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In this paper, we investigate the gravitational lensing effect for the Schwarzschild-like black hole space-
time in the background of a Kalb-Ramond (KR) field proposed by Yang et al. [Phys. Rev. D 108, 124004
(2023)]. The solution is characterized by a single extra parameter /, which is associated to the Lorentz
symmetry breaking induced by the KR field. First, we calculate the exact deflection angle of massive and
massless particles for finite distances using elliptic integrals. Then we study this effect in the weak and
strong field regimes, discussing the correction of the KR parameter on the coefficients of the expansions in
both limits. We also find that increasing / decreases the deflection angle. Furthermore, we use the available
data from the Sagittarius A* object, which is believed to be a supermassive black hole at the center of our
Galaxy, to calculate relevant observables, such as the image position, luminosity, and delay time. The
values found could be potentially measured in the weak field regime, though for strong fields one would
have to wait for the next generation of interferometers.
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I. INTRODUCTION

More than a century after Einstein introduced the general
theory of relativity (GR), we find ourselves at the dawn of a
new epoch in gravitational physics, spurred by two land-
mark discoveries. In 2016, the LIGO and VIRGO collab-
orations detected the first signals of gravitational waves,
indicative of the merger of two black holes, which was later
expanded to include the coalescence of a black hole and a
neutron star [1,2]. On the other hand, in 2019, the Event
Horizon Telescope (EHT) collaboration unveiled the first-
ever image of super-heated plasma swirling around the
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supermassive object residing at the core of the M87 galaxy
[3—11], later extending their observations to Sagittarius A*
(Srg A*) [12-17], the active radio source at the nucleus of
our Milky Way Galaxy. Both observations affirm the
presence of supermassive black holes. Furthermore, the
forthcoming advancements in very long baseline interfer-
ometry, exemplified by projects like GRAVITY [18-23],
are poised to scrutinize GR in its strong field regime with
unprecedented precision. These developments will pave the
way for exploring alternative gravitational theories beyond
the tests presently carried out in the weak field limit [24].

These significant advancements stem from the paradigm
shift introduced by GR in contrast to the Newtonian
description of gravity, exemplified by its first observational
test, namely, the deflection of light. Initially observed
during the 1919 eclipse by the Eddington [25] and the
Sobral [26,27] expeditions, the bending of light rays by
massive bodies manifests as gravitational lensing, a hall-
mark of how gravity intertwines the fabric of space-time
with the motion of both massive and massless particles.

© 2024 American Physical Society
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Leveraging gravitational lensing, we have used stars, black
holes, entire galaxies, and even galaxy clusters as natural
telescopes, vastly expanding our capacity to observe
remote celestial objects [28]. This achievement owes
much to the pioneering work of Virbhadra and Ellis
[29], who elucidated the gravitational lensing produced
by a Schwarzschild black hole, introducing concepts such
as the surface where the deflection angle tends to infinity
and the phenomenon of multiple images. Generalizing their
findings to encompass any spherically symmetric metric,
this surface is termed the photon sphere [30], and plays a
key role in generating images of compact celestial bodies.
Indeed, Bozza [31] proved that such a divergence is
logarithmic and provided a method to compute observables
of interest for any static and spherically symmetric metric.

Various applications of this framework have been exten-
sively explored in the scientific literature. It has been used
in the context of supermassive black holes [32] and the
trajectories of stellar bodies orbiting them [33], as well as in
elucidating the deflection of light by astrophysical compact
objects [34-40], with overarching formalisms developed
for such purposes [41-43]. Recent applications of gravi-
tational lensing include observations of this phenomenon
around supermassive black holes [44-46], microlensing’s
collective amplification of multiple images for detecting
bodies that do not emit light, such as planets [47,48] or
black holes [49,50], its use as a distance estimator [51],
aiding in the study of binary star systems [52,53], and its
relevance in cosmological contexts [54-57]. For a com-
prehensive overview of these methods and others employ-
ing weak lensing, we refer the reader to [58,59]. A major
improvement of this formalism was introduced by Ishihara
et al. in [60] by extending the computation of the deflection
angle to finite distances, as illustrated in [61,62] with the
case of massive particles.

