
Gravitational lensing of a Schwarzschild-like black hole
in Kalb-Ramond gravity
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In this paper, we investigate the gravitational lensing effect for the Schwarzschild-like black hole space-
time in the background of a Kalb-Ramond (KR) field proposed by Yang et al. [Phys. Rev. D 108, 124004
(2023)]. The solution is characterized by a single extra parameter l, which is associated to the Lorentz
symmetry breaking induced by the KR field. First, we calculate the exact deflection angle of massive and
massless particles for finite distances using elliptic integrals. Then we study this effect in the weak and
strong field regimes, discussing the correction of the KR parameter on the coefficients of the expansions in
both limits. We also find that increasing l decreases the deflection angle. Furthermore, we use the available
data from the Sagittarius A⋆ object, which is believed to be a supermassive black hole at the center of our
Galaxy, to calculate relevant observables, such as the image position, luminosity, and delay time. The
values found could be potentially measured in the weak field regime, though for strong fields one would
have to wait for the next generation of interferometers.
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I. INTRODUCTION

More than a century after Einstein introduced the general
theory of relativity (GR), we find ourselves at the dawn of a
new epoch in gravitational physics, spurred by two land-
mark discoveries. In 2016, the LIGO and VIRGO collab-
orations detected the first signals of gravitational waves,
indicative of the merger of two black holes, which was later
expanded to include the coalescence of a black hole and a
neutron star [1,2]. On the other hand, in 2019, the Event
Horizon Telescope (EHT) collaboration unveiled the first-
ever image of super-heated plasma swirling around the

supermassive object residing at the core of the M87 galaxy
[3–11], later extending their observations to Sagittarius A⋆

(Srg A⋆) [12–17], the active radio source at the nucleus of
our Milky Way Galaxy. Both observations affirm the
presence of supermassive black holes. Furthermore, the
forthcoming advancements in very long baseline interfer-
ometry, exemplified by projects like GRAVITY [18–23],
are poised to scrutinize GR in its strong field regime with
unprecedented precision. These developments will pave the
way for exploring alternative gravitational theories beyond
the tests presently carried out in the weak field limit [24].
These significant advancements stem from the paradigm

shift introduced by GR in contrast to the Newtonian
description of gravity, exemplified by its first observational
test, namely, the deflection of light. Initially observed
during the 1919 eclipse by the Eddington [25] and the
Sobral [26,27] expeditions, the bending of light rays by
massive bodies manifests as gravitational lensing, a hall-
mark of how gravity intertwines the fabric of space-time
with the motion of both massive and massless particles.
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Leveraging gravitational lensing, we have used stars, black
holes, entire galaxies, and even galaxy clusters as natural
telescopes, vastly expanding our capacity to observe
remote celestial objects [28]. This achievement owes
much to the pioneering work of Virbhadra and Ellis
[29], who elucidated the gravitational lensing produced
by a Schwarzschild black hole, introducing concepts such
as the surface where the deflection angle tends to infinity
and the phenomenon of multiple images. Generalizing their
findings to encompass any spherically symmetric metric,
this surface is termed the photon sphere [30], and plays a
key role in generating images of compact celestial bodies.
Indeed, Bozza [31] proved that such a divergence is
logarithmic and provided a method to compute observables
of interest for any static and spherically symmetric metric.
Various applications of this framework have been exten-

sively explored in the scientific literature. It has been used
in the context of supermassive black holes [32] and the
trajectories of stellar bodies orbiting them [33], as well as in
elucidating the deflection of light by astrophysical compact
objects [34–40], with overarching formalisms developed
for such purposes [41–43]. Recent applications of gravi-
tational lensing include observations of this phenomenon
around supermassive black holes [44–46], microlensing’s
collective amplification of multiple images for detecting
bodies that do not emit light, such as planets [47,48] or
black holes [49,50], its use as a distance estimator [51],
aiding in the study of binary star systems [52,53], and its
relevance in cosmological contexts [54–57]. For a com-
prehensive overview of these methods and others employ-
ing weak lensing, we refer the reader to [58,59]. A major
improvement of this formalism was introduced by Ishihara
et al. in [60] by extending the computation of the deflection
angle to finite distances, as illustrated in [61,62] with the
case of massive particles.
The main aim of the present work is to investigate

gravitational lensing for the solution presented in [63].
This solution, a Schwarzschild-type metric, incorporates a
spontaneous breaking of Lorentz symmetry through the
nonminimal coupling of the gravitational field with the Kalb-
Ramond field [64]. While Lorentz symmetry stands as a
cornerstone of physics, it is conjectured that under certain
conditions, such as in the Standard Model [65,66], quantum
gravity [67], and other scenarios [68–73], it may be violated.
Previous studies have investigated gravitational lensing
in theories featuring Lorentz-symmetry breaking, such as
in [61,74,75], and more recently, for alternative implemen-
tations of the Kalb-Ramond field [76–78]. In this work, we
aim to derive exact expressions for gravitational lensing
within this theory and apply them to both weak and strong
field regimes. Additionally, we will extend the formalism of
gravitational lensing to encompass finite distances to derive
the corresponding expressions in such scenarios.
This work is organized as follows: In Sec. II, we introduce

