GPAL to time series modeling. This
involves performing a GP regression to fit the internal
parameters from available NR data, and using the variance
of the GP as the acquisition function to explore NR
parameter space maximizing the information gained from
each simulation. Furthermore, we introduce the notion of
waveform uncertainty, which is built out of the variance of
the GP and provides a local, quantitative, and intuitive
measure to endow the approximants with error estimates.
This stands in contrast with the standard techniques

used for model calibration, in which a fixed set of NR

simulations is chosen based on domain knowledge
(e.g., priors of astrophysical relevance, ease to carry out
NR simulations), and global fits of the internal parameters
are performed by postulating fixed functional forms.
Moreover, with the notable exception of some surrogate
models which also employ GP regression, e.g., [69], most
of the available approximants typically only provide
estimates of global inaccuracy (e.g., maximum unfaithful-
ness over a chosen test set) and do not provide local
uncertainty estimates of the waveforms.
Our strategy appears to be advantageous in the follow-

ing ways:
(i) For a fixed performance target in various metrics, it

requires fewer simulations compared to nonadaptive
methods. We observe a cost reduction by a factor
of up to 4 in the simple model considered here.
Moreover, larger gains occur for larger parameter
spaces.

(ii) It is amenable to parallelization. In our case study
discussed in Sec. IV B, we observe that in order to
achieve the same performance as the serial active

FIG. 6. Average performance metrics as a function of the number of training points for active, uniform, and hybrid strategies. In the
hybrid case, we initialize the training with the same prior as for uniform training with Ntrain ¼ 125 (hence the curves coincide up to that
point), and switch to active training.

FIG. 7. Predicted waveform and the corresponding most uncertain waveform (as defined in Appendix C) for the maximum (left) and
average value (right) of the waveform uncertainty uðXÞ in the case qmax ¼ 6. We shade the region between both waveforms to ease
visualization.
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algorithm, the parallelized version requires more
simulations (about 50% in our examples), but this
can still accomplish a speed up with respect to a
uniform grid calibration similarly parallelized (up to
a factor of 3 in our examples).

(iii) It can be used to improve models initially calibrated
using a different strategy, say, with a uniform grid. In
our example in Sec. IV C, we observe an order of
magnitude performance improvement when switch-
ing from uniform to active training.

(iv) It provides a quantitative, local, and easy to interpret
the measure of uncertainty for the waveforms across
parameter space. We moreover find that the average
uncertainty over test set decreases as a power law
with the number of simulations used for training and
is significantly smaller for active training than for
uniform or random grids.

(v) By making the construction of the training set
systematic, it reduces human bias in the construction
of the approximants. While it is true that there is
certain freedom in the choice of the acquisition
function and other implementation details, the criteria
for doing so can be succinctly expressed in an
intuitive way.

(vi) The interpolation algorithm easily accommodates
complex data patterns as it is based on GP regression,
a nonparametric algorithm. In the simple case con-
sidered, we see a power-law decrease of the fit
inaccuracywith the number of simulations.We expect
this feature to have the highest impact in cases which
display intricate data patterns. Note that in order to
fully exploit this feature, the acquisition function used
should favor regions of higher parameter variation.
We leave a careful study of this aspect for futurework.

(vii) Our framework can be seamlessly integrated with
different GW approximants. More generally, our
approach can be deployed in conjunction with any
model of temporal series.

VI. DISCUSSION

Only after the application of the proposed technique to
more realistic scenarios we shall be able to properly
evaluate its merits. With this in mind, let us discuss some
potential limitations we identify in our study:

(i) We assume that the model can perfectly describe the
simulated data. We have made this choice since it
allowed us to disentangle the effect of calibration
from model improvement. However, in more real-
istic applications, there could be difficulties arising
from model incompleteness or incorrectness, which
are known to affect Bayesian adaptive experimental
designs [106]. This limitation appears to have the
lowest impact in the case of NR surrogates, since
they are the most agnostic models, although they
require larger training sets.

(ii) We use GP regression to fit the data for all choices of
training sets. It is possible that for some specific
models, using parametric fitting procedures (say,
based on ratios of polynomials) could yield more
accurate waveforms in some regions of parameter
space. In particular, it might be that these simpler fits
allow for extrapolation outside of the training region.
However, we do not expect this to be a robust
feature, since it is in particular contingent to the
choice of specific model parameters.

(iii) Our computational cost and time estimates are based
on the total number of simulations required by each
training strategy. It is well known, however, that
some simulations are more costly than others (e.g.,
quasicirculars with higher mass ratios). Since our
main results involve relative costs, we expect that
our conclusions should hold even when more precise
cost estimates are taken into account.