The main aim of the present work is to investigate
gravitational lensing for the solution presented in [63].
This solution, a Schwarzschild-type metric, incorporates a
spontaneous breaking of Lorentz symmetry through the
nonminimal coupling of the gravitational field with the Kalb-
Ramond field [64]. While Lorentz symmetry stands as a
cornerstone of physics, it is conjectured that under certain
conditions, such as in the Standard Model [65,66], quantum
gravity [67], and other scenarios [68—73], it may be violated.
Previous studies have investigated gravitational lensing
in theories featuring Lorentz-symmetry breaking, such as
in [61,74,75], and more recently, for alternative implemen-
tations of the Kalb-Ramond field [76-78]. In this work, we
aim to derive exact expressions for gravitational lensing
within this theory and apply them to both weak and strong
field regimes. Additionally, we will extend the formalism of
gravitational lensing to encompass finite distances to derive
the corresponding expressions in such scenarios.

This work is organized as follows: In Sec. II, we introduce
the Kalb-Ramond solution, review some of its properties,

and determine the exact deflection angle of massive particles
using elliptic integrals. In Sec. III, we obtain an approxi-
mation for the deflection angle that is valid for the weak
gravitational field regime, and in Sec. IV an approximation
for the strong field regime. In Sec. V, we use the coefficients
obtained in the previous two sections to compute the
observables associated with each limit. Finally, in Sec. VI
we draw our conclusions. We will use, unless otherwise
stated, geometrized units where G = ¢ = 1.

II. GRAVITATIONAL LENSING
IN KALB-RAMOND THEORY

A. Kalb-Ramond field

The Kalb-Rammond (KR) solution introduced in [63] is
a Schwarzschild-type solution that implements a breaking
in Lorentz symmetry. It is given by the following line
element:

1 2 1 2m\~!
ds® = — (—— —m> dr* + (1—1 ——m) dr? + r*dQ?,
- r
(1)

where m is the black hole mass and / is a dimensionless
parameter that characterizes the effect of Lorentz symmetry
violation arising from the nonzero vacuum expectation
value of the Kalb-Ramond (KR) field permeating space-
time. Solar System tests, such as the Shapiro time delay,
light deflection, and Mercury’s perihelion precession,
constrain the parameter / to the interval —6.1 x 10713 <
[ < 2.8 x 107! [63]. However, on a much larger scale of
mass as given by the observations of the Sgr A* radio
source, assumed to hide a supermassive black hole, at the
center of our own Milky Way Galaxy, the parameter /
would be constrained to the interval —0.18502 <[ <
0.06093 [79]. Table I shows the estimated mass and
distance from us of Sgr A* as measured by the Keck
collaboration.

B. Exact gravitational lensing in the KB theory

In this section, we obtain the exact analytical expression
for the deflection angle in terms of elliptic integrals. To this
end, let us start with the general static, spherically sym-
metric line element given by

ds* = —A(r)df* + B(r)dr* + C(r)dQ?, (2)

TABLE I. Sgr A* mass and distance as inferred by the Keck
collaboration.

Parameter values

D (kpc) Reference
7.953 £0.050 £ 0.032  [80]

Survey
Keck

M(x10°M )
3.951 =+ 0.047
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where dQ? = d6&” + sin*0d¢? is the two-spheres line
element. Though it is always possible to remove one of
the coefficients {A(r), B(r),C(r)} in favor of the other
two and end up with just two independent functions, for
the moment we shall work under this general form. The
static and spherical symmetry allows us to introduce two
conserved quantities of motion, namely, E = —A#*> and
L = r2¢, interpreted as the energy and angular momentum
per unit mass, respectively. Here, an overdot denotes a
derivative with respect to the affine parameter.

