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Recently we showed that in Friedman-Lemaitre-Robertson-Walker (FLRW) cosmology, the contribution
from higher curvature terms in any generic metric gravity theory to the energy-momentum tensor is of the
perfect fluid form. Such a geometric perfect fluid can be interpreted as a fluid remaining from the beginning
of the Universe where the string theory is thought to be effective. Just a short time after the beginning of the
Universe, it is known that the Einstein-Hilbert action is assumed to be modified by adding all possible
curvature invariants. We propose that the observed late-time accelerating expansion of the Universe can be
solely driven by this geometric fluid. To support our claim, we specifically study the quadratic gravity field
equations in D dimensions. We show that the field equations of this theory for the FLRW metric possess a
geometric perfect fluid source containing two critical parameters o; and o,. To analyze this theory
concerning its parameter space (o1, 6, ), we obtain the general second-order nonlinear differential equation
governing the late-time dynamics of the deceleration parameter g. Hence, using some present-day
cosmological data as our initial conditions, our findings for the 6, = 0 case are as follows: (i) To have a
positive energy density for the geometric fluid p,, the parameter 6; must be negative for all dimensions up
to D = 11. (ii) For a suitable choice of ¢, the deceleration parameter experiences signature changes in the
past and future, and in the meantime it lies within a negative range, which means that the current observed
accelerated expansion phase of the Universe can be driven solely by the curvature of the spacetime. (iii) ¢
experiences a signature change, and as the dimension D of spacetime increases, this signature change

happens at earlier and later times, in the past and future, respectively.

DOI: 10.1103/PhysRevD.110.024073

I. INTRODUCTION

Although general relativity (GR) has been immensely
successful in explaining a wide range of gravitational
phenomena, there are certain observations that have moti-
vated researchers to consider modifications to the theory.
Two of these motivations are the following: (i) Theoretical
consistency of GR: Modifications to gravity theories can
arise from attempts to reconcile GR with other fundamental
theories, such as quantum gravity or string theory. GR is
assumed to be a low-energy approximation of a more
complete theory where the effective action includes higher-
curvature terms in addition to the usual Einstein-Hilbert
term. Hence, modified gravity can be seen as an exploration
of how gravity might behave at very low- or high-energy
limits where the effects of quantum physics become
significant. See, for instance, [1-5]. (ii) Dark matter and
dark energy: The need for dark matter and dark energy to
explain the observed motion of galaxies and the accelerated
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expansion of the universe, respectively, has led to questions
about whether our understanding of gravity is complete.
Modified gravity theories also seek to address these
phenomena without introducing the need for dark matter
or dark energy [6-19].

Higher-order curvature corrections to FEinstein’s field
equations have been considered by many authors [20-29].
Recently we showed that, in Friedman-Lemaitre-Robertson-
Walker (FLRW) cosmology, the contribution of higher
curvature terms in any generic theory of gravity to the
energy-momentum tensor is of the perfect fluid form [30].
This is the reason that some authors have observed this
fact [31-33] and verified it in some particular modified
gravity theories such as f(R) gravity [34,35], Gauss-Bonnet
gravity [36], and other higher-order gravities [37,38]. In [30],
the cases of general Lovelock and F(R, G) theories are given
as examples.

The FLRW metric is the most known and most studied
metric in general relativity. This metric is mainly used to
describe the Universe as a homogeneous, isotropic fluid
distribution [39]. It is known that FLRW cosmology in
Einstein’s theory is not sufficient to explain the accelerating
expansion of the universe. To explain this phenomena,
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staying in Einstein theory it is claimed that, in addition
to the known ordinary matter distribution, the Universe
should contain a dark component driving the accelerating
expansion, the so called dark energy. If we consider the

|

low-energy limit of the string theory, then the Einstein
equations are modified by adding all possible curvature
invariants. We call such a theory a generic gravity where the
action takes the form

I= /de\/—_g Ll( (R —2A) + F(g,Riem, VRiem, VVRiem, ...) + Ly |, (1)

and here F is a function of all combinations of the metric
tensor, curvature tensor, and the covariant derivatives of the
curvature tensor of any order. Then the field equations take
the form

1
- (G +Agy) + &, =Ti, (2)

where G, is the Einstein tensor, A is the cosmological
constant, 7%/ is the matter energy-momentum tensor of
perfect fluid distribution (with the energy density p and
pressure p), and &, resulting from the higher-order
curvature terms is any second rank tensor obtained from
the metric tensor, Riemann tensor, Ricci tensor, Ricci
scalar, and their covariant derivatives at any order.
In [30], we have shown that £, can be written as the
combination of the metric tensor g,, and wu,u,; that is,

g/w = Ag,uu + Bu[lul./? (3)

where A and B are functions of scale factor a(¢) and its
derivatives with respect to time ¢. This implies that in the
Einstein field equations, in addition to the matter fluid
energy-momentum tensor T, there exists another fluid
distribution which we call the geometric fluid distribution
T4, with the energy density py=A—B and pressure
py = —A. Here, we adopt the idea that the source of the
dark matter/energy is the geometrical fluid distribution.
Hence, we conjecture that higher curvature modifications
of the Einstein theory are complete in the sense that all
cosmological observations can be explained by choosing
appropriate modified theories studied by several authors
in [20-29]. To support our claim, we specifically study the
quadratic gravity field equations in D dimensions. We show
that the field equations of this theory for the FLRW metric
possess a geometric perfect fluid source containing two
critical parameters o; and o,. To analyze this theory
concerning its parameter space (o,,0,), we obtain the
general second-order nonlinear differential equation gov-
erning the late-time dynamics of the deceleration parameter
q. Hence, using some present-day cosmological data as our
initial conditions, our findings for the 6, = 0 case are as
follows: (i) To have a positive energy density for the
geometric fluid p, the parameter 6, must be negative for all

|

dimensions up to D = 11. (ii) For a suitable choice of o1,
the deceleration parameter experiences signature changes
in the past and future, and in the meantime it lies within a
negative range, which means that the current observed
accelerated expansion phase of the Universe can be driven
solely by the curvature of the spacetime. (iii) g experiences
a signature change, and as the dimension D of spacetime
increases, this signature change happens at earlier and later
times, in the past and future, respectively. (iv) The geo-
metric equation of state parameter w, is negative for all
integers 4 <D <10, specifically, for D=4 and
w, = —0.85. For oy =0 (critical gravity), we find that
there are two cases, both representing a possibility of
having an accelerating expansion. Furthermore, we present
some particular cosmological solutions in quadratic gravity
depending upon the parameters ¢; and o,.

