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The collapse of a spherically symmetric ball of dust has been intensively studied in loop quantum gravity
(LQG). From a quantum theory, it is possible to recover a semiclassical regime through a polymerization
procedure. In this setting, general solutions to the polymerized Einstein field equations (PEFE) will be
discussed both for the homogeneous interior and the exterior of the dust cloud. Exterior solutions are
particularly interesting since they may lead to a semiclassical version of the Birkhoff’s theorem. It is seen
that if time independence of the vacuum is imposed, there exists a class of solutions depending on two
parameters. Nevertheless, the possibility of more intricate time-dependent solutions is not ruled out
completely. A second approach to study semiclassical spacetimes is by considering an Oppenheimer-
Snyder model. Namely, one glues the portion of spacetime containing homogeneous dust with the vacuum
part by matching the extrinsic curvatures. In this way, one gets a metric tensor for the vacuum, which can be
compared to the one obtained previously. Although these two methods are completely independent from
each other, the results we obtained are in perfect agreement.

DOI: 10.1103/PhysRevD.110.024072

I. INTRODUCTION

Quantum gravity models lead to semiclassical correc-
tions to spacetime geometry. Those spacetimes are still
described by a metric tensor with Lorentzian signature, but
this tensor contains new expressions proportional to pos-
itive powers of Planck’s constant. Often (though not
always) these new terms smooth out the spacetime singu-
larities predicted by the classical theory. In the following
work, we restrict ourselves to semiclassical spacetimes
predicted by LQG models. The first family of semiclassical
spacetimes, which has been very well studied and described
in the literature, consists of spatially homogeneous iso-
tropic spacetimes filled with matter. They either describe
the collapse of a dust ball or the expansion of the Universe.
A second family includes spherically symmetric vacuum as
well, and it will be the kingpin of our paper. From the point
of view of Einstein’s classical theory, all the spherically
symmetric vacuum spacetimes are characterized by
Birkhoff’s theorem as a one-parameter family of space-
times given by the Schwarzschild metric tensor. This raises
the question of how this theorem generalizes (in possibly
modified form) into the semiclassical theory.
Semiclassical spherically symmetric vacuum spacetimes

are obtained in various ways. The direct method involves
finding an exact quantum state in which the quantum
observables have minimal quantum uncertainties, followed

by analyzing the expectation values of the quantum
operators composing the metric tensor. Alternatively, it
is possible to consider suitably modified Einstein’s equa-
tion and look for solutions. A third method relies on the
Oppenheimer-Snyder (OS) approach. That is to say, the
classical collapsing dust ball is replaced with a semi-
classical version, and then the static, spherically symmetric
metric tensor outside is computed, determined by the
known matching conditions. For this reason, we will refer
to this method as “matched” OS (MOS). The last two
approaches will be the main focus of this paper.
At first, we will look at semiclassical Einstein equations.

The aim is to find the most general solution describing a
collapsing ball of homogeneous dust embedded in a
vacuum. Interior and exterior of the “star” will be treated
separately.
Lastly, said solution could be compared to spacetime

metrics obtained by the MOS approach. In contrast to the
classical MOS models, their semiclassical counterparts
provide three different branches of spherically symmetric
vacuum, depending on the parameter values k ¼ −1; 0; 1
(open, flat, and closed universe, respectively). In the case of
k ¼ 0, the obtained family of metric tensors outside the
dust ball is parametrized by one parameter, the mass. When
k ≠ 0, a second parameter, related to the initial radius of the
ball, appears. Its absolute value is the same in both cases;
however, it is positive if k ¼ −1 and negative if k ¼ 1.
Do these three metric satisfy the semiclassical Einstein’s

equations? Do these equations admit any other vacuum
spherically symmetric solutions? Do all the solutions have
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static asymptotically flat regions? Finding answers to these
questions is the subject of the current paper.

