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We consider gravitational waves from a pair of monopoles or black holes that are moving non-
relativistically and are connected by a cosmic string. Shortly after the binary’s formation, the connecting
string straightens due the direct coupling of its motion to gravitational radiation. Afterwards, the motion of
the binary can be well approximated by a nonrelativistic motion of its components that have an additional
constant mutual attraction force due to the tension of the straight string that connects them. The orbit
shrinks due to the gravitational radiation backreacting on the binary’s components. We find that if the

binary’s semimajor axis a ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2=μ

p
, its eccentricity grows on the inspiral’s timescale; here R1 and R2

are the gravitational radii of the binary components, and μ is the dimensionless tension of the string. When
the eccentricity is high, it approaches unity super exponentially. If the binary’s components are a monopole-
antimonopole pair, then this leads to the physical collision that would likely destroy the string and
annihilate the monopoles when the semimajor axis is still many orders of magnitude greater than the string
thickness. If the binary’s components are black holes, then the eccentricity reaches its peak when

a ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2=μ

p
, and then decays according to the standard Peters’s formula. The black-hole spins initially

become locked to the orbital motion, but then lag behind as the inspiral proceeds. We estimate the string-
tension-induced dimensionless spins just prior to the merger and find them to be ∼μ3=8 ≪ 1.

DOI: 10.1103/PhysRevD.110.024074

I. INTRODUCTION

One of the widely considered possible outcomes of phase
transitions in the early Universe is the formation of networks
of localAbelian cosmic strings [1,2]. The laws governing the
motions of such strings are extremely simple: they move
according to the Nambu-Goto action and they reconnect on
intersections with the probability of order 1. These recon-
nections produce a multitude of oscillating loops that emit
potentially detectable gravitational waves [3,4]. Despite the
simplicity of the motion laws, understanding the evolution
of the networks and calculating the distribution of the loop
sizes presents a computational challenge, and only recently
many groups started to consider these predictions as being
reliable [5]. Pulsar timing arrays measured an upper bound
on the intensity of ambient gravitational waves passing
through our Galaxy (the so-called stochastic gravitational
wave background), which has placed a very interesting
constraint on the dimensionless tension of the strings
μ≲ 10−11, valid if the string network indeed exists in our
Universe [6,7].
Interesting modifications of this scenario arise if multiple

phase transitions take place. One of the common outcomes
is the coexistence of strings and the monopoles that are

attached to the string ends [2,8,9]. A common object that
arises in such situation is a monopole-antimonopole pair
connected by a string. The gravitational wave emission from
such a binary was considered by Martin and Vilenkin [10],
but only in the limit of a straight string, with the monopoles
on either a purely radial or purely circular orbit. The
presence of such objects leads to substantial change in
the expected spectrum of stochastic gravitational-wave
background [11–13]. Another interesting situation arises
if primordial black holes are already present when the string
network forms. Vilenkin et al. [14] argued that in this case
boundobjects consisting of several black holes connected by
strings can form, and the simplest such object is a pair of
black holes connected by a string or a pair of strings (this is
possible because black holes rapidly capture relativistically
moving monopoles and antimonopoles).
The purpose of this work is to analyze the motion of such

string-connected binaries with arbitrary angular momenta,
and their evolution under the emission of gravitational
waves. We consider a pair of objects (black holes or
microscopic monopoles) with gravitational radii R1 and
R2, connected by a string of length L with dimensionless
tension μ ≪ 1. From this point onwards, we use geom-
etrized units with G ¼ c ¼ 1. The masses of the objects are
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then m1;2 ¼ R1;2. We assume that the string is much larger
than the gravitational radii of the objects L ≫ R1 þ R2, but
that its mass is small compared to those of the objects, i.e.,
that μL ≪ R1; R2. The case of a high-mass string is more
complex and will be considered in a separate study. We do
not assume ab initio that the string is straight. In Sec. II we
will show, however, that gravitational radiation-reaction
acting on the string will produce a nonrelativistically
moving binary connected by a nearly straight string seg-
ment. The rest of the paper deals with the gravitational
wave driven inspiral of such a binary, and is organized as
follows. We review the inspiral in the gravity-dominated
regime in Sec. III A; we study the inspiral in the string-
dominated regime in Sec. III B; then we study the generic
inspiral in Sec. III C. In Sec. IV, we study the evolution of
the black-hole spins as the orbit inspirals and estimate the
spins prior to mergers. We conclude with some discussion
in Sec. V.

II. STRAIGHTENING OF THE STING

We are interested in the regime where initially, the string
tension is dominating the gravitational interaction between
the objects, while the mass of the string is much smaller
than that of either of the objects. Assume for definiteness
that R2 < R1. Therefore,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1R2=μ
p

≪ L ≪ R2=μ: ð2:1Þ

Given the likely smallness of μ, there is a significant
range of values of L where these inequalities are satisfied.
The characteristic velocity of the smallest object is
v2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μL=R2

p
and the characteristic orbital timescale

is P ∼ L=v2 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR2=μ

p
.