(iv) We are assuming that the extraction of the model
parameters from NR data is exact, since we read it
off from the code output. In practice, this process
involves some extra manipulations such as comput-
ing time derivatives of the signals, performing fits in
the time domain, etc. Having available NR data of
sufficient quality should reduce the impact of this
limitation.

Let us also consider some possible scenarios in which
GPAL may not be most efficient when applied to GW
modeling:

(i) Given enough resources to parallelize the data
collection of a large training set, our algorithm will
eventually require more computational time than
other nonadaptive approaches. This is an unlikely
scenario given the high processing and memory
requirements of the simulations. Moreover, as ex-
plained in Sec. IV B, this can be largely overcome by
parallelizing the GPAL algorithm.

(ii) We have observed that using the GP variance as
acquisition function tends to select points at the
edges of the computational domain, which is typ-
ically where simulations are most challenging to
carry out. For instance, the cases of large q and large
spins jχj ∼ 1 typically become more computation-
ally expensive that those for moderate values of
these parameters. We thus recommend the use of this
algorithm in regions of parameter space in which all
simulations are feasible to carry out. Furthermore,
our setting does not allow for extrapolation outside
of the training domain.

VII. OUTLOOK

We identify several research questions which require
further investigation:

(i) Our results suggest that it is possible to efficiently
improve existing models of GW by enlarging their

ACTIVELY LEARNING NUMERICAL RELATIVITY PHYS. REV. D 110, 024080 (2024)

024080-9



calibration set of NR simulations as suggested by the
active learning algorithm. It would be interesting to
quantify this potential improvement for the available
GW approximants for quasicircular binary black
hole (BH).

(ii) The case of BH dynamical captures (or highly
eccentric binaries) [107–109] has been much less
developed than that quasicircular case, but recent
progress has been made [60,110,111]. In this
scenario, the two BHs undergo a series of close
encounters before merger, resulting in a much
richer phenomenologywhich involves a larger param-
eter space, and displays significant complexity in the
model parameters. GPAL could be useful to guide
parameter exploration in this and similar scenarios.

(iii) The notion of waveform uncertainty has been argued
to play an important role in parameter estimation
[97,98]. It would be interesting to extend these
analyses to other models in which this notion was
previously not incorporated, e.g., EOB approxim-
ants. Moreover, it could serve as a statistical weight
to build model ensembles or meta models combining
several approximants, see, e.g., [112,113].

We hope to address some of these open problems in the
near future.
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APPENDIX A: EOB PARAMETERS

In the model TEOBResumS, the EOB parameters dis-
cussed in the main text ci ¼ fAmrg;ωmrg; ANQC;ωNQC;
ȦNQC; ω̇NQCg are taken to be functions of the following form

Y ¼ Y0YorbðνÞYŜðX12; ŜÞ ðA1Þ

for Y ¼ fAmrg;ωmrg; ANQC;ωNQCg, and

Z ¼ ZorbðνÞ þ ZŜðX12; ŜÞ ðA2Þ

for Z ¼ fȦNQC; ω̇NQCg.9 In the expressions above X12 ¼
ðm1 −m2Þ=M and Ŝ ¼ ðS1 þ S2Þ=M2, andwe denotewith a
“0” superscript the test-particle limit, while the “orb” and “Ŝ”
superscripts indicate the orbital and spin part respectively.
We further have that

Yorb ¼ 1þ aY1 νþ aY2 ν
2; ðA3Þ

YŜ ¼ 1þ bY1 Ŝþ bY2 Ŝ
2

1þ bY3 Ŝ
; ðA4Þ

bYi ¼ cYi;0 þ cYi;1X12

1þ cYi;2X12

; ðA5Þ

Zorb ¼ 1þ aZ1 νþ aZ2 ν
2; ðA6Þ

ZŜ ¼ ðbZ1 þ cZ1X12ÞŜþ ðbZ2 þ cZ2X12ÞŜ2: ðA7Þ

The set of quantities fit to NR are therefore the
faY; cY; aZ; bZ; cZg coefficients, where subindices have
been dropped for brevity.