It is well-known that linearized versions of most higher
time-derivative theories suffer from the Ostragradsky insta-
bility (see, for instance, [40,41]). One way to avoid this
instability is to consider such theories as low-energy
approximations to a more fundamental theory, such as
string theory. Namely, at the scales where negative norm
states appear, the theory is expected to be replaced by a
better-behaved UV theory. Another possibility is
Weinberg’s asymptotically safe gravity [42] where there
are infinitely many powers of curvature and the negative
norm states appear only in the truncated, perturbative
version of the theory and disappear in the nonperturbative
formulation where all the coupling constants, i.e., all higher
derivative curvature terms, are taken into account. In [43], it
is also noted that Ostrogradskian ghosts in higher-deriva-
tive gravity theories (generic gravity theories) are only
apparent when one truncates the infinite series of curvature
invariants, and hence, these ghosts can be removed by
means of a suitable boundary condition. Furthermore, the
absence of the Ostrogradsky instability manifests itself in
theories with multiple fields; for example, in [44], the
authors discuss that, in the extended-scalar-tensor class of
theories for which the tensors are well-behaved and the
scalar is free from gradient or ghost instabilities on FLRW
spacetimes, one recovers the Horndeski theory up to field
redefinitions. The general theorem introduced in the present
paper addresses all theories that might be the low-energy
limit of string theory, where the Einstein-Hilbert action and
hence the field equations are modified by adding all
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possible curvature invariants. Based on this reason, we call
such a theory as generic gravity. All our treatments such as
proving our main theorem and all other derivations are
nonperturbative. There is no truncation, and hence, the
Ostragradsky instabilities are not in the scope of the
present work.

In Sec. II, we summarize our theorem for the
D-dimensional FLRW metrics. For illustration, we shall
study the quadratic gravity theory in detail.

II. GENERIC GRAVITY FIELD EQUATIONS
IN PERFECT FLUID FORM

Using the covariant decomposition, one can write the D-
dimensional FLRW metric as

G = —U, U, + azhmﬂ (4)

where p,v=0---D—-1, a=a(r), u, =38, and h,,
reads as

where h;; = h;;(x) is the metric of the spatial section of
the spacetime possessing the constant curvature k, and
i,j=1,...,D — 1. One notes that

— v __
u”hw = u”h” =0,

hy = h*®h,, = 8, + u'u,. (6)
The corresponding Christoffel symbols can be obtained as
Fﬁﬂ = yﬁﬁ — aau” hap + H(2u ' ug + ugdy + uaéﬁ), (7)

where the dot sign represents the derivative with respect to
time 7, H = a/a, and y,; is defined as

1
Vap = E“zhw(hmﬁ + Mypa = hap,y)- (8)

The Riemann curvature tensor can be written in the
following linear form in terms of the metric g,, and the
four vectors u, and u”,

Rgﬁy = [6Zgay - (%’lgaﬂ]pl
+ [uﬂ(gayuﬂ - gaﬂ”y) - ua((s;’luﬂ - 5Zuy)]p2v (9)

where p; and p, are defined as

k
/)1:H2+;, (10)
kK a . k

The contractions of the Riemann tensor (9) gives the Ricci
tensor and Ricci scalar, respectively, as

Rm/ = Pg/w + Quﬂuw

R=DP-0Q, (12)

where
P=(D-1)p;—pa, (13)
Q= (D-2)p. (14)

One can also verify that the Weyl tensor

1 [ [
CZ/}]/ = RZ/})/ + m ((%’Ra/i - %Ray + gaﬁRé’t - gayRZ)
1
+(D—1)(D—2> (%gay_a};gaﬂ)R (15)

vanishes for the metric (4). Since the conformal tensor is
zero, the curvature tensor is expressed in terms of the Ricci
tensor. This means that, for the FLRW spacetime, the basic
geometrical tensors are the metric and Ricci tensors. The
covariant derivatives of the Ricci tensor are given byl

R/u/;a = Puag;w - QH(uz/g/m + uygva)
+(Q - 20H)u,u,u,, (16)

OR,, = —[P+ (D -1)HP —20H%g,,
+ [2DQH? - 0 — (D — )HQlu,u,,  (17)

OR=-DP-D(D-1)HP+Q+ (D-1)HQ.  (18)

The field equations of any generic gravity theory in D
dimensions with the action, together with the matter fields,

1
I= /de,/—g[— (R—2A)
K
+ F(g,Riem, VRiem, VVRiem, ...) + Ly |, (19)
take the form

1
; (Gﬂu + Ag/w) + g/w = T%’ (20)

lEquations (16)—(18) are from [30] [Eqgs. (18) and (19)], here
with corrected typos.
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where G, is the Einstein tensor, A is the cosmological
constant, 77/ is the energy-momentum tensor coming from
the matter fields denoted by £y, and £,, resulting from the
higher-order curvature terms contained in the function F is
any second rank tensor obtained from the metric tensor,
Riemann tensor, Ricci tensor, and their covariant deriva-
tives at any order. Hence, we arrive at the following
theorem [30]:

Theorem 1. For the D-dimensional FLRW spacetimes
given in (4), any second rank symmetric tensor obtained
from the metric tensor, Riemann tensor, Ricci tensor, and
their covariant derivatives at any order becomes a combi-
nation of the metric tensor g, and u,u,; that is,

Euw = Agy + Bu,u,, (21)

where A and B are functions of the scale factor a(7) and its
time derivatives at any order and they depend on the
underlying gravity theory.
And we have the following corollary of this theorem:
Corollary 2. The field equations of any generic gravity
theory given in (20) take the form

1
; (G/u/ + Ag;w) = T%x + T/Zzn (22)

where 77, is the energy-momentum tensor of perfect fluid
distribution representing the baryonic matter fields,

T% = (,0 + p)uﬂuu + P9 (23)

with p and p being, respectively, the energy density and
pressure of the fluid, and TZy is the tensor coming from the
higher-order curvature terms in (19), which is also in the
perfect fluid form,

TZD = (pg + pg)uﬂuy + Pg9uw- (24)

with p, = A — B and p, = —A, due to (21). Hence, defin-
ing an effective energy-momentum tensor as

T;eufzf = T;% + TZD = (peff + peff)uuuu + DeftGuv> (25)

the generic gravity field equations (22) for the FLRW
spacetime with a perfect fluid source become

l{wlgl—/\} =p+A—B = pe, (26)

_,1(. [Wpl - (D—Z)/)Q—A:| :p_AEpeff‘

(27)

Thus, the interpretations of the functions A and B appearing
in the above formulation can be given as follows: the

combination “A — B” is the energy density and “—A” is the
pressure of a perfect fluid of purely geometric origin. The
functions A and B differ in different modified theories. In
each modification it is possible to arrange parameters of the
theories to meet the observations. In particular, we shall
analyze the quadratic gravity theory in D dimensions in
Sec. IV and show that these purely geometric terms solely
drive the late-time accelerating expansion of the Universe
consistently with the current observations. In the next
section, we shall give the cosmological parameters for
generic gravity theories described by the action in (19) in D
dimensions.