The string, with its ends anchored on the heavy objects,
oscillates and emits gravitational waves, losing its length in
the process and straightening as a result. The timescale for
this process can be estimated by assuming that the string is
initially significantly nonstraight and use the same scaling
for the rate of length loss as has been derived for free
oscillating loops: �

dL
dt

�
GW

∼ −Γμ: ð2:2Þ

The numerical factor Γ is of order 50 for free loops [2], but
its exact value is unimportant and we can set it to 1. The
characteristic timescale on which the string straightens is
given by

tstraight ∼ L=μ: ð2:3Þ

A similar result can be obtained from computation of the
decay time of a small perturbation of the straight string. The
characteristic timescale for the string binary to shrink under

gravitational radiation is given by

tGW ∼ R2=μ2; ð2:4Þ

see, e.g., Eq. (30) of [14] and Sec. III B of the current paper.
From the equations above we see that

tstraight=tGW ∼ μL=R2 ≪ 1: ð2:5Þ

Therefore, the string straightens on a short timescale
compared to that of the binary inspiral. Hence, for the
rest of the paper we shall assume that the binary members
are connected by a straight string that creates an extra
attractive force of magnitude μ.

III. BINARY INSPIRAL

The binary inspiral proceeds in two stages: first, when
a ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2=μ

p
and the attractive force between the binary

components is dominated by the string tension, and second,
when a ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2=μ

p
and the attractive force is entirely due

to gravity.We shall refer to these stages as “string-dominated
inspiral” and “gravity-dominated inspiral.” Note that the
second stage is not relevant for monopole-antimonopole
pairs, since their gravitational attraction is extremely small
and remains subdominant until the merger. In what follows
we first review the gravity-dominated inspiral relevant for
black holes; while this has been well understood since
Peters’s work in 1964, our treatment will set the stage for the
techniques that we use to study the string-dominated
inspiral, which we treat analytically. We then present
numerical experiments that elucidate the transition from
eccentricity-growing string dominated inspiral to eccentric-
ity-damping gravity-dominated inspiral.

A. Gravity-dominated inspiral

In this subsection, we review the classic results obtained
in [15]. The methodology of our exposition will be useful
in the analysis where the string tension is included.
The starting point of the analysis is the computation of

the orbit-averaged rates of change of the orbital energy E
and angular momentum J⃗, given by

�
dE
dt

�
¼ −

1

5

�
d3Iij
dt3

d3Iij
dt3

�
;

�
dJi
dt

�
¼ −

2

5
ϵijk

�
d2Ijm
dt2

d3Ikm
dt3

�
: ð3:1Þ

Here hi stand for averaging over an orbital period, and Iij is
the traceless part of the quadrupole moment. Repeated
indices are implicitly summed over in our notation. These
equations specify secular evolution of the orbit due to
gravitational wave emissions. When it is clear from the
context, wewill omit hi to avoid notational clutter, such that
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dO=dt implicitly refers to hdO=dti for observable O. For a
Keplerian orbit, one gets

dE
dt

¼ −
32

5
·
ðR1 þ R2ÞðR1R2Þ2

a5
· fGEðeÞ;

dJ
dt

¼ −
32

5
·
ðR1 þ R2Þ1=2ðR1R2Þ2

a7=2
· fGJ ðeÞ; ð3:2Þ

where fGEðeÞ and fGJ ðeÞ are given by

fGEðeÞ ¼
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2 ;

fGJ ðeÞ ¼
1þ 7

8
e2

ð1 − e2Þ2 :

Using E ¼ −R1R2=ð2aÞ and J ¼ ðR1R2Þ2ðR1 þ
R2Þ−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ

p
, one obtains the decay rate for the

semimajor axis a and the eccentricity e, as follows:

da
dt

¼ −
64

5
·
ðR1 þ R2ÞR1R2

a3
·
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2 ;

de
dt

¼ −
304

15
·
ðR1 þ R2ÞR1R2

a4
·
eþ 121

304
e3

ð1 − e2Þ5=2 : ð3:3Þ

The resulting evolution features a polynomial decay of
the semimajor axis, a4=a40 ∼ 1 − t=τ, with the characteristic
timescale τ ∼ a40=½ðR1 þ R2ÞR2R2�, where a0 is the initial
semimajor axis. Similarly, the eccentricity also decays
polynomially in time, with the same characteristic time-
scale of decay as the semimajor axis. The result is that an
arbitrarily eccentric orbit always approaches a circular orbit
asymptotically as it decays. In fact, the secular evolution of
the orbit can be solved exactly to obtain

aðeÞ ¼ c0
e12=19

1 − e2

�
1þ 121

304
e2
�

870=2299
; ð3:4Þ

where c0 is a constant determined from aðe0Þ ¼ a0, e0
being the initial eccentricity. The well-known corollary of
this equation is that e → 0 as a → 0, i.e., the orbit
circularizes as the inspiral proceeds. This circularization
has a huge impact on gravitational-wave astronomy, and
explains why the vast majority of LIGO mergers are
circular.
It is instructive to visualize the eccentricity evolution in a

J − E plane, as shown in Fig. 1. The evolution equa-
tions (3.2) define a flow field for motion in the plane,
shown by arrows in the figure. Solid lines represent curves
of constant eccentricity, and the flow takes eccentric orbits
towards the circular e ¼ 0 orbit. The decrease of eccen-
tricity takes place for motion in a Keplerian potential, but it
is not universal for all attractive potentials. As we show in

the next subsection, if the attractive force is distance
independent, the eccentricity increases during the inspiral.

B. String-dominated inspiral

In this section we consider the case where the binary is
bound together by a straight cosmic string, and the
influence of gravitational attraction can be neglected.