II. CLASSICAL THEORY

As it is common in literature, the classical theory will be
described through the Hamiltonian formalism and Ashtekar
variables. The starting point is the most general spherically
symmetric spacetime, which can be expressed in the
following way [1]:

ds2 ¼ −N2dτ2 þ ðEφÞ2
Ex ðdxþ NxdτÞ2 þ ExdΩ2: ð1Þ

The functions N ¼ Nðτ; xÞ and Nx ¼ Nxðτ; xÞ are, respec-
tively, the Lapse and the x component of the Shift vector.
The other two variables, Ex ¼ Exðτ; xÞ and Eφ ¼ Eφðτ; xÞ,
are related to the densitized triads Ea

i ¼
ffiffiffi
q

p
eai through the

relations:

Ex
1 ¼ Ex sin θ; ð2aÞ

Eθ
2 ¼ Eφ sin θ; ð2bÞ

Eφ
3 ¼ Eφ: ð2cÞ

The dynamical variables Ex and Eφ are conjugated to the
Ashtekar-Barbero connection Ai

a ¼ ωi
a þ γKi

a, given that
ωi
a is the spin connection, Ki

a ¼ Kb
aeib the extrinsic curva-

ture and γ the Barbero-Immirzi parmeter. Renaming the
component of the extrinsic curvature as:

γK1
x ¼ Kx ð3aÞ

γK2
θ ¼ Kφ ð3bÞ

γK3
φ ¼ Kφ sin θ; ð3cÞ

leads to two couples of conjugated variables ðKx; ExÞ
and ðKφ; EφÞ.
Since the main interest of this paper will be focused on

LTB and Schwarzschild-like metrics, the line element in (1)
can be Gauge fixed.
Firstly, the dust field is taken as the time parameter

T ¼ τ (dust gauge). It follows that N ¼ 1 is needed in
order to preserve the Gauge choice in time [2]. Such fixing
implies that the gravitational Hamiltonian constraint
becomes the physical Hamiltonian (density) Hphys ¼
HðgÞ ¼ −4πpT , where pT is the conjugate momentum to
the dust field. It follows that the dust density is related to the

Hamiltonian by ρ ¼ pTffiffiffiffi
Ex

p
Eφ ¼ − Hphys

4π
ffiffiffiffi
Ex

p
Eφ (see [3] for details).

Additionally, the Areal Gauge will be imposed
too, Ex ¼ x2.

For convenience, Eφ will be rewritten as

Eφ ¼ � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵðτ; xÞp : ð4Þ

All in all, the metric becomes

ds2 ¼ −dτ2 þ 1

1þ ϵðτ; xÞ ðdxþ NxdτÞ2 þ x2dΩ2: ð5Þ

The coordinates adopted in (5) are known as generalized
Painlevé-Gullstrand (PG) coordinates ðτ; x; θ;φÞ.
All those models with ϵ ≠ 0 are known in literature as

“nonmarginally bound” [4–6] and will be the main interest
of this paper.
Now, the dynamic of the system is all encoded in one

dynamical couple ðKφ; EφÞ, whose Poisson bracket reads
fKφðy1Þ; Eφðy2Þg ¼ γGδðy1 − y2Þ. From now on, the unit
system will be set such that G ¼ 1.
From this point, the LTB model in comoving coordinates

ðT; R; θ;φÞ is recovered by choosing τ ¼ T, x ¼ ξðT; RÞ
and Nx ¼ −∂TξðT; RÞ

ds2 ¼ −dT2 þ ½∂RξðT; RÞ�2
1þ EðRÞ dR2 þ ξðt; RÞ2dΩ2; ð6Þ

with ϵðτ; xÞ ¼ EðRÞ [this justifies the choice in (4)].
It is useful to mention that the Friedmann-Lemaître-

Robertson-Walker (FLRW) metric is a particular case of the
LTB model.
By choosing ξðT;RÞ¼aðTÞχkðRÞ and EðRÞ ¼ −kχ2kðRÞ,

one gets to

ds2 ¼ −dT2 þ a2dR2 þ a2χ2kdΩ2: ð7Þ

The function aðTÞ is the scale factor obeying the
Friedmann equation, whereas the function χkðRÞ is
defined as

χkðRÞ ¼

8>>><>>>:
1ffiffi
k

p sin ð ffiffiffi
k

p
RÞ; if k ¼ 1

R if k ¼ 0;
1ffiffiffiffi
jkj

p sinh ð ffiffiffiffiffijkjp
RÞ if k ¼ −1

ð8Þ

with R∈ ½0; π�. Notice that for this function, the following
identity holds ðχ0kÞ2 þ kχ2k ¼ 1.
On the other hand, the metric in (5) describes the

Schwarzschild solution as well [7]. Such a metric is indeed
recovered by setting Ex ¼ ðEφÞ2 ¼ x2 (ϵ ¼ 0), N ¼ 1 and

Nx ¼
ffiffiffiffiffi
2M
x

q
. Then, changing coordinates such that dx ¼ dr

and dτ ¼ dtþ dr
ffiffiffiffiffi
2M
r

q
1

1−2M
r
, the Schwarzschild line element

is obtained.
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It will be shown later that one could actually retrieve any
metric of the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð9Þ

when semiclassical corrections are considered.

