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Gravitational-wave (GW) observations of neutron star-black hole (NSBH) mergers are sensitive to the
nuclear equation of state (EOS). We present a new methodology for EOS inference with nonparametric
Gaussian process priors, enabling direct constraints on the pressure at specific densities and the length-scale
of correlations on the EOS. Using realistic simulations of NSBH mergers, incorporating both GW and
electromagnetic selection to ensure sample purity, we find that a GW detector network operating at O5
sensitivities will constrain the radius of a 1.4M⊙ NS and the maximum NS mass with 1.6% and 13%
precision, respectively. With the same sample, the projected constraint on the length-scale of correlations in
the EOS is ≥ 3.2 MeV fm−3. These results demonstrate strong potential for insights into the nuclear EOS
from NSBH systems, provided they are robustly identified.
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I. INTRODUCTION

A key aim of modern physics is to understand the
behavior of nuclear matter at high densities, and in
particular the nuclear equation of state (EOS). However,
constraints above the nuclear saturation density are cur-
rently beyond the realm of terrestrial experiments [1,2]. For
the moment, such progress can only come from observa-
tions of extreme astrophysical systems, such as neutron
stars (NSs) [3,4].
There are several distinct astronomical probes of NS

physics, including electromagnetic (EM) observations in
the radio [5,6] and x rays, such as those being made by the
NS Interior Composition Explorer mission [7], as well as
gravitational wave (GW) observations. The latter possibil-
ity was first demonstrated by the multimessenger GW and
EM observations of the binary neutron star (BNS) merger
GW170817, which directly measured the NS tidal deform-
ability [8–11]. These constraints will improve as more BNS
mergers are identified and characterized, with projected
constraints on the radius of a 1.4M⊙ NS on the order of a

few percent with gravitational-wave detectors operating at
design sensitivity [12–16]. However, the expected rate of
new discoveries is highly uncertain [17].
The GW emissions produced by neutron star-black hole

(NSBH) mergers are also sensitive to the NS tidal deform-
ability [18,19], providing a distinct way of measuring both
the high-density nuclear EOS and the BH and NS mass and
spin distributions [20]. Importantly, NSBH systems have
higher total masses than BNSs and so produce stronger
GW signals that are detectable at considerably greater
distances. And, while the rate of NSBH mergers is also
highly uncertain [17], it is possible that they could come to
dominate over BNS mergers in terms of detected numbers.
If so, NSBH mergers could potentially provide the best
constraints on the high-density nuclear EOS, a possibility
we explore here.
We begin by describing our simulations, including the

combined EM and GW selection of multimessenger events.
We then outline the analysis framework used to infer the
BH and NS mass distributions and the nuclear EOS from
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the simulated samples. We present a new methodology that
is also able to provide constraints on the magnitude, length
scale, and location in energy density of structure in the
EOS. We conclude by discussing improvements in the
analysis chain that would be required in order to obtain
reliable constraints from real multimessenger observations
of NSBH mergers.

II. SIMULATIONS

We start by defining a population model of NSBH
systems motivated both by stellar population synthesis
simulations [21] and current astrophysical constraints [17].
We assume a constant (nonevolving) NSBH merger rate
of Γ ¼ 32 yr−1Gpc−3, which is median value obtained
from the third LVK GW catalog using a binned Gaussian
process model [17]. The NSBH mergers are distributed
uniformly in comoving volume and isotropically over
the sky. We assume truncated normal mass distributions:
PðmBH=M⊙Þ ¼ N ðμ ¼ 15; σ ¼ 10; a ¼ 2.42; b ¼ 55Þ and
PðmNS=M⊙Þ ¼N ðμ¼ 1.5;σ ¼ 0.3; a¼ 1.1; b¼ 2.1Þ. We
adopt the DD2 EOS [22] and use the maximum implied NS
mass as the lower limit for the BH mass distribution.
However, we restrict the NS mass distribution to be
truncated at a lower mass as these quantities likely differ
due to NSBH formation processes [23]. For the distribution
of BH and NS spins, which we assume to be aligned, we
adopt PðχBHÞ ¼ Betaðα ¼ 0.1; β ¼ 0.5Þ and PðaNSÞ ¼
Uniformð0; 0.05Þ, respectively. A beta distribution is con-
sistent [23] with the predictions from population synthesis
simulations when postprocessed using the prescription
from Ref. [24]. We have independently confirmed this
finding using the same approach, verifying that postpro-
cessing simulations from Ref. [21] produces an asymmet-
rical BH spin distribution consistent with our beta
distribution prior. We set the BH tidal deformability to
ΛBH ¼ 0; ΛNS is set by the component masses and the
DD2 EOS.
We simulate observations for a five-detector GWnetwork

at O5 sensitivities, expected to operate from 2027 [25].
This network consists of two LIGO Aþ [26], Advanced
Virgo [27], KAGRA [28], and LIGO India [25,29], for
which sensitivity curves are available.1 We assume an
observing time of tobs ¼ 5 yrs with a duty cycle of
Δobs ¼ 0.5.
We begin by drawing the total number of mergers from a