1. Orbital mechanics

For an orbit with angular momentum J, the effective
radial potential is given by

UJðrÞ ¼ μrþ J2

2Rr2
; ð3:5Þ

here r is thedistance between the centers ofmass of the binary
components, and R ¼ R1R2=ðR1 þ R2Þ is the reduced mass
of the binary in geometrized units. The rosettelike orbit is no
longer closed, but the radial motion is periodic. Let ra and rp
be themaximumandminimumvalues of r during themotion.
Lets define, in analogy with Keplerian orbits, the semimajor
axis and the eccentricity as follows:

FIG. 1. The flow field, ðdJdt ; dEdt Þ, due to gravitational wave
emission. The lengths of the vectors are nonuniformly scaled
down for readability, but the angles are preserved. In particular, the
leftmost vectors (with the lowest J) are scaled down by a factor of
∼106, while the rightmost vectors with the highest J are approx-
imately drawn to scale. The curves represent constant eccentricity
contours in the J − E phase space. We verified our numerical
results, obtained using the method outlined in Sec. III B, against
Peters’s formulas of Eq. (3.2), and found agreement within
numerical errors of order 10−4. Here E and J are measured in
units ofR andR2, respectively, whereR ¼ R1R2=ðR1 þ R2Þ is the
reduced mass of the binary.
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a≡ ðra þ rpÞ=2;
e≡ ra − rp

ra þ rp
: ð3:6Þ

By usingUðrpÞ ¼ UðraÞ ¼ E, it is straightforward to obtain
the following expressions for the energy and the angular
momentum of the binary:

E ¼ 3

2
· μa · ð1þ e2=3Þ;

J ¼
ffiffiffiffiffiffiffiffiffiffiffi
μRa3

q
· ð1 − e2Þ: ð3:7Þ

The constant eccentricity curves in the J − E phase space can
be specified as follows:

EeðJÞ ¼
μ2=3

2R1=3 ·
3þ e2

ð1 − e2Þ2=3 · J
2=3: ð3:8Þ

This is quite different from the relationship for Keplerian
orbits, EeðJÞ ¼ −ðR1 þ R2Þ2R3ð1 − e2Þ=ð2J2Þ. Note that
for Keplerian orbits, the decay rate of e depends on the
evolution of EJ2, whereas in the pure string-tension-
dominated orbits the evolution of e depends on that
of EJ−2=3.
The radial velocity is given by

vr ≡ dr
dt

¼ �½2ðE −UJÞ=R�1=2;

¼ �
ffiffiffiffiffi
2μ

R

r ½ðra − rÞðr − rpÞðrþ r3Þ�1=2
r

; ð3:9Þ

where

ra ¼ að1þ eÞ;
rp ¼ að1 − eÞ;

r3 ≡ 1

2
að1 − e2Þ: ð3:10Þ

The period P of the radial motion is given by

Pða; eÞ ¼ 2

Z
ra

rp

jvrj−1dr;

¼ 2

ffiffiffiffiffiffi
aR
μ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2e − e2
p

×

�
ðe2 − 1ÞK

�
4e

3þ 2e − e2

�

þ ð3þ 2e − e2ÞE
�

4e
3þ 2e − e2

��
: ð3:11Þ

Here K and E are the complete elliptic integrals of the first
and second kind, respectively (“EllipticK” and “EllipticE”

in Mathematica1). For the extreme values of eccentricity
we have

Pða; 0Þ ¼ 2π

ffiffiffiffiffiffi
aR
3μ

s
;

Pða; 1Þ ¼ 4

ffiffiffiffiffiffi
aR
μ

s
: ð3:12Þ

The former corresponds to the period of small-amplitude
oscillation about the circular orbit of distance a between the
binary members. The latter corresponds to the time interval
for the purely radial motion between two sequential full
stops, with 2a being the maximal distance between the
binary members.
Some relations for orbit-averaged quantities can be

derived that will prove useful in the computation of
gravitational-wave emission:

hri ¼ að1þ e2=3Þ; ð3:13Þ
�
1

r

�
¼ 2

ð1þ eÞK
�

4e
3þ 2e − e2

�

×

�
ðe − 1ÞK

�
4e

3þ 2e − e2

�

þ ð3 − eÞE
�

4e
3þ 2e − e2

��
−1 1

a
; ð3:14Þ

�
1

r2

�
¼ 2

ð1þ eÞ2Π
�

2e
eþ 1

;
4e

3þ 2e − e2

�

×

�
ðe − 1ÞK

�
4e

3þ 2e − e2

�

þ ð3 − eÞE
�

4e
3þ 2e − e2

��
−1 1

a2
; ð3:15Þ

�
1

r3

�
¼ 1

a3ð1 − e2Þ2 : ð3:16Þ

Here Π is the complete elliptic integral of the third kind
(“EllipticPi” in Mathematica). The derivation of these
relations is sketched in Appendix A.