III. SEMICLASSICAL COLLAPSE
OF A DUST BALL

The problem to be addressed is the collapse of a finite-
size dust ball, characterized by a metric provided by (6),
embedded in a vacuum described by (9) using quantum
correction coming from LQG. The whole spacetime can be
described by a single coordinate system using the PG
coordinates as in (5).
The quantum theory of such a system relies on a one-

dimensional graph as it has been described in [8–11]. A
laconic review follows.
The couple ðKφ; EφÞ acts on each vertex xj, whereas

ðKx; ExÞ acts on each edge. Given the gauge fixing that has
been performed at the beginning, only the variables on φ
will play a role. In the Eφ representation, one could define a
state jEφ

j ij that spans a Hilbert space associated to the
vertex xj, i.e., Hj. The full Hilbert space is the tensor
product H ¼⊗j Hj.
The scalar product on each Hj is provided by

jhẼφ
j jEφ

j ij ¼ δẼφ
j E

φ
j
. Additionally, states belonging to two

different Hilbert spaces (e.g.,Hi andHj) are automatically
orthogonal.
It is natural to associate an operator to the triad

component Êφ
j , while the extrinsic curvature requires a

point holonomy operator Ûj ¼ eiμjK̂φ;j. The scheme
adopted here is the μ̄ scheme of loop quantum cosmology

[12,13], that is μ̄j ¼
ffiffiffi
Δ

p
xj
, with Δ the smallest nonzero

eigenvalue of the area operator. The action of those
operators is given by

Êφ
j jEφ

j ij ¼ Eφ
j jEφ

j ij; ð10aÞ

ÛjjEφ
j ij ¼ jEφ

j þ μ̄jij: ð10bÞ

Since the inverse of Eφ appears in the Hamiltonian, one
is forced to introduce corrections from the inverse triad
operator. Operationally, given a state jEφ

j ij, the eigenvalue
of the operator b1

Eφ
j
is taken to be zero whenever the

eigenvalue of Êφ
j is zero. In all other cases the eigenvalue

of the inverse triad operator is 1
Eφ
j
.

The key point to recover a semiclassical theory is the

introduction of the polymerizationKφ;j →
Ûj−Û

†
j

2iμ̄j
¼ dsin μ̄jKφ;j

μ̄j
.

Notice that in the classical limit ðμ̄j → 0Þ, one

has sin μ̄jKφ;j

μ̄j
→ Kφ;j.

All in all, the semiclassical Hamiltonian density is
recovered by writing its corresponding operators in terms
of the classical phase space variables and by reintroducing
the continuum limit:

Hphys ¼ −
1

2

�
Eφ

γ2Δx
∂xðx3sin2 βÞ þ

x
Eφ þ

Eφ

x
− 2∂x

�
x2

Eφ

��
:

ð11Þ

The full Hamiltonian is recovered upon integration over x.
By taking the Posisson brackets of Eφ and Kφ with the

new Hamiltonian, one recovers the polymerized Einstein
field equations (PEFE). Along with the PEFE, one can
write the expressions for the density and the radial
component of the shift. All together, they read [3,8,14,15]

Ėφ ¼ −
x2

γ
ffiffiffiffi
Δ

p ∂x

�
Eφ

x

�
sin β cos β; ð12aÞ

K̇φ ¼ γx
2ðEφÞ2 −

γ

2x
−
∂xðx3sin2 βÞ

2γΔx
; ð12bÞ

ρ ¼ 1

8πxEφ

�
Eφ

γ2Δx
∂xðx3sin2 βÞ þ

x
Eφ þ

Eφ

x
− 2∂x

�
x2

Eφ

��
;

ð12cÞ

Nx ¼ −
x

γ
ffiffiffiffi
Δ

p sin β cos β; ð12dÞ

with β ≔
ffiffiffi
Δ

p
x Kφ and ð Þ̇ the derivative with respect to time.

