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It is generally believed that tidal deformations of a black hole in an external field, as measured using its
gravitational field multipoles, vanish. However, this does not mean that the black hole horizon is not
deformed. Here we shall discuss the deformations of a black hole horizon in the presence of an external field
using a characteristic initial value formulation. Unlike existing methods, the starting point here is the black
hole horizon itself. The effect of, say, a binary companion responsible for the tidal deformation is encoded in
the geometry of the spacetime in the vicinity of the horizon. The near horizon spacetime geometry, i.e., the
metric, spin coefficients, and curvature components, are all obtained by integrating the Einstein field
equations outwards starting from the horizon. This method yields a reformulation of black hole perturbation
theory in a neighborhood of the horizon. By specializing the horizon geometry to be a perturbation of Kerr,
this method can be used to calculate the metric for a tidally deformed Kerr black hole with arbitrary spin. As
a first application, we apply this formulation here to a slowly spinning black hole and explicitly construct the
spacetime metric in a neighborhood of the horizon. We propose natural definitions of the electric and
magnetic surficial Love numbers based on the Weyl tensor component Ψ2. From our solution, we calculate
the tidal perturbations of the black hole, and we extract both the field Love numbers and the surficial Love
numbers which quantify the deformations of the horizon.
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I. INTRODUCTION

The response of a system to an external perturbation
depends on its constitution. Therefore, understanding this
response allows us to infer the constitutive properties of a
system. This applies equally to atoms and molecules, as well
as to stars. In a gravitationally bound binary system, each of
the binary components is tidally deformed by the gravita-
tional field of its companion. Within the linear approxima-
tion, the quadrupolar deformation is proportional to the
strength of the external quadrupolar field, and the constant of
proportionality determines the so-called (quadrupolar) Love
number. This tidal deformation also leaves its imprint in
various observations of the binary. In the case of a binary
system consisting of two neutron stars, this tidal deformation
leads to modifications of the emitted gravitational wave
signal, which can be used to deduce the equation of state
of the nuclear matter making up the neutron stars [1].

This method has been employed in the analysis of gravi-
tational wave data from binary neutron star merger events to
constrain the equation of state of neutron star matter and to
determine neutron star radii (see, e.g., [2–4]). Black holes,
within standard general relativity, are found to have vanish-
ing Love numbers [5–14]. Thus, gravitational wave obser-
vations by themselves can potentially allow us to distinguish
between black holes and neutron stars.
Tidal perturbations also play an important role in extreme

mass ratio systems, consisting of a supermassive black hole
with a stellar mass companion. The spacetime is, to an
excellent approximation (away from the location of the
stellar mass companion), well modeled by that of a tidally
perturbed black hole. Such systems are important targets for
the LISA detector [15]. The stellar mass effectively maps the
spacetime of the larger black hole, thereby providing a very
sensitive probe of possible deviations from the Kerr space-
time and general relativity [16,17].
When talking about tidal deformations within general

relativity, one needs to distinguish between field and
surficial deformations, i.e., deformations of the asymptotic
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gravitational field of the object in question, versus defor-
mations of the shape of the object itself. Within Newtonian
gravity, due to its linearity, both of these different ways of
quantifying tidal deformations are equivalent. This is not the
case in general relativity, and one needs to distinguish
between field and surficial Love numbers. In other words,
calculating the multipole moments of the gravitational field
in Newtonian gravity is equivalent to calculating the source
multipole moments of the mass distribution within the star.
This simple correspondence does not hold in general
relativity and the two sets of multipole moments can be
quite different [18–20]. The statement that the Love number
of a black hole vanishes refers to the asymptotic field
moments. In fact, the shape of a black hole is explicitly seen
to change in the presence of an external field. This is
confirmed by known solutions (see, e.g., [21,22]), pertur-
bative calculations (e.g., [19,23–27]), and numerical sim-
ulations of binary mergers (see, e.g., [28–31]). On the other
hand, the field Love numbers are believed to appear in the
gravitational wave signal (see, e.g., [1,13,32]). However, in
the late inspiral phase of a binary merger when the two
compact objects are very close to each other, the surficial
Love numbers will provide a more economical description
of the near horizon metric. Thus, one might conjecture that
in this regime of the black hole merger process, these Love
numbers might be measurable in the gravitational wave
signal as well; this will be discussed further in Sec. VII.
The starting point for the calculation of the Love