Poisson distribution with mean λ ¼ 4π=3ΔobstobsD3
L;maxΓ,

where DL;max ¼ 3;500 Mpc is the highest luminosity dis-
tance at which the most massive NSBH merger could be
detected in O5 for our population, consistent with horizon
distance measurements of NSBH mergers [30]. The

realization we analyze has 14,608 mergers within a sphere
of radius DL;max over the five-year observing period.
For eachmerger, wegeneratemock data by creating aGW

signal with the SEOBNRv4_ROM_NRTidalv2_NSBH
waveform [31], and injecting the signal into the five-detector
GW network described above, creating at most a 160 s
signal for our simulated events for a frequency range of
20–2048Hz. For each event, we calculate the matched-filter
networkGWsignal-to-noise ratio (SNR), ρMF, considering a
signal detectable in GWs if ρMF ≥ 12. The GW selection
threshold is passed by 1,392 of the 14,608 simulated
mergers. We also calculate the mass disrupted during the
merger following Refs. [32,33], with the relations for
calculating the disk mass in NSBH mergers calibrated to
numerical simulations performed with the DD2 EOS,
assuming 30% of the disk is ejected. Models of kilonova
emission from NSBH mergers are not yet well understood
as, e.g., there is significant uncertainty about the electron
fraction of the ejecta and the quantity of dynamical and disk-
wind ejecta. In view of these uncertainties, we assume any
merger with disk ejecta of ≳0.01M⊙ will produce a
detectable kilonova within 500 Mpc and use this reference
mass and distance to build an EM selection function. The
choice of reference mass and distance is consistent with
projections for the detectability of kilonovae across a range
of numerical simulations of different kilonovae properties in
optical surveys such as the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time [34,35]. Of our GW-
selected mergers, 95 events have disk ejecta masses
Mej ≥ 0.01M⊙; then applying the secondary distance selec-
tion criterion leaves a final sample of 47 events that passGW
and EM selection (from the 14,608 initially simulated). Of
these, there are 37 multi-messenger events with disk masses
≳0.1M⊙, comparable to the disk mass inferred for
GW170817 [36] and likely sufficient to launch a relativistic
jet which could be observable as a gamma-ray burst with a
broadband afterglow [37–40].
We include EM selection as EM emission provides

definitive evidence of disruption, allowing us to be con-
fident that a system is an NSBH instead of a BBH, ruling
out EM emission from a BNS, and therefore yielding a
tighter constraint on the tidal deformability. (EM plays no
other role in our analysis beyond ensuring the purity of the
NSBH sample.) For our full population, we expect 7% of
mergers to produce EM emission in the form of a
relativistic jet and/or a kilonova, consistent with current
constraints [40,41]. While our EM selection treatment does
not account for the diversity of brightness and color of
different mergers [39,42], viewing-angle dependence [43],
or the effect of survey cadences [42,44], and is only
calibrated to simulations performed with the DD2 EOS,2

we expect our threshold on a reference distance and
1Sensitivity curves from dcc.ligo.org/LIGO-T2000012/public.

For KAGRA and advanced Virgo we use the optimistic, 128 Mpc
and “high” range sensitivity curves, respectively.

2See Henkel et al. [45] for discussions on the agreement
between different ejecta models).
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ejecta mass to capture the critical features of the selection
function.
We present the impact of GW and EM selection on our

population in Fig. 1. The predominant effect of the GW
selection is to favor nearby mergers and face-on events,
both of which produce a stronger GW signal. By contrast,
the most significant impact of EM selection is on lumi-
nosity distance, mass ratio, chirp mass, and BH spin, with
lower chirp masses and higher spins leading to more
favorable conditions for disrupting the NS in order to
produce a detectable EM transient; such events must also be
sufficiently nearby to be detectable.