Under these conditions, the geodesic equation for a
massive particle of velocity » can be written as [61]

dr\? rt 1 1-0* 1

— | = - — |A(P)?|, (3
(@) =35m0 e~ (i +)a0r). @
where b = L/E is the impact parameter. In the context of
gravitational lensing, a particle will approach a certain
closest distance ry to the source before being deflected by

its gravitational influence. In terms of such a distance, the
impact parameter can be written as

C(ro)
A(ro)’

4)

which is the impact parameter of the trajectory defined in

Eq. (3) in terms of the distance of closest approach r.
For the metric (1), the geodesic equation (3) can be

suitably rewritten, using the change of variable r = 1/u as

(%) =26, (5)

where the function G(u) is explicitly given by

u? L 1 D 4 u?
2(l-1)m  b* \? 2(1—=1)m

[—v?
2b2(1 = 1)mv?*”

G(u) =u® +

+ (6)

For a source and an observer located at a finite distance, the
deflection angle was computed by Ishihara ef al. in [60] as

\/»</ \/_ uo\/i>+‘PR—‘PS. (7)

In this expression uy = 1/rg is the inverse of the distance of
closest approach, up = 1/rp and ug = 1/rg are the inverse
of the radius of the observer (R) and the source (S),
respectively, while the function ¥ is given by

W (u) = arcsin [buv/A(u)], (8)

where Wi = W(ug) and ¥ = ¥(ug) implement the finite
distance corrections. In particular, when both observer and
source are at infinity, u, = u;, — 0, then the well-known
expression of the deflection angle for infinite distances [31]

is recovered:
SR

For the KR solution (1) we compute the integrals
appearing in the finite-distance deflection angle (7) as
follows. We first assume the function G(u) to be written as

G(u) = (u = up)(u = up)(u = u3), (10)

where u, u, and u5 are the roots of a cubic polynomial, and
take u, = 1/rq. Such roots can be found by comparing the
expression with the actual one of the KR field, Eq. (6),
which after some algebra provides the relations

1
2m(1-1)’
1L
b

up +M3 + 1/7‘0 =
(11)

upuz +uy/ro+uz/ro =

which can be solved to provide the roots u; and us as

2(1 = V)mug + 1

u = —

\/ (1= 1)202(16(1 = Dm2u(v> = 1) + 6(1 — 1)mugv® — v?)

(- 1)02], (12)

4(1-1)’mv? (2(1=1)muy + 1)
~2(1=1)muy + 1 (I=1)%2(16(1 = V)m*ud(v* — 1) + 6(1 — 1)mugv* —
BT 0me |\ Q2 = Dmug + 1)

) _ (1- 1)#1, (13)

where the signs when taking the square roots have been chosen so as to have the roots ordered as u3 > u, > u;. This way,
both integrals appearing in Eq. (7) can be put under the form

du

(14)

\/(”— uy)(u —uy) (u — u3)’

024077-3
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with u3 > u, > u' > uy and u’ being any finite distance.
This integral can be carried out with the help of elliptic
functions as

2
Uz — U

where F(8,k?) is a incomplete first-order elliptic integral
and the constants take the expressions

5 — arcsin \/(”3 —uy)(up —u')

(up —uy)(us3 — M/>’

I(u') = F(5.K). (15)

U — Uy

K = (16)

us — uy

On the other hand, to find the finite-distance correction
integrals Wy and Wg we just need to write Eq. (8) explicitly
for the KR metric (1) as

7> , (17)

evaluated at the desired finite distances uy and ug.
Collecting all of the above expressions, we find the
deflection angle in the finite-distance regime as

2
a(r) = \/m(f?(é‘(uze),k) + F(8(us). k)

+ W, — s (18)

¥(u) = sin™! (buv

Obviously, in the infinite-distance limit, in which up =
ug — 0 the pieces in Wy and ¥g vanish, and we collect
the infinite-distance deflection angle (and the one of
Schwarzschild case if we set [ — 0). Alternatively, the
deflection angle can be rewritten in terms of the impact
parameter b. To this end, we note that Eq. (4) for the KR
field (1) becomes

b ro—lro
= _— 1
ro 20-1)m+ry (19)

which is an implicit equation for r, and can be solved as

cos B cos™! (— w> ] . (20

ro 1
05
b 3-31]

This facilitates the expression of a(ry(b)) by substituting
this equation into the aforementioned expressions. In the
|

subsequent analysis, we will divide our analysis into weak
and strong field regimes.