Alternatively, one could substitute (12b) with a combi-
nation of (12b) and (12c). Namely

β̇ ¼ −4πγΔρþ γ
ffiffiffiffi
Δ

p

Eφ

�
1

Eφ −
1

x
∂x

�
x2

Eφ

��
: ð13Þ

As it was pointed out in [5], the sign of Nx requires a
careful analysis in order to avoid discontinuities of the
metric. As it will be clarified later, collapsing solutions
need the rhs of (12d) to be positive. This implies that the
product sin β cos β has to be negative. On the other hand,
the expansion requires sin β and cos β to be equal in sign.
As a consequence, at the beginning, one can set sin β > 0
and, since the dust is collapsing, cos β < 0 (see Fig. 1).
Given the equations for the metric, it is suitable to study
separately the interior and the exterior of the dust ball.

A. Interior

The interior is distinguished by ρ ≠ 0. Additionally, we
restrict our discussion to the homogeneous sector of the
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LTB model, also known as Oppenheimer-Snyder, which
means ∂xρ ¼ 0.
The starting point is to plug the ansatz (4) into (12c) and

solve it for sin β. It results in

sin2 β ¼ 8πγ2Δ
3

ρþ γ2Δ
x2

ϵ: ð14Þ

Notice that, in this first phase of collapse, sin β is imposed
to be positive; hence, cos β is negative. From this result,
Eq. (12a) can be morphed into

ϵ̇ ¼ ϵ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
ρx2 þ ϵ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc
−

3

8πρc

ϵ

x2

s
; ð15Þ

where ρc ≔ 3
8πγ2Δ.

In LTB coordinates ðT; RÞ, one has x ¼ ξðT; RÞ and
ϵðτ; xÞ ¼ EðRÞ. It is easy to verify that Nx ¼ ϵ̇

ϵ0 ¼ −∂Tξ.
Therefore, (15) can be rewritten as

∂Tξ

ξ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
ρþ E

ξ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc
−

3

8πρc

E
ξ2

s
; ð16Þ

which is general for any OS model. The “-” sign in the rhs
of (16) represents a collapse. This has been made possible
by choosing sin β cos β < 0 as it was stated before.
A simplification occurs by imposing x ¼ ξðT; RÞ ¼

aðTÞχkðRÞ. Given that, in (T, R) coordinates, the time

dependence disappears from EðRÞ, it is expected that
ϵðτ; xÞ is a generic function of the form ϵ ¼ hðxaÞ.
Therefore, Eq. (15) becomes

�
ȧ
a

�
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
ρþ h

x2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc
−

3

8πρc

h
x2

s
: ð17Þ

The scale factor a is a function solely of the time parameter
τ ¼ T, which means that the lhs is independent of x. In
order to cancel the x dependence from the rhs, it is needed
to impose h ∝ x2. The most general form of h is then
h ¼ e0 x2

a2, with e0 a constant. The collapse is then described
by the following Friedmann equation

�
ȧ
a

�
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
ρþ e0

a2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc
−

3

8πρc

e0
a2

s
: ð18Þ

In ðT; RÞ coordinates, one has EðRÞ ¼ e0χ2kðRÞ, and the
LTB line element is

ds2 ¼ −dT2 þ a2ðχ0kÞ2
1þ e0χ2k

dR2 þ a2χ2kdΩ2: ð19Þ

Without loss of generality, it is possible to write e0 as
e0 ¼ −kẽ0, with k ¼ 0;�1 and ẽ0 > 0. Introducing a new
variable R̂ ¼ ffiffiffiffiffi

ẽ0
p

χk, one has

ds2 ¼ −dT2 þ 1

ẽ0

a2

1 − kR̂
dR̂2 þ 1

ẽ0
a2R̂dΩ2: ð20Þ

Finally, the new constant can be reabsorbed in the scale
factor so as to have the FLRW metric in reduced-circum-
ference coordinates. The line element (19) can be therefore
rewritten as the classical one in (7) provided that aðTÞ now
obeys the modified Friedmann equation (18).
As a consistency check, one can verify that ρ ∝ a−3 as it

is expected for dust. By differentiating Eq. (14) with respect
to τ and comparing it with (13), one is led to

ρ̇ ¼ 3

x
ϵ̇

ϵ0
ρ: ð21Þ

Provided that ϵ ¼ e0 x2

a2, one finds ρ ¼ C
a3, with C ¼ const.