the Kalb-Ramond solution, review some of its properties,

and determine the exact deflection angle of massive particles
using elliptic integrals. In Sec. III, we obtain an approxi-
mation for the deflection angle that is valid for the weak
gravitational field regime, and in Sec. IV an approximation
for the strong field regime. In Sec. V, we use the coefficients
obtained in the previous two sections to compute the
observables associated with each limit. Finally, in Sec. VI
we draw our conclusions. We will use, unless otherwise
stated, geometrized units where G ¼ c ¼ 1.

II. GRAVITATIONAL LENSING
IN KALB-RAMOND THEORY

A. Kalb-Ramond field

The Kalb-Rammond (KR) solution introduced in [63] is
a Schwarzschild-type solution that implements a breaking
in Lorentz symmetry. It is given by the following line
element:

ds2 ¼ −
�

1

1− l
−
2m
r

�
dt2 þ

�
1

1− l
−
2m
r

�
−1
dr2 þ r2dΩ2;

ð1Þ

where m is the black hole mass and l is a dimensionless
parameter that characterizes the effect of Lorentz symmetry
violation arising from the nonzero vacuum expectation
value of the Kalb-Ramond (KR) field permeating space-
time. Solar System tests, such as the Shapiro time delay,
light deflection, and Mercury’s perihelion precession,
constrain the parameter l to the interval −6.1 × 10−13 <
l < 2.8 × 10−14 [63]. However, on a much larger scale of
mass as given by the observations of the Sgr A� radio
source, assumed to hide a supermassive black hole, at the
center of our own Milky Way Galaxy, the parameter l
would be constrained to the interval −0.18502 < l <
0.06093 [79]. Table I shows the estimated mass and
distance from us of Sgr A� as measured by the Keck
collaboration.

B. Exact gravitational lensing in the KB theory

In this section, we obtain the exact analytical expression
for the deflection angle in terms of elliptic integrals. To this
end, let us start with the general static, spherically sym-
metric line element given by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2; ð2Þ

TABLE I. Sgr A* mass and distance as inferred by the Keck
collaboration.

Parameter values

Survey Mð×106M⊙Þ D (kpc) Reference
Keck 3.951� 0.047 7.953� 0.050� 0.032 [80]
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where dΩ2 ¼ dθ2 þ sin2θdϕ2 is the two-spheres line
element. Though it is always possible to remove one of
the coefficients fAðrÞ; BðrÞ; CðrÞg in favor of the other
two and end up with just two independent functions, for
the moment we shall work under this general form. The
static and spherical symmetry allows us to introduce two
conserved quantities of motion, namely, E ¼ −Aṫ2 and
L ¼ r2ϕ̇, interpreted as the energy and angular momentum
per unit mass, respectively. Here, an overdot denotes a
derivative with respect to the affine parameter.
Under these conditions, the geodesic equation for a

massive particle of velocity v can be written as [61]

�
dr
dϕ

�
2

¼ r4

AðrÞBðrÞ
�

1

b2v2
−
�
1 − v2

b2v2
þ 1

r2

�
AðrÞ2

�
; ð3Þ

where b≡ L=E is the impact parameter. In the context of
gravitational lensing, a particle will approach a certain
closest distance r0 to the source before being deflected by
its gravitational influence. In terms of such a distance, the
impact parameter can be written as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðr0Þ
Aðr0Þ

s
; ð4Þ

which is the impact parameter of the trajectory defined in
Eq. (3) in terms of the distance of closest approach r0.
For the metric (1), the geodesic equation (3) can be

suitably rewritten, using the change of variable r ¼ 1=u as�
du
dϕ

�
2

¼ 2mGðuÞ; ð5Þ

where the function GðuÞ is explicitly given by

GðuÞ ¼ u3 þ u2

2ðl − 1Þmþ u
b2

�
1

v2
− 1

�
þ u2

2ðl − 1Þm

þ l − v2

2b2ðl − 1Þmv2
: ð6Þ

For a source and an observer located at a finite distance, the
deflection angle was computed by Ishihara et al. in [60] as

α¼
ffiffiffiffiffiffiffi
1

2m

r �Z
u0

uR

duffiffiffiffiffiffiffiffiffiffi
GðuÞp þ

Z
u0

uS

duffiffiffiffiffiffiffiffiffiffi
GðuÞp �

þΨR −ΨS: ð7Þ

In this expression u0 ¼ 1=r0 is the inverse of the distance of
closest approach, uR ¼ 1=rR and uS ¼ 1=rS are the inverse
of the radius of the observer (R) and the source (S),
respectively, while the function Ψ is given by

