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We consider isolated horizons (Killing horizons up to the second order) whose null flow has the structure
of a U(1) principal fiber bundle over a compact Riemann surface. We impose the vacuum Einstein
equations (with the cosmological constant) and the condition that the spacetime Weyl tensor is of Petrov D
type on the geometry of the horizons. We derive all the solutions in the case when the genus of the surface is
> 1. By doing so for all the nontrivial bundles, we complete the classification. We construct the embedding
spacetimes and show that they are locally isometric to the toroidal or hyperbolic generalization of the Taub-
NUT-(anti-) de Sitter spacetimes for horizons of genus 1 or > 1 respectively, after performing Misner’s
identification of the spacetime. The horizon bundle structure can be naturally extended to bundle structure
defined on the entire spacetime.

DOI: 10.1103/PhysRevD.110.024071

I. INTRODUCTION

Einstein’s equations induce equations for the geometry of
the Killing horizon. These horizon equations determine—
from within—the properties of horizons in a manner similar
to the theorems of the global mathematical theory of black
holes. They imply the topology of global sections (in the
rotating case), rigidity, and no-hair [1–3]. Sometimes they
even reach where the global theory does not, as is the case,
for example, with extreme horizons and their equations [4].
Isolated horizon theory provides a local framework for

the study of the black hole horizons without assumptions
about the horizon’s neighborhood. This approach may be
used in numerical relativity where the existence of the
blackhole defining Killing vector field in the spacetimes is
not given. In mathematical relativity, they have been
employed in classification of extreme horizons [5].
Analogously to the Killing horizons, the isolated horizons
obey the laws of the so-called black hole thermodynamics,
as long as the Einstein equations are imposed [6]. It is
worth noting that they naturally appear as leaves of
foliations of some classes of spacetimes, for example there
exist solutions in Kundt’s class foliated by a weaker
structure than isolated horizons, i.e., nonexpanding hori-
zons [7]. The famous Robinson-Trautmann solutions admit
an isolated horizon, which however is generically not a
Killing horizon [8]. Finally, although commonly used to
study black hole horizons, a broader notion of a weakly
isolated horizon has been recently successfully applied to
the null infinity of the spacetime [9,10].

In this paper, we continue the study of the equation
implied by the assumption that the nonextreme horizon inΛ-
vacuum 4-dimensional spacetime is of the Petrov type D. In
an earlier study, we investigated the Petrov type D equation
on horizons that allowed for a global spacelike section that
was a compact 2-dimensional surface [1,11,12]. Our equa-
tion takes the form of the vanishing second holomorphic
derivative of a complex function formed from the scalar of
the curvature of the surface and the rotation represented by
an exact 2-form. A certain subtlety in this case is the
nontrivial first group of cohomology admitting nonequiva-
lent closed 1-form rotation potentials: different elements of
the first group of cohomology define different horizons. If
the Euler characteristic of the surface is nonpositive, the only
solutions are 2-geometries of constant curvature and the
rotation 2-form vanishing at every point. So, in this class,
rotating solutions can only exist when the section of the
horizon is a sphere. Then, the family of axisymmetric
solutions is parameterized by three numbers: area, angular
momentum, and cosmological constant. They are in 1 − 1
correspondence with the Kerr-(anti-) de Sitter spacetimes.
Moreover, the necessity of the axial symmetry can be proved
by assuming that the horizon of Petrov type D is bifurcated.
All those solutions, horizons admitting global sections, are
also embeddable in known solutions of Einstein’s equations.
A horizon that admits a global section has the structure

of a trivial principal fiber bundle with the null generators as
the fibers. The next class of horizons we consider, are such
that the null flow defines the structure of a nontrivial Uð1Þ
principal fiber bundle over a compact manifold. We have
already studied in earlier papers the case of the Hopf bundle
and the bundles with higher topological charges over a
(topological) 2-sphere [13–15]. The unknowns of the
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vacuum type D equation become the metric induced on the
sphere and the curvature of a connection defined on the
bundle (multiplied by any nonzero surface gravity). All
axisymmetric solutions were found. They form a family
parametrized by four parameters: the surface area, the
angular momentum (or the Kerr parameter), the cosmologi-
cal constant, and the NUT parameter, and are embeddable in
the Kerr-NUT-(anti-) de Sitter spacetimes or their acceler-
ated generalization. Recently horizons with a structure of a
Hopf bundle whose action is transversal to the null direction
have been introduced and studied [16]. Such horizons arise
naturally in Kerr-NUT-(anti-) de Sitter spacetimes where
orbits of non-null direction have been compactified toUð1Þ
to achieve a regular axis of rotation [15]. After performing
the procedure the space of null generators may still have
conical singularities. Petrov type D equation on a sphere
admitting conical singularities has been solved and the
solutions are found to be embeddable in accelerated Kerr-
NUT-(anti-)de Sitter spacetimes with period time coordinate
identification.
In the present work, we turn to the study of type D

horizons, whose null Killing flow defines a nontrivial Uð1Þ
principal fiber bundle over a 2-dimensional with a nonzero
genus. Also, we construct NUT-type spacetimes containing
our solutions. In this paper we consider all objects to be
smooth. It is possible to weaken this assumption up to the
fourth order of differentiability, but not lower, since the
type D equation of this order has to be imposed.

A. Nonembedded isolated horizons

The general theory of isolated horizons has been widely
studied in literature. Based on [12,17–19] we recall the
definition and properties important for the current paper. In
this subsection we present an entirely local approach,
keeping any global properties for later assumptions.
Consider a manifold H, which will serve as a model for

the horizons, endowed with (i) a degenerate metric tensor g
of the signature ð0þ � � �þÞ, and (ii) a torsion-free covariant
derivative ∇, that preserves the degenerate metric tensor

∇g ¼ 0:

The triple ðH; g;∇Þ is called a nonexpanding horizon. The
degeneracy of g has two consequences; One of them is that
∇ cannot be uniquely determined by g. The second is that∇
may not exist at all unless it is true that any null vector field
l, that is such that

gðl; ·Þ ¼ 0;

generates a symmetry of g, namely it satisfies

Llg ¼ 0:

This second property justifies the name “nonexpanding.”
Conversely, given g the latter condition is sufficient for a

family of the covariant derivatives ∇ to exist. In fact,
if any nonvanishing null vector field l generates locally
a symmetry of g, then so does l0 ¼ fl for any func-
tion f∈C∞ðHÞ.
Isolated horizon is 4-tuple: ðH; g;∇; ½l�Þ, where

ðH; g;∇Þ is a nonexpanding horizon, and l is a nowhere
vanishing null vector field defined up to rescaling by a
constant factor

l ↦ a0l; a0 ∈R ð1Þ

such that

½Ll;∇� ¼ 0; ð2Þ

The rotation 1-form potential of a nonexpanding horizon is
a 1-form ω defined by a null vector field l as follows,

∇alb ¼ ωalb:

It exists due to the fact, that the null direction has to be
covariantly constant due to the metricity of∇. In the case of
an isolated horizon ðH; g;∇; ½l�Þ, the rotation 1-form
potential is uniquely defined and satisfies

Llω ¼ 0: ð3Þ

The surface gravity κ is defined as the self-acceleration of l

∇ll ¼ κl ð4Þ

and is defined up to (1), upon which it transforms as

κ ↦ a0κ: ð5Þ

Clearly we have lðκÞ ¼ 0. If the isolated horizon were
embedded in spacetime, then assumptions about the space-
time Riemann tensor would imply various constraints on g
and ∇, which can be just introduced for the nonembedded
isolated horizon as well. One of them is the 0th law of
isolated horizon thermodynamics, namely

κ ¼ const; ð6Þ

on every connected component of H. Indeed, in the
embedded case it would be implied by Einstein’s
Equations and energy inequalities. Whenever

κ ≠ 0; ð7Þ

we call an isolated horizon nonextremal and vice versa.
Remaining components of ∇ can be determined by the

action of∇ on a given 1-form n onH, such that nala ¼ −1.
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B. Isolated horizon of the principal
fiber bundle structure and null fibers

Consider an isolated horizon ðH; g;∇; ½l�Þ. Suppose the
null flow of the vector field l defines globally the action of
a group G ¼ R or G ¼ Uð1Þ, that provides H with a
structure of a principal fiber bundle over a space S of the
null curves in H, and the canonical projection

Π∶H → S: ð8Þ

Then, the degenerate metric tensor g defined on H induces
a Riemannian metric tensor gS on S such that

g ¼ Π�gS: ð9Þ

The bundle structure is nontrivial only in the case
G ¼ Uð1Þ, and then we can fix the normalization of l
such that it is consistent with the parametrization of Uð1Þ
by numbers from the interval ½0; 2πÞ. That makes the
surface gravity κ also a uniquely defined quantity.
The role of the rotation potential 1-form ω in the bundle

structure depends on whether H is extremal or nonextre-
mal. In the case of a nonextremal horizon, ω gives rise to a
G-connection

A ≔
1

κ
ω ⊗ l�; ð10Þ

where l� ∈R or l� ∈ uð1Þ (the Lie algebra of G) corre-
sponds to the vector field l. Similarly, the G-curvature
reads

F ≔
1

κ
dω ⊗ l�: ð11Þ

As the Lie algebra is one dimensional all information about
the connection and curvature is already contained in the 1-
form 1

κ ω and its derivative. Therefore when referring to the
connection and curvature we will omit the Lie algebra
valued part, bearing in mind that now the normalization
condition AðlÞ ¼ 1 is required.
In the consequence, the rotation 1-form may be pulled

back to S by a local section

ωσ ¼ σ�ω: ð12Þ

The pullback is however section-dependent, and if the
bundle is nontrivial, a family of different sections has to be
used to cover all the S. Still, the rotation 2-form dω
provides a uniquely and globally defined 2-form on S that
can be constructed using local sections

Ω̃S ¼ σ�dω: ð13Þ

If the horizon H is extremal, then the pullback

ωS ≔ σ�ω ð14Þ

is independent of σ and the 1-form ωS is globally defined
on S. In that case, gS and ωS are insensitive to the nontrivial
bundle structure and the results of [11] apply. Therefore in
this paper, we assume that the horizons are necessarily
nonextremal.
A structure that we do not consider in this paper, is an

isolated horizon with a principal fiber bundle structure
whose fibers are transversal to the null direction. For the
discussion of such horizons with S being a topological two
sphere see [16].

C. 3-dimensional isolated horizons
and the type D equation

On a 3-dimensional isolated horizon, we define a
curvature scalar K and rotation pseudo scalar Ω. To
introduce them at a point x∈H, consider any 2-submani-
fold S0 ⊂ H transversal to l at x. The curvature scalar KðxÞ
at x is the Gauss curvature of the Riemannian geometry
induced on S0 by the degenerate metric tensor g of H, and
its value at x is independent of the choice of S0 at x. The
rotation pseudoscalar ΩðxÞ is given by the pullback dωS0

of dω to S0 and the 2-area form ηS
0
of S0. It is defined as

dωS0 ≕ΩηS0 : ð15Þ

The value ΩðxÞ depends on the orientation of S0, therefore
in a neighborhood of x, we orient all the 2 surfaces
consistently. To define Ω globally on H we need a globally
defined orientation of the 2-dimensional sections.
Both of the functionsK andΩ are constant along the null

curves

lðKÞ ¼ lðΩÞ ¼ 0: ð16Þ

We are assuming throughout this paper that the 0th
law (6) holds.
The functions K and Ω set a complex valued function

K þ iΩ − 1
3
Λ depending on the parameter Λ called cos-

mological constant. On this function the vacuum Petrov
type D equation is imposed. To write it out explicitly,
consider again an arbitrary 2-dimensional submanifold
S0 ⊂ H transversal to the null vector field l. Introduce
on it a null complex co-framemS0

A (A;B∈ 1, 2) such that the
induced metric tensor and the area 2-form read

gS
0 ¼mS0

A m̄
S0
B þmS0

B m̄
S0
A ; ηS

0 ¼ iðm̄S0
Am

S0
B − m̄S0

Bm
S0
A Þ: ð17Þ

Then the type D equation is defined as follows [12]:

m̄S0Am̄S0B∇S0
A∇S0

B

�
K þ iΩ −

Λ
3

�
−1=3

¼ 0; ð18Þ
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where∇S0
A is the torsion-free and metric covariant derivative

determined on the 2 manifold by gS
0

AB, and the functions K
and Ω are assumed to satisfy

K þ iΩ −
Λ
3
≠ 0: ð19Þ

This equation stems from the theory of embedded isolated
horizons. It is a necessary condition for a 3-dimensional
nonextremal isolated horizon H to be embeddable in a
4-dimensional spacetime such that:

(i) The vacuum Einstein equations with cosmological
constant Λ are satisfied at H.

(ii) The Weyl tensor is of the Petrov type D at H.
(iii) The Weyl tensor is constant along H with respect to

a suitable extension of the vector field l (see [12] for
the details).