III. ANALYSIS METHODS

We use a Bayesian hierarchical model to constrain the
NS and BH mass functions and the NS EOS, analyzing
these jointly to avoid biases that can arise from estimating
each individually [46]. The posterior distribution of these
population parameters, Ω, is obtained by also inferring the
object-level parameters of the N detected mergers, θ1∶N ,
and then marginalizing over these (along with any pop-
ulation parameters that are not of direct interest, such as the
overall rate normalization). Assuming an uninformative
prior on the normalization, the marginal posterior on the
other population parameters can be written as [47,48]

PðΩjd1∶N; IÞ ∝ PðΩjIÞ
Q

N
i¼1

R
dθiPðθijΩÞPðdijθiÞ
½PðSjΩÞ�N ; ð1Þ

where PðΩjIÞ is the population-level prior, given our our
prior background information I, PðSjΩÞ is the (EM and
GW) selection probability averaged over the population,
and d1∶N is the GW data for the N detected mergers. We
approximate the selection and marginalization integrals
using a two-step approach: we first perform individual
object-level inference using reference values of the global
parameters, Ω0; and we then use importance resampling to
combine these results to constrain Ω.

For each event we take the object-level parameters, θ to
be the standard aligned spin parameter set [49]. For the ith
selected event (with i∈ f1; 2;…; Ng) we sample the
posterior distribution Pðθijdi;Ω0Þ using the ensemble
sampler EMCEE [50] as implemented in BILBY [49,51].
We explored DYNESTY [52], BILBY_MCMC [53], and

NESSAI [54] samplers through BILBY for parameter estima-
tion on individual events across our sample. Although
these samplers have been tested for various GW data
analysis tasks, our stringent setting of a five-detector
network operating at O5 sensitivities in combination with
a relatively expensive, effective one-body waveform,
SEOBNRv4_ROM_NRTidalv2_NSBH proved challeng-
ing. We encountered consistent problems with parameter
recovery across the population as well as issues with
convergence, coupled with high computational costs for
the analysis. Furthermore, techniques such as relative
binning [55], which have been demonstrated to dramati-
cally reduce wall-clock time of parameter estimation on
single events, also failed to provide converged results
across our sample, which we tracked down to inadequacy
of the likelihood approximations involved. To bypass these
issues, we used emcee, starting the ensemble walkers
within a narrow volume around each event’s true param-
eters. This setting ensured convergence across the popu-
lation and reduced the wall-clock time of the analysis. We
ensured that our results with emcee are robust by perform-
ing multiple runs for each event and that we obtained
consistent posteriors for events without convergence issues
obtained by our analysis with different samplers. While this
approach is sufficient for the purpose of this simulation
study, our experience highlights the upgrades to the
analysis framework, particularly related to sampling, that
will be required for upcoming population studies with next-
generation GW data.
The standard reference model used in GW inference

assumes an EOS-agnostic uniform prior on the two tidal
component deformability, i.e., PðΛjΩ0Þ ¼ Uniform ×
ð0; 5000Þ, ignoring information provided by the mass ratio

FIG. 1. Distributions of a subset of parameters for our simulated population. In particular, luminosity distance DL, chirp mass M,
mass ratio q ¼ mBH=mNS, and the black hole spin χBH of the binary. The black curves show the full simulated population, the blue
curves show the GW selected population, and the green histograms show the multimessenger (EMþ GW) selected population.
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of the binary or that all EOS forms predict that ΛðmÞ is a
smoothly decreasing function of m. Our chosen waveform
model, SEOBNRv4_ROM_NRTidalv2_NSBH, can only
be evaluated for Λ1 ¼ 0 [31], i.e., implicitly assuming that
the primary component is known to be a BH, something we
assume can be ensured through coincident EMobservations.
This assumption could be relaxed by choosing a BNS
waveform and allowing the data to dictate the measurement,
but such waveforms are not calibrated to NSBH simulations
and are not designed to work for the range of mass ratios of
such NSBH systems [56], which could bias results. We
therefore use the SEOBNRv4_ROM_NRTidalv2_NSBH
waveform as it is built on the effective-one-body formalism
to model the two-body problem in general relativity and
calibrated to numerical NSBH simulations [31]. The result-
ing posteriors in NS mass and tidal deformability for all 47
detected multimessenger events are shown in the Appendix.
We do not fix any parameter from the standard GWaligned
spin parameter set apart fromΛ1 to the true input value. Each
object-level inference analysis takes up to 3 days on an Intel
Xeon 6140 CPU.
The individual single-event posteriors for all events can

now be combined. We first construct a continuous repre-
sentation of our single event likelihoods using Gaussian
mixture models with three components. This requires trans-
forming the original posterior samples into a better-suited
domain [46]. The result is an approximate likelihood
P̃ðdijθ;ΩÞ valid for reasonable parameter values for each
of the N mergers. The selection probability is estimated by
simulating K ≫ N mergers under the reference model Ω0

and recording the parameters θ1∶J for the J ≤ K mergers
which satisfy both the EM and GW selection. The margin-
alized posterior in Eq. (1) can then be approximated as