numbers is to determine the response of a compact object
of massM immersed in an external gravitational field. IfR
is the local radius of curvature of the external gravitational
field at the location of the compact object, and if we
assume the black hole massM is much smaller thanR, the
dimensionless small parameter M=R determines the per-
turbations of the local spacetime geometry and of the
matter field configuration within the compact object (if any
matter fields are present). One strategy for calculating the
local gravitational field in the vicinity of the compact
object can be summarized as follows [33–37]. We start

with the spacetime metric gð0Þab ; this is the background
metric on which the black hole moves. Consider then a
worldline located at the position of the compact object.

The spacetime metric gð0Þab in the vicinity of the worldline
can then be expanded in powers of r=R [38]. In the
presence of the compact object, the spacetime metric gab
will be modified away from gð0Þab , and can be expanded in
powers of M. On the other hand, the metric can also be
written as that of a perturbed black hole, e.g., as a
perturbation of the Schwarzschild or Kerr metric.
Matching these two approximations and using the
Einstein equations then yields the tidally deformed black
hole metric, and also the values of the Love numbers. The
black hole horizon is generally also perturbed away from
its original coordinate location, and the location and

geometrical/physical properties of the perturbed horizon
needs to be calculated explicitly using the tidally deformed
black hole metric obtained from the above calculation.
Tidal perturbations have been extensively studied using

the above formalism for nonspinning, i.e., Schwarzschild
black holes and slowly spinning Kerr black holes [39].
More recently it has also been applied to arbitrary
spinning Kerr black holes [7–9]. These calculations are
sufficiently involved that alternate approaches can provide
additional insight. An important alternate approach to this
problem is the use of effective field theory techniques (see,
e.g., [40,41]). Here we shall present yet another alternate
approach to tidal perturbations which starts from the horizon
structure and allows one to treat a general deformed Kerr
horizon. It also allows one to incorporate external matter
fields and potentially also alternate theories of gravity
(as long as there is a horizon structure available).
We rely on two key ingredients. The first is that the

geometry of black hole horizons has been thoroughly
studied in a quasilocal framework which leads to the notions
of isolated and dynamical horizons [42–50]. These notions
allow one to study horizons without assuming global
stationarity and symmetries. Thus, for isolated horizons
where the black hole is not absorbing energy and is time
independent, the rest of the Universe is allowed to be
dynamical. The second ingredient is a construction of the
spacetime in the vicinity of an isolated horizon. Working
within a characteristic initial value formulation, we start
with the intrinsic horizon geometry and integrate the
Einstein field equations outwards [51–55]. A tidal pertur-
bation of the horizon leads to corresponding perturbations
of the near horizon geometry. Our goal in this work is to
carry through this calculation in detail and to obtain the near
horizon geometry for a general distorted rotating black hole.
We present this formalism for black hole perturbation theory
and illustrate it for the well-known case of a tidally
perturbed Schwarzschild black hole, allowing for small
spins. Subsequent work will apply this method to pertur-
bations of a Kerr black hole with arbitrary spin.
The main feature of our approach will be the centrality

of the horizon geometry itself. As mentioned above,
requiring the inner boundary to be an isolated horizon
assumes that there is no infalling radiation. Is this a valid
assumption, or at least a useful starting point? Numerical
simulations of binary black hole mergers show that the two
individual horizons are isolated to a good approximation,
even very close to the timewhen the common horizon forms
[56]. One might therefore expect this to be a good starting
point (though it should be noted that the infalling flux is not
vanishing and can be numerically measured [29,31]). It has
also been found in previous studies that tidally perturbed
black hole horizons are indeed isolated at leading order, and
that the fluxes of infalling radiation can be calculated at
linear order in perturbation theory [57]. Given this evidence,
we shall take as a working hypothesis that the horizon is
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isolated and we shall investigate the near horizon geometries
compatible with this assumption in greater detail than done
before. For example, we shall show generally that including
a tidal horizon perturbation on a Kerr black hole implies that
the neighboring spacetime must be radiative with a non-
vanishing Weyl tensor component Ψ4 (transverse to the
horizon), thereby connecting the algebraic properties of the
Weyl tensor to tidal perturbations. In this paper, we present
detailed calculations for slowly spinning horizons, but this
statement is in fact true for a general Kerr black hole.
As we shall see, in the context of black hole perturbation