Remark. Suppose an isolated horizon H of the degen-
erate metric g and the rotation 1-form potential ω is a
solution to the vacuum Petrov type D equation (18) with a
cosmological constant Λ. Then so is H endowed with any

g0 ¼ α2g; ω0 ¼ω; Λ0 ¼ Λ
α2

; α∈Rnf0g: ð20Þ

An example of a solution is given by g and ω such that

K ¼ const; Ω ¼ const ð21Þ

such that (19) for a proper type D. Then, an even stronger
statement is true: every

g00 ¼ α2g; ω00 ¼ β2ω; α;β∈Rnf0g ð22Þ

is another solution to (18) with arbitrary cosmological
constant

Λ00 ¼ γΛ; γ ∈R ð23Þ

where again (19) is assumed.
Suppose, finally, that a 3-dimensional horizon H has the

principal fiber bundle structure of null fibers considered
above. Then the space S of the null generators is endowed
with the Riemannian metric tensor gS, the curvature scalar
K, and the rotation pseudoscalar Ω. Now K becomes the
Gauss curvature of gS. Moreover, if S is compact, thenZ

S
KηS ¼ 2πχEðSÞ; ð24Þ

where χE is the Euler characteristics of ðS; gSÞ whileZ
S
ΩηS ¼ 2πκχCðHÞ; ð25Þ

where χC is the Chern number of the bundle H, and κ is the
surface gravity introduced above. The Petrov type D
equation amounts now, to the equation

m̄SAm̄SB∇S
A∇S

B

�
K þ iΩ −

Λ
3

�
−1=3

¼ 0; ð26Þ

where the unknowns are the metric tensor gS and the family
of the 1-forms ωσ, i.e., the local pullbacks of the rotation
1-form ω.
In the case of a trivial bundleH over a topological sphere

S ¼ S2 and axially symmetric ðgS;ωSÞ, the Petrov type D
equation is satisfied if and only if gS and ωS correspond (via
an embedding in 4-dimensional spacetime) with those
induced on the space of the null generators of a Killing
horizon in either the Kerr, Kerr-de Sitter, or Kerr-anti-de
Sitter spacetime, depending on the sign of Λ [1]. The axial
symmetry can be derived if we assume that the horizon is
bifurcated (amounting to two horizons attached to each
other at the asymptotic boundaries) [20]. The existence of
nonaxisymmetric solutions is an open problem.
For nontrivial bundles over the topological sphere, again

all the axisymmetric solutions of (26) were found [21],
some (whether all is an open problem) are embeddable in
the Kerr-NUT-(anti) de Sitter spacetimes [14,16,21].
For the bundles over compact 2-manifolds of nonpositive

Euler characteristics, the only solutions to the Petrov type D
equation (26) are those, that satisfy [11]

K ¼ const; and Ω ¼ const: ð27Þ

This case is the focus of this paper. We construct all the
vacuum Petrov type D isolated horizons in this class. Next,
we find globally defined spacetimes, exact solutions to
Einstein’s vacuum equations, that accommodate them upon
a suitable embedding.

II. VACUUM PETROV TYPE D ISOLATED
HORIZONS WHOSE NULL FLOW HAS PFB

STRUCTURE OVER A RIEMANN
SURFACE OF GENUS g ≥ 1

A. The horizons over 2-torus

Consider now the case, when the space of the null
directions S of the vacuum type D isolated horizon H is a
2-dimensional torus

S ¼ S1 × S1: ð28Þ

The first of the Eq. (27) combined with the Eq. (24) imply

K ¼ 0; ð29Þ

hence the metric ð2Þg has to be flat. Therefore, there exist
cyclic coordinates ðϕ;ψÞ∈ ½0; 2πÞ × ½0; 2πÞ that set a
coordinate system on S1 × S1, such that
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gS ¼ 1

P2
0

ða2dϕ2 þ 2abdψdϕþ ð1þ b2Þdψ2Þ; ð30Þ

with real constants a > 0; b and P0 > 0. The above admits
the following discrete symmetries
(1) If b ≠ 0, then we can assume b > 0 without loss of

generality, due to either ψ ↦ −ψ or ϕ ↦ −ϕ and
the remaining coordinate freedom is a simultaneous
change ðψ ;ϕÞ ↦ ð−ψ ;−ϕÞ.

(2) If b ¼ 0, then the remaining coordinate freedom is
independently ψ ↦ −ψ and/or ϕ ↦ −ϕ.

The rotation 1-form potential depends on the bundle
structure. Therefore we will split our considerations into the
trivial and nontrivial cases.

1. The trivial bundle case

In the case of a horizon of the structure of a trivial PFB,
Eq. (25) and the second equality in (27) imply

Ω ¼ 0: ð31Þ

Therefore, a correspondingG-connection A (10) is flat, and
it can be represented by a single closed 1-form on S,

AS¼αdϕþβdψþdf; α;β∈R; f∈C∞ðS1×S2Þ; ð32Þ

defined modulo global gauge transformations (see below).
The horizon over S has the topology

H ¼ G × S ð33Þ

where G ¼ R; Uð1Þ. Let τ be a coordinate along G with
ðτ;ψ ;ϕÞ being the corresponding coordinate system on H
such that the null vector field l (modulo a constant,
however see below) is

l ¼ ∂τ: ð34Þ

Then, the degenerate metric tensor of H is given by just the
same formula as above, namely

g ¼ 1

P2
0

ða2dϕ2 þ 2abdψdϕþ ð1þ b2Þdψ2Þ: ð35Þ

The corresponding G-connection on H viewed as the PFB
is

A ¼ ðdτ þ αdϕþ βdψ þ dfÞ ⊗ ∂τ; ð36Þ

while the formula for the rotation 1-form potential such
that (31) reads

ω ¼ κðdτ þ αdϕþ βdψ þ dfÞ: ð37Þ

The term df can be eliminated by a change of the
coordinates

τ ¼ τ0 þ f;

ω ¼ κðdτ0 þ αdϕþ βdψÞ: ð38Þ

Now, if the gauge group G ¼ R then, as explained
above, rescaling freedom of the vector field l (or, in other
words, the coordinate τ) allows us to set κ ¼ 1. The
coefficients α and β may be made non-negative α,
β ≥ 0, however, their range cannot be further reduced,
and hence they are true degrees of freedom.
If the structure group of the PFB of H is G ¼ Uð1Þ, then

the scaling ambiguity of the vector field l can be fixed, by
choosing τ to range ½0; 2πÞ. Therefore, in that case, the
value of the surface gravity κ is an intrinsically meaningful
characteristic of the horizon. On the other hand, there are
more gauge transformations, meaning bundle automor-
phisms, namely

τ00 ¼ τ0 þ nψ þmϕ; m; n∈Z:

Hence, in the Uð1Þ case, without loss of generality, it is
sufficient to consider α; β∈ ½0; 1Þ.
In conclusion, the meaningful degrees of freedom of g

and ω split into the following cases
(1) If b ¼ 0 and G ¼ R, then κ∈Rnf0g, and α, β ≥ 0.
(2) If b > 0 and G ¼ R, then κ∈Rnf0g, and α; β∈R,

which are determined up to ðα; βÞ ↦ ð−α;−βÞ.
(3) IfG ¼ Uð1Þ, then κ∈Rþ; α; β∈ ½0; 1Þ, modulo α ↦

1 − α and / or β ↦ 1 − β, in the b ¼ 0 case, and
modulo ðα; βÞ ↦ ð1 − α; 1 − βÞ, in the b > 0 case.

The corresponding covariant derivative ∇ is determined on
H by the metric connection of gS and the rotation 1-form
ω [12].