2. Orbital decay

First, let us consider the decay of a circular orbit given by

r⃗ ¼ a½cosðωtÞ; sinðωtÞ�;

1There is a slight discord in the literature on the precise
definition of these functions. We follow here the definitions used
in Matlab and Mathematica, namely these: KðmÞ ¼ R π=2

0 ð1 −
m sin2 θÞ−1=2dθ, EðmÞ ¼ R π=2

0 ð1 −m sin2 θÞ1=2dθ, Πðn;mÞ ¼R π=2
0 ð1 − n sin2 θÞ−1ð1 −m sin2 θÞ−1=2dθ.
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where ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=ðRaÞp

. The nonzero terms of the traceless
quadrupole tensor are given by

Ixx ¼ Ra2
�
cos2ðωtÞ − 1

3

�
;

Iyy ¼ Ra2
�
sin2ðωtÞ − 1

3

�
;

Izz ¼ −
1

3
Ra2;

Ixy ¼ Ra2 cosðωtÞ sinðωtÞ: ð3:17Þ

We use Eq. (3.1) to calculate the rate of change in E and J:

dE
dt

¼ −
32

5

μ3

R
a;

dJ
dt

¼ −
32

5

μ5=2

R1=2 a
3=2: ð3:18Þ

For a circular orbit, E ¼ ð3=2Þμa. We therefore obtain
da=dt ¼ −ð64=15Þμ2a=R, and

aðtÞ ¼ a0 exp

�
−
64

15

μ2

R
t

�
: ð3:19Þ

Another limiting case is periodic radial oscillation
considered by [10]. Newton’s equations give xðtÞ ¼ r0 −
ðμ=2RÞt2, valid for half a period of a particle that starts at
rest along the x axis at r0 ¼ 2a. The nonzero components
of the traceless quadrupole tensor are

Ixx ¼
2

3
Rx2;

Iyy ¼ Izz ¼ −
1

3
Rx2; ð3:20Þ

which we substitute in Eq. (3.1) to obtain

dE
dt

¼ −
32

5

μ3

R
a;

dJ
dt

¼ 0: ð3:21Þ

Using E ¼ 2μa, we obtain

aðtÞ ¼ a0 exp

�
−
16

5

μ2

R
t

�
: ð3:22Þ

For arbitrary e, we expect that

dE
dt

ðeÞ ¼ dE
dt

ð0Þ · fμEðeÞ ¼ −
32

5

μ3

R
a · fμEðeÞ;

dJ
dt

ðeÞ ¼ dJ
dt

ð0Þ · fμJðeÞ ¼ −
32

5

μ5=2

R1=2 a
3=2 · fμJðeÞ ð3:23Þ

for the form factors fμEðeÞ that varies smoothly between
fμEð0Þ ¼ 1 and fμEð1Þ ¼ 1, and fμJðeÞ that varies smoothly
between fμJð0Þ ¼ 1 and fμJð1Þ ¼ 0. The functions fμEðeÞ
and fμJðeÞ are computed analytically in Appendix B; one
obtains

fμEðeÞ¼
ð1−eÞ2

2
Π
�

2e
eþ1

;
4e

3þ2e−e2

�

×

�
ðe−1ÞK

�
4e

3þ2e−e2

�

þð3−eÞE
�

4e
3þ2e−e2

��
−1
þ3þe2

4
; ð3:24Þ

fμJðeÞ ¼
1 − e2

4

	
1þ 2ð3þ e2ÞK

�
4e

3þ 2e − e2

�

×

�
ðe2 − 1ÞK

�
4e

3þ 2e − e2

�

þ ð3þ 2e − e2ÞE
�

4e
3þ 2e − e2

��
−1


: ð3:25Þ

These results have been checked by numerically integrating
the equations of motion using the effective potential in
Eq. (3.5) and evaluating the derivatives of the quadrupole
moments in Eq. (3.1). The agreement between the analyti-
cal and numerical calculations is very good; the results are
plotted in Fig. 2.
Using Eq. (3.8), we have

3þ e2

ð1 − e2Þ2=3 ¼
2ER1=3

ðμJÞ2=3 ð3:26Þ

which we use to obtain the evolution rate of the
eccentricity:

de2

dt
¼ 64

15
·
μ2

R
·
ð1þ e2=3Þ · fμJðeÞ − ð1 − e2Þ · fμEðeÞ

1 − e2=9
;

≡ 64

15
·
μ2

R
· geðeÞ; ð3:27Þ

where geðeÞ is plotted in Fig. 3. We note that de2=dt > 0
for all 0 < e < 1. Therefore an eccentric binary increases
its eccentricity during the string-dominated stage of the
inspiral.
For small eccentricity e ≪ 1, we can expand the expres-

sion above to second order in e. [We used the Series
[“expression,” fe; 0; 2g] command in Mathematica. It was
expedient as an intermediate step to first obtain the bivariate
expansion of Πðx; yÞ to second order in x, y, and then enter
it in place of Π in the expression for fμEðeÞ.] To the lowest
order in e we obtain a simple answer geðeÞ ¼ ð3=4Þe2,
which we cross-check numerically. Thus a small eccen-
tricity grows exponentially with time
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eðtÞ ¼ e0 exp