theory, our assumption of requiring the black hole to be
exactly isolated corresponds to algebraically special per-
turbations. This should be viewed as a first approximation
which can, and will, be relaxed in future work. Useful
starting points in this direction are provided by [58–60]:
(i) First, [58] sets up the mathematical framework for
discussing perturbed isolated horizons and fluxes across it.
(ii) Going to more dynamical situations, slowly evolving
horizons (where the horizon area increase is comparatively
small) are discussed in [59]. (iii) Finally, [60] constructs
the near horizon geometry in the vicinity of a fully
nonperturbative dynamical horizon. Each of these notions
will have useful applications in the context of tidally
perturbed black holes, even in the late inspiral stage of a
binary black hole merger.
The plan for the rest of this paper is the following.

Section II introduces the basic definitions of isolated
horizons and the main results in the formalism. This
includes the constraint equations on the horizon and the
notions of mass, angular momentum, and higher multipole
moments, which will be used later. Section III outlines the
procedure for constructing a near horizon geometry within a
characteristic initial value formulation of the Einstein
equations as pioneered by Friedrich and Stewart [51].
This section uses the Newman-Penrose formalism and also
presents two examples of the construction, namely the usual
Schwarzschild metric in ingoing null coordinates, and the
Robinson-Trautman solution as an example of a radiative
solution. Section IV then discusses a perturbed horizon.
This involves a perturbative analysis of the constraint
equations on the horizon. Sections V and VI incorporate
the perturbations in the construction of the near horizon
geometry and thereby obtain the metric of a tidally
perturbed black hole. Finally, Sec. VII discusses some
aspects of our calculations related to different notions of
tidal Love numbers, as relevant for gravitational wave
astronomy. We conclude in Sec. VIII. The Appendixes
clarify some notation and provide a short compendium of
useful equations and results. There, we also present some
additional details not covered in the main text.
We conclude the Introduction by providing a summary of

the main results presented in this paper. (i) We provide a
construction of the near horizon metric and spin coefficients
of a tidally perturbed isolated black hole analogous to the

well-known Bondi construction near null infinity. This
provides an unambiguous choice for the null tetrad near
the horizon, which allows for an unambiguous computation
of the Weyl tensor components in the Newman-Penrose
formalism. In this paper, we apply this construction to a
slowly spinning black hole. (ii) We identify the Weyl tensor
componentΨ2 as the one that encodes the information of the
tidal perturbation. At the horizon, it tells us the distortion of
the horizon electric and magnetic multipole moments, while
far away from the black hole (or in the limit when the black
hole mass is taken to be infinitesimally small), it also
contains all the information about the external tidal field.
This then allows us to relate the source and field multipole
moments for a tidally perturbed black hole. (iii) This leads
to a natural definition of the surficial Love numbers
including also the magnetic surficial Love numbers which,
to our knowledge, has not been discussed previously in the
literature. Finally, (iv) we note that there is an inherent
systematic uncertainty in the definitions of the field multi-
pole moments which follows from the procedure of matched
asymptotic expansions commonly employed in the litera-
ture. This uncertainty is not new: it was already pointed out
in the pioneering work by Hartle and Thorne in 1984. The
surficial Love numbers do not suffer from the same
ambiguity, and thus provide a clearer construction of the
near-horizon geometry.

II. PRELIMINARIES

There is extensive literature on the properties of isolated
horizons covering mathematical, quantum, and physical
aspects. This is part of the still larger body of work on
quasilocal horizons applicable to time-dependent situations
(see, e.g., [61–63]). The goal of this section is to collect the
main prerequisites, concepts, and results, necessary for
describing the geometry of tidally distorted black hole
horizons and the next section will deal with its near horizon
geometry.