ΨðuÞ ¼ arcsin ½buv
ffiffiffiffiffiffiffiffiffiffi
AðuÞ

p
�; ð8Þ

where ΨR ≡ΨðuRÞ and ΨS ≡ΨðuSÞ implement the finite
distance corrections. In particular, when both observer and
source are at infinity, ur ¼ us → 0, then the well-known
expression of the deflection angle for infinite distances [31]
is recovered:

α∞ ¼
ffiffiffiffi
2

m

r Z
u0

0

duffiffiffiffiffiffiffiffiffiffi
GðuÞp − π: ð9Þ

For the KR solution (1) we compute the integrals
appearing in the finite-distance deflection angle (7) as
follows. We first assume the function GðuÞ to be written as

GðuÞ ¼ ðu − u1Þðu − u2Þðu − u3Þ; ð10Þ

where u1, u2 and u3 are the roots of a cubic polynomial, and
take u2 ¼ 1=r0. Such roots can be found by comparing the
expression with the actual one of the KR field, Eq. (6),
which after some algebra provides the relations

u1 þ u3 þ 1=r0 ¼
1

2mð1 − lÞ ;

u1u3 þ u1=r0 þ u3=r0 ¼
1
v2 − 1

b2
; ð11Þ

which can be solved to provide the roots u1 and u3 as

u1 ¼ −
2ðl − 1Þmu0 þ 1

4ðl − 1Þ2mv2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðl − 1Þ2v2ð16ðl − 1Þm2u20ðv2 − 1Þ þ 6ðl − 1Þmu0v2 − v2Þ

ð2ðl − 1Þmu0 þ 1Þ

s
þ ðl − 1Þv2

#
; ð12Þ

u3 ¼
2ðl − 1Þmu0 þ 1

4ðl − 1Þ2mv2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðl − 1Þ2v2ð16ðl − 1Þm2u20ðv2 − 1Þ þ 6ðl − 1Þmu0v2 − v2Þ

ð2ðl − 1Þmu0 þ 1Þ

s
− ðl − 1Þv2

#
; ð13Þ

where the signs when taking the square roots have been chosen so as to have the roots ordered as u3 > u2 > u1. This way,
both integrals appearing in Eq. (7) can be put under the form

I1ðu0Þ ¼
Z

u2

u0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu − u1Þðu − u2Þðu − u3Þ
p ; ð14Þ
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with u3 > u2 > u0 > u3 and u0 being any finite distance.
This integral can be carried out with the help of elliptic
functions as

Iðu0Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 − u1

p Fðδ; k2Þ; ð15Þ

where Fðδ; k2Þ is a incomplete first-order elliptic integral
and the constants take the expressions

δ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu3 − u1Þðu2 − u0Þ
ðu2 − u1Þðu3 − u0Þ

s
; k2 ¼ u2 − u1

u3 − u1
: ð16Þ

On the other hand, to find the finite-distance correction
integrals ΨR and ΨS we just need to write Eq. (8) explicitly
for the KR metric (1) as

ΨðuÞ ¼ sin−1
 
buv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
1−l − 2mu

1 − 1
1−l þ 2m

1−v2

s !
; ð17Þ

evaluated at the desired finite distances uR and uS.
Collecting all of the above expressions, we find the

deflection angle in the finite-distance regime as

αðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðu3 − u1ÞM

s �
FðδðuRÞ; kÞ þ FðδðuSÞ; kÞ

�
þ ΨR −ΨS: ð18Þ

Obviously, in the infinite-distance limit, in which uR ¼
uS → 0 the pieces in ΨR and ΨS vanish, and we collect
the infinite-distance deflection angle (and the one of
Schwarzschild case if we set l → 0). Alternatively, the
deflection angle can be rewritten in terms of the impact
parameter b. To this end, we note that Eq. (4) for the KR
field (1) becomes

b
r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0 − lr0
2ðl − 1Þmþ r0

s
; ð19Þ

which is an implicit equation for r0 and can be solved as

r0
b
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1

3 − 3l

r
cos

�
1

3
cos−1

�
−
3
ffiffiffi
3

p ð1 − lÞ3=2m
b

��
: ð20Þ

This facilitates the expression of αðr0ðbÞÞ by substituting
this equation into the aforementioned expressions. In the

subsequent analysis, we will divide our analysis into weak
and strong field regimes.