�
8

5

μ2

R
t

�
ð3:28Þ

and as a power-law with the inverse semimajor axis:

eðtÞ ¼ e0

�
aðtÞ
a0

�
−3=8

: ð3:29Þ

The non-negligible increase in eccentricity takes place on
roughly the same time scale as that of the orbital decay, and
an orbit that starts with very minimal eccentricity e0 ≪ 1
will evolve to Oð1Þ eccentricity as it inspirals.
Likewise, for a nearly radial orbit e ¼ 1 − δ with δ ≪ 1,

we expand Eq. (3.27) to leading order in δ, and we obtain
geð1 − δÞ ¼ ð3 ln 2 − 3=2Þδ − ð3=4Þδ ln δ, which we also
cross-check numerically. The evolution equation for ln δ is,
approximately,

d ln δ
dt

¼ 8μ2

5R
½ln δ − 4ðln 2 − 0.5Þ�: ð3:30Þ

Thus, a nearly radial orbit approaches periodic radial
behavior super exponentially with time. To reach even a
tiny δf ∼ expð−NÞ, where N ≫ 1, takes only time

tf ≃
5R
8μ2

lnN: ð3:31Þ

The above equation, together with Eq. (3.28) implies that in
the string-dominated inspiral the objects will physically
collide only after time tf ¼ few × 5R=ð8μ2Þ. For example,
if the initial size of the binary is ∼1 pc and the sizes of the
objects or the physical string width are 1 fm, the required δ
for physical collision is δf ∼ 10−30 ∼ expð−69Þ, and so
tf ≃ 4 × 5R=ð8μ2Þ. For sufficiently heavy black holes,
however, the Peters’s inspiral regime will take over before
the objects will physically collide and the orbit will
circularize before the merger.
To determine the evolution of a for general eccentricity,

we use Eq. (3.7) and find

E ¼ 1

2
μa

�
4 −

Jffiffiffiffiffiffiffiffiffiffiffi
μRa3

p �
: ð3:32Þ

Differentiating this with respect to time and using
Eq. (3.23), we obtain

da
dt

¼ −
64

15

μ2

R
a ·

2fEðeÞ þ fJðeÞ
3ð1 − e2=9Þ ;

≡ −
64

15

μ2

R
agaðeÞ: ð3:33Þ

The function gaðeÞ is plotted in Fig. 3.

FIG. 3. Eccentricity factors in the radiation rates of e, a.FIG. 2. Eccentricity-dependent form factors in the J, E evo-
lution equations (3.23). The numerical computation is verified
against the analytic predictions, and was found to be accurate
within 10−5.
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Dividing Eq. (3.33) by Eq. (3.27) and solving the
resulting differential equation, we obtain the general
relationship between a and e for the inspiraling orbit:

aðeÞ ¼ a0 exp

�
−2

Z
e

e0

e0 · gaðe0Þ
geðe0Þ

de0
�
: ð3:34Þ

Plugging in Eqs. (3.24) and (3.25) into geðeÞ; gaðeÞ,
defined in Eqs. (3.27) and (3.33), respectively, we get an
analytic expression for the secular evolution, but it is hard
to integrate in closed form. Instead, several numerical
examples of this relationship are plotted in Fig. 4.
It is instructive to consider the gradient field in the J − E

plane, plotted for some sample orbits in Fig. 5. We see that
the vector field monotonically flows towards higher eccen-
tricity, except for the two special cases e ¼ 0 and e ¼ 1 for
which the flow is along the constant eccentricity curves.
This agrees with the preceding discussion.

In contrast with the Keplerian case, gravitational wave
from the string-driven inspiral does not produce much of a

chirp. The characteristic frequency ω0 ∝
ffiffi
1
a

q
increases

exponentially with time, while the power of the emitted
gravitational waves decreases. For very eccentric orbits we
do not expect any sharp features since the acceleration
remains very regular, in a distinction from conventional
eccentric inspirals where the pericenter passages are
accompanied by strong gravitational-wave bursts.

C. General case

In this subsection, we consider the general case where
both gravitational attraction and cosmic string tension are
included in the potential. First, we briefly discuss the
orbital mechanics without radiation. Then, we consider the
inspiral of a circular orbit, which can be exactly solved
analytically but which is unstable to eccentricity growth in
the string-dominated part of the inspiral. Finally, we
employ numerical methods to obtain the inspiral of a
general eccentric orbit.

1. Orbital mechanics

For a system bound by both cosmic strings and gravity,
the radial effective potential is given by

UJðrÞ ¼ μr −
R1R2

r
þ J2

2Rr2
; ð3:35Þ

where r is the separation between the binary’s components.
A sample is plotted in Fig. 6.
The system only admits bound orbits, since

UJðr → ∞Þ ∝ r. Like in the previous subsections, any
orbit is uniquely specified by its energy and angular
momentum. For given E and J, the orbit is bound by
rp ≤ r ≤ ra, where the pericenter and apocenter radii are
specified by equation UJðrÞ ¼ E. This gives a cubic
equation in r, which for allowed energies has two positive
roots. The negative root, as far as we are aware, has no
physical significance.

FIG. 4. Numerical calculation of the decay under pure string
tension, until aðtÞ=a0 < 1=150.

FIG. 5. Gradient field, ðdJdt ; dEdt Þ, due to gravitational wave
radiation, with μ ¼ 10−5. The lengths of the vectors are uniformly
scaled up by a factor of 5 × 109, but their angles are preserved.
Here E and J are measured in units of R and R2, respectively,
where R ¼ R1R2=ðR1 þ R2Þ is the reduced mass of the binary.