APPENDIX B: GP REGRESSION

In this appendix we collect some useful information
about GP regression closely following [89]. AGP is a set of
random variables, any of which have a joint Gaussian
(multivariate, normal) distribution. More concretely, if we
consider a set of inputs fXg, we assume that a function f
takes values fðXÞ which are normally distributed with
some mean mðXÞ (which for notational simplicity we take
to be 0) and a covariance function (also known as kernel)
KðX;XÞ which is symmetric and positive definite.

f ∼N ð0; KðX;XÞÞ ðB1Þ
where N is the normal distribution.
Similarly, for unobserved points X� (say, in the test set),

the values f� ≔ fðX�Þ are distributed normally with the
same kernel. The joint distribution of the observed (train-
ing) and unobserved (test) points is given by the prior

�
f

f�

�
∼N

�
0;

�
K K�
K� K��

��
ðB2Þ

where K ¼ KðX;XÞ, K� ¼ KðX�; XÞ, K�� ¼ KðX�; X�Þ.
To get the posterior distribution used for regression, we
condition over the observed points, which after some
manipulations, yields

f�jX�; X; f ∼N ðK�K−1f;K�� − K�K−1K�Þ: ðB3Þ

9In practice, the leading order multipolar behavior of the
amplitude is factorized out before fitting; see Appendix 2
of [58]. Similarly, it was found that it is more convenient to
fit Z=ðνωNQC

22 Þ, rather than Z directly.
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This equation expresses that the distribution of the function
on the test set values f�, conditioned over the test set values
X�, the training set points X, and the values of the function
f, is normally distributed with the mean and variance
indicated on the right hand side. Thus, the predictions and
variance of the GP regression are the mean and variance of
the distribution in (B3). Note that the variance only depends
on the training and test sets, but not on the function being
sampled.
In our numerical experiments, we have used the kernel

denoted Matern52 with auto relevance determination,
which is given by the expression

kðrÞ ¼ σ2
�
1þ

ffiffiffi
5

p
rþ 5

3
r2
�
expð−

ffiffiffi
5

p
rÞ ðB4Þ

with

r2ðx; x0Þ ¼
XQ
q¼1

ðxq − x0qÞ2
l2
q

ðB5Þ

where the lq are relative length scales automatically
determined for each direction and Q the number of
dimensions in parameter space. We fix σ ¼ 1 throughout.
Note that the correlation decays exponentially with the
distance between inputs, which ensures the smoothness of
the output functions. We have used the implementation
provided by the Python library GPy [103].

APPENDIX C: PERFORMANCE AND
UNCERTAINTY METRICS

Here we provide details regarding the performance and
uncertainty metrics used in the main text. We begin with the
faithfulness, or match, which is defined as

F ¼ hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i
p ðC1Þ

where the inner product between two waveforms h1, h2 is
given by

hh1; h2i ¼ 4ℜ
Z

ĥ1ðfÞĥ�2ðfÞ
SnðfÞ

ðC2Þ

where ĥ1;2ðfÞ are the Fourier transforms of the time domain
signals. Throughout this paper we consider a uniform
power spectral distribution SnðfÞ ¼ 1, but more generally
this is where the noise curve of a particular GW detector
enters the calculation.10 The unfaithfulness is then given
by F̄ ¼ 1 − F.

We also consider the amplitude and phase difference at
merger. To obtain these, we decompose the signal in
amplitude and phase as

hgtðX; tÞ ¼ AgtðX; tÞe−iϕgtðX;tÞ ðC3Þ

h̃ðX; tÞ ¼ ÃðX; tÞe−iϕ̃ðX;tÞ ðC4Þ

and compute the difference at merger, defined as the
amplitude peak of each signal,

δAðXÞ ¼ ðAgtðX; tpeakÞ − ÃðX; tpeakÞÞ=AgtðX; tpeakÞ ðC5Þ

δϕðXÞ ¼ ϕgtðX; tpeakÞ − ϕ̃ðX; tpeakÞ: ðC6Þ

The most uncertain signal for a given variance is defined
by first computing the family of waveforms

h̃ðαÞðX; tÞ ¼ hEOB

�
c̃iðXÞ þ

1

2
ΔðαÞ

i σðXÞ; t
�

ðC7Þ

where ΔðαÞ
i account for all possible sign combinations

of internal parameters, e.g., fþ;þ;þ;þ;þ;þg,
f−;þ;þ;þ;þ;þg, etc. For the case considered here
having six internal parameters, we need to compute
26 ¼ 64 different waveforms. Note that this captures the
notion of directional derivative of the waveform with
respect to the ci. We then select the most uncertain signal
as the representative h̃ðα0ÞðX; tÞ that maximizes the norm
jh̃ðαÞðX; tÞ − h̃ðX; tÞj, given by

jh1ðtÞ − h2ðtÞj ¼
Z

dtjh1ðtÞ − h2ðtÞj2 ðC8Þ

within this set.
In order to quantify the accuracy of the fit, we also

introduce the Euclidean norm of the difference between the
ground truth values of the parameters and the fitted ones,

δcðXÞ ¼ kciðXÞ − c̃iðXÞk: ðC9Þ

APPENDIX D: ADDITIONAL NUMERICAL
RESULTS

1. Alternative test sets

In the main text we reported the results obtained for a test
set consisting of the reciprocal lattice associated with the
uniform training set for given Ntrain, with the boundary
points added; see Fig. 2. In this appendix we explore other
possibilities for test sets, for the same training strategies
(active, uniform, random). As in the main text, we use as
reference values for the performance metrics F̄ ¼ 0.01,
δA ¼ 0.1, δϕ ¼ 0.06.