III. WEAK FIELD APPROXIMATION

In this section, we compute the deflection angle in the
weak field limit. In this regime, we assume that both the
source and the observer lie well outside from the lens and
the light rays are only slightly distorted by the lens. Thus,
both b and r0 are far from the gravitational radius, i.e.,

Gm
r0c2

≪ 1;
Gm
bc2

≪ 1: ð21Þ

To start with, we define the lens equation as [29]

tan β ¼ tan θ −Dðtan θ þ tanðα − θÞÞ; ð22Þ

where β and θ are the angular position of the source and the
lensed images, respectively, and

D ¼ DLS

DOS
: ð23Þ

DOS ¼ DLS þDOL is the distance between the observer
and the source, withDLS andDOL the distance between the
lens and the source and the lens and the observer.
For a static, spherically symmetric metric of the general

form (2), the deflection angle, assuming both observer and
source to be located at infinity, can be computed using the
standard formula [28,81]

αðr0Þ ¼ 2

Z
∞

r0

				 dϕdr
				 − π: ð24Þ

We follow the approach introduced in [41] by which the
result of the above integral can be approximated by a series
of the following form:

αðbÞ ¼ A1

�
m
b

�
þ A2

�
m
b

�
2

þO
�
m
b

�
3

: ð25Þ

Here, the deflection angle is written as a function of the
impact parameter b, since it is a gauge invariant variable
(while the closest approach distance has a gauge depend-
ence). The Ai are coefficients to be calculated, which can be
simple numbers or depend on a parameter of the solution.
Using Eq. (3) for the KR metric (1), we are driven to solve
the integral

αðr0Þ ¼
Z

1

0

−
2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1−l−2h

v −
�

1
1−l − 2hx

�
�
1
v2 − 1

��
1

1−l − 2h
�þ x2

�r ; ð26Þ
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where h ¼ m=r0 and x ¼ r0=r. We then use a Taylor series expansion for the variable h so the result becomes an expansion
in m=r0 which subsequently is written in terms of m=b using yet another expansion in Eq. (20),

r0 ¼ b

� ffiffiffiffiffiffiffiffiffiffi
1

1 − l

r
−
ð1 − lÞm

b
−
3ð1 − lÞ5=2m2

2b2
−
4ð1 − lÞ4m3

b3

�
: ð27Þ

Thus, the deflection angle reads as in Eq. (25) with the coefficients

A1 ¼
−2ð1− lÞ5=2

ðlvþ 1Þðvðl−v− 1Þþ 1Þ
�
c1þ c1ð3l− 2Þvþv2

�
lðc2− 2c3Þþ c3

ðl− 1Þv
�
þv3

�
lð2lðc3− c2Þþ 2c2 − 3c3Þþ c2

ðl− 1Þv
��

; ð28Þ

and

A2 ¼
3ðl − 1Þ5=2ðvð5l − v − 5Þ þ 1Þððl − 1Þ2v2ð2 log c2 þ logðl − 1ÞÞ − 2 log ððl − 1Þvþ ffiffiffiffiffiffiffiffiffiffi

l − 1
p

c3ÞÞ
4v2

þ ðl − 1Þ4
2ðlvþ 1Þ2ðc2Þ2

�
−

3c3
v − lv

þ v

�ð21l − 1Þc3
ðl − 1Þv

�
− ð1 − lÞv2

�
11ð3l − 1Þc3
ðl − 1Þv

�
þ v4

�ð5ð2 − 3lÞlþ 2Þc3
ðl − 1Þv

�

þ v3
�
15l4vc3 − 42l3vc3 þ l2vð8c2 þ 25c3Þ þ 2lvð9c3 − 4c2Þ − 8lðc2 þ c3Þ − 16vc3

ðl − 1Þ2v2
��

; ð29Þ

and where we have introduced the constants

c1 ¼
v

c2 þ c3
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ vð1 − lÞ − 1

q
; c3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv − 1Þðlvþ 1Þ

p
: ð30Þ

These expressions recover the known ones of the Schwarzschild case when l ¼ 0 and v ¼ 1 [41]. Now, let us refine the
preceding result for the finite-distance scenario.
For a finite-distance case, using the expressions found so far and Taylor series expansion allows to integrate the deflection

angle integral (7) as

α ¼
ðl − 1Þmðv2ðb2u2R − 1Þ þ 2l − 1Þ − bv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðb2u2R − 1Þ þ l

p
sinh−1



buRvffiffiffiffiffiffiffi
l−v2

p
�

bv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðb2u2R−1Þþl

l−1

q

þ bðl − 1Þlð− 1
lÞ5=2muRv2ðluRðv2 − 1Þ þ 1Þ

ðv2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u2Rv

4

l þ 1

q þ bðl − 1Þð− 1
lÞ3=2muSv2ðluSðv2 − 1Þ þ 1Þ

ðv2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u2Sv

4

l þ 1

q

þ
ðl − 1Þmðv2ðb2u2S − 1Þ þ 2l − 1Þ − bv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðb2u2S − 1Þ þ l

p
sinh−1



buSvffiffiffiffiffiffiffi
l−v2

p
�

bv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðb2u2S−1Þþl

l−1

q

þ sin−1
�
b

ffiffiffiffiffiffiffi
−
1

l

r
uRv2

�
− sin−1

�
b

ffiffiffiffiffiffiffi
−
1

l

r
uSv2

�
þO

�
m
b

�
2

; ð31Þ

which provides the value 4m=b of the Schwarzschild geometry if l ¼ 0, v ¼ 1, and uS ¼ uR ¼ 0. We would like to point
out that, although this expression is valid for finite distances, it is nevertheless limited to situations in which both the source
and the observer are very far from the lens, i.e., in the asymptotically flat region.