III. WEAK FIELD APPROXIMATION

In this section, we compute the deflection angle in the
weak field limit. In this regime, we assume that both the
source and the observer lie well outside from the lens and
the light rays are only slightly distorted by the lens. Thus,
both b and r( are far from the gravitational radius, i.e.,

G G
—m<<1, —n21<<1. (21)
roc bc

To start with, we define the lens equation as [29]
tan f = tan @ — D(tan 6 + tan(a — 6)), (22)

where f and 6 are the angular position of the source and the
lensed images, respectively, and

_ Dy

D= .
Dos

(23)

Dos = D;g+ Dy, is the distance between the observer
and the source, with D; g and D, the distance between the
lens and the source and the lens and the observer.

For a static, spherically symmetric metric of the general
form (2), the deflection angle, assuming both observer and
source to be located at infinity, can be computed using the
standard formula [28,81]

alry) = 2 /r0°°

We follow the approach introduced in [41] by which the
result of the above integral can be approximated by a series
of the following form:

a(b) = A, (%) + A, (%)2 + (9(%)3. (25)

Here, the deflection angle is written as a function of the
impact parameter b, since it is a gauge invariant variable
(while the closest approach distance has a gauge depend-
ence). The A; are coefficients to be calculated, which can be
simple numbers or depend on a parameter of the solution.
Using Eq. (3) for the KR metric (1), we are driven to solve
the integral

E —T. (24)

2dx

, (26)

alre) = /0 - \/ﬁ;%_(

=20 (&= 1) (- 28) + )

024077-4
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where h = m/ry and x = ry/r. We then use a Taylor series expansion for the variable % so the result becomes an expansion
in m/ry which subsequently is written in terms of m/b using yet another expansion in Eq. (20),

B 1 (I=-Dm 3(1=0"m*> 4(1-=10)*m?
ro_b{\/l—f b 2 b } @7

Thus, the deflection angle reads as in Eq. (25) with the coefficients

B —2(1-1)°? l(cy—2¢3) +c3 1(2l(c5—cy) +2cy=3c3) + ¢,
A"(zv+1><v<z—v—1>+1>[C'“'“"””*”Z( (1) )”3< (1o )] (28)

and

A 3(1=1)2(v(51 = v =5) + 1)((I = 1)*>0*(2log c; + log(l — 1)) = 2log ((I = 1)v + V1 —1c3))
T 492

o (09) e (M) (S5 2

s (1501 vey — 42Pvey + Po(8cy + 25¢3) + 21v(9¢3 — 4cy) — 81(cy + ¢3) — 16vc
o 2.2 ) (29)
(I-1)%v
and where we have introduced the constants
v 2
— , - 1-10)—1, = —D(lv+1). 30
=y a=yrui-) ¢ = /=1 + 1) (30)

These expressions recover the known ones of the Schwarzschild case when / = 0 and v = 1 [41]. Now, let us refine the
preceding result for the finite-distance scenario.

For a finite-distance case, using the expressions found so far and Taylor series expansion allows to integrate the deflection
angle integral (7) as

(1= Dm0 = 1) +21 = 1) = bo /o (B = 1) + Isinh ™" (242
a pr—

v} (b*u—1)+l
boyJ =

b(l = 1)I(—= 1) *mugv*(lug(v* — 1) + 1) N b(l1—1)(= 132 mugv?(lug(v* — 1) + 1)

(02 = 1)/2452 4 (12 = 1)/255 1

(I = Dm(*(b?ul — 1) + 21 = 1) — bo /2> (0% — 1) + Isinh™! ( b{“_s;)

+

v2(P2ui—1)+1
s
bv =l

2
+ sin~! (bq / —%uyﬂ) — sin™! (bq / —%usvz> + 0(%) . (31)

which provides the value 4m/b of the Schwarzschild geometry if [ = 0, v = 1, and ug = uxr = 0. We would like to point
out that, although this expression is valid for finite distances, it is nevertheless limited to situations in which both the source
and the observer are very far from the lens, i.e., in the asymptotically flat region.