2. Nontrivial bundle case

Consider now a nontrivialUð1Þ-bundle over S ≔ S1 × S1

(there are no nontrivial R—bundles, due to R being
contractible). It may be characterized using an open cover
fV1; V2g of S1 × S1 and a transition function a12∶ V1 ∩
V2 → Uð1Þ defined modulo

a12↦a012¼ b−11 a12b2; bi∶Vi→Uð1Þ; i¼ 1;2: ð39Þ

It is sufficient to find just one pair ðÃS
ð1Þ; Ã

S
ð2ÞÞ, and every

other ðAS
ð1Þ; A

S
ð2ÞÞ will be given by a globally defined 1-form

a on S1 × S1, namely

AS
ðiÞ ¼ ÃS

ðiÞ þ a: ð40Þ
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The connectionAS
ðiÞ will be used to solve the second equality

of (27) provided its Hodge dual is a constant function,

�dAS
ðiÞ ¼ const; ð41Þ

where the area 2-form η of the metric tensor (30) is

ð2Þη ¼ a
P2
0

dψ ∧ dϕ: ð42Þ

The existence of AS satisfying (41) is demonstrated explic-
itly for S being a torus using coordinates. The existence is
also obvious for a U(1) bundle automorphic to the bundle of
the orthonormal frames. For higher genus surfaces we take
the existence as an assumption.
A possible choice of the open cover is (we identify below

S1 with the interval ½0; 2πÞ endowed with the compact
topology)

V1¼ðϵ;2π−ϵ�×S1; V2¼½0;π−ϵÞ∪ ðπþϵ;2π�×S1;

V1 ∩V2¼ðϵ;π−ϵÞ×S1 ∪ ðπþϵ;2π−ϵÞ×S1;

for 0 < ϵ < π
2
.

Using the gauge freedom (39) we can set the transition
function to

a12ðψ ;ϕÞ≔
�
1 at ðϵ;π− ϵÞ×S1

expð−iχCϕÞ at ðπþ ϵ;2π− ϵÞ×S1;χC∈Z:

ð43Þ

Next step is to construct the local connection 1-forms ÃS
ðiÞ,

each defined in Vi. Consider a 1-form

ÃS
ð1Þ ¼ χC

ψ

2π
dϕ: ð44Þ

Indeed, it is well defined in V1, as ψ does not have a
discontinuity there. Next, we define on V1 ∩ V2

ÃS
ð2Þ ¼ ÃS

ð1Þ − ia−112 da12; ð45Þ

and extend it by the analyticity to V2, hence we obtain

ÃS
ð2Þ ¼

� χC
ψ
2π dϕ at ½0; π − ϵÞ × S1;

χC
ψ−2π
2π dϕ at ðπ þ ϵ; 2π� × S1:

ð46Þ

To restore symmetry between the two elements of the
covering, consider a function ψ 0 continuous on V2 but with
a step of 2π at ψ ¼ π. It can be defined piecewise as

ψ 0 ¼
�
ψ at ½0; π − ϵÞ × S1;

ψ − 2π at ðπ þ ϵ; 2π� × S1:
ð47Þ

Using ψ 0 we rewrite ÃS
ð2Þ to

ÃS
ð2Þ ¼ χC

ψ 0

2π
dϕ: ð48Þ

which continuously covers the points such that ψ ¼ 0,
i.e., ψ 0 ¼ π.
The G-curvature

F̃ ≔ dÃS
ð2Þ ¼ χC

1

2π
dψ ∧ dϕ ¼ χC

1

2π
dψ 0 ∧ dϕ; ð49Þ

together with the integral (justifying our choice of the name
for χC) Z

S1×S1
F̃ ¼ 2πχC ð50Þ

exhausts all the possible values as χC ranges Z. Combined
with the result of the general theory of principal bundles
about the equivalence for the classes of isomorphism of
principal Uð1Þ—bundles over a manifold M [22]

PrinUð1ÞðMÞ ≅ H2ðM;ZÞ; ð51Þ

where H2ðM;ZÞ is the second cohomology group of M
with coefficients in group Z. For any compact and
orientable Riemann surface, including torus and all surfa-
ces considered in the subsequent sections, this group is
isomorphic toZwhich reassures us that we have not missed
above any Uð1Þ-PFB.
A general connection AS

ðiÞ; i ¼ 1, 2 such that

�dAS
ðiÞ ¼ const

is given by (40) and an arbitrary closed 1-form a, namely

ÃS
ð1Þ ¼ χC

ψ

2π
dϕþ αdψ þ βdϕ;

ÃS
ð2Þ ¼ χC

ψ 0

2π
dϕ0 þ αdψ 0 þ βdϕ0 ð52Þ

where due to the global gauge transformations the constants
α, β can be restricted to the interval [0, 1).
The horizon-bundle H is obtained by gluing S1 × V1

endowed with coordinates ðτ;ψ ;ϕÞ with S1 × V2 equipped
with coordinates ðτ0;ψ 0;ϕ0Þ, using the relation (47) and the
following relation between the remaining unprimed and
primed coordinates, valid on S1 × ðV1 ∩ V2Þ,

ϕ ¼ ϕ0; τ ¼ τ0 −

(
0 at ðϵ; π − ϵÞ × S1

χCϕ
0 at ðπ þ ϵ; 2π − ϵÞ × S1; m∈Z:

ð53Þ
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The null vector field l on H is

l ¼
�
∂τ at S1 × V1

∂τ0 at S1 × V2;
ð54Þ

while the degenerate metric tensor on H reads

g¼
8<
:

1
P2
0

�
a2dϕ2þ2abdψdϕþð1þb2Þdψ2

�
at S1×V1;

1
P2
0

�
a2dϕ02þ2abdψ 0dϕ0 þð1þb2Þdψ 02�: at S1×V2:

ð55Þ

Finally, the rotation 1-form potential on H is

ω¼
(
κðdτþ χC

2πψdϕþαdψþβdϕÞ; at S1×V1;

κðdτ0 þ χC
2πψ

0dϕ0 þαdψ 0 þβdϕ0Þ; at S1×V2:
ð56Þ

with the corresponding rotation pseudo scalar

Ω ¼ κP2
0

χC
2πa

: ð57Þ

3. Intermediate summary

A general vacuum Petrov type D isolated horizon
ðH; g;l;∇Þ whose null flow coincide with the Uð1Þ
symmetry has the structure of a principal Uð1Þ fiber bundle
over 2-torus S1 × S1 is defined as follows:

(i) the manifold structure of H is given by considering
Uð1Þ × V1 endowed with the angle coordinate
system ðτ;ψ ;ϕÞ and Uð1Þ × V2 endowed with the
angle coordinate system ðτ0;ψ 0;ϕ0Þ, and glueing
them with (47), (53),

(ii) the generator l of the null flow is given by (54),
(iii) the rotation 1-form potential ω is given by (56),
(iv) the degenerate metric tensor g is given by (55), and
(v) a degenerate metric tensor g and a rotation 1-form

potential on H determine the covariant derivative ∇.
The constants a > 0, b, α, β, P0 ≠ 0, κ∈Rnf0g, χC ∈Z
are arbitrary. Their range may be reduced by the residual
discrete coordinate transformation discussed above. If
χC ≠ 0, then the structure group of the bundle generated
by the flow of l is nontrivial, and the horizon does not
admit global, spacelike sections. If χC ¼ 0, then the bundle
is trivial.
The formulas (54)–(56) with χC ¼ 0 define also a general

vacuum Petrov type D isolated horizon ðH; ½l�; g;ωÞwhose
null flow has the structure of a principalR fiber bundle over
2-torusS1 × S1 if we assume that τ is coordinate onR. In that
case, rescaling τ we can set the surface gravity κ to take
arbitrarily fixed nonzero value.