IV. STRONG DEFLECTION ANGLE

A. General approach

In the previous section, we used a formalism that applies to the case where the closest approach distance is much larger as
compared to the mass of the lens (in our case, the black hole). We now turn our attention to the computation of the opposite
end of gravitational lensing, namely, the strong deflection regime. In such a regime, one considers the trajectories of
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massless particles that get very close to the last unstable
orbit. This is the closest orbit any photon can get to the
black hole before getting captured by it to eventually be
swallowed up by its event horizon. The corresponding
radius xm is given by the resolution of the following
equation [30,82]:

C0ðxÞ
CðxÞ ¼ A0ðxÞ

AðxÞ ; ð32Þ

and which defines the so-called photon sphere of the black
hole. A photon which backtracked from the observer’s
screen towards the photon sphere would formally have an
infinite deflection angle. The corresponding value of the
impact parameter b ¼ bm for the radius xm is dubbed as the
critical impact parameter.
In order to compute the deflection angle in this strong

field regime, we follow the standard formalism developed
by Bozza [31]. In the limit b → bm, the deflection angle α
can be approximated by a logarithmic expansion of the
form

αðbÞ ¼ b1 log

�
b
bm

− 1

�
þ b2 þOðb − bmÞ: ð33Þ

Here b1, b2, together with bm, are coefficients uniquely
depending on the background geometry, and thus this
approach nicely connects the geometrical properties with
the motion of light rays.
We will briefly discuss how to obtain the other two

coefficients. We emphasize that the starting point is the
same as before, namely to propose an approximate result
for the integral (7). First, we define the variables

y ¼ AðxÞ; ζ ¼ y − y0
1 − y0

; ð34Þ

where y0 ¼ Aðx0Þ. This leads to the expression of the
deflection angle via the integral

αðx0Þ ¼ Iðx0Þ − π; Iðx0Þ ¼
Z

1

0

Rðζ; x0Þfðζ; x0Þdζ;

ð35Þ

where the function Rðζ; x0Þ is given by

Rðζ; x0Þ ¼
2
ffiffiffiffiffiffi
By

p
CA0 ð1 − y0ÞC0; ð36Þ

and it is regular for every value of ζ and x0. The function
fðζ; x0Þ reads

fðζ; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 − ½ð1 − y0Þζ þ y0� C0

C

q ; ð37Þ

and has a divergence for ζ → 0. All functions without the
subscript 0 are evaluated at x ¼ A−1½ð1 − y0Þζ þ y0�.
We now approximate the function fðζ; x0Þ in this strong

field regime as

fðζ; x0Þ ∼ f0ðζ; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ζ þ β2ζ
2

p ; ð38Þ

with the constants

β1 ¼
1 − y0
C0A0

0

ðC0
0y0 − C0A0

0Þ; ð39Þ

β2 ¼
ð1 − y0Þ2
2C2

0A
03
0

�
2C0C0

0A
0 2
0 þ ðC0C00

0 − 2C0 2
0 Þy0A0

0

− C0C0
0y0A

00
0


: ð40Þ

From Eq. (38) we can see that if β1 ≠ 0, the leading order of
divergence in (37) is ζ−1=2, while if β1 ¼ 0 the divergence
is ζ−1. In the first case f0 can be integrated and the result is
finite, while in the second case the integral diverges.
Returning to the original variables, we note that β1 vanishes
at the photon sphere location, x0 ¼ xm.
The canonical approach to deal with this problem is to

split the integral (35) in two pieces as

Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ; ð41Þ

where

IDðx0Þ ¼
Z

1

0

Rð0; xmÞf0ðζ; x0Þdζ ð42Þ

is the divergent part and

IRðx0Þ ¼
Z

1

0

gðζ; x0Þdζ ð43Þ

is the regular one, with

gðζ; x0Þ ¼ Rðζ; x0Þfðζ; x0Þ − Rð0; xmÞf0ðζ; x0Þ: ð44Þ

This way, one can compute the logarithmic approximation
to the deflection angle as [31]