PðΩjd1∶N; IÞ ∝ PðΩjIÞ
Q

N
i¼1 1=S

P
S
s¼1 P̃ðdijθsÞ

½1=KP
J
j¼1 PðθjjΩÞ=PðθjjΩ0Þ�N

;

ð2Þ

where θ1∶S are S draws from the prior PðθjΩÞ. We find
S ¼ 20; 000 samples sufficient for convergence.
Our population model parameters, Ω, describe the mass

distributions of BHs and NSs and the nuclear EOS. For the
former, we use truncated normal distributions with the
same parameters used in our simulations. The prior dis-
tributions for these parameters are listed in Table I.
The prior for the EOS must be chosen more carefully,

being defined on the space of (monotonically increasing)
functions pðϵÞ which encode the dependence of pressure,
p, on energy density, ϵ. For numerical calculations
we work with the logarithms of these two quantities,
expressing ϵ in units of MeV fm−3 and p in units of
dyne cm−2. Simply adopting common flexible parametri-
zations such as a piecewise polytrope [57] or spectral
decomposition [58] can, however, introduce undesirable

implicit correlations [59,60]. We hence build a more flexible
Gaussian process (GP) prior for the (log) EOS [60–62]. This
is defined by n nodes, log10ðϵ1∶nÞ and log10ðp1∶nÞ, indexed
by k∈ f1; 2;…; Ng. This approach is strictly valid only in
then → ∞ limit, but for the nuclear EOSwe find thatn ¼ 24
is sufficient for practical purposes. The positions of the
nodes in log energy density, log10ðϵ1∶nÞ, are shown in Fig. 3.
For the prior mean of the (log) pressure of the kth node
we set log10ðp̄kÞ ¼ log10½pDD2ðϵkÞ� as given by the DD2
EOS. Below an energy density of 19.7 MeV fm−3, we force
theGP tomatchDD2, i.e., conditioning theGPprior tomatch
the better-known low density physics of the NS crust [22]
(as done in other EOS analyses [62]). To encode the
correlations between the pressure at different nodes we
adopt a squared exponential GP kernel of the form Ck;k0 ¼
k1 expf−½log10ðϵkÞ − log10ðϵk0 Þ�2=ð2k22Þg, where the ampli-
tude, k1, and scale, k2, become global nuisance parameters
which are constrained by the node-to-node covariance of the
simulated EOS.
We sample an EOS from this prior distribution by using a

three step process. We first draw log10ðpÞ ¼ log10ðp1∶nÞ
from an n-dimensional multivariate normal distribution3

with mean log10ðp̄Þ ¼ log10ðp̄1∶nÞ and covariance matrix
C ¼ C1∶n;1∶n. We then form a full EOS by using GP
interpolation to transform the log10½pðϵÞ� at n ¼ 24 nodes
onto a denser array of 2000 nodes. This can produce
models that are acausal or thermodynamically unstable [3];
these are removed using rejection sampling. For the implied
pðϵÞ, we solve the tidal and Tolman-Oppenheimer-Volkoff
equations to obtainΛðmÞ, which is used in the evaluation of
the Monte Carlo integral in the likelihood in Eq. (2).
With this EOS parameterization, we have a total of 34

population parameters: the parameters of the BH and NS
mass distributions; the GP kernel hyperparameters; and the

TABLE I. Population parameters and their prior distributions.