B. Solutions of type D equation on a bundle over
Riemann surface with genus ≥ 2

Consider an isolated horizon ðH; g;∇; ½l�Þ such that the
null flow has the structure of a principal fiber bundle

π∶H → S; G ¼ R; Uð1Þ; ð58Þ

over a Riemann surface S of genus g ≥ 2. The metric tensor
gS defined on S has the Ricci tensor

RS ¼ KgS; ð59Þ

where due to the type D equation K ¼ const [11], and as
such it can be determined by the total area of S and its
genus, namely

K ¼ 4πð1 − genusÞ
AreaðgSÞ : ð60Þ

The degenerate metric tensor on H is the pullback of gS

g ¼ π�gS: ð61Þ

1. The trivial bundle case

As it was pointed out above, in the trivial PFB case
Eq. (25) and the second equality in (27) imply

Ω ¼ 0; ð62Þ

hence the corresponding G-connections (10) are flat. In a
consequence, to ensure that (19) holds it is also required
that K ≠ Λ

3
. The horizon over S has the product topology

H ¼ G × S consistent with π∶H → S. Let us fix a specific
product structure. Possible groups are G ¼ R; Uð1Þ. Let τ
be a coordinate along G extended naturally to H using the
product structure and such that

lðτÞ ¼ 1: ð63Þ

Then a flat connection on H can be written in terms of a
closed 1-form AS on S,

A ¼ ðdτ þ π�ASÞ ⊗ ∂τ; ð64Þ

while the formula for the corresponding rotation 1-form
potential such that (31) reads

ω ¼ κðdτ þ π�ASÞ: ð65Þ

Now if the gauge groupG ¼ R then, as explained above,
using the scaling freedom of the vector field l that
defines the isolated horizon structure we can fix κ ¼ 1.
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The automorphisms of the bundle (choice of the Cartesian
product) are given by transformations

τ ¼ τ0 þ π�f; f∈C∞ðSÞ: ð66Þ

On the other hand, if the gauge groupG ¼ Uð1Þ, then we
can fix the scaling of l such that the corresponding
coordinate on Uð1Þ ranges from 0 to 2π. Hence a value
of κ in (65) becomes meaningful. However now, the
automorphisms of the bundle are

eiτ ¼ eiτ
0þiπ�f; lðfÞ ¼ 0; ð67Þ

where the smoothness (or suitable differentiability class) is
required of the exponentiated function.

2. The nontrivial bundle case

In this case

G ¼ Uð1Þ; ð68Þ

and the nonequivalent bundles over Riemann surfaces are
numbered by the Chern invariant χC ∈Z. The rotation 1-
form potential is given by

ω ¼ κA ð69Þ

where κ is the surface gravity, and A is a 1-form on H such
that A ⊗ l� is a connection 1-form of the PFB considered
thereon, and

dA ¼ Ω̃π�ηS; Ω̃ ¼ const; ð70Þ

where ηS stands for the area 2-form of the metric tensor gS.
If we find a 1-form A satisfying the above condition for any
Ω̃ ¼ const then, as was explained above, this constant
necessarily satisfies

Ω̃ ¼ 2πχC
AreaðgSÞ ¼

KχC
2ð1 − gÞ ; ð71Þ

where AreaðgSÞ is the area S according to the metric tensor
gS, and K is the constant Gauss curvature of gS. Given a
bundle, if we fix a specific A then every other A0 can be
written as

A0 ¼ Aþ π�a; da ¼ 0: ð72Þ

The gauge equivalence classes [a] are defined by the gauge
transformations

a ↦ a − ig−1dg; g∈C∞ðS;Uð1ÞÞ

as explained in detail in the case of the torus in Sec. 2.3.1.
Finally, the rotation pseudoscalar Ω is

Ω ¼ 2πχCκ

AreaðgSÞ ¼
KκχC

2ð1 − gÞ : ð73Þ

If m ≠ 0 and since κ ≠ 0, also we have that Ω ≠ 0. Hence
the Gauss curvature K has no forbidden values.

III. EMBEDDABILITY OF THE ISOLATED
HORIZONS WITH GENUS ≥ 1

In this section, we seek to find the embedding spacetimes
for the vacuum Petrov type D isolated horizons
ðH; g;∇; ½l�Þ constructed in the first part of this work.
Our approach is to assume that the embedding spacetime
admits a Uð1Þ-PFB structure, specifically that it has the
topology R ×H, and then solve the Einstein equations in
terms of elements manifestly compatible with the PFB
structure, that is globally defined on H. We solve the
Einstein equations for a general, generically nontrivial case,
while the trivial limit is possible by assuming that a certain
topological charge is zero. The obtained solution contains
as a limit the embedding spacetimes for the trivial bundle
horizons. In the last part of this section, we exhibit the
construction of toroidal embedding spacetimes, where an
explicit use of the coordinates on a torus is possible. The
horizons of spherical topology with a nontrivial U(1)-
bundle structure have been already found to be embeddable
in the accelerated Kerr-NUT-(anti-) de Sitter spacetimes in
the generic case, and Taub-NUT-(anti-) de Sitter spacetimes
for constant Gaussian curvature K and rotation invariant
Ω [16]. However, because the calculations presented in this
section naturally generalize to spherical horizons we
include this case.
In our global construction of the vacuum spacetimes

containing Petrov type D horizons we will use the follow-
ing data:

(i) A 2 dimensional compact and orientable Riemann
surface S without boundary of genus p.

(ii) A positive definite metric tensor gϵ on S, of constant
Gaussian curvature normalized to ϵ ¼ 0;�1.