αðx0Þ ¼ −
�
Rð0; xmÞffiffiffiffiffiffiffi

β2m
p

�
log

�
x0
xm

− 1

�

þ Rð0; xmÞffiffiffiffiffiffiffi
β2m

p log
2ð1 − ymÞ
A0
mxm

þ
Z

1

0

gðζ; xmÞdζ − π þOðx0 − xmÞ; ð45Þ

where functions with index m are calculated in x0 ¼ xm.
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As stated in the previous section, it is convenient to write
this result in terms of the gauge invariant coordinate b. We
can expand Eq. (4) and write

b − bm ¼ β2m

ffiffiffiffiffiffiffi
ym
C3
m

r
C0 2
m

2ð1 − y2mÞ
ðx0 − xmÞ2: ð46Þ

With the above equation we can write Eq. (45) in the form
of Eq. (33), where the coefficients b1 and b2 are

b1 ¼
Rð0; xmÞ
2
ffiffiffiffiffiffiffi
β2m

p ; ð47Þ

b2 ¼
Z

1

0

gðζ; xmÞdζ þ b1 log
2β2m
ym

− π: ð48Þ

This formalism is also adjusted for finite distances, as the
deflection angle is still given by a logarithmic approxima-
tion as shown in [83]. It is also important to note that,
despite the strong field corrections, the source and the
observer are very far from the lens in the asymptotically flat
regime.

B. KR geometries

Let us now particularize the expressions above for the
KR geometry (1), namely, AðxÞ ¼ 1

1−l −
1
x, BðxÞ ¼ AðxÞ−1,

and CðxÞ ¼ x2. For this geometry, the photon sphere
condition (32) reads

xm ¼ 3

2
ð1 − lÞ; ð49Þ

and by substituting this result into Eq. (4) we get

bm ¼ 3

2

ffiffiffi
3

p
ð1 − lÞ3=2: ð50Þ

The functions Rðζ; xmÞ, fðζ; xmÞ, and gðζ; xmÞ in this
case become

Rðζ; xmÞ ¼ 3

�
1 −

1

3 − 3l

�
ðl − 1Þ;

fðζ; xmÞ ¼
2
ffiffiffi
3

p

ð2 − 3lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3ð3l−2Þþ3ζ2

1−l

q ;

gðζ; xmÞ ¼ −
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3lζþ2ζ−3

l−1

q
þ ffiffiffi

3
p ffiffiffiffiffiffi

1
1−l

q �
ffiffiffiffiffiffi
1

1−l

q
ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2−3lÞζ−3

l−1

q : ð51Þ

With the above expressions, one finds the strong deflection
coefficients in this KR case as

b1 ¼
1ffiffiffiffiffiffi
1

1−l

q : ð52Þ

b2 ¼
−π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−9lþ 1

1−l þ 3
q

þ 2 log ðð2 − 3lÞ2Þ − 3l log
�
3
2
ð2 − 3lÞ2�þ logð9

4
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−9lþ 1
1−l þ 3

q

þ
−2 logð2 − 3lÞ − 4tanh−1


 ffiffiffiffiffiffiffiffiffiffi
lþ 1

3

q �
þ logð144Þffiffiffiffiffiffi

1
1−l

q : ð53Þ

In Fig. 1 (left) we depict the strong field deflection
coefficients b1 and b2, as well as the critical impact
parameter bm, as a function of the KR parameter l. We
see that b2 and bm decrease with increasing l, while b1
remains practically constant. These coefficients allow to
compute the strong deflection angle, which is depicted in
Fig. 1 (right) as a function of the impact parameter, for two
values of l and compared to the Schwarzschild geometry.
We see that positive (negative) values of l bend space-time
more (less) than in the Schwarszschild case, a reflection of

the variation of the parameters b2 and bm with the KR
field l.

V. OBSERVABLES

In this section, we calculate the observables associated
with gravitational lensing. Although only the positions of
the lens, the source, and the image, as well as the brightness
of the image, are apparent, we know that a single source
may yield multiple images in the strong field regime, yet
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not all of them will be observable. Likewise, the weak field
limit has its associated observables. Therefore, we will split
our analysis into each regime.

A. Observables in the weak field regime

We first compute the observables of the weak field
regime using the coefficients A1 and A2 derived in Eqs. (28)
and (29). Such observables are the angular separation Pt,
the difference of angular positions ΔP, the total flux Ft, the
difference of fluxes ΔF, the centroid Θcent, and the differ-
ential time delay Δτ of the images. These coefficients are
defined in [41] as

Pt ¼ θþ þ θ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θ

2
E þ β2

q
þ A2θEϵ

A1

þOðϵÞ2; ð54Þ

ΔP¼ θþ − θ− ¼ jβj− A2θEjβj
A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θ

2
E þ β2

p ϵþOðϵÞ2; ð55Þ

Ft ¼ Fþ þ F− ¼ FsrcðA1θE
2 þ 2β2Þ

2jβj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
p ; ð56Þ

ΔF ¼ Fþ − F− ¼ Fsrc −
A2FsrcθE

3

2ðA1θE
2 þ β2Þ3=2 ϵ; ð57Þ

Θcent ¼
ϑþFþ − ϑ−F−

Ft
¼ jβjð3A1θE

2 þ 4β2Þ
2A1θE

2 þ 4β2
; ð58Þ

Δτ ¼ DOLDOS

cDLS

 
1

2
jβj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
q

þ 1

4
A1θE

2 ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
p

þ jβjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
p

− jβj

!
þ jβjA2θE

A1

ϵ

!
;