B. Exterior

1. Time-independent exterior

Exterior solutions to the PEFE are found by impos-
ing ρ ¼ 0.
At first, one can look for time independent solutions,

i.e., Ėφ ¼ 0. It follows that it is either Eφ ¼ Ax
(A ¼ const ≠ 0), sin β ¼ 0 or cos β ¼ 0. Nevertheless,
the second solution implies Eφ ¼ x, e.g., A ¼ 1. As a

FIG. 1. Display of the different values of β throughout the
spacetime. The letter “C” stands for ”collapse”whereas “E” is for
“expansion.” On the left, the case for B > 0. At the bouncing
point, sin2 β ¼ 1; therefore, cos β ¼ 0. At spatial infinity,
sin2 β ¼ 0, then cos β ¼ �1. Since sin β is kept positive, the
collapsing solution is provided by cos β < 0. The opposite
happens for the expansion in the postbounce phase. Notice that
the very same result could have been achieved by imposing
sin β < 0. In this setting, cos β < 0 would represent the expan-
sion whereas cos β > 0 the collapse. If B < 0, on the right, once
again, the dust starts in the sector C1 bounces and reaches E1. In
this case, however, the dust reaches a certain value of density (at a
certain radius) and recollapses. Consequently, the dust enters the
new collapsing region C2, followed by E2 so as to start again
from C1.
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matter of fact, Eφ ¼ x is recovered for x3sin2 β ¼ const,
which includes the case const ¼ 0.
Finally, the third option cos β runs into inconsistencies.
For this reason, the only interesting solution is Eφ ¼ Ax.
Notice that the latter is recovered by imposing ϵ ¼ B ¼

1
A2 − 1 in (4).
From inserting this last condition in (13), it is found

K̇φ ¼ 0, which is consistent with the time independence of
the metric.
The exterior analog of (14) is

sin2 β ¼ γ2Δ
x2

Bþ C
x3

; ð22Þ

with C an integration constant. Its value is recovered by
looking at the Schwarzschild limit (Δ → 0), which corre-
sponds to C ¼ 2γ2ΔM.
The samevalue forC can also be recovered from a suitably

modified ADM mass. Classically it is defined as [10]

M ¼ 1

2

ffiffiffiffiffiffi
Ex

p �
1þ K2

φ

γ2

�
−

ffiffiffiffiffiffi
Ex

p ½ðExÞ0�2
8ðEφÞ2 : ð23Þ

If one performs the substitution Kφ → sin μ̄Kφ

μ̄ (with μ̄ ¼
ffiffiffi
Δ

p
x ),

then a quick calculation shows that M ¼ C
2γ2Δ, which is the

value shown above.
It must be noticed that since sin2 β ≥ 0, one has B > 0 in

order to satisfy the inequality at every x. This is equivalent
to say that A2 < 1; hence, −1 < A < 1.
On the other hand, it is still possible to pick B < 0 but

restrict the solutions at x lower than a certain xmax. The
complementary bound, sin2 β ≤ 1 sets the existence of a
minimal x, xb ¼ ð2γ2ΔMÞ13 þ B

6M ð2γ2ΔMÞ23 þOðΔ4
3Þ. This

value of the radius will coincide with the bouncing radius
studied in the last section.
Substituting (22) into (12d) leads to

ðNxÞ2 ¼ 2M
x

−
α

x2

�
M
x
þ B

2

�
2

þ B; ð24Þ

where α has been defined as α ¼ 4γ2Δ.
This last equation determines the metric completely.

However, it is more convenient to change the coordinate so
as to have a line element like (9). This is obtained by setting
dx ¼ dr and dτ ¼ 1

A dtþ Nx

fðrÞ dr, with

fðrÞ ¼ 1

A2
− ðNxÞ2 ¼ 1 −

2M
r

þ α

r2

�
M
r
þ B

2

�
2

: ð25Þ

In the case where A ¼ �1, then B ¼ 0.
The conclusion is that the family of solutions to the

equations (12) (the semiclassical modification of Einstein’s
equations), such that ϵ ¼ const, is mapped by a coordinate

transformation into the family of metric tensors (9) defined
by (25) for all the values of the constantsM and B. A catch is
that, according to Eq. (22), the radial coordinate x ¼ r is to
be restricted either to rb ≤ r for B ≥ 0 or rb ≤ r ≤ 2M

jBj for
B < 0. However, the resulting metric tensor (25) is analytic,
and there is no obstruction for considering it for the other
values of r as long as f is finite or extending the spacetime
even more by using the Eddington-Finkelstein coordinates.
One last remark on the sign of sin β and cos β is in order.