Definition Parameter Prior

BH mass function mean μBH=M⊙ U(8, 20)
BH mass function width σBH=M⊙ U(4, 20)
BH mass function minimum aBH=M⊙ U(2, 4)
BH mass function maximum bBH=M⊙ U(30, 70)
NS mass function mean μNS=M⊙ U(1.3, 2.0)
NS mass function width σNS=M⊙ U(0.01, 0.6)
NS mass function minimum aNS=M⊙ U(0.9, 1.4)
NS mass function maximum bNS=M⊙ U(1.9, 2.5)
EOS GP amplitude logðk1Þ U(0.1, 0.8)
EOS GP scale k2 U(0.2, 1.0)

3A simple way of generating a random draw x from a
multivariate normal distribution of mean μ and covariance C
is to (i) generate a random vector n with elements drawn from a
unit normal and then (ii) set x ¼ μþLn, where L is the
Cholesky decomposition of C (i.e., a lower triangular matrix
such that LLT ¼ C).
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pressure at the n ¼ 24 EOS nodes. In Figs. 2 and 3, we
show random draws from our full prior for different NS and
BH properties. Our priors are summarized in Table I. We
obtain the posterior on these hyperparameters using the
likelihood in Eq. (2), sampling from PðΩjd1∶N; IÞ using the
nested sampler PYMULTINEST [63,64] implemented in
BILBY [49,51]. We evaluate the likelihood on a GPU using
CUPY to reduce the computational cost. The analysis steps
from transforming the individual event posteriors, building
a Gaussian mixture model density estimate, to producing
posteriors on the hyperparameters takes Oð1 dayÞ on a
NVIDIA P100 GPU, limited primarily by the need to solve
the Tolman-Oppenheimer-Volkoff equations at every iter-
ation of the likelihood.

IV. RESULTS

Following the methodology outlined above, we present
the results from our electromagnetic-gravitational waves-
selected population of NSBH mergers. Our simulation
recovers the input values for all parameters, indicating
no bias in our analysis and that we have correctly accounted
for selection effects.

In Figs. 2 and 3, we show the prior and posterior
predictive distributions for the BH mass distribution
PðmBHÞ, the NS mass distribution PðmNSÞ, the NS
EOS [i.e., pðϵÞ], and the mass-radius and the mass-Λ
curves. We again see that the true input of the simulation
is recovered, indicating no bias in our analysis and correct
accounting of selection effects in this projected represen-
tation of parameters. We measure the BH and NS mass
distribution means with a precision of 46% and 27%,
respectively, at the 95% credible interval. However, the
high mass cutoff in the NS mass distribution and low-mass
cutoff in the BH mass distribution are not constrained
well, with significant overlap suggesting that a sample of
this size will not be able to verify the existence of a mass
gap between NSs and BHs, consistent with previous
results [65,66].
To quantify the constraining power on the nuclear EOS,

we can consider the constraints on the tidal deformability
and radius of a 1.4M⊙ NS as 697.58þ41.17

−27.17 (765.93þ141.43
−71.70 )

and 13.18� 0.11 km (13.41þ0.39
−0.34 km) for a 68% (95%)

credible interval, i.e., a precision of 10% and 1.6% for a
68% credible interval, respectively. Similarly, we can also
constrain the maximum NS mass to be 2.50þ0.19

−0.14M⊙ (68%
credible interval), i.e., a relative precision of 13%. The
precision of each measurement is comparable to other state-
of-the-art methods to constrain the behaviour of nuclear
matter [7,62,67], demonstrating the importance of con-
straints provided by observations of NSBHs.
Further, a significant benefit of our new GP-based EOS

inference methodology is that it directly constrains the
pressure at specific energy densities (the GP nodes) and
the size and length scale parameters of correlations in
pðϵ). Our simulations imply that the length scale of
correlations (i.e., the smoothness) in pðϵÞ can be con-
strained to be ≥ 3.2 MeV fm−3 with 90% confidence, an
important consideration for determining the size and
location of putative phase transitions.

FIG. 2. Constraints on the BH mass distribution (left) and the
NS mass distribution (right). The gray and red curves are draws
from the prior and posterior, respectively. The black curve is the
true input of our simulation.

FIG. 3. Constraints on (from left to right) the nuclear EOS, the NS mass-radius relationship and and the mass-Λ relationship. The gray
and red curves are draws from the prior and posterior, respectively. The black curve is the true input of our simulation. The gray vertical
lines indicate the locations of our 24 nodes.
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Given the local rate of NSBH mergers is highly
uncertain [17], we also perform our analysis assuming
a pessimistic rate of 8 yr−1Gpc−3, the lowest rate estimate
from the binned Gaussian process model [17]. We redo
our full analysis using only a random sample of 11 events
from our multimessenger selected population. This reduced
sample yields constraints on the tidal deformability and
radius of a 1.4M⊙ NS of 845.72þ218.95

−127.24 and 13.61þ0.55
−0.38 km

(68% credible intervals), respectively. This indicates that the
precision from a quarter of the population on the radius and
tidal deformability of a 1.4M⊙ will be approximately four
times worse. However, the EOS constraints are dominated
by the high SNR events [12]; so while the scaling of
constraints presented above is in a typical scenario, there
is always the possibility of a fortuitous high SNR event that
allows reaching a specific constraint more quickly.