(iii) A Uð1Þ—principal fiber bundle π∶H ⟶ S.
(iv) A connection 1-form A on H satisfying the constant

curvature condition,compare with (15),

dA ¼ Ω̃π�ηϵ; Ω̃ ¼ const ð74Þ

where ηϵ is the 2-area tensor induced by gϵ on S.
Actually, the possible values of Ω̃ are constrained by the

topological invariants if the genus of S is > 1, namely

Ω̃ ≔
2πχC

AreaðgϵÞ ¼
ϵχC

2ð1 − genusÞ :

Recall from the previous sections that a family of the
vacuum Petrov type D isolated horizons is associated with
these data. They are given by the following family of pairs
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ðg;ωÞ, degenerate metric tensor and rotation 1-form poten-
tial, namely

g¼ 1

k2
π�gϵ; ω¼ κA; k;κ¼ const¼ 0: ð75Þ

If the genus is not equal to zero, then the scaling is
already determined by the Gauss-Bonnect theorem. In
this case, k is simply the Gaussian curvature of the
horizon. For torus, the area is not determined and k
remains arbitrary.
Given the above ingredients we can build the following

spacetime

M ¼ R ×H; ð76Þ

and endow it with a metric tensor

g ¼ −hðrÞA2 þ dr2

fðrÞ þ RðrÞgϵ; ð77Þ

where r is a coordinate on R, and the functions fðrÞ, hðrÞ
and RðrÞ are arbitrary and to be determined by solving
Einstein’s equations. With slight abuse of the notation, we
will identify objects defined on the bundle H with their
extension to the spacetime.
Now the goals are as follows
(i) Impose the vacuum Einstein equations with cosmo-

logical constant to solve for the functions fðrÞ, hðrÞ
and RðrÞ.

(ii) Construct an Eddington-Finkelstein extension of the
metric (77) covering possible Killing horizons.

(iii) Show that for every Killing horizon derived in the
previous section) the degenerate metric tensor g and
the rotation 1-form potential ω, both defined on H,
have the form (75) and that the constants k, κ take all
possible nonzero values.

It is useful to introduce the orthonormal coframe ðeAϵ Þ,
A∈ 2, 3 on S. The structure equations for gϵ depend only on
the connection component Γ2

ϵ3. They read

de2ϵ þ Γ2
ϵ3 ∧ e3ϵ ¼ 0;

de3ϵ − Γ2
ϵ3 ∧ e2ϵ ¼ 0: ð78Þ

and are enough to write the only, up to symmetries,
component of the two-dimensional curvature 2-form RA

ϵ B:

R2
ϵ3 ¼ dΓ2

ϵ3 ¼ R2
ϵ323e2ϵ ∧ e3ϵ ¼ ϵe2ϵ ∧ e3ϵ ð79Þ

To solve the spacetime Einstein equations we employ the
orthonormal coframe corresponding to g

e0 ¼
ffiffiffi
h

p
A;

e1 ¼ drffiffiffi
f

p ;

e2 ¼
ffiffiffiffi
R

p
e2ϵ ;

e3 ¼
ffiffiffiffi
R

p
e3ϵ : ð80Þ

Then the definitions of the objects on the bundle over S
allow us to write the structure equations

de0 ¼ −
h0

ffiffiffi
f

p
2h

e0 ∧ e1 þ
ffiffiffi
h

p NΩ̃
R

e2 ∧ e3;

de1 ¼ 0;

de2 ¼ R0 ffiffiffi
f

p
2R

e1 ∧ e2 − Γ2
ϵ3 ∧ e3

de3 ¼ R0 ffiffiffi
f

p
2R

e1 ∧ e3 þ Γ2
ϵ3 ∧ e2: ð81Þ

where by 0 we denote the derivative with respect to r.
The detailed computations of spacetimes connection and
curvature may be found in the Appendix.
To solve for f and g we add G00 and G11

G00þG11¼Λ−Λ¼0¼ Ω̃2hðrÞ
2r4

−
f0ðrÞ
r

þfðrÞh0ðrÞ
rhðrÞ : ð82Þ

Integrating the above we get the relation between fðrÞ
and hðrÞ

hðrÞ
fðrÞ ¼

4r2c1
r2 − Ω̃2c1

; ð83Þ

where c1 is an integration constant. The above motivates a
following coordinate change.

r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
; ð84Þ

where the integration constant has been reparametrized
l2 ≔ −Ω̃2c1 for Ω̃c1 < 0.
The metric tensor using the new coordinate reads

g ¼ −hA2 þ dr̄2

f̄
þ ðr̄2 þ l2Þgϵ; ð85Þ

where f̄ ≔ fðdr̄drÞ2 ¼ f r̄2

r2. After the transformation we have

∂r̄

�
f̄
h

�
¼ dr

dr̄
∂r

�
f
h
r̄2

r2

�
¼ 0: ð86Þ

It follows that h and f̄ are proportional h≕Nf̄ whereN is a
real constant. Note that the apparent singularity at r ¼ Ω̃2c1
of (83) appears only for the nontrivial bundles, if m ¼ 0
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there is no need to introduce an additional parameter l2 and
the role of proportionality constant between h and f is
played by the integration constant c1. The form of the
metric tensor given by (85) is therefore as general as the one
given by (77). In the subsequent, we drop the bar above r
and h and proceed to solve the Einstein equations for the
metric tenor

g ¼ −fðrÞNA2 þ dr2

fðrÞ þ ðr2 þ l2Þgϵ; ð87Þ

where l is an arbitrary parameter. Because the above metric
is formally the same as previously, only with f replaced by
Nh and specified R, we reuse the calculations. Again we
have

G00 þG11 ¼ 0 ¼ fðrÞðNΩ̃2 − 4l2Þ
2ðl2 þ r2Þ2 ; ð88Þ

which establishes

N ¼ 4l2

Ω̃2
: ð89Þ

Inserting the above value into G00 and solving G00 ¼ −Λ
we get

fðrÞ ¼ ϵðr2 − l2Þ þ c1r − Λ
�
1
3
r4 þ 2l2r2 − l4

�
ðr2 þ l2Þ : ð90Þ

with the resulting metric reading

g ¼ −
�
lAreaðgϵÞ

πχC

�
2

fðrÞA2 þ dr2

fðrÞ þ ðr2 þ l2Þgϵ: ð91Þ

Note that for the toroidal case the function fðrÞ is already
the same as of the toroidal Taub-NUT-(anti-) de Sitter case
if one renames c1 ¼ −2M. The remaining freedom is the
choice of metric on the torus S.
The extension through the horizon requires introducing

an (ingoing) Eddington-Finkelstein co-frame transforma-
tion

�
lAreaðgSÞ

πχC

�
A0 ≔

�
lAreaðgSÞ

πχC

�
Aþ dr

fðrÞ : ð92Þ

or equivalently

e00 ≔ e0 þ e1: ð93Þ

Similarly to the torus case, introducing A preserves the
bundle structure, equivalently we could have started with
an ansatz in the Eddington-Finkelstein form

g ¼ −
�
lAreaðgSÞ

πχC

�
2

fðrÞA02

þ 2

�
lAreaðgSÞ

πχC

�
A0drþ ðr2 þ l2ÞgS: ð94Þ

If the Gaussian curvature of S is nonvanishing the area is
already determined by the normalization of jϵj ¼ 1. Then in
all expressions that will follow one could replace

lAreaðgSÞ
πχC

¼ 2lj1 − pj
χC

: ð95Þ

Note that l is a Killing vector field of Π̃�gS and therefore
may be naturally extended to a Killing vector field
of g generating a horizon at the hypersurface r ¼ rH,
where fðrHÞ ¼ 0.
Now we calculate K and Ω of the horizon with a metric

tensor on section S

ð2ÞgH ¼ ðr2 þ l2Þgϵ: ð96Þ
By assumption ðS; gϵÞ has the Gaussian curvature ϵ, giving
the Gaussian curvature K of the horizon as