ð59Þ

where the angular Einstein radius is defined as

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GmDLS

c2DOLDOS

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mDLS

DOLDOS

s
; ð60Þ

and the dimensionless perturbation parameter is given by

ϵ ¼ tan−1ðm=DOLÞ
θE

¼ θE
4D

: ð61Þ

The ϵ parameter considered in [41] is a new expansion
parameter (instead of m=b), and is assumed to be a small
quantity. Indeed, we consider the radio source at the
center of our Galaxy, Sagittarius A⋆, which is believed
to be a supermassive black hole, as a practical example,
where Table I presents the estimated data of its mass
and distance. Considering only nominal values, we have
θE ¼ 0.022ðDLSÞ1=2 arc s and ϵ ¼ 1.9 × 10−4 × ðDLSÞ−1=2.
Indeed, ϵ will always be small as long as we confine
ourselves to the weak field constraints, i.e., both observer
and source are far away from the lens, where space-time is
asymptotically flat. The distance from the source to theDLS
lens is typically of the order of 1 parsec, so we shall adopt
this value. Taking these values we can conclude that the
observables lie within the limits of the precision of today’s
measuring instruments [42]. However, we do not know
whether the difference in the observables between the
Schwarzschild and the Kalb-Ramond solutions is also
within this measurement capacity. To investigate this issue,
in the figures given below, we assume three curves with the
values for the l parameter (determined in [79]), correspond-
ing to l ¼ 0 (dashed), l ¼ −0.18502 (green), and l ¼
0.06093 (red) in the plots. In addition, the observed values
also depend on the dimensionless parameter β. In order to
generate our results we take values of 0 < β < 0.1, a range
in which we already find significant variations.
In Fig. 2 we depict Pt as a function of β for a fixed

velocity v ¼ 0.9, finding a small difference between the
curves and that as l increases, the angular separation
decreases; Pt as a function of velocity v for β ¼ 0.1,

FIG. 1. Left plot: the coefficients of the logarithmic expansion b1, b2 and the critical impact parameter bm as a function of the
parameter l. Right plot: the deflection angle α as a function of the impact parameter b for three values of the parameter l.
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finding that the difference between the curves only occurs
from v ∼ 0.6.
Figure 3 shows ΔP as a function of β and v, respectively.

We see that the angular difference is smaller compared to
the two extreme l values and does not change with the
variation of velocity.
The total flux Ft is shown in Fig. 4. This quantity is

related to the magnification as each flux follows
Fi ¼ jμijFsrc, where Fsrc is the flux from the source. We
see that for β close to zero, the total flux tends to infinity
and approaches the flux from the source as β increases. We
also see that the variation of velocity Ft does not change,
except for v ≈ 2=3, and the values of l differ only slightly.
The difference in flux ΔF is shown in Fig. 5, and has

similar properties to the total flux. The only change is that
ΔF is higher for l ¼ 0.6093 and lower for l ¼ −0.18502,
i.e., the reverse occurs.
In Fig. 6 we show the centroid Θcent as a function of the

speed v. We see that this observable is higher as l decreases,
and the difference between the three l curves becomes
clearer for v > 0.5.

Figure 7 shows the time delay Δτ. In the left plot we see
that it gets higher with increasing β. However, the distance
between the l curves is in the order of milliseconds. In
addition, Δτ is larger for the smallest value of l. In the right
plot we see that the time delay increases until v ≈ 2=3 and
then decreases.
As we have already said, all of the values we find here for

these observables are theoretically measurable with today’s
instruments [42]. However, disentangling the differences
between the Schwarzschild and the Kalb-Rammond sol-
utions is probably beyond the their reach. Regarding this,
we also point out the difficulty in finding a source that is
aligned with the lens.

B. Observables in the strong field regime

Within the strong gravitational lensing regime, one
expects multiples images to be formed when the impact
parameter reaches the capture radius. However, higher-
order images beyond the main one cannot be typically
resolved, at least with today’s technological capabilities.

–0.18502

–0.18502

FIG. 3. Left plot: ΔP as a function of the variable β. Right plot: ΔP as a function of the variable v for three values of l.

FIG. 2. Left plot: Pt as a function of the variable β for three values of l. Right plot: Pt as a function of the variable v for three
values of l.