10The case SnðfÞ ¼ 1 is usually considered in GW modeling
since it allows us to evaluate the model in a way independent of
details of different detectors.
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We first consider test sets such as the one discussed
in the main text, but with the boundary points removed.
This is motivated by the fact that boundary points are
the most challenging to model (see Appendix E), which
could lead to a misrepresentation of the performance if
one is interested in “typical” points. We show the
relative performance gain for the test set in the main
text with the boundary points removed in Fig. 8, to be
compared with Fig. 4. Besides the reduction of the error
bars in the test set without boundary points, we observe
essentially the same behavior, i.e., the performance gain
grows with qmax reaching a factor of 4 for the largest
value qmax ¼ 6.
We have also considered test sets chosen at random

with uniform distribution across parameter space. In
such cases, we typically observe that random training
outperforms uniform training, although active training
continues to be superior. We show in Fig. 8 the average

performance gain of active training over random train-
ing. In the case of the unfaithfulness, we observe a
similar behavior to the reciprocal lattice test, with a
monotonic growth of performance reaching nearly 4×.
For the phase difference at merger, the performance gain
is not monotonic and has larger error bars, which could
be explained by the randomness of the test sets. For the
amplitude difference at merger, we find a very mild
performance gain slightly above 50%.

2. Alternative training sets

As discussed in Sec. III C, the active training strategy
tends to select points near the boundary of the computa-
tional domain. This suggests that it might be possible to
improve the performance of greedy approaches by replac-
ing a uniform grid for a Chebyshev one, which is denser
near the edges.11 For the interval ða; bÞ the Chebyshev
nodes are given by

xk ¼
1

2
½ðaþ bÞ þ ða − bÞ coshðkπ=niÞ� k ¼ 0… n:

ðD1Þ

In addition to the active, uniform, and random training
strategies discussed in detail in the main text, we consider
numerical experiments with a (passive) Chebyshev train-
ing consisting of a 3d grid with Chebyshev nodes along
each direction, having the same number of training points
as all other approaches. Using the reciprocal lattice of the
uniform training as test sets gives a biased evaluation of
the different algorithms since the Chebyshev points tend

FIG. 8. Average performance gain of active training for test sets
constructed as the reciprocal lattice used for uniform training
(top) and for fully random test sets with Nrmtest ¼ 200 (bottom).
In the latter case, random training outperforms uniform training,
so we report the performance gain with respect to that training
strategy.

FIG. 9. Average performance gain of active training over
Chebyshev training as a function of qmax. All test sets are
random grids with the same number of points as the training sets.

11We thank Sebastiano Bernuzzi for suggesting this numerical
experiment.
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to be close to the reciprocal lattice. We therefore consider
fully random test sets, with the same number of points as
the corresponding training sets. We show our results for
the average performance gain of active training over
Chebyshev training in Fig. 9, and the average perfor-
mance as a function of training points for qmax ¼ 6 in
Fig. 10. We observe that uniform, random, and
Chebyshev training give similar results, all being super-
seded by active training. The maximum cost reduction
obtained by using active training is again roughly a factor

of 4 for the mismatch, and slightly lower for other
metrics.

APPENDIX E: LOCAL RESULTS

In the main text we focused on the averages of
performance and uncertainty metrics. In this appendix
we complement these results with the statistical and spatial
distributions in parameter space. First, we show in
Fig. 11 histograms of all metrics extracted for Ntrain ¼ 729.

FIG. 10. Dependence of the average performance metrics with the number of training points, for active, uniform, random, and
Chebyshev training with qmax ¼ 6. The test sets are random grids the same number of points as the training sets. All plots are
in log-log scale.

FIG. 11. Histograms of the performance (top) and uncertainty metrics (bottom) for Ntrain ¼ 729 with qmax ¼ 6.
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We note that not only are the averages always smaller for
active training, but the entire distributions show the superior
performance of this protocol over uniform and random grid
training. In Fig. 12 we display a visualization of the local

dependence of all metrics as functions of the input param-
eters. We observe that, with the exception of the variance in
active training, the most challenging cases tend to accumu-
late near the boundaries of the computational domain.

FIG. 12. Three-dimensional local dependence of the performance (left column) and uncertainty (right column) metrics for active
(top row), uniform (center row), and random (bottom row) training with Ntrain ¼ 729. We show the 50 worst points in each case.
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