As it was mentioned at the beginning of this section, as the
collapse starts, the sin β is kept positive while cos β is
negative in the collapsing phase and positive during the
expansion. However, what happens next is dictated by the
sign of B. In the last section of this paper, it will be
discussed that for B > 0, the matter bounces and reaches
spatial infinity. On the other hand, a negative B forces the
matter to undergo an infinite series of bounces (see the
discussion of k ¼ 1 for the Oppenheimer-Snyder model in
the last section). This is portrayed in Fig. 1.

2. Time-dependent exterior

A more general solution for the exterior is found by
restoring the time dependence of Eφ. We can impose (4)
with general ϵ, as for the interior, and follow the same
procedure. One finds

sin2 β ¼ γ2Δ
x2

ϵþ 2γ2ΔM
x3

ð26Þ

ϵ̇ ¼ ϵ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 2M

x

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2Δ

�
ϵ

x2
þ 2M

x3

�s
: ð27Þ

Another useful equation follows from (13):

β̇ ¼ −
γ

ffiffiffiffi
Δ

p

2x
ϵ0: ð28Þ

At first, one could check singularly the cases ϵ ¼ ϵðxÞ
and ϵ ¼ ϵðτÞ.

(i) ϵ ¼ ϵðxÞ:
From Eq. (26), it appears that β too is a function

solely of x, implying β̇ ¼ 0. However, this is in
contrast with Eq. (28).

Therefore, ϵ ¼ ϵðxÞ is ruled out, and the square
roots appearing in (27) are nonzero. It follows that
the same formula can be inverted to have an
expression for ϵ0.

(ii) ϵ ¼ ϵðτÞ:
Since ϵ0 ¼ 0, it is straightforward to see, from

Eq. (27), that ϵ̇ ¼ 0. Therefore, this possibility too
can be ruled out.

From this very short analysis, it is to be concluded that
either ϵ ¼ const (retrieving the time independent case
discussed above), or ϵ ¼ ϵðτ; xÞ.
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However, the time dependence of the metric components
does not exclude the existence of a timelike Killing
vector field.

IV. PEFE AND MATCHED OPPENHEIMER-
SNYDER MODEL

The goal of this section is to glue together the cloud of
collapsing semiclassical dust and a spherically symmetric,
static exterior of the form (9). In order to do so, it is possible
to match the intrinsic metrics and extrinsic curvatures at the
surface of the ball. This will determine uniquely the time/
radial component of the exterior metric, fðrÞ. That result
was also obtained in [16]. Next, we will compare the
derived function f with the exterior solutions (25). The
semiclassical dust ball is described by (7) obeying the two
Friedmann equations�

ȧ
a

�
2

¼
�
8π

3
ρ −

k
a2

��
1 −

ρ

ρc
þ 3

8πρc

k
a2

�
; ð29aÞ

�
ä
a

�
¼ −

4π

3
ρ

�
1 −

ρ

ρc
þ 3

8πρc

k
a2

�
þ
�
8π

3
ρ −

k
a2

��
3

2

ρ

ρc
−

3

8πρc

k
a2

�
; ð29bÞ

where the second one is the derivative of the first. The
density ρ for dust reads ρ ¼ C

a3.
As mentioned at the beginning, this metric is junctioned

to an exterior of the kind (9) by applying the Israel
condition so as to match the two extrinsic curvatures
[17,18]. In the end, one finds

fðrÞ ¼ 1 −
2M
r

þ α

r2

�
M
r
−
kχ2k;0
2

�2

; ð30Þ

where χk;0 is the radial function χkðRÞ (8) at the surface of
the ball, e.g., initial radius. From now on, the subscript “0”
will be used to label the variables evaluated on the surface
of the ball.
It is easy to verify that this last function is exactly the one

recovered from the PEFE (25) provided that B ¼ −kχ2k;0.
Notice that we do not require in this section that the exterior
metric tensor satisfies any equations. The function (30) is
determined by the junction conditions and by an assumption
that the vector field ∂t is a Killing vector. This is a direct
generalization of the model studied in [16,19,20].
The junction of the two line elements leads

to M ¼ 4π
3
ρ0r30 ¼ 4π

3
Cχ3k;0.

The horizons of such a metric are provided by real zeros
of (30). In the end, one has

r−¼
�
αM
2

�1
3þ1−2kχ2k;0

6M

�
αM
2

�2
3þð1−kχ2k;0Þ2

24M
αþOðα4

3Þ;