K ¼ ϵ

r2H þ l2
ð97Þ

The horizon rotation 1-form ω and the surface gravity
κ read

ω ⊗ l ≔ ∇l
����
H
¼

�
lAreaðgSÞ

πχC

�
f0

2

����
H
e00 ⊗ e0

¼
�
lAreaðgSÞ

πχC

�
f0

2

����
H
A ⊗ l;

κ ≔ ∇ll

����
H
¼

�
lAreaðgSÞ

πχC

�
f0

2

����
H
;

ω ¼ κA: ð98Þ
The rotation invariant Ω associated with the horizon in
generalized Taub-NUT-(anti-) de Sitter can be calculated
using

dω ¼ ΩηH; ð99Þ
where ηH is the volume form associated with gH, as

Ω ¼ κ

r2H þ l2
2πχC

AreaðgSÞ ¼
2πχCκ

Areaðð2ÞgHÞ
¼ ϵ − ðr2H þ l2ÞΛ

rHðr2H þ l2Þ
ð100Þ

which exactly reproduces the abstract solution (73).
Having constructed the toroidal Taub-NUT-(anti-) de

Sitter horizon with a structure of a nontrivial Uð1Þ—
principal bundle over torus is it natural to ask if the bundle
structure extends to the bulk spacetimes.
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Take the group action generated by the flow of the same
Killing vector field l, now acting on the whole spacetime
instead of only the horizon, then the connection 1-form
may be defined as

AST ≔
gðl; ·Þ
gðl;lÞ : ð101Þ

To see that the above indeed is a real-valued part of the
connection 1-form one has to check the conditions

ASTðlÞ ¼ 1; LlAST ¼ 0; ð102Þ

which follow immediately from l being a Killing vector of
the spacetime.
The PFB structure of π used in the construction of the

spacetime extends naturally to the PFB structure Π of the
entire spacetime by extension of the real line associated
with the coordinate r.

Uð1Þ ↪ P ×R⟶
Π

S × R: ð103Þ

The connection 1-form defined as (101) is simply

AST ¼ A0 −
�

πχC
lAreaðgSÞ

�
dr
fðrÞ ¼ A ð104Þ

Finally we note that A (and consequently A0, ω and AST)
for a given ΩS is defined uniquely only up to 1-forms
α1; α2;…; α2p generating first de Rham cohomology group
H1ðS;RÞ ≅ R2g, where p is the genus of S. In this sense
also the constructed spacetime (77) is also unique only up
to the α’s.
Note that the metric tensors derived above are locally

isometric to the generalized Taub-NUT-(anti-) de Sitter (or
in the trivial case to the generalized Schwarzschild-(anti-)
de Sitter) given by [23]

g ¼ −fðrÞ
�
dtþ l

iðζdζ̄ − ζ̄dζÞ
1þ 1

2
ϵζζ̄

�
2

þ fðrÞ−1dr2

þ ðr2 þ l2Þ 2dζdζ̄�
1þ 1

2
ϵζζ̄

�
2
; ð105Þ

where

fðrÞ¼ ϵðr2− l2Þ−2Mr−Λ
�
1
3
r4þ2l2r2− l4

�
r2þ l2

; ð106Þ

and the NUT and mass parameters are denoted by l and M,
respectively, and ϵ ¼ 0, �1 so that the last term in the
above is a flat metric tensor defined on a surface of constant
Gaussian curvature equal to ϵ.

The difference between (105) and (87) is only in
the compactification of the surfaces parameterized by
ðζ; ζ̄Þ. Indeed, all tori may be constructed by a suitable
identification of sides of a parallelogram, i.e. a quotient
R2=Z2. Similarly, higher genus Riemann surfaces may
be constructed as the quotient of a hyperbolic plane
by a discrete subgroup Γ ⊂ PSLð2;RÞ generated by 2p
elements a1; b1;…; ap; bp satisfying single defining
relation

a1b1a−11 b−11 …agbpa−1p b−1p ¼ 1: ð107Þ

Then this surface is a hyperbolic 4p-gon with a pair of
edges identified.

A. Toroidal Taub-NUT-(anti-) de Sitter
and nontrivial bundles

Although the toroidal case is covered by the construction
in the previous section, there is an advantage to consider it
separately. Namely on a torus global coordinates may be
easily introduced which allows for an explicit construction
of both the connection A and the metric on the base
space gS.
Consider the metric tensor (87) with fðrÞ and N given

by (89) and (90) and ϵ ¼ 0. The most general metric gϵ may
be given for torus as

gϵ ¼ �
a2dϕ2 þ 2abdϕdψ þ ð1þ b2Þdψ2

�
which implies that

A ¼ dτ þ χC
2π

ψdϕ; ð108Þ

where τ∈ ½0; 2πÞ and ∂τ generates the Killing horizon.
After introducing Finkelstein-Eddington coordinates it is

easy to see that the nondegenerate metric tensor on a
toroidal section of the horizon is

ð2ÞgH ¼ ðr2H þ l2Þgϵ; ð109Þ

which compared with the isolated horizon given by
the solution to the Petrov type D equation yields
r2H þ l2 ¼ P−2

0 . Comparing the rotation 1-form ω ¼ κA
for the above horizon with the solution to the Petrov
type D equation given by (56) it seems that only the
horizons with α ¼ 0 ¼ β are embeddable. To embed the
general class it is sufficient to introduce a local coordinate
transformation

τ ↦ τ þ αψ þ βϕ: ð110Þ

Importantly the above is only a local diffeomorphism.
It does not extend to global diffeomorphism as the
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transformation is not well defined whenever the coordi-
nates ðψ ;ϕÞ are not well defined, namely if ψ ¼ 0 or
ϕ ¼ 0. Knowing the first de Rham cohomology group of
the torus H1

dR ≅ R2 we conclude that the above trans-
formation accounts for all solutions to (74). Finally, the
rotation invariant of the horizon reads

Ω ¼ χCκ

2πðr2H þ l2Þ ¼
lΛ
rH

: ð111Þ

It should be noted that the formula for Ω (100) does not
have limit to Λ ¼ 0 in the toroidal case. Then we have

fðrÞ ¼ −2Mr
r2 þ l2

; rH ¼ 0; ð112Þ

which results

Ω ¼ −
2M
l3

: ð113Þ

B. Generalized Schwarzschild-(anti-) de Sitter
and trivial horizons

If the horizon bundle is trivial i.e. χC ¼ 0 ¼ ΩS then
the solutions (94) obtained in the previous section do not
have a well defined limit. Instead, we go back to the
derivation earlier in that section. Due to the triviality
the structure equation containing dA ¼ 0 changes. Now
the choice of RðrÞ giving the proportionality between
fðrÞ and hðrÞ is standard in the Schwarzschild case, i.e.,
RðrÞ ¼ r2. G00 þ G11 ¼ 0 gives

hðrÞ ¼ c1fðrÞ: ð114Þ

Solving G00 ¼ −Λ we recover

fðrÞ ¼ ϵþ c2
r
−
Λr2

3
; ð115Þ

recovering the generalized Schwarzschild-(anti-) de Sitter
for c2 ¼ −2M with the metric tensor reading

g ¼ −c1fðrÞA2 þ dr2

fðrÞ þ r2gϵ: ð116Þ

If the fiber is R then c1 is arbitrary and may be set to 1,
similarly to the arbitrary choice rescaling of the time
coordinate in Schwarzschild spacetime. Otherwise is the
fiber is Uð1Þ and c1 is determined by the range of the fibre
coordinate.