V. CONCLUSIONS

We have presented the constraints on the BH and NS
mass distributions and the nuclear EOS that could be
provided by a sample of multimessenger NSBH events
from five years of the Aþ era GW observatories operating
in tandem with large-scale optical surveys like Legacy
Survey of Space and Time. Our EOS constraints come
only from the GW data, with EM selection only serving
to ensure a pure NSBH sample. Folding in the EOS
dependence into the modeling of the EM counterpart
could further improve constraints from such mergers [38].
Our EOS inference methodology also offers the
ability to directly constrain structure in the EOS, an
important consideration for probing the existence of
phase transitions.
The precision of EOS constraints provided by such a

sample of NSBH mergers are comparable to projected
constraints from BNS mergers and better than constraints
provided by NS Interior Composition Explorer [67]. In
particular, for 47 multimessenger NSBH events, we can
obtain 1.6% precision measurement on the radius of 1.4M⊙
NS cf. 2% constraint for ∼50 BNS mergers for a similar
equation of state and three-detector GW network at design
sensitivity [16]. Currently, the local rate of both BNS and
NSBH mergers are highly uncertain [17]. However, the
number of NSBH candidates currently outnumber BNS
candidates, and this could conceivably continue given the
former are detectable out to a larger volume. This study
demonstrates the strong complementarity of NSBH merg-
ers as a probe of the behavior of nuclear matter, especially
given that it is unclear as yet which merger type will
dominate future electromagnetic-gravitational waves
samples.
A number of improvements will be required to realize the

promise of NSBH mergers. For example, the analysis of

real observations will require a more sophisticated treat-
ment of EM selection that incorporates viewing angle
dependencies, the intrinsic diversity of EM counterpart
signals [68], and real survey observing strategies [35],
alongside improvements to physical models of EM
counterparts to ensure that kilonovae from NSBH can
be robustly identified. In particular, several improvements
are required for kilonovae modeling, such as improved
prescriptions and a better understanding of nuclear heat-
ing [69], ejecta opacities [70] and the precise ejecta
properties of NSBH mergers and how they link to the
progenitor system [32]. If GW observations alone could
ensure a pure NSBH sample (i.e., by ruling out contami-
nation from BNS or BBH mergers) [71], this would
remove the need for EM selection, and the systematics
associated with kilonova models, dramatically increasing
the number of observations available to constrain the
EOS. From the perspective of gravitational-wave data, the
role of a number of other systematics must also be better
understood. In particular, this includes the systematic
uncertainty from the choice of population model for black
hole and neutron star masses, and spins [13,46], bias due
to physics potentially not included in event-level analyses
such as higher-order modes [72] or eccentricity [73].
Further, as constraints on the EOS are dominated by
events with high SNR, a better understanding of waveform
systematics in that regime will be essential [18,74,75].
Finally, it may be promising to investigate building more
physical relationships (such as density-dependent correla-
tions seen in numerical EOS models) into EOS priors, while
retaining the advantage of the flexibility offered by GP
modeling.

This work used BILBY [51], available at [76] and
Redback [77], available at [78]. Specific analysis scripts
are available at [79].
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APPENDIX

Individual event posteriors. Here we present the poste-
riors from our individual event analysis and from the full
population analysis. In Fig. 4 we show the constraints on
the mass and radius from the individual events. The 3σ
credible regions for all events include the true/input value,
giving confidence in an unbiased recovery. Figure 4 also
demonstrates that the dominant constraints on the ΛðmÞ
curve are provided by the loudest GW events, consistent
with previous work [12,46]. This highlights that the
constraints on the nuclear EOS will be highly dependent
on the ability to detect a handful of exceptionally loud
events, as opposed to many weak events, stressing the need
for understanding waveform systematics for high SNR
systems [74].
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FIG. 4. Constraints on the mass and tidal deformability of neutron stars in our all events with the blue shaded region indicating the 50
and 90% credible regions and the red cross showing the input value. The annotation indicates the network matched-filter SNR of our
events, while the gray curves indicate random draws from the GP prior.
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