IV. STRONG DEFLECTION ANGLE
A. General approach

In the previous section, we used a formalism that applies to the case where the closest approach distance is much larger as
compared to the mass of the lens (in our case, the black hole). We now turn our attention to the computation of the opposite
end of gravitational lensing, namely, the strong deflection regime. In such a regime, one considers the trajectories of

024077-5
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massless particles that get very close to the last unstable
orbit. This is the closest orbit any photon can get to the
black hole before getting captured by it to eventually be
swallowed up by its event horizon. The corresponding
radius x,, is given by the resolution of the following
equation [30,82]:

- (32)

and which defines the so-called photon sphere of the black
hole. A photon which backtracked from the observer’s
screen towards the photon sphere would formally have an
infinite deflection angle. The corresponding value of the
impact parameter b = b,, for the radius x,, is dubbed as the
critical impact parameter.

In order to compute the deflection angle in this strong
field regime, we follow the standard formalism developed
by Bozza [31]. In the limit b — b,,, the deflection angle «
can be approximated by a logarithmic expansion of the
form

a(b) = b, log (bi_ 1) +b,+0O(Mb-b,). (33)

m

Here b;, b,, together with b,,, are coefficients uniquely
depending on the background geometry, and thus this
approach nicely connects the geometrical properties with
the motion of light rays.

We will briefly discuss how to obtain the other two
coefficients. We emphasize that the starting point is the
same as before, namely to propose an approximate result
for the integral (7). First, we define the variables

_ Y=Y

L (34

where y, = A(xg). This leads to the expression of the
deflection angle via the integral

a(xg) = I(xo) — =,

I(x0) = /0 'R x0) (G xo) .

(35)
where the function R({, x) is given by
2y/By
R(¢, xo) :W(l = ¥0)Co. (36)

and it is regular for every value of { and x(. The function
f(&, xp) reads

1
Vyo—[(1=y0)¢ + 3] &

F(xo) = : (37)

and has a divergence for { — 0. All functions without the
subscript 0 are evaluated at x = A~ [(1 = yo)& + yo)-

We now approximate the function f (¢, x;) in this strong
field regime as

1

(€. x0) ~ fo(C. %) = =, (38)
VB A+ Bal?
with the constants
1—y
b= TA’O( 6)’0 - CoAf)), (39)
0
-y 2
pr = ﬁ [ZCO 6A/02 + (COCS - 2C62))’0A6
~ CoCoyoAg)- (40)

From Eq. (38) we can see that if #; # 0, the leading order of
divergence in (37) is ¢~1/2, while if #; = O the divergence
is ¢~!. In the first case f(, can be integrated and the result is
finite, while in the second case the integral diverges.
Returning to the original variables, we note that | vanishes
at the photon sphere location, xy = x,,.

The canonical approach to deal with this problem is to
split the integral (35) in two pieces as

I(x0) = Ip(xo) + Ir(xo), (41)
where
|
o) = [ ROxC R @)

is the divergent part and

1
Iixo) = [ até. ) (43)
is the regular one, with
98, x0) = R(C. x0)f (£, x0) = R(0,x,) f0(C. x0).  (44)

This way, one can compute the logarithmic approximation
to the deflection angle as [31]

R(0.x,). 2(1-y,
RO, 20 -3)
\/ﬂZm Amxm

1
+ / 9(Coxm)d =7+ Oy — x). (45)
0

where functions with index m are calculated in xy = x,,.

024077-6
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As stated in the previous section, it is convenient to write
this result in terms of the gauge invariant coordinate b. We
can expand Eq. (4) and write

Ym Gt )
b—by, = P =2 (xo = x,)°.  (46)

With the above equation we can write Eq. (45) in the form
of Eq. (33), where the coefficients b, and b, are

_ R(0,x,)
bl - 2\/’@ ’ (47)

2 2m
Ym

1
by = /0 9(C.x)dC + b log (48)

This formalism is also adjusted for finite distances, as the
deflection angle is still given by a logarithmic approxima-
tion as shown in [83]. It is also important to note that,
despite the strong field corrections, the source and the
observer are very far from the lens in the asymptotically flat
regime.