ð31aÞ

rþ ¼ 2M −
ð1 − kχ2k;0Þ2

8M
αþOðα4

3Þ: ð31bÞ

The exact expression of rþ contains a square root whose
positivity of the argument is assured when M ≤ M− or
M ≥ Mþ. The lower and upper bound ofM are functions of
kχ2k;0, which read

M� ¼
ffiffiffi
α

p

6
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64 − 96kχ2k;0 þ 30k2χ4k;0 þ k3χ6k;0 � ð16 − 16kχ2k;0 þ k2χ4k;0Þ

3
2

q
: ð32Þ

It is easy to verify that if k ¼ 0, then M− ¼ 0 and
Mþ ¼ 4

3
ffiffi
3

p ffiffiffi
α

p
(consistent with the result found in [16]).

Their behavior for k ¼ �1 will be discussed separately
below.
The bouncing radius too can be extracted from (30) by

using the geodesic equation. For a massive dust particle,
one has ṙ2 ¼ 1 − kχ2k;0 − fðrÞ. The turning point occurs

when ṙ ¼ 0, i.e., rb ¼ ðαM
2
Þ13 − kχ2k;0

6M ðαM
2
Þ23 þOðΔ4

3Þ, the
same value found using the PEFE with B ¼ −kχ2k;0.
This is not surprising as one can show that ṙ2 ¼ 1 −

kχ2k;0 − fðrÞ ¼ 0 is equivalent to sin2 β ¼ 1 (22) with
B ¼ −kχ2k;0. The first equation leads to ṙ2 ¼ ð−kχ2k;0 þ
2M
r Þ − α

4r2 ð2Mr − kχ2k;0Þ2 ¼ 0. Dividing by ð2Mr − kχ2k;0Þ (we
assume here that it is ≠ 0) brings us to α

4r2 ð2Mr − kχ2k;0Þ ¼ 1,
which is exactly (22).

A. General properties of the matched Oppenheimer-
Snyder model with k ≠ 0

As it has already been discussed, the interior metric (7) is
an exact solution to the PEFE with ϵðτ; xÞ ¼ EðRÞ ¼
−kχ2kðRÞ.
The exterior (30) instead requires a more detailed

analysis. Hence, the cases of k ¼ �1 will be studied
separately (k ¼ 0 can be found in [16]).

1. k = 1

Let the ball be motionless at T ¼ T0, implying a0 ¼
aðT ¼ T0Þ ¼ 8π

3
C [value for which the rhs of (29a) van-

ishes]. It can be checked that ä < 0, so the ball starts its
collapse. Let M be the mass of the ball and χ1;0 its initial
radius.
Finally, let ρ0 ≪ ρc.
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The complete set of initial condition is then

a0 ¼
2M
χ31;0

; ȧ0 ¼ 0; ä0 < 0; ð33aÞ

r0 ¼ a0χ1;0 ¼
2M
χ21;0

; ð33bÞ

ρ0 ¼
3

32π

χ61;0
M2

: ð33cÞ

Notice that the constant C has been replaced by M
through the relation given at the beginning.
The exterior solution is of the form (25), but the constant

B ¼ −χ21;0 is now negative. Nevertheless, it still satisfies the

PEFE as long as sin2 β ¼ γ2Δð− kχ2
1;0

r2 þ 2M
r3 Þ ≥ 0 (22). This

leads to r ≤ rmax ¼ 2M
χ2k;0

, which is exactly r0.

In other words, at the starting point T ¼ T0, the ball of
dust occupies all the region contained in r0, and it satisfies
the interior PEFE (iPEFE). At a subsequent time, the ball
occupies a spherical subregion of radius r1 < r0. It implies
that the metric restrained by r1 is solution of the iPEFE,
whereas the ePEFE are satisfied between r1 and r0.
The metric outside r0 is not solution to the Einstein

equations.
From Eqs. (29a) and (29b), one can study the evolution

of the system. It turns out that when ρ approaches ρc (i.e.,
when a decreases), ä changes sign, and the ball reexpands
as soon as the other zero of (29a) is touched, ρ ¼ ρc þ 3

8π
1
a2b
.