III. COSMOLOGICAL PARAMETERS
IN GENERIC GRAVITY THEORIES

Using (10) and (26), one can obtain

2K A k
] AR A
2K k
:(D—l)(D—z)Zpi_?’ (28)

where the label i denotes m, r, A, or g representing matter,
radiation, cosmological constant (or dark energy), and dark
geometric fluid, respectively. Defining the corresponding
dimensionless density parameter for each of the mentioned
components of the Universe as

. D —1)(D -2)H?
Q=P with p = BTDRZDHE o,
Perit 2k
we can write (28) as
1=Q, +Q, +Q, +Q, +Q,, (30)
where
szpm’ Qr:Pr’ QA:PA’
Perit Perit Perit
A—-B k
Q= , Qk:——z 5 (31)
Perit a H

and note that p, = A/k. The first observation here is the
contribution of the dark geometric fluid in determining the
spatial curvature of the Universe. One observes that

Q, +Q,+Q, +Q, <1< openuniverse (k=-1), (32)
Q, +Q, +Q) +Q, =1 s flatuniverse (k = 0),  (33)
Q, +Q,+Q\+Q,> 1 closeduniverse (k=1).  (34)

On the other hand, using (10), (11), and (28), Eq. (27)
can be written equivalently as
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da K

aH?  (D—1)(D-2)H?

« (D—3)p+(D—1)p—2A—B—2%. (35)

Now, defining the left-hand side as the deceleration
parameter ¢ and considering the barotropic equation of
state p; = w;p;, where j = (m, r), for the matter (w,, = 0)
and the radiation (w, = 1/3), Eq. (35) can be rewritten,
with the help of (29), as

___ 4
1="u
1
J
1 o) *
:5 (D—3)Qm +§(2D—5)Qr—291\ Qq , (36)
where

2A+B
Perit '

Q=

(37)

Here we see that the geometric fluid has a negative
contribution to the deceleration (or, equivalently, positive
contribution to the acceleration) of the Universe if
2A + B > 0. It can be observed that, setting D = 4 and
neglecting higher curvature modifications, one recovers the
deceleration parameter in GR as

[

q=5 (Q,, +2Q, —2Q,). (38)
At this point, before proceeding further, it is appropriate
to introduce the cosmological parameters

i(t) = —, ) =——, 39
=" s)=—m (39)
which are called “jerk” and “snap,” respectively. These
parameters, together with H and ¢, are defined by expand-
ing the scale factor in a Taylor series in the vicinity of the
current time 7, [45]:

A =_[(D-1)(Dp, —2p,)|[-(D -

[(D=2)(D =3)(D—4)(=(D

14
2

+Li0 =20 - 1), + (0
Ll - -a)(p

- 1)Hp,)]

— 1)pt +p3) +4(D* -

a(t 1 1
ali) _ L+ Ho(t = 10) = 5 qoHG(t = 10)* + 55 joHp (1 — 1)’
o 2 *3

1

4,50H4(1—f0) +0((t= 1)), (40)

where H, g, jo, and s, are the present-day values of the
Hubble, deceleration, jerk, and snap parameters and they
can be used to determine the evolutionary behavior of the
Universe.

IV. QUADRATIC GRAVITY AND CRITICALITY
IN D DIMENSIONS

The action of the quadratic gravity theory [46,47] is
1
I = /de,/—g [ (R —2A) + aR* + fRZ,
K
+7(R%,,, —4R%, + R?) + EM}, (41)

giving the field equations

1 1
; <R;w - Eg/u/R + Agﬂu) + g/w = (,0 + p)uﬂul/ + pg,uw
(42)

where p and p are the energy density and pressure of
the matter perfect fluid. Considering the FLRW metric (4),
we find

1
£, =2aR <R;w - Zg’“'R> + (2a+p)(9,0-V,V,)R

—2R,,R.°

HoptT

+2y [RR ~ 2R,y R + Ry R, 7"

1
_Zgﬂl/( TAop 4R2 +R2):|

1 1
+ ﬂD <R/w - Eg;wR> + 2ﬂ (R;mup - Zg,uyR(r/)) R°P
= Ag,, + Bu,u,, (43)

where A and B are given by

1)(D =4)p; +2(D - 3)p,]

—1)(D - 2)H(=Dp, +2p,) - D(D

—1)py +2(D = 1)p,]
= D)pt +4pips)]
= 2(py + (D = 1)Hp, = 2H?p,)]
5D +5)pipa), (44)
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B =2a[(D = 1)(D =2)(Dp = 2p2)p2] + (2a + p)[(D = 1)[H(=Dpy = 2p2) = (Dp — 2,)]]
+27[(D =2)(D =3)(D =4)pi1ps] = B(D = 2)[p» + (D = 1)Hpy = 2DH’p; )|

+2p[(D = 2)*p1ps). (45)
Hence, we can write (42) as
1]1 kK a?
; E(D_Z)(D_l) ;—'_; -A :p+pg]+pg25peff7 (46)
1[(D=-2)(D=-3) (k & i
—;[f 2Tz +(D_2)5—A =P+ Dy + Py, = Per (47)
where p, ,p,,. py» and p, have the geometric origin given by
o (D_l)al k2 22 .22 e 4k 2 2 4 .4 2.2 2 2. ... 4
Po ==t {k*(D =2)* + a*[2D(D — 3)ad — 4k(D — 2)| — (D* —4)a* — Da*a* + 2Da*a d}, (48)
k az 2
pg2 = —(D - 1)62 (; + ?> 5 (49)
Py = 2;1 A(D=2)(D=5)(D +2)a* — kK*(D = 2)*(D = 5) + aii(8k(D — 2) = 3D(D — 3)ail)
‘ a
+2a*2k(D = 2)(D = 5) = (D = 9)D* + 12D + 8)aii] — 2Diia® — 4(D — 3)Diia*a}, (50)
ko k a? a
sz_ﬁz(;‘f';) [(D—5)<g+;> +45], (51)

with

oy =4(D - 1)a+ Dp, (52)
(D=2)(D-4)

0= (D—-1)(D=2)a+ D(D - 3)y].