B. KR geometries

Let us now particularize the expressions above for the

and C(x) = x?. For this geometry, the photon sphere
condition (32) reads

(1=1), (49)

Xm =

\SRRON]

and by substituting this result into Eq. (4) we get
3 3/2
b,n:§\/§(1—1) 2, (50)

The functions R(,x,,), f(¢,x,,), and ¢(¢, x,,) in this
case become

R(C.x,) = 3(1 -ﬁ> (1=1),
2V3

f(gv xm) = B0l 130 s
Q=30 =7
2 v )
g(€7xln) = - . (51)

1 /(2=30)¢-3
EC -1

With the above expressions, one finds the strong deflection

KR geometry (1), namely, A(x) =75 —1, B(x) = A(x)™!,  coefficients in this KR case as
!
1
b = (52)
=
—m\ /=91 + 75+ 3 4+ 2log ((2 = 31)%) = 3llog (3 (2 — 31)%) + log(3)
b2 =
\/ -9 +15+3
~2log(2 - 31) — dtanh™! (/1-+1) + log(144)
N | (53)

1-1

In Fig. 1 (left) we depict the strong field deflection
coefficients b; and b,, as well as the critical impact
parameter b,,, as a function of the KR parameter /. We
see that b, and b,, decrease with increasing [/, while b;
remains practically constant. These coefficients allow to
compute the strong deflection angle, which is depicted in
Fig. 1 (right) as a function of the impact parameter, for two
values of / and compared to the Schwarzschild geometry.
We see that positive (negative) values of / bend space-time
more (less) than in the Schwarszschild case, a reflection of

the variation of the parameters b, and b,, with the KR
field 1.

V. OBSERVABLES

In this section, we calculate the observables associated
with gravitational lensing. Although only the positions of
the lens, the source, and the image, as well as the brightness
of the image, are apparent, we know that a single source
may yield multiple images in the strong field regime, yet

024077-7
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FIG. 1.

— 1=0.06093

— 1=-0.18502

2.0

Left plot: the coefficients of the logarithmic expansion by, b, and the critical impact parameter b,, as a function of the

parameter /. Right plot: the deflection angle a as a function of the impact parameter b for three values of the parameter /.

not all of them will be observable. Likewise, the weak field
limit has its associated observables. Therefore, we will split
our analysis into each regime.

A. Observables in the weak field regime

We first compute the observables of the weak field
regime using the coefficients A and A, derived in Egs. (28)
and (29). Such observables are the angular separation P,,
the difference of angular positions AP, the total flux F/, the
difference of fluxes AF, the centroid @, and the differ-
ential time delay Az of the images. These coefficients are
defined in [41] as

A0
P,=0" +6 = /A0 + +%E€+ 02, (54)

1

A0g|p|

P=0"-0=|f|-—F——c+0(e)?, (55)
AjA O +
F.=Ft +F = Fsrc(Al‘gE2 +2ﬁ2) (56)
[ - - b
2|81\ A0 + B
AF.. .05
AF =Ft—F =F,. — 2wt e, (57)
2(A,0% + )Y
OrFt — 9 F~ 3A,0:2 + 4%
®cent = = |ﬂ|( 1 2E ks f )7 (58)
F, 2A,05" + 4p
Dy D
Ar= M( 1B/ A0 +
cD
VA0 + B A0
42 AGEzl a2l |ﬁ| 20k ).
4 VA0 + B~ |p] A
(59)

where the angular Einstein radius is defined as

4GmD 4mD
%e=\lap b-=ADop (60
¢“DorDog Do Dos

and the dimensionless perturbation parameter is given by

tan_l (m/DOL) - G_E

O 4D’ (61)

€ =

The e parameter considered in [41] is a new expansion
parameter (instead of m/b), and is assumed to be a small
quantity. Indeed, we consider the radio source at the
center of our Galaxy, Sagittarius A*, which is believed
to be a supermassive black hole, as a practical example,
where Table I presents the estimated data of its mass
and distance. Considering only nominal values, we have
Or = 0.022(D;5)"/?arcs and € = 1.9 x 107 x (D)2
Indeed, ¢ will always be small as long as we confine
ourselves to the weak field constraints, i.e., both observer
and source are far away from the lens, where space-time is
asymptotically flat. The distance from the source to the Dy ¢
lens is typically of the order of 1 parsec, so we shall adopt
this value. Taking these values we can conclude that the
observables lie within the limits of the precision of today’s
measuring instruments [42]. However, we do not know
whether the difference in the observables between the
Schwarzschild and the Kalb-Ramond solutions is also
within this measurement capacity. To investigate this issue,
in the figures given below, we assume three curves with the
values for the / parameter (determined in [79]), correspond-
ing to [ =0 (dashed), [ = —0.18502 (green), and [ =
0.06093 (red) in the plots. In addition, the observed values
also depend on the dimensionless parameter f. In order to
generate our results we take values of 0 < < 0.1, arange
in which we already find significant variations.