GRAVITATIONAL LENSING OF A SCHWARZSCHILD-LIKE … PHYS. REV. D 110, 024077 (2024)

024077-9



Instead of working with several individual images,
Bozza [31,51] describes the observation values in this
limiting case, in which only the first image is fully resolved
individually and the others are observed as a group. Using

this fact, we focus on the following observables: asymptotic
position approached by a set of images ϑ∞, the distance
between the first image (labeled ϑ1) and the others s, the
ratio between the flux of the first image and the flux of all
the other images rm, and in the time delay between one
photon with two loops from one photon with one loop
around the lens. These are given by

ϑ∞ ¼ bm
DOL

; ð62Þ

s ¼ ϑ1 − ϑ∞ ¼ ϑ∞e
b2−2π
b1 ; ð63Þ

rm ¼ e
2π
b1 ; ð64Þ

ΔT2;1¼½2π−2γ�bmþ2

ffiffiffiffiffiffi
Bm

Am

s ffiffiffiffiffiffi
bm
c1

s
e

b2
2b1



e−

πγ
b1 −e−

2πγ
b1

�
; ð65Þ

which are functions of the strong-field coefficients and, in
addition, for the time delay quantity also on the coefficient

FIG. 6. Graphical representation of the function Θcent as a
function of the variable v for three values of l.

FIG. 5. Left plot: ΔF as a function of the variable β for three values of l. Right plot: ΔF as a function of the variable v for three
values of l.

FIG. 4. Left plot: Ft as a function of the variable β for three values of l. Right plot: Ft as a function of the variable v for three values of l.
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γ which stands for the angular distance between the source
and the optical axis as seen from the lens. In real
observations, this angle should be of the order γ ∼D−1

OL.
In the panels of Fig. 8 we depict these four quantities as a
function of the parameter l. We see that the asymptotic

position of the images ϑ∞ and the delay time ΔT2;1 show a
linear decrease in l. The distance between the first image
and the other images s also decreases, while rm increases,
which means that the brightness of the first image becomes
more intense in relation to the others.

FIG. 8. From left to right and bottom to top: graphical representation of fϑ∞; s; rm;ΔT2;1g, as given by Eqs. (62)–(65), respectively, as
functions of l.

FIG. 7. Left plot: Δτ as a function of the variable β for three values of l. Right plot: Δτ as a function of the variable v for three
values of l.
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VI. CONCLUSION

In this article, we studied the gravitational lenses
generated by a black hole described by the Kalb-
Ramond (KR) solution, which is a Schwarzschild-type
geometry with spontaneous Lorentz symmetry breaking
implemented via a single new parameter l. This is the
second paper in a series dedicated to constraining such a
parameter using data from the Sagittarius A⋆ supermassive
black hole at the heart of our Milky Way Galaxy. In the first
such article, we discussed orbital precession and managed
to restrict l to the interval −0.18502 < l < 0.06093 [79],
while in this one we used these constraints to study
gravitational lensing in the same theory.
We first computed the exact expression of the deflection

angle α in the framework of the KR geometry for massive
particles at a finite distance of both observer and source
using elliptic integrals. This result can be easily converted
into the special cases of infinite distance when the inverse
of the distance radius turns to zero, uS → 0 and uR → 0,
and for light when v → 1. We next used Taylor series
expansions to obtain approximate expressions for the
deflection angle in the weak field regime at both infinite
and finite distances for massive particles with velocity v
and for massless particles (corresponding to v ¼ 1). The
expressions found this way naturally generalize their
Schwarzschild counterparts of the massless case (the latter
found when v ¼ 1 and l ¼ 0). In the strong field regime of
gravitational lensing we computed the deflection angle
of light using the formalism developed by Bozza in [31],
and found the coefficients of the logarithmic approxima-
tion (33) in Eqs. (50), (52), and (53). We found that the
parameter l, within the constraint above, tends to reduce α.
Based on the results above for the expressions of the

deflection angle, we used the experimental data of the
supermassive black hole at the center of our Galaxy,
Sgr A⋆, shown in Table I, and computed the observables
associated with the weak and strong field limits of the
gravitational lensing effect, using the formalism developed
in [31,42]. In the weak field regime, we studied the
behavior of the angular separation Pt (54), the difference
of the angular positions ΔP (55), the total flux Ft (56), the
difference of the fluxes ΔF (57), the center of gravity Θcent
(58), and the differential time delay Δτ (59). We arrived at
the conclusion that all these values can be measured with

the current experimental instruments, but that the difference
between the Kalb-Ramond solution and the Schwarzschild
solution for β < 0.1 is probably too small to be measured
with current technology, unless the source is practically
aligned with the lens. In the strong-field limit, we focused
on the asymptotic position given by a series of images ϑ∞
(62), the distance between the first image ϑ1 and all the
others s (63), the ratio between the flux of the first image
and the flux of all other images rm (64), and in the time
delay between a photon with two loops and a photon with
one loop around the lens ΔT2;1 (65). In principle, the only
observable that is within reach of actual measurements this
time is the asymptotic position of the images, which varies
between 23μ arcs and 28μ arcs.
The analysis carried out in this work only involves

gravitational lensing associated to a distance source to the
lens object, while we plan to further explore our setting in
order to explore gravitational lensing of KR geometry when
the main source of illumination is provided by the accretion
disk. This way, we shall explore several aspects of shadow
and photon ring images of these geometries and their
comparison with those images cast by usual Schwarzschild
black holes in looking for observational discriminators
between them that can be searched for using very long
baseline interferometry.
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