(53)

Remark 3. When the parameters o; and o, vanish
together, the geometric contributions given in (48)—(51),
resulting from the higher curvature terms in the action (42),
vanish identically and Eqgs. (46) and (47) reduce to the
equations in pure Einstein’s gravity. These so-called critical
points, i.e., 6y = 0 and 6, = 0, were identified and studied
in higher curvature gravity theories first in four dimensions
(where o, identically vanishes) in [48] and later in D
dimensions in [49]. In these works, it is shown that the
linearized excitations around these critical points have
vanishing energies and the mass and corresponding entropy
of the usual Schwarzschild-AdS black hole solution turn
out to be zero at criticality.

Remark 4. Tt can also be observed that the above
expressions are invariant under the scale transformations
a — na and k — n*k, where 5 is a constant.

Remark 5. From the positiveness of p,, in (49) it follows
that 0y < 0.
From Egs. (46) and (47), we can also write

g: _m (D =3)pess + (D — I)Peff—2% .

(54)

Thus, when A =0, to have a universe expanding in an
accelerating fashion (4 > 0), it must be that

£f
Pe <
Pett

D -3
D-1’

(55)

Weft =

Specifically, for D =4, we; < —1/3. Using (46), along
with the definition of the Hubble parameter, H = a/a, one
can also write (54) as

. K k

H= “D_2 (Pefi + Pesr) + ek (56)
which is more convenient than (54) because it does not
involve the cosmological constant A explicitly. This equa-
tion relates the acceleration of the Universe to its energy
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and momentum content. Together with the expressions
(48)—(51), Eq. (56) becomes highly nonlinear, and there-
fore, it is not possible to give a compact analytical solution
for a(t). However, we can use (56) to investigate the late-
time accelerated expansion of the Universe during which
the higher curvature terms in the action (41) are assumed to
be dominant. Indeed, recently it was observed that the
Universe had entered into an accelerated expansion
phase [50,51], and a possible cause of this late-time
acceleration is the curvature of the spacetime itself related
to the combination of the higher curvature terms that may
appear in the action of a generic gravity theory. This
|

Peft =P —

2D a*

o (D - 1) {1&(1) —2)?

observation implies that the acceleration, defined by a(7),
of the Universe has changed its sign from negative to
positive, or, in other words, the deceleration parameter ¢(¢)
has recently experienced a sign change from positive to
negative. Therefore, for the purpose of investigating the
late-time acceleration or deceleration behavior of the
Universe, we shall work with the deceleration parameter
q(1), instead of a(r), and convert (56) as a differential
equation for ¢(7) which can be solved numerically for given
initial values of ¢ and its derivatives. Let us first write p.s
and p.s in terms of the Hubble (H), deceleration (g), jerk
(j), and snap (s) parameters. From (48)—(51),

k .
—4?(D - 2)H2 — 2D(D — 3)qH4 - (D2 — 4)H4 - Dq2H4 + 2D]H4

k 2
oD - 1)(—2+H2> , (57)
a
0] K 2 k 2 4
Pet =P =35 —;(D—z) (D—5)+4;(D—2)H [D-5-2q]+(D-2)(D+2)(D-5H
—-3D(D -3)¢*?H* +2(D* - 9D? + 12D + 8)gH* — 2DsH* — 4(D - 3)D jH*
k 2 k 2 2
+ 0y E"‘H (D—S) ?'f'H —4qH s (58)

where

. q
— L 41 +29),
J H+q(+61)

_4a

§ = HZ

+ 2%(1 +39) —q(1+2g)(1+3q). (59)

In getting these expressions, use has been made of

1=-—57="1p 1. (60)
Now, we shall set the ordinary matter and curvature to zero in
the formulation, i.e., p = 0 = p and k = 0, to both comply
with the observations and investigate the late-time acceler-
ation of the Universe resulting purely from the geometric
terms related to curvature of the spacetime. Then, Eq. (56)
becomes an equation involving H, g, and the first and second
derivatives of g with respect to time; that is,

{1 N 4H2K62:| (g4 1)

D-2
Ko 2 2 . .
————{-2H*(D*>-4)+ H(D-7)Dg + D
+ Hq[H(—=6D? + 15D + 8) — 6Dg] — 4H*(D — 5)Dg*
+6H?Dg’} = 0. (61)

[
However, this form is not appropriate for solving the equation
numerically. To obtain an appropriate form, we will change
the time derivatives to derivatives with respect to H, since
both H and ¢ are functions of time only and related to each
other by (60). That is, using

q = _H2(1 + q)q/v
G=H'(14+q)*q" +2H*(1+q)*q + H*(1+q)q"”. (62)
where the prime denotes derivatives with respectto H, we can

bring (61) into the following second-order nonlinear differ-
ential equation for ¢ in H:

{1 +4H2K62] (q+1)+ H’ko,
D-2 (D-2)D
— H(D -9)Dq' + H*Dq"* + H>Dq"
+ Dg*(20 — 4D + 8Hq' + H*q")
+ g[8 + 15D — 6D* — H(D — 17)Dq' + H*>Dg"
+2H?Dq"]} = 0. (63)

{8 —2D* + 6Dg’

Once the initial values H,, gy, and g, are given, this equation
can be numerically solved for the evolution of the deceler-
ation parameter ¢ in H. This kind of analysis was previously
exploited in the context of f(R) gravity in [15,25,26]. In the
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following analysis we will take the present-day values of the
cosmological parameters H, ¢, j, and s as [52,53]

Hy=674km-s™'-Mpc!,
jo=126,  sy=0.04

qdo = —071,
(64)
Here, we shall consider two particular cases regarding
our parameter space (o,0,) corresponding to o, =0
(Case I) and o, = 0 (Case II).

Case 1. When o, = 0, the deceleration equation (63)
becomes

h’ko,
(D-2)D
+ h*Dq"* + h*Dq" + Dg*(20 — 4D + 8hq' + h*q")
+ g[8 + 15D — 6D? — h(D — 17)Dq' + h*Dg"
+2n*Dq"]} = 0.

(g+1)+ {8 —2D?+6Dg* — h(D - 9)D¢q’

(65)

Note that in writing this equation we have rescaled the
Hubble parameter H in (63) as
H = (100 km - s~' - Mpc™)h (66)
to construct a dimensionless parameter 4 and assumed all
the numerical constants are absorbed into the constant o;.
Remark 6. Before presenting the solution of (65), it
would be useful to look at the energy density p, related to
the geometry: Since it must be positive, we can determine
the sign of the constant ¢, by evaluating the energy density

at the present time. From (48), we can infer that the energy
density at the present epoch is

(D —1)ho,

D [2D(D —3)qy + (D*—4) +Dgi —2Dj).