The value of ab is recovered by solving the third order
equation obtained by replacing ρ ∝ a−3.
The expansion of the dust cloud will stop when reaching

once again a ¼ a0, where ȧ ¼ 0 and ä < 0. At this point, it
will recollapse as it did at the beginning [21].
Horizons are formed when M < M− and M > Mþ.

From their expressions, one finds the profile in Fig. 2.

Given thatM2
− < 0, the only condition to have a horizon

is M > Mþ. Surprisingly, the actual value of the critical
mass is dictated solely by its initial radius and Mþ ¼ 0 if
χk;0 ¼ 1. On the other hand, if χk;0 ¼ 0, the critical mass is
the same as in k ¼ 0. This is due to the fact that Mþ is a
function of the product kχ2k;0.

2. k = − 1

When k is negative, the rhs of (29a) cannot vanish for
any value of a such that ρ ≪ ρc, and there exists only one
zero of ȧ (as in k ¼ 0). The ball will therefore contract for a
while, but eventually it is bound to reexpand to infinity.
Unlike the k ¼ 1 case, though, this is everywhere a solution
to the PEFE (both interior and exterior).
For what concerns the critical mass, this scenario is

pretty similar to the previous one for M−. Once again,
M2

− < 0 for every χ−1;0, so a horizon can form if M > Mþ.
Nevertheless, this time there is no value χk;0 for which the
critical mass is zero (see Fig. 3).

V. DISCUSSION

The semiclassical modification of Einstein’s equations
has been studied both in the presence of homogeneous dust
(interior) and in the vacuum (exterior).
In the first case, one gets an OS model whose collapse is

dictated by a generalized Friedmann equation [5,22]. This
scenario predicts a bounce once the density of dust reaches
a certain value. A further generalization to this model
occurs when inhomogeneity of the dust is imposed [22].
On the other hand, when no dust is present, assuming

that the function ϵ (4) is constant, we determined a two-
parameter class of static solutions. Such metrics are
dependent on two free parameters, M and B. These line
elements are suitably modified Schwarzschild solutions
that coincide with Schwarzschild in the classical
limit (Δ → 0).

FIG. 2. Profiles of M2þ and M2
− as functions of χ1;0. If k ¼ 1,

χ1;0 is a sin and therefore, goes from 0 to 1 (R∈ ½0; π�). FIG. 3. Profiles ofM2þ andM2
− as functions of χ−1;0. This time,

χ−1;0 is a sinh and therefore, goes from 0 to ∞.
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Nevertheless, if the function ϵ is not constant, it is subject
to the partial differential equation in (27). It has been
discussed that solutions to said equation are either constant
or depending on both time and radial coordinate.
If the latter case can be (somehow) ruled out, then there
exists a unique solution that is time independent and
Schwarzschild-like.
The static exterior metric is clearly asymptotically flat. It

is conceivable, that if ϵ is not a constant, the situation might
change drastically. We do not exclude the existence of a
temporal Killing field in this case as well. Nonetheless, it
must be taken into account that all of these results strongly
depend on the choice of quantization [21,23], the polym-
erization scheme [24] and inverse triad corrections in the
quantum theory. Different approaches rooted in polymeri-
zation techniques are also possible (see for example [25]).
This analysis can be compared to a model of spherically

symmetric collapse obtained in a completely different way.
It is indeed possible to match a cloud of homogeneous dust
(described by a Friedmann metric) to a general line element
of the form (9).

It turns out that this model is an exact solution to the
PEFE when ρ ≠ 0. In the vacuum instead, it satisfies
globally the PEFE when k ¼ 0;−1 and just locally
when k ¼ 1.
The latter may suggest that the generalized PG coor-

dinates simply fail if k ¼ 1. This assumption is backed up
by the fact that in Schwarzschild-AdS metric, the situation
is quite similar. The nondiagonal piece of the metric in PG

coordinates reads
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ Λr2

3

q
(with Λ < 0). As a conse-

quence, the metric is not well defined if r is big enough. On
the other hand, it must not be excluded that by correcting
the quantum theory, one can extend the k ¼ 1 case to a
global solution without changing coordinates.
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