FIG. 6. Here r and E are measured in units of R ¼ R1R2=
ðR1 þ R2Þ, the reduced mass of the binary.
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2. Circular inspiral

For a circular orbit, ra ¼ rp and its evolution due to
gravitational-wave emission can be computed in a straight-
forward manner. The energy and angular momentum
decrease can be computed from Eqs. (3.1) and (3.17).
The angular frequency of rotation is given by

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

Ra
þ R1 þ R2

a3

r
: ð3:36Þ

Substituting this into the above equations, we get

dE
dt

¼ −
32

5
R2

�
R1 þ R2

a2
þ μ

R

�
3

a;

dJ
dt

¼ −
32

5
R2

�
R1 þ R2

a2
þ μ

R

�
5=2

a3=2: ð3:37Þ

In the case of an orbit bound by cosmic strings and
gravity, we have

E ¼ 3

2
μa −

R1R2

2a
: ð3:38Þ

We obtain the decay rate for a as

da
dt

¼ da
dE

dE
dt

¼ −λ
1

a3
ð1þ γa2Þ3
1þ 3γa2

ð3:39Þ

for γ ≡ μ=ðR1R2Þ and λ≡ ð64=5ÞR1R2ðR1 þ R2Þ. We can
exactly integrate this equation to obtain

t ¼ −
1

2λγ2

�
3 lnð1þ γa2Þ þ 4þ 5γa2

ð1þ γa2Þ2
�
þ K; ð3:40Þ

where K is a constant. The decay of the circular orbit has
two phases:

(i) Early stage, string dominated. When μ=Fg ¼
γa2 ≫ 1, the polynomial factor is subdominant to
the logarithmic factor; here Fg ¼ R1R2=a2 is the
force of gravitational attraction. We obtain
lnðγa2Þ ≃ −2λγ2t=3þ K0, and aðtÞ ≃ a0e−λγ

2t=3 ¼
a0 exp½−ð64=15Þμ2t=R�, reproducing the behavior
of pure string-driven inspirals, Eq. (3.19).

(ii) Final stage, gravity dominated. When μ=Fg ¼
γa2 ≪ 1, we can expand the right-hand side of
Eq. (3.40) in powers of γa2. We get, to the lowest
order,

t − t0 ≃
1

4λ
ða40 − a4Þ; ð3:41Þ

where the constants are chosen so that a ¼ a0 at
t ¼ t0. This is in agreement with the conventional
gravitational circular inspiral formulas.

3. General orbital decay

A noncircular orbit bound by both gravity and a cosmic
string is not closed by Bertrand’s theorem, hence yielding

analytic study very difficult. Instead, we analyze the decay
of generic orbits numerically. First, we simulate the orbit by
numerically integrating Newton’s equations of motion
using the fourth-order Runge-Kutta method. We need to

FIG. 7. Gradient field, ðdJdt ; dEdt Þ, due to gravitational wave
radiation. The lengths of vectors are nonuniformly scaled down,
but the angles are preserved. In particular, the leftmost vectors are
approximately scaled down by ∼108, while the rightmost vectors
are approximately scaled down by ∼104. (a) μR=ðR1þ R2Þ ¼
1=10. (b) μR=ðR1þ R2Þ ¼ 1. (c) μR=ðR1þ R2Þ ¼ 10.
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compute the motion over the full epicycle of the radial
motion, e.g., from apocenter to apocenter. We tabulate a
dense array of the traceless quadrupole moment tensor
values along that orbit, numerically differentiate and plug
into Eq. (3.1) to calculate the orbit-averaged rates of dJ

dt ;
dE
dt .

We then employ a second-order Runge-Kutta scheme
where the orbit is evolved in the J − E plane, and thus
compute the evolution of a, e with time.
The flow vector fields in the J − E plane due to

gravitational wave radiation for a variety of cases are
plotted in Fig. 7. In particular, we note that for the early
stages of the orbit in the string dominated regime (with high
J and high a), the eccentricity is generically driven to
increase, more so for more eccentric orbits. Then, as the
orbit decays and enters into the gravity dominated regime,
it flows into less eccentric state, with the singular Keplerian
rates as a → 0 ensuring that the orbit decays in its final
stages as a pure gravity-driven orbit, terminating in a
circular state. Examples of this behavior are plotted
in Fig. 8.

IV. SPINS OF BLACK HOLES
CONNECTED BY A STRING

Vilenkin et al. [14] noted that for a black-hole binary
connected by a string, the gravitational-wave driven

inspiral proceeds on a timescale shorter than a Hubble
time for an interesting range of masses and string tension
parameter. From Eq. (3.19), we see that the characteristic
timescale for the exponential inspiral is given by

τ ¼ 15R
64μ2

≃ 6 × 109
�

M
10M⊙

��
10−12

μ

�−2
yr: ð4:1Þ

Here M is the reduced mass of the binary. The actual
time to merger is only a few times this value due to the
super-exponential growth of eccentricity, regardless of
the initial separation of the binary; see Eq. (3.31). This
calculation assumes that the binary is moving nonrelativ-
istically, i.e., that the mass of the string is less than the
mass of the black holes, which translates into a≲ R=μ≃
5ðM=10M⊙Þð10−12=μÞ pc.
However, the Peters’s circularization of the binary

should begin at a distance a∼R=
ffiffiffi
μ

p ¼ 106ð10−12=μÞ1=2R,
large compared to the black-hole sizes. Therefore by the
time the black holes merge, their orbits should be nearly
circular. It is therefore interesting to ask whether there is
another characteristic, apart from eccentricity, that will
distinguish this type of merger. We argue below that the
black holes that merge in this way are likely to have very
low, but calculable spin values. The interest is purely
academic at this point, since it is unlikely that such low
spins would be meaningfully measured in any foreseeable
experiment.
When an asymptotically straight string is attached to a

spinning black hole of gravitational radius r0, the latter
experiences torque from the string. In the limit of slow
rotation, the torque is given by