Pg=
(67)

Remark 7. Inserting hy, gy, and j, from (64) into p, and
graphing with respect to o; and D, we obtain the plot
shown in Fig. 1. As is obvious from the figure, to have a
positive p,, the parameter ¢; must be negative for all
dimensions up to D = 11.

Now, we can solve Eq. (65) numerically: First, to
observe the effect of the value of 6, on the solution, we
plot the solution of g(h) for D = 4 and for different values
of o4, this is shown in Fig. 2.

Remark 8. Since h is related to the inverse of the cosmic
time #, in Fig. 2, h > h defines the past and & < h defines
the future in the cosmic evolution of the Universe. As is
obvious from the figure, the deceleration parameter g
experiences two signature changes: one is at the past
and the other is at the future.

Remark 9. There is some time interval in which
the deceleration parameter is negative (i.e., g <O0).

FIG. 1. The plotof p, vs ¢y and D for hy = 0.674, o = —0.71,
and j, = 1.26.

I
I
|
|
|
3 | - 01=-0.05
) | e
{‘\ : -"‘""t 0'1=—1
LA —” ‘ ‘
505\ = 1.0 15 20 " - o1=-10
\\ v - 0y=-100
I

Future
-2

FIG.2. The plotof g as a function of % for different values of o,
and for D=4, k=1, 0, =0, hy =0.674, gy = —0.71, and
qn = 4.92.

In particular, close to the present value of the Hubble
parameter hy, = 0.674, the deceleration parameter g is
negative. This means that the observed accelerated expan-
sion phase of the Universe can be driven solely by the
curvature of the spacetime.

Remark 10. It can also be observed from Fig. 2 that, as
the value of o, decreases in negative (or increases in
magnitude), the curves are opening out and approaching
each other, and for very small values (or large magnitudes)
they are becoming almost identical. This stems from the

-2

FIG. 3. Behavior of g for 4<D <10, k=1, oy = -10,
6, =0, hy =0.674, gy = —0.71, g, = 4.92.
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fact that, as the magnitude of the parameter o, increases
in (65), the first term in the equation can be neglected and
the equation is effectively reduced to the one in which the
curly bracketed expression equals zero.

Remark 11. Additionally, we can also investigate the
behavior of g(h) with D. This is shown in Fig. 3. Here it is
|

(D=2)(D+2)(D-5)=3D(D -3)q3 +2(D?-9D* + 12D + 8)q, — 2Ds, — 4(D — 3)Dj,

explicitly seen that, as D increases, the signature change of
q occurs at later times.

On the other hand, one can also study the behavior of the
equation of the state parameter of the dark fluid w, stemmed
from the terms proportional to o in (57) and (58); that is,
since w, = p,/p,, at the present time ¢, we obtain

w, =

! (D =1)[-2D(D = 3)qy — (D* = 4) = Dgj + 2D jo] ’

the plot of which is given in Fig. 4 with respect to D, where
the dotted lines represent the upper bounds in (55)
decreasing in value as D increases.

Remark 12. As is obvious, w, is negative for all integers
4 <D <10, consistently with Fig. 3, and satisfies the
condition (55) for all dimensions. Specifically, for D = 4,
w, = —0.85.

Case II. When oy =0 and D # 4, the deceleration
equation (63) becomes

2KU
[1 +4g_ 22] (g+1)=0. (69)

Recalling that 6, < 0 follows from the positiveness of p,,
there are two possibilities:

) [1+ 4'1‘;2_";2] #0 and ¢ = —1, independently of the
number of dimensions. Thus, the deceleration
parameter is always negative, representing an accel-
erating Universe driven by the curvature of the
spacetime. Also, one can show that for the equation
of state of the geometric fluid w, stemmed from the
terms proportional to ¢, in (57) and (58) is

D-5-4
e s G (70)

YaT T

oL

FIG. 4. Behavior of w, for 6, =0, gy = =0.71, j, = 1.26,
so = 0.04.

(68)

for ¢ = —1 independently of the number of dimen-
sions. Hence, the geometric fluid can derive the
accelerating expansion of the Universe playing the
role of an effective cosmological constant.

(i) When H? = —%, it follows that ¢ = —1 auto-

matically. This case represents an exact exponential
solution for the scale factor, i.e., a(t) = aye™

where 4 = \/—(D —2)/40,.

V. SOME PARTICULAR COSMOLOGICAL
SOLUTIONS IN QUADRATIC GRAVITY

In this section, we shall investigate some particular
solutions to the general equations presented in (46)
and (47).

A. Solutions with 6,=0

When o, vanishes, the field equations (46) and (47)
become

2 )-

(D - 1)61
2Da*

+ &2(2D(D - 3)aii — 4k(D —2))

— (D* = 4)d* — Da?d* + 2Dd’a’dl, (71)

R T O IR

—p- (D —2)°

2

0]

{(D-2)(D-5)(D+2)a*
—k*(D-2)*(D-5) + ad[8k(D —2) —3D(D —3)ad
+2a*2k(D =2)(D=5) = (D((D=9)D +12) + 8)ad]
—2Diia* —4(D - 3)Diéa*a}. (72)

It must be noted that these equations are valid when D = 4

and (D—1)(D-2)a+D(D-3)y+#0, or when D # 4 and
(D-1)(D—=2)a+D(D-3)y =0, or when D =4 and
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(D-1)(D-2)a+ D(D—-3)y =0. In four dimensions,
these reduce to

1
@[:ﬂl( a)? + 3ka* — Aa*]
30

—p—g[Zaaa —a*(a)* + 2a(a)?d — 3(a)*

— 2k(a)? + K2, (73)
Kipaa+a()+kG—Aa]
:;r+zﬁpfd+4#aﬁ+&ﬂwf—1%W@%

+3(a)* — 4kad + 2k(a)* — K7, (74)

where o1 = 4(3a + f). This case is known as the critical
gravity where (73) and (74) reduce to the ones in the usual
Einstein’s gravity when o7 = 0 [46,47]. Here we have the
following immediate Remarks:

Remark 13. When the critical parameter o1 = 0 [48,49],
it is quite interesting that for this special case the above
energy density and pressure expressions for the FLRW
metric reduce to the corresponding expressions in pure
Einstein theory. This means that the highly nontrivial tensor
field £,, given in (21) reduces to

1 1
Ep = a(ZRRm, - ERng +-9,0R+V,V,R-30R,,

2

c 3 c
- 6R;tpz/o'Rp + zg/pr Rpa) s (75)

which vanishes identically for a # 0.