In Fig. 2 we depict P, as a function of f for a fixed
velocity v = 0.9, finding a small difference between the
curves and that as [ increases, the angular separation
decreases; P, as a function of velocity v for = 0.1,

024077-8



GRAVITATIONAL LENSING OF A SCHWARZSCHILD-LIKE ...

PHYS. REV. D 110, 024077 (2024)

110 -

1=0.6093
e ]=-0.18502

80 |

P,(mas)

-
-
-----

P,(fnés)

T

135+ 1
ol T CTTT 1=0

E 1=0.6093
125 1

[ —— 1=-0.18502
120 F
15 B
110 - 1
105 - ]
100 |- 7]

L L L L L L
0.2 04 0.6 0.8 1.0

FIG. 2. Left plot: P, as a function of the variable § for three values of /. Right plot: P, as a function of the variable v for three

values of /.
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FIG. 3. Left plot: AP as a function of the variable f. Right

finding that the difference between the curves only occurs
from v ~ 0.6.

Figure 3 shows AP as a function of § and v, respectively.
We see that the angular difference is smaller compared to
the two extreme [ values and does not change with the
variation of velocity.

The total flux F, is shown in Fig. 4. This quantity is
related to the magnification as each flux follows
F; = |u;|F g, where Fg is the flux from the source. We
see that for f close to zero, the total flux tends to infinity
and approaches the flux from the source as ff increases. We
also see that the variation of velocity F, does not change,
except for v ~ 2/3, and the values of [ differ only slightly.

The difference in flux AF is shown in Fig. 5, and has
similar properties to the total flux. The only change is that
AF is higher for [ = 0.6093 and lower for / = —0.18502,
1.e., the reverse occurs.

In Fig. 6 we show the centroid @, as a function of the
speed v. We see that this observable is higher as / decreases,
and the difference between the three [ curves becomes
clearer for v > 0.5.

135
130  ====- 1=0
i 120.6093
125 1
r ——— 1=-0.18502 ]
1@ L 1
g 120 - ]
& 1s- ]
1a
1 110 - ]
105 J 1
100 - =T e e ]
Il L Il L Il
02 0.4 0.6 0.8 1.0

plot: AP as a function of the variable v for three values of [.

Figure 7 shows the time delay Ar. In the left plot we see
that it gets higher with increasing . However, the distance
between the [ curves is in the order of milliseconds. In
addition, Az is larger for the smallest value of /. In the right
plot we see that the time delay increases until v ~ 2/3 and
then decreases.

As we have already said, all of the values we find here for
these observables are theoretically measurable with today’s
instruments [42]. However, disentangling the differences
between the Schwarzschild and the Kalb-Rammond sol-
utions is probably beyond the their reach. Regarding this,
we also point out the difficulty in finding a source that is
aligned with the lens.

B. Observables in the strong field regime

Within the strong gravitational lensing regime, one
expects multiples images to be formed when the impact
parameter reaches the capture radius. However, higher-
order images beyond the main one cannot be typically
resolved, at least with today’s technological capabilities.
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FIG. 6. Graphical representation of the function O, as a
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Instead of working with several individual images,
Bozza [31,51] describes the observation values in this
limiting case, in which only the first image is fully resolved
individually and the others are observed as a group. Using

Ft/FSI'C

2.0 L —
T meea- 1=0
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1.6 - -
|
| i
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Right plot: F, as a function of the variable v for three values of /.
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Left plot: AF as a function of the variable f for three values of /. Right plot: AF as a function of the variable » for three

this fact, we focus on the following observables: asymptotic
position approached by a set of images 9, the distance
between the first image (labeled 9;) and the others s, the
ratio between the flux of the first image and the flux of all
the other images r,,, and in the time delay between one
photon with two loops from one photon with one loop
around the lens. These are given by

b
9, = -2, (62)
Dor
by=2r
s=9, -8, =€ i, (63)
2
Fy = e (64)