Q ¼ −4μr20½Ω − ðΩ · nÞn − n × ṅ�: ð4:2Þ

where Ω is the angular velocity of the black hole’s horizon,
and n is the unit vector along the string at r ≫ r0 (closer to
the black hole the string is dragged around it by the spin).
This equation was first written by Xing et al. [16], see their
Eq. (4.19); it was based on the calculations of how
stationary strings extract angular momentum from the
black hole, which were first performed in [17]. The validity
of these expressions was tested by direct numerical experi-
ments in [18].2 We thus find that the angular velocity of the
black hole evolves as follows:

Ω̇ ¼ −
μ

r0
½Ω − ðΩ · nÞn − n × ṅ�: ð4:3Þ

FIG. 8. Numerical calculation of the decay under both gravity
and string tension, for e0 ¼ 0.2, 0.7, until aðtÞ=a0 < 1=60, with
μR=ðR1 þ R2Þ ¼ 1=10 and μa20=ðR1R2Þ ¼ 90.

2There is a long history of numerical studies of string motion in
Kerr spacetime. Early work [19,20] considered the scattering of
an axisymmetric, current-carrying string and showed that even
such a simple system displays nontrivial chaotic behavior, while
the later work [21] considered the three-dimensional scattering of
a long string by the Kerr black hole.
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If the string is stationary relative to the black hole, we
can neglect the ṅ term, and the black hole’s spin only
tends to align with the string, on the timescale
talign ¼ r0=μ, as explained in [16]. However, in the case
of a binary, the string cannot be considered stationary,
since one can show that Porb=talign ∼

ffiffiffiffiffiffiffiffiffiffiffi
μa=R

p ≲ 1 for a
binary moving nonrelativistically in the string-dominated
phase. Hence, according to Eq. (4.3), the black hole will
also spin down to the orbital frequency, Ω → 2πf, on the
same timescale talign, where f ¼ 1=Porb ¼ ω=2π is the
orbital frequency.
This alignment timescale is much shorter than the

characteristic inspiral timescale in the string-dominated
regime, talign=τ ∼ μ ≪ 1. Therefore in this inspiral stage,
the black holes’ spins become locked with the orbital
frequency and are aligned with the string (perpendicular to
the equatorial plane); the evolution equation during this
stage of the inspiral simply becomes

Ω̇þ μ

r0
Ω ¼ μ

r0
2πf: ð4:4Þ

For a circular inspiral, this equation can be integrated
exactly, but we find an estimate to be more instructive.
The black hole spins remain locked to the orbital

motion until ḟ=f ∼ 1=talign ¼ μ=r0; they decouple when
ḟ=f ≳ 1=talign. In Peters’s regime,

ḟ
f
¼ 96π8=3

5
R5=3
ch f8=3; ð4:5Þ

which means that the decoupling from the orbital motion
will take place at the orbital frequency

fdec ¼ Ωdec=ð2πÞ ∼ 0.1μ3=8R−5=8
ch r−3=80 : ð4:6Þ

Here Rch is the chirp mass of the binary. After decoupling,
the black hole gets spun up according to

Ω̇ ¼ μ

r0
2πf: ð4:7Þ

The final spin of the black hole is given by

Ωmerger ∼ Ωdec þ
μ

r0
2πNorb; ð4:8Þ

whereNorb is the number of orbits that the binary completes
after decoupling and before the merger. The two terms on
the right-hand side turn out to be of a similar order of
magnitude. Therefore the final dimensionless spin param-
eter of the black hole is

s ∼ μ3=8ðr0=RchÞ5=8; ð4:9Þ

or, expressed in terms of the component masses,

s1 ∼ μ3=8ðqþ 1Þ1=8q1=4; ð4:10Þ

where q ¼ R1=R2 is the mass ratio of the two black
holes. Clearly this is too small to be of any detectable
significance, and will present as “no spin” to all conceiv-
able gravitational-wave measurements.

V. DISCUSSION

The main result of this paper is that the eccentricity of a
string-connected binary grows dramatically during the
string-dominated phase of its inspiral. Initially exponential
growth of eccentricity turns super exponential, in a sense
that, when the quantity 1 − e ≪ 1, it approaches zero much
faster than exponential. The implications of this are as
follows:
(1) String-driven inspiral of monopole-antimonopole

pairs will lead to head-on collisions that will likely
destroy the string and annihilate the monopoles,
when the orbital semimajor axis is still orders of
magnitude greater than the string thickness. The
direct collision will happen if the periastron distance
is smaller than the string size. It is perhaps of interest
to simulate such collisions directly, using the equa-
tions of motion for the fields that make the string, as
opposed to using the Nambu-Goto action.

(2) String-driven mergers of light primordial black holes
might be very eccentric, but the heavier stellar-mass
black holes would circularize by Peters’s mecha-
nism. In all cases the black holes will be spun down
to extremely low spins by the tension of strings
attached to them.