Remark 14. The case when k = 0 and vanishing of the
coefficient of ¢ in (73) and (74) corresponds to the work of
Barrow and Hervik [23]. They found a power law solution
for a and studied the stability of the solution.

1. Exponential solutions

Now, we shall study a special case that may correspond
to the late-time accelerating era of the Universe. Let
a(t) = age™’, where a, and H, are the scale factor and
the Hubble constant at the time when the accelerating era
begins, respectively. It is interesting that, for an exponen-
tially expanding flat universe (k = 0), the contributions of
the quadratic gravity terms related to o; in (71) and (72)
vanish identically. This means that the presence of the bare
cosmological constant A is crucial for having exponential
solutions in arbitrary D dimensions. When & # 0, the field
equations (71) and (72) become

(D-1)(D-2) _
p= ZDKag [Dﬁoag + kagﬂze 2Hot

+ (D = 2)k*ko e~ *0], (76)

where f, =

4(D
(a)

(b)

(©)

024073-10

D -2
 2Dxkd
+ (D - 2)(D = 5)k*ko et

p= [Dﬂoao + (D = 3)kagpre=>!

(77)

HO (D 1 ﬂz D—4KO'1H(2), and o] =
— la+ Dp. We have the following consequences:
If fo >0 and p, > 0, the energy density remains
positive for all 7. At late times when ¢ — oo, we have
p— w and p — —%. Hence, the equa-
tion of state is of dark energy type, ie., p = — 5.
When fy =0 or Hy = W and as t — oo,
then we obtain

(D-1)(D-2) .
p:Tkaé[ka%ﬂze 2Hot (D —2)k*ko e,

(78)
D-2
2Dkaj
+ (D =2)(D = 5)k*kc, e~ *01],

P =5 (D~ 3)kaipre ot

(79)

In these expressions, since the last terms decay faster
than the first terms, one can deduce an equation of
state at late times

_D-3

1" (80)

p =
It can be seen that, for D > 4 and p > 0, the pressure is
always negative. In D =4, this gives p = —p/3,
which corresponds to the equation of state of cosmic
strings [54].

To have positive pressure, we let f; =0 and p, =0
together so that H, = and 4xo Hj = D.

We find

2A
(D-1)(D-2)

_(D-1)(D-27,

k oy e—4H0t
2Daj ’

(81)

b _(D=2D=5)

—~4Hot
2Dag

(82)

This special solution can only be obtained when both k&
and o, are nonvanishing. Hence, it can be obtained
neither in Einstein theory nor in the work of Barrow
and Hervik [23]. In other words, it is the effect of the
quadratic gravity that predicts a de Sitter era at late
times with the acceleration of the expansion being
constant, i.e., the square of the Hubble constant
(Hy = %) at the beginning of the accelerating phase.
Furthermore, the above expressions for the energy
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density and pressure of the fluid provide an equation
of state

D-5

pP= —ﬁﬁ»

(83)
where, for D > 6 and p > 0, the pressure is always
negative. It can also be seen thatin D = 5 the pressure
vanishes corresponding to the equation of state of
dust matter, and in D = 4 it becomes p = % p which
corresponds to the equation of state of radiation. This
solution is valid for both closed (k= 1) and open

At this point, it should be stressed that all the above
equations of state can mimic a variety of sources of
“geometric” origin filling the Universe which accelerates
like the de Sitter universe at late times.

2. A more general solution

Let us assume that a(¢) satisfies the following differential
equation:

(34)

where f(a) is any arbitrary function of the scale factor a(7).
Hence, the energy density and pressure expressions in (71)

(k = —1) universes. and (72) become
|
_(D-1)({D=-2) _ 2A
e R G
o1k : D(D-3) _, D ’
e R e A = s e L |
_ (D-1)(D-2)(D-3 2A 1 )
P {D—ﬁf+”f_u»4xp—mdqu—n“7
o1k , 3D(D-3) ,,
‘DU)_D{U)+2KD—5NQ—(D—2XD—5M4+4hﬁ“—4%0_2)a%’+4a>—swf
D*-9D>+12D+8 _  2D(D-3) , o »
B (D -2) aff—Wasz _ma3(ff +2ff )H (86)

where f' = %. Now, we shall give some examples:

Example I.Let f = agk +“ + asa®. For this choice, the
acceleration of the Universe, d = f'/2, becomes positive
when a > (5-)'/°. Taking ag = ~1 and a3 = %,
we get

- 2(D —4)(71/\2 _ a1<D - 1)
- D(D-2)? 2Dka®

{D(D -2)a?
Ko 2
+ 51 |(8D> = 19D - 16)a; + 12D(D — 3)ka

8D +2)(D-4)A ﬂ}
(D-1)(D-2) ’

(87)

2(D - 4)0’1/\2 a
D(D-2)*>  2Dka®

&xu-zxp—@@

+ % [(D —7)(8D* - 19D — 16)a,

e = =l

(88)

I
where a; is an arbitrary constant. From these expressions, it
can readily be observed that, when a; = 0, the equation of
state of the fluid reduces to the form

p=—p (89)

which corresponds to a cosmological constant equation of
state for D # 4. For D = 4 and a; = 0, the energy density
and pressure vanish identically. This means that, for
f=—k+4R?, the FLRW metric is the vacuum solution
of the quadratic gravity field equations. In particular, when
k =0, this is the usual de Sitter solution with the scale
factor a = aoe\/mt.

Example 2. Let f = aok + % + asa®. This time, the
acceleration of the Universe, d = f'/2, becomes positive

when a > (32)"/*. Taking ay = —1, we obtain
D-1
p = |- DD - 4o
+D(D-2) 2A
ST b-1ND-2)
az(D -

2DKasl) {D(D -2)a* — ko [(D = 4)(1 + 3D)a,

—4D(D — 4)ka* 4+ 2(D* — 5D — 4)aza']}, (90)
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D-1

D [(D 1)(D—4)ko,a3

")

{D(D-2)(D-5)a*

p:

+D(D-2) (a3

2D 8
—xo,[(D-4)(D-9)(1+3D)a,—4D(D—4)(D-7)ka>

+2(D-5)(D*-5D—-4)aza*]}, (91)

where a, and a5 are arbitrary constants. Here we have the
following special case: When D = 4,

3a;— A 3a
p= 3 _|_7‘2‘(1—|—2K01613)7 (92)
K Ka
3a; — A
p=- 3K +—4(1—|—2K61(l3) (93)

Now, choosing a; = A/3, the equation of state becomes

1

|

a3(D —1)o,[3m*Da® + 4m(D —

3)Da - 4(D* - 4)]

p:

which corresponds to a radiation equation of state for
arbitrary a,. This means that, for f = —k + % + asa?, the
spatially flat (k = 0) FLRW metric solves the quadratic
gravity field equations with the scale factor

1
a(t) = \/Ee\/@ 1 — ayaze™a!, (95)

1 ast

As it can be seen, a(t) — \/T_e as t — oo, which
as

means that, although the equation of state represents a
radiation field, there is a de Sitter-like expansions at
late times.