B, |b, by w 2w
AT, = [22-2y]b,, +2, /A_m’ |2 o (e e 21’17), (65)
m\ €1

which are functions of the strong-field coefficients and, in
addition, for the time delay quantity also on the coefficient
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FIG. 8. From left to right and bottom to top: graphical representation of {8, s, r,,, AT | }, as given by Egs. (62)—(65), respectively, as

functions of /.

y which stands for the angular distance between the source
and the optical axis as seen from the lens. In real
observations, this angle should be of the order y ~ Dy}
In the panels of Fig. 8 we depict these four quantities as a
function of the parameter /. We see that the asymptotic

position of the images 9, and the delay time AT, ; show a
linear decrease in /. The distance between the first image
and the other images s also decreases, while r,, increases,
which means that the brightness of the first image becomes
more intense in relation to the others.
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VI. CONCLUSION

In this article, we studied the gravitational lenses
generated by a black hole described by the Kalb-
Ramond (KR) solution, which is a Schwarzschild-type
geometry with spontaneous Lorentz symmetry breaking
implemented via a single new parameter [ This is the
second paper in a series dedicated to constraining such a
parameter using data from the Sagittarius A* supermassive
black hole at the heart of our Milky Way Galaxy. In the first
such article, we discussed orbital precession and managed
to restrict [ to the interval —0.18502 < [ < 0.06093 [79],
while in this one we used these constraints to study
gravitational lensing in the same theory.

We first computed the exact expression of the deflection
angle « in the framework of the KR geometry for massive
particles at a finite distance of both observer and source
using elliptic integrals. This result can be easily converted
into the special cases of infinite distance when the inverse
of the distance radius turns to zero, ug — 0 and up — 0,
and for light when » — 1. We next used Taylor series
expansions to obtain approximate expressions for the
deflection angle in the weak field regime at both infinite
and finite distances for massive particles with velocity v
and for massless particles (corresponding to » = 1). The
expressions found this way naturally generalize their
Schwarzschild counterparts of the massless case (the latter
found when v = 1 and [/ = 0). In the strong field regime of
gravitational lensing we computed the deflection angle
of light using the formalism developed by Bozza in [31],
and found the coefficients of the logarithmic approxima-
tion (33) in Egs. (50), (52), and (53). We found that the
parameter /, within the constraint above, tends to reduce a.

Based on the results above for the expressions of the
deflection angle, we used the experimental data of the
supermassive black hole at the center of our Galaxy,
Sgr A*, shown in Table I, and computed the observables
associated with the weak and strong field limits of the
gravitational lensing effect, using the formalism developed
in [31,42]. In the weak field regime, we studied the
behavior of the angular separation P, (54), the difference
of the angular positions AP (55), the total flux F, (56), the
difference of the fluxes AF (57), the center of gravity O,
(58), and the differential time delay Az (59). We arrived at
the conclusion that all these values can be measured with

the current experimental instruments, but that the difference
between the Kalb-Ramond solution and the Schwarzschild
solution for # < 0.1 is probably too small to be measured
with current technology, unless the source is practically
aligned with the lens. In the strong-field limit, we focused
on the asymptotic position given by a series of images 9,
(62), the distance between the first image &, and all the
others s (63), the ratio between the flux of the first image
and the flux of all other images r,, (64), and in the time
delay between a photon with two loops and a photon with
one loop around the lens AT, (65). In principle, the only
observable that is within reach of actual measurements this
time is the asymptotic position of the images, which varies
between 23y arcs and 28y arcs.

The analysis carried out in this work only involves
gravitational lensing associated to a distance source to the
lens object, while we plan to further explore our setting in
order to explore gravitational lensing of KR geometry when
the main source of illumination is provided by the accretion
disk. This way, we shall explore several aspects of shadow
and photon ring images of these geometries and their
comparison with those images cast by usual Schwarzschild
black holes in looking for observational discriminators
between them that can be searched for using very long
baseline interferometry.
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