A. Basic definitions

The well-known Kerr-Newman black hole solutions
within general relativity have horizons with time-
independent geometries. Thus, their area, angular momen-
tum, charge, and in fact all higher moments are time
independent. This is hardly surprising since these space-
times are all globally stationary, and there are no fluxes of
infalling matter or radiation across the horizon. While black
holes in our Universe will not be exactly stationary, there are
numerous situations of black holes in dynamical spacetimes
(such as in a binary system) where time-dependent effects
can be treated perturbatively. However, it is important to not
assume the notion of global stationarity as in the Kerr-
Newman black holes. Thus, we should not identify the
ADM mass [64] of the entire spacetime with the black hole
mass, and similarly for the angular momentum. This is
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evidently true for a binary black hole system where the
ADM mass and angular momentum will include contribu-
tions from both black holes, and also other contributions
such as kinetic energies, radiation, and the interaction
energy between the black holes.
When the separation between the two black holes is

sufficiently large, one could attempt to identify the asymp-
totic regions of each black hole and obtain approximate
masses, spins, and higher multipole moments. However,
this is perhaps not always viable in the late inspiral stage
when the separation between the two black holes would be
small (or at the very least, the systematic errors in the
physical parameter would grow). We shall discuss this
further in Sec. VII.
In this work, we shall use the framework of quasilocal

horizons, restricted to the case of isolated horizons, to model
a tidally distorted black hole. In general, this framework is
based on the notion of marginally trapped surfaces (to be
discussed below), and it provides a useful way of studying
fully dynamical black holes without reference to global
notions such as event horizons and asymptotic flatness. It
allows a clear formulation of the laws of black hole
mechanics [42–44,46] and black hole entropy calculations
in quantum gravity (see, e.g., [65,66]). It has proven to be
especially useful in numerical relativity when dealing
with binary black hole mergers (see, e.g., [28,67–69]). In
simulations of binary black hole mergers, this allows one
to calculate mass, angular momentum, and higher multi-
pole moments for each black hole individually without
reference to asymptotic infinity and without reference to
event horizons which cannot be located in real time. See,
e.g., [61,70,71] for more complete reviews.
Quasilocal horizons are capable of dealing with a general

time-varying horizon in a nonperturbative setting. There are
several important examples where black holes involved in
dynamical processes are almost isolated, and it makes sense
to consider a perturbative framework. This occurs in binary
systems not only when the binary companion is far
away (compared to the size of the black hole), but is also
valid surprisingly close to the merger. See, for example,
Fig. 2 in [56]: It is seen that in a head-on collision of two
black holes, the area increase of the two individual black
holes is relatively moderate even when the common horizon
is formed. An even more dramatic example is provided by
the Robinson-Trautman solutions [72,73] which will be
discussed further in Sec. III D. In these black hole solutions,
we can have radiation arbitrarily close to the horizon. This
radiation is however transverse to the horizon and is not
infalling, and the horizon itself remains time independent.
The black holes in all of the above examples are well

modeled within the isolated horizon framework or as
perturbations thereof. The basic mathematical objects to
be understood are null, three-dimensional hypersurfaces in a
spacetime. We denote by Δ such a hypersurface. The
intrinsic metric qab on Δ is degenerate and has signature

ð0;þ;þÞ. Unlike spacelike or timelike manifolds, we need
to take some care in projecting tensor fields ontoΔ, and care
must be taken in the position of indices. The intrinsic metric
qab is simply the restriction of the spacetime metric gab:
qabXaYb ¼ gabXaYb for any vector fields Xa, Yb tangent to
Δ. This is the pullback of the spacetime metric to Δ:
qab ¼ gab , where an under arrow indicates the pullback of

the indices. A null vector la tangent to Δ is said to be a null
normal to Δ if qablb ¼ 0. Since la is null and also surface
orthogonal, its integral curves are geodesics so that

la∇alb ¼ κlb; ð1Þ

with κ being the acceleration of la, i.e., the surface gravity;
∇a the spacetime derivative operator compatible with the
four-metric gab. We shall always take la to be future
directed.
Being degenerate, the inverse qab is not unique but all of

our constructions will be insensitive to this ambiguity. If
qab is an inverse in the sense that qamqbnqmn ¼ qab, then so
is qab þ VðalbÞ with Va being tangent to Δ. Given a null
normal la to Δ, its expansion ΘðlÞ is defined as