Example 3. Let f = age™ where ay and m are two real
arbitrary constants. For this function, the scale factor is

a=—210g <1—Mz), (96)
m 2

where a > 0 requires m < 0. Thus, this corresponds to a
decelerating universe. In this case, the energy density and
pressure take the form

a(D-1)(D-2) ,,

A
2ma . 97
8Da* e 2xa? K 07)
ago,[6m*Da® + 11m*(D = 3)Da* + 4m(D* = 9D* + 12D + 8)a —4(D = 5)(D = 2)(D +2)] ,,.
— e
8Da*
D-2 D-3 A

_ ‘10( )(ma + ) ema + ; (98)

2xa?

Example 4. Let f = ayga™ where a, and m are two arbitrary real constants. This function produces the scale factor as

-[ez

2
2-m 2

) \/%} =, (99)

where a, > 0 and m # 2. From this scale factor, one obtains the acceleration as d = % a™ . To assure the positiveness of
a and d, it must be that 0 < m < 2. In this case, the energy density and pressure are

I {(D —2)(D - 1)(apa" + k) A]

p:E 24>

+ (Gl {ad[3m>D + 4m(D — 4)D — 4(D — 2)(D + 2)]a*" — 16a¢k(D — 2)a™ + 4k*(D — 2)*},

8Da*

11 =
p:—;[EaO(D—Z)(m—i—D—?a)a 2+ e

8D4

= 16aok(D = 2)(m + D = 5)a™ + 4k*(D = 5)(D — 2)*}.

k(D —1)(D - 5)

(100)

- A

{ad[6m®D + m*D(11D — 47) + 4m(D* — 11D + 20D + 8) —4(D + 2)(D — 2)(D - 5)]a®

(101)
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It can be observed that, when ¢t — oo, the contributions of
the higher curvature terms decay faster than the Einstein
terms, and hence,

L[(D=2)(D = 1)(aoa" +K) _
| |

N
P K 242

k|2

k(D -1 -5
io-poss |

11
p——— {ao(D —2)(m+ D —3)a"?
J’_

Now, for the flat universe and A = 0, we can deduce that

D-34m

4
=—= , 102
w= D1 (102)
which reduces to w=—1(14+m) in D=4. Since
0 <m <2, it must be that —1 <w < —B=3 One can

D-1
see that as D increases, the range squeezes and the upper
bound approaches —1.

On the other hand, at early times (as ¢t — 0), the only
conditions on the parameters of the scale factor are ay, > 0
and m < 2. There are the following cases:

(i) For m < 0, we have

(D - 1)o,a3a®™

p— SDd [3m>D + 4m(D — 4)D
—4(D-2)(D +2)], (103)
D-5+2 2 g2m
o P=3F2m)a165a [3m2D + 4m(D —4)D

8Da*
—4(D-2)(D+2)]. (104)
Then one can deduce the following equation of state:

D—-542m
D—-1 ’

W (105)

E =
P
which becomesw = % > %inD =4.Form = —1,

it gives the stiff fluid equation of state, w = 1.
(i) For m = 0, we have

P Gl 12)[()124‘ 2)% 121y — 2) — dak
— (D +2)ad). (106)

o1(D-2)(D-5)
2Da*
— (D +2)dj].

[K3(D = 2) — 4agk

p—= -

(107)

Then

p D-5

w

This becomes w =1in D =4andw=0in D = 5.
The former represents the radiation and the latter
represents the dust matter.

(iii)) For 0 < m < 2, we have

(D -1)(D-2)%,K

p— Da , (109)
D —2)>(D -5)0,k*
p o )2(Da4 Jok (110)
Then
D-5

Again this represents the radiation (w = %) inD=4
and the dust matter (w = 0) in D = 5.

3. Approximate solutions near criticality with 6,=0

Now, we assume that, in generic gravity theories in (19),
the action contains some number of coupling constants, and
hence, A and B in (26) and (27) are functions of these
coupling constants and/or some combinations «; of them.
Assuming that these coupling constants are relatively
smaller than the other parameters in these functions, we
can expand the scale factor a in terms of these parameters

a(t,a;) = ag(t) + Za,.a,.(z) +0(a?).  (112)

Following this approach, we obtain the functions A and B as

A= A+ 0(a), (113)

B=Y aB;+ 0O(a}). (114)

where A; and B; are functions depending on the explicit
gravity theory. In what follows we shall keep only the terms
linear in a;. Hence, Eqgs. (26) and (27) reduce to

+ Z:ai {Ai - B, - W/’“] =0, (115

p+%[<0—1)2<0—2)

_Z“’{Ai_(l);z) <D2_1p1i—pz,->} =0, (116)

pro— (D =2)py — A]
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where
,  k
pPio = Hy+—, (117)
agp
k g . k
=H*4+——-"=Hy+—, 118
P20 0+a3 @ 0+a(2) (118)
6 ka;
=—(aHy—aH?——'], 119
Pli ao <az 0 a; 0 a(z)) ( )
2 ka; 1 [(dya;
= aHy—aH> = (2% G, 120
P2i ao |:az 0 a; 0 a%+2<a0 +al>:| ( )

where Hy = ag/ay. Now one can find a; from (115) by
assuming that the extra terms in ¢; vanish, i.e.,

K

Zai {A[ ~B; - W”U] =0.  (121)

Remark 15. Then the expression for p becomes exactly
the energy density without the modification of the generic
gravity, but the expression for p has contributions from the
generic gravity theory.