IV. SUMMARY

We considered isolated horizons whose null flow has the
structure of a PFB over a Riemann surface. The case of our
particular interest was a nontrivial bundle and genus higher
than 0, however, the trivial bundle case also appears as a
special, degenerate sector. First, we considered unembedded
isolated horizons, that is certain 3-surfaces endowed with
isolated horizon structure. For them, we solved the vacuum
Petrov type D equation with (possibly zero) cosmological
constant (Sec. II). In the case of 2-torus we used explicit
coordinates (Sec. II A). In the case of higher genus, our
considerations were coordinate-free (Sec. II B). Next, we
constructed a family of vacuum spacetimes containing the
horizons. The spacetimes are of the Petrov type D, hence the
local formula for the metric tensor is that of Demiański-
Plebański, however, our emphasis was on the global
structure of spacetime that is the cartesian product of the
horizon and the real axis representing the 4th direction, and
that it has the symmetries of the horizon. Upon those
assumptions we have solve the vacuum Einstein equations
and derived a general solution. Among the general solution
the horizons and their embeddings characterized by a
trivial bundle structure, either with line or circle fibers,
were found. Such horizons were found to be embeddable in
spacetimes locally isometric to generalized Schwarschild-
(anti-)de Sitter.
Finally, we note that the constructed horizons are

characterized by: the genus p of the base space S of
the horizon, the Chern number χC accounting for all
possible Uð1Þ—bundles one could construct over S, a
constant curvature metric tensor on S accounting for all
possible ways of compactifing a torus or a hyperboloid
and a Uð1Þ-connection with constant curvature. The Uð1Þ-
connections satisfying the same curvature condition may
still differ by a closed but not exact 1-form, leading to a
globally different horizon. In the nontrivial case, the
surface gravity κ is not free but is instead determined
by the above. Upon embedding K and Ω are determined
by the radius of the horizon rH and the NUT parameter l.
The NUT parameter determines only whether the bundle
structure is trivial or not, by itself it does not determine the
topological invariant χC.
This work closes the classification of type D isolated

horizons with a bundle structure generated by the horizon-
generating null field. The classification may be done in two
directions; First, one has to specify the global topology of
the horizon, the important part being whether the fibration
is trivial or not. Second, one has to specify the topology of
the space of the null generators (for the trivial bundles this
is simply a section of the horizon). The trivial, S2 × R
horizons and their embeddings into Kerr-(anti-) de Sitter
have been found in [1], while nontrivial horizons with
spherical space of null geodesics were considered in [21],
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however, the full embedding into the accelerated Kerr-
NUT-(anti-) de Sitter spacetimes was established only
recently in [16]. Obviously, in the trivial case, the fiber
may be always changed from R to S1. The same is not true
for nontrivial horizons whose fibers must be circles. It turns
out the Petrov type D horizons with nonspherical but still
compact spaces of null generator its curvature must be
constant (vanishing or negative), which was shown in [11]
for the trivial bundle case. This paper occupies the
remaining place in the classification, i.e. it covers the
higher genus horizons with nontrivial fibration topology.
In [16] authors have also considered spherical horizons

with bundle structure generated by a field transversal to the
null one. It remains an open problem whether a similar
construction may be done in the higher genus case. A
remaining open problem is the constructing of horizons
with bundle structure generated by a field transversal to the
null one and with base space other than the sphere.
Similarly, it is not known whether spherical isolated
horizons without axial symmetry exist.
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APPENDIX: EINSTEIN EQUATIONS
FOR THE SPACETIMES WITH

Uð1Þ—PFB STRUCTURE

The (Levi-Civita) connection 1-forms Γμ
ν may be

written as

deμ þ Γν
α ∧ eα ¼ 0;

Γ0
1 ¼ Γ1

0 ¼
h0

ffiffiffi
f

p
2h

e0;

Γ0
2 ¼ Γ2

0 ¼
NΩ̃
2R

ffiffiffi
h

p
e3;

Γ0
2 ¼ Γ3

0 ¼ −
NΩ̃
2R

ffiffiffi
h

p
e2;

Γ1
2 ¼ −Γ2

1 ¼ −
R0 ffiffiffi

f
p
2R

e2;

Γ1
3 ¼ −Γ3

1 ¼ −
R0 ffiffiffi

f
p
2R

e3;

Γ2
3 ¼ −Γ3

2 ¼ Γ2
ϵ3 þ

NΩ̃
2R

ffiffiffi
h

p
e0: ðA1Þ

Similarly for the curvature 2-forms Ωμ
ν

Ωμ
ν ¼ dΓμ

ν þ Γμ
α ∧ Γα

ν;

Ω0
1 ¼ −Ae0 ∧ e1 þ Be2 ∧ e3;

Ω0
2 ¼ −Ce0 ∧ e2 þ 1

2
Be1 ∧ e3;

Ω0
3 ¼ −Ce0 ∧ e3 −

1

2
Be1 ∧ e2;

Ω1
2 ¼

1

2
Be0 ∧ e3 −De1 ∧ e2;

Ω1
3 ¼ −

1

2
Be0 ∧ e2 −De1 ∧ e3;

Ω2
3 ¼ −Be0 ∧ e1 þ Ee2 ∧ e3; ðA2Þ

where

A ¼ ð2fhh00 − fh02 þ f0hh0Þ
4h2

;

B ¼ Ω̃
ffiffiffi
f

p ðh0R − hR0Þ
2R2

ffiffiffi
h

p ;

C ¼ ðΩ̃2h2 þ RR0fh0Þ
4R2h

;

D ¼ ðRR0f0 þ 2RR00f − fR02Þ
4R2

;

E ¼ ð3Ω̃2h − fR02 þ 4ϵRÞ
4R2

: ðA3Þ

By standard conventions we have

Ωμ
ν ¼

1

2
Rμ

ναβeα ∧ eβ; Rμν ¼Rα
μαν; Ric¼Rα

α;

Eμν ¼Rμν−
1

2
Ricgμν

and so

R00 ¼ Aþ 2C; R11 ¼ −A − 2D;

R22 ¼ R33 ¼ −C −Dþ E; ðA4Þ

Ric ¼ −2A − 4C − 4Dþ 2E; ðA5Þ

G00 ¼ −2Dþ E; G11 ¼ 2C − E;

E22 ¼ E33 ¼ Aþ CþD: ðA6Þ
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