A major shortcoming of this work is that it does not treat
the regime when the string is heavier than the binary
components that are attached to it. In that case the binary
motion becomes relativistic, and the approximations made
in this work do not hold. This case will be considered in our
future work.
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APPENDIX A: ORBIT AVERAGES

The orbital period in Eq. (3.11) can be computed by first
casting it in a dimensionless form
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Pða; eÞ ¼ 2

Z
ra

rp

jvrj−1dr;

¼ 2

ffiffiffiffiffiffi
aR
μ

s Z
1

−1

ðexþ 1Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð3 − e2 þ 2exÞ

p : ðA1Þ

Here we made a substitution r ¼ aðexþ 1Þ. The integral
above was evaluated using Mathematica and the formulas
in Eq. (3.11) were checked by numerical integration of the
above equation.
In both appendices, we restore hi in the notation to

distinguish the orbit-averaged expression of an observable
hOi from its local values during the orbit.
The simple-looking results in Eqs. (3.13) and (3.16) can

be obtained using the following considerations. From the
virial theorem, for finite motion we have the following
time-averages relationship:

1

2
hF⃗ · r⃗i þ hEki ¼ 0; ðA2Þ

where F⃗, r⃗, and Ek are the generalized force, position, and
kinetic energy of the system, respectively. For the situation
at hand this translates to

−
1

2
μhri þ hEki ¼ 0: ðA3Þ

But the potential energy equals μr, so from the energy
conservation we also have

μhri þ hEki ¼ E: ðA4Þ

Combining the two, we get

hri ¼ 2

3

E
μ
¼ að1þ e2=3Þ: ðA5Þ

This is Eq. (3.13). Furthermore, the radial equation of
motion reads

R̈r ¼ −μþ J2

Rr3
: ðA6Þ

Using the fact that ḧri ¼ 0, we get

�
1

r3

�
¼ 1

a3ð1 − e2Þ2 : ðA7Þ

This is Eq. (3.16).
The other two Eqs. (3.14) and (3.15), were obtained by

using the substitution r ¼ að1þ exÞ, performing the inte-
gration using Mathematica, and checking the results using
numerical integration.

APPENDIX B: DERIVATION
OF f μEðeÞ AND f μJðeÞ

In this appendix we sketch the derivation of the eccen-
tricity dependence of the energy and angular momentum
losses, as expressed through the form factors fμEðeÞ and
fμJðeÞ. Our starting point are the standard expressions for
the quadrupole-driven radiation reaction:�

dE
dt

�
¼ −

1

5

�
d3Iij
dt3

d3Iij
dt3

�
;

�
dJi
dt

�
¼ −

2

5
ϵijk

�
d2Ijm
dt2

d3Ikm
dt3

�
: ðB1Þ

The quadrupole moment of the binary is given by

1

R
Iij ¼ xixj −

1

3
r2δij: ðB2Þ

Here, as in the main text, R is the reduced mass of the
binary, and r⃗ ¼ ðx1; x2; x3Þ is the vectorial separation of
the binary’s members. The equations of motion of the
binary are

dxi
dt

¼ vi;

dvi
dt

¼ −
μ

R
xi
r
: ðB3Þ

The angular momentum and energy of the binary are

Ji ¼ Rϵijkxivj;

E ¼ 1

2
Rv2 þ μr: ðB4Þ

Also it is convenient to define radial and tangential
velocities,

vr ¼ v⃗ · r⃗=r ¼ ṙ; ðB5Þ

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v2r

q
¼ J

rR
: ðB6Þ

Repeatedly differentiating Eq. (B2) with respect to time,
and using the equations of motion, we obtain the following:

1

R

dIij
dt

¼ vixj þ xivj −
2

3
rvrδij;

1

R

d2Iij
dt2

¼ 2

�
μ

R
r
3
δij −

μ

R

xixj
r

þ vivj −
v2r
3
δij

�
;

1

R

d3Iij
dt3

¼ 2
μ

R

�
vrxixj
r2

þ vrδij −
2

r
ðvixj þ vjxiÞ

�
: ðB7Þ

Using these expressions, we obtain

d3Iij
dt3

d3Iij
dt3

¼ μ2ð24v2r þ 32v2t Þ; ðB8Þ
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and

d2Ijm
dt2

d3Ikm
dt3

¼ 4μR

�
2
μ

R
þ v2r

r
þ 2

v2t
r

�
xjvk þ Sjk: ðB9Þ

Here Sjk is symmetric with respect to indices j, k, and there-
fore it gives zero when contracted with ϵijk. We thus have

dE
dt

¼ −
μ2

5
ð24v2r þ 32v2t Þ;

dJ⃗
dt

¼ −
8μ

5

�
2
μ

R
þ v2r

r
þ 2

v2t
r

�
J⃗: ðB10Þ

To obtain Eqs. (3.23)–(3.25), we need to orbit average the
above equations. To achieve this, we first use

v2r ¼
2E
R

−
2μr
R

−
J2

R2r2
ðB11Þ

and Eq. (B6) to express the right-hand side of Eq. (B10) in
terms of r, 1=r, 1=r2, and 1=r3. Averages of the latter are
given in Eqs. (3.13)–(3.16). Using those together with the
expressions in Eq. (3.7), after some amount of algebra we
arrive at Eqs. (3.23)–(3.25).
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