Now, we will specifically consider the critical quadratic
gravity theory given by the action (41) with 6, = 0 in (53).
Taking i = 1 and a; = o, in the above formulation, from
(112) the scale factor becomes

a(t,01) = ag(t) + oy, (1) + O(o7), (122)
and the field equation (115) reads as
1[(D-1)(D-2 k
L [R=00=2) (kY
K 2 a(z)
D-1)(D-2 k
_( )( )al{leo—mH%—%
Kdg ag
K
——[k¥*(D-2)?
+2D(D—2)a(3)[ ( )
+ a3[2D(D - 3)ayiy — 4k(D — 2)]
— (D* - 4)a} — Dadal + 2Da3a050}} =0. (123)

To determine a;, we assume that the coefficient terms of o
vanish, i.e.,

k K
1wHy—a, | H2 +— ) + ————[K*(D - 2)?
“@ito “1< °+a3)+2D(D-2)ag[ (D-2)

+ a3[2D(D — 3)ayiy — 4k(D — 2)]

— (D? - 4)d§ - Daiil + 2Dadagiio] = 0, (124)

which can also be obtained from (121). This equation can
be rewritten in the following first-order linear differential
equation form

ay + R(t)a; = S(1), (125)
where
k
R(t) = —<H0+—>, (126)
apHy
S(1) = ~ 55 =5 {k(D - 2)?
+ a3[2D(D - 3)ayiy — 4k(D — 2)]
— (D* = 4)a3 — Dajag + 2Dagagdio . (127)
Equation (125) admits the general solution
C  pu)
t)=—+—+, 128
al() ﬂ([)+ﬂ([) ( )
where C is an integration constant and
Ar) = eJROE gy = / ANS(dr.  (129)

Taking D = 4, we consider the following cases:
(1) Letting ay(r) = bye“', where b, and ¢, are con-
stants, we find a, () as

a (l‘) — eCof Ce—dog_zf()f + L (ke—Zcot _ 4C(2)b(2)) ,
4b,
k
) ==——. (130)
ZC%b%

Hence, a(t,0) in (122) reads as

a(t,o1) = bye' + o€’ {Ce_doezrol

5 (ke2e — 4c(2)b3)] . (131)
4b,

For a flat universe (k = 0), it reduces to
a(t,o1) =yoe®', xo=bo+0,(C—kc3by). (132)

Then, the contribution of the higher curvature terms
in the scale factor for a flat universe has the same
exponential form e’ as in GR. For y, > 0, the total
acceleration, i.e., d(z,0), is positive.

(2) Letting ay(t) = myt", where m and n are constants,
we find a,(¢) in (128) with

M) =t (133)
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_n 3 5 knk 5.
ﬂ([)_/ebIZ(] )<—Zm01<n(1—2n)t 3+2—’not 2n—1
k2
K . tl—4n> dt, (134)
4nmy
where b = — lel_n) Here we consider the follow-
0

ing two cases:

(i) k=0,n= % corresponding to the radiation era
in a flat universe in the context of GR. For this
case, we obtain

a,(t) = Ce, (135)

and then

a(t.o) = yot'. Xo=mo+oC.  (136)
Then, the contribution of the higher curvature

terms in the total scale factor for a flat universe

has the same power law form 2 as in GR. In
contrast to the previous case of the scale factor
with an exponential form, here we see that the
total acceleration é(t,61) = — 4 xo 17 is positive
if yg <0. For yo > 0, the higher curvature
modifications cannot support the acceleration
of the universe.

(i) k=0,n= % corresponding to the dust matter
era in a flat universe in the context of GR. For
this case, we obtain

1
a,(t) = CF ——xkmor5,  (137)
12
and then
a(t,o)) = t%—ikmt_%
»01) = Xol: 12 KMot 2
)(0:m0+61C. (138)

In contrast to two previous cases, here we see
that the contribution of the higher curvature
terms in the scale factor are not of the same

kind of GR, and there is an extra /3 type of

contribution. The total acceleration has the

.. s T
form d(t,01) = =013 — 3% 6kmpr ™3 which

is negative for (mg,C,o0y,k) > 0. Then, the
higher curvature modifications cannot support
the acceleration of the universe in a matter
dominated era.

B. Solutions with 6; =0

When 6; =0 and D # 4, the field equations (46) and
(47) become

%B(D—2)(D—1)<§+Z—§> —A}
=p—(D- 1)02<§+z—z)2,

RICE T T P

a a
kK a? kK a? i
:p+62<?+?> |:(D—5)<;+?> +4E] (140)

In this case, when [(D—1)(D—-2)a+ D(D-3)y] =0
(i.e., o, = 0), one again recovers the expressions in the
Einstein gravity in D # 4 dimensions.

To see the effects of quadratic gravity terms on the
expansion of the universe at late times, neglect p and p of
baryonic matter in (139) and (140). Then, from (139), one
can immediately obtain the following solutions for the scale
factor:

(139)

sinh(y/ho (—10)]

i for k = -1,
a(t) = § V/holi-1) for k =0, (141)
coshly/ho(11o)] _
T for k = +1,
where £, is an arbitrary integration constant and
D-2 160,A
hy=— 1 l4——F 142
0= " dko, [ i \/ *o-no-a

with 6,A > —W. One can verify that, with this

solution, Eq. (140) is identically satisfied. The energy
density and pressure of the geometric fluid becomes

pp = —05(D = 1)hj, (143)
Pp = 02(D - 1)h3. (144)
Remark 16. These give an equation of state p, = —py

that corresponds to the vacuum equation of state. It must be
observed that the positiveness of the energy density
requires o, < 0. Also, it should be stated that in the
absence of a cosmological constant (A = 0), the higher
curvature terms in the theory behave as an effective
cosmological constant driving the late-time exponentially
accelerating expansion. These results are consistent with
the ones discussed in Case II in Sec. IV.

VI. CONCLUSION

We have given all our findings both in the abstract and in
the Introduction. Here we give a short summary of this
work. We consider FLRW cosmology in the context of
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generic gravity theories in which the action includes all the
combinations of the metric tensor, curvature tensor, and
covariant derivatives of the curvature tensor of any order.
Very recently we showed that in such theories with FLRW
geometry, contributions of all higher-order terms reduce
to a perfect fluid form which we now call the geometric
fluid. Hence, all generic theories of gravity in FLRW
geometry are equivalent to Einstein’s theory of general
relativity where the source term contains both matter and
geometric fluids. We propose that the source of dark
energy/matter is this geometrical fluid arising from
higher-order gravity theories. Choosing any higher-order

gravity, the parameters of the theory can be suitably
arranged that the corresponding geometric fluid contributes
to the accelerated expansion of the universe. We verified
our assertion by taking the quadratic gravity as an example.
Furthermore, we have given some particular exact cosmo-
logical solutions of quadratic gravity theory with matter
and geometrical fluids.
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