ΘðlÞ ≔ qab∇alb: ð2Þ

This is insensitive to the nonuniqueness of qab. Note that
qab, being degenerate, does not uniquely specify a deriva-
tive operator. In fact, without additional assumptions or
geometric structures, there is not a unique torsion-free
derivative operator on Δ compatible with qab.
We shall be exclusively concerned with the case when Δ

is ruled by the integral curves of la and has spherical cross
sections. Thus, it has topology S2 × R, as is the case for the
Schwarzschild or Kerr event horizons. On every cross
section, qab induces a Riemannian two-metric which we
shall denote q̃ab, and a corresponding volume two-form ϵ̃ab.
Thus, the area of cross sections is measured by integrating ϵ̃.
The above notions are of course also applicable to the well-
known Schwarzschild and Kerr event horizons, which are
stationary in the sense that the area is a constant. It is easy to
verify that for a Kerr black hole, every cross section of the
horizon (as long as it is a complete sphere) has the same area
and one can therefore sensibly talk about the area as a
geometric invariant of the Kerr event horizon. Since the area
is constant, the black hole can be considered “isolated” also
in the sense that it is in equilibrium and not interacting with
its surrounding spacetime and matter fields; any infalling
matter or radiation would lead to an increase in the area
following the area increase law. The framework of isolated
horizons provides a systematic treatment of this situation.
Isolated horizons are conveniently introduced in a series

of three definitions, starting from the weakest and imposing
increasingly stronger conditions. We can now state the first
definition.
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Definition 1. A submanifold Δ of a spacetime ðM; gabÞ
is said to be a nonexpanding horizon (NEH) if
(1) Δ is topologically S2 ×R and null. For the projec-

tion map Π∶S2 ×R → S2, the fiber Π−1ðpÞ for any
p∈ S2 are null curves in Δ.

(2) Any null normal la of Δ has vanishing expansion,
ΘðlÞ ¼ 0. This condition is insensitive to the
rescaling la → fla with f being a positive definite
function.

(3) All equations of motion hold at Δ and the stress
energy tensor Tab is such that −Ta

blb is future
causal for any future-directed null normal la.

The second condition above is the critical one: it requires
all cross sections of Δ to be marginally outer trapped
surfaces (MOTS). The last condition will not be relevant for
us since we shall work with vacuum spacetimes, but we
keep it for completeness.
The shear of la, σab is

σab ≔ ∇ðalbÞ
⟵

−
1

2
ΘðlÞqab: ð3Þ

Using the Raychaudhuri equation and the energy condition,
condition 2 can be shown to yield σab ¼ 0. Thus, we
conclude that ∇ðalbÞ

⟵

¼ 0, which also means that

Llqab ¼ 0.
We can introduce a derivative operator D on a NEH Δ.

As mentioned before, the degeneracy of qab implies that
there are an infinite number of torsion-free derivative
operators that are compatible with it. However, on an
NEH, the property ∇ðalbÞ 

¼ 0 can be used to construct a

unique (torsion-free) derivative operator. It can be shown
that this condition signifies that the spacetime connection∇
induces a unique torsion-free derivative operator D on Δ
which is compatible with qab [44]; thus Da ¼ ∇a . We thus

need to specify the pair ðqab;DaÞ to fully characterize the
geometry of Δ, and our strategy will be to strengthen the
notion of a NEH by imposing restrictions on various
components of Da.
Some of the various relevant geometric objects and

manifolds are indicated in Fig. 1. This figure shows the
different kinds of geometric objects in our problem, and it
will be worthwhile to elaborate on these briefly; details may
be found in [47]. Since Δ is a null surface, it is nontrivial to
raise and lower indices and it is important to keep track of
these. We can project Δ to a topological sphere (the “base
space” Δ̃) by identifying points on Δ connected by a null
generator. We get in this way a natural projection
Π∶Δ̃ ×R → Δ̃. It is straightforward to generalize Δ̃ to
be a compact manifold without boundary, but we shall
restrict ourselves to a sphere in this work. We equip Δ̃ with
a Riemannian metric q̃ab which gives us the derivative

operator, volume element, and scalar curvature D̃a, ϵ̃ab, and
R̃, respectively. We can pull back these fields toΔ using the
differential Π⋆ to obtain a degenerate metric qab and a two-
form ϵab on Δ:

qab ¼ Π⋆q̃ab; ϵab ¼ Π⋆ϵ̃ab: ð4Þ

These are evidently seen to satisfy Llqab ¼ 0 ¼ Llϵab,
and qablb ¼ 0 ¼ ϵablb.
The foliation of the horizon requires a function v whose

level sets give the leaves of the foliation. We shall tie the null
normal to the foliation by la∇av ¼ 1 and na ¼ −Dav (so
that l · n ¼ −1) is the one-form orthogonal to the foliation.
A given sphere of the foliation can be considered to be an
embedding of a sphere S into Δ, i.e., ι∶S → Δ. This map
allows us to pull back various fields to S; in the literature
one often uses the notation 2qab ¼ ι⋆qab and 2ϵab ¼ ι⋆ϵab.
To avoid notational clutter, we shall however generally not
use this notation, and we shall use instead q̃ab; ϵ̃ab. Thus, we

FIG. 1. The projection map Π and the foliation of the horizon.
The NEH Δ is topologically S2 × R and projects to the base-
space Δ̃ of spherical topology. The fields ðq̃ab; ω̃aÞ live on the
base space and can be pulled back through Π⋆ to the fields
ðqab;ωaÞ on Δ. These are guaranteed to satisfy Llqab ¼ 0 and
Llω ¼ 0. For a choice of affine parameter v along the null-
normal la (satisfying la∇av ¼ 1), the constant v surfaces yield a
foliation of Δ which are shown as cross sections in the figure.
Each of these cross sections can be considered as an embedding
of a manifold S (again with topology S2) into Δ. We can identify
S with Δ̃ in a natural way using the composition Π∘ι∶S → Δ̃.
Thus, with a slight abuse of notation, we shall use the notation
q̃ab and ϵ̃ab instead of 2qab and 2ϵab.
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shall use q̃ab to refer to both the metric on a cross section S
and also on the base space Δ̃, and it shall be clear from the
context which is meant. This discussion also makes clear
that just as for the Kerr event horizon, any complete
spherical cross section of Δ has the same area. This area
is a geometric invariant ofΔ, and we can talk sensibly about
“the area A of Δ,” and its area radius R ¼ ffiffiffiffiffiffiffiffiffiffiffi

A=4π
p

.
When embedded in a spacetime manifold, we can

consider na to be the pullback of a spacetime one-form
corresponding to a future-directed null vector na; this is the
ingoing null normal to Δ. Finally, we can complete ðla; naÞ
to a null tetrad ðla; na; ma; m̄aÞ by introducing a complex
null vector ma tangent to the leaves of the foliation, such
that l ·m ¼ n ·m ¼ 0, andm · m̄ ¼ 1. As we shall see, this
tetrad can be extended to a neighborhood of Δ and tensor
fields can be decomposed in terms of ðla; na; ma; m̄aÞ. This
forms the basis of the Newman-Penrose formalism [74–77].
which we will summarize in Sec. III A.
On a NEH, there is no canonical scaling of the null

generators: la and fla (for any positive nonvanishing
function f) are both perfectly acceptable. In the standard
Schwarzschild/Kerr solutions, we have globally defined
timelike and rotational Killing vectors available to us. For a
Schwarzschild black hole, the timelike Killing vector is
also a null generator of the horizon. Thus, for that solution,
we get a preferred null generator by normalizing the
timelike Killing vector to have unit norm at infinity. A
similar strategy is also available in Kerr. This strategy is
generically not viable because the spacetime in the vicinity
of the isolated horizon will generally not be stationary;
thus, we will not have access to spatial infinity where the
Killing vector could be normalized. As we shall see, it is
nonetheless possible to single out a preferred class of null
normals on an isolated horizon.
Two null normals la and ela to an NEH Δ are said to

belong to the same equivalence class ½l� if ela ¼ cla for
some positive constant c. Weakly isolated horizons are
characterized by the property that, in addition to the metric
qab, the connection component Dalb is also “time inde-
pendent.” From the properties of la discussed above, it is
easy to show that there must exist a connection one-form

ωðlÞa associated with any given la such that

Dalb ¼ ωðlÞa lb: ð5Þ

The acceleration is given by κðlÞ ¼ laωðlÞa . It can be easily
verified that when la → fla, ωa undergoes a gauge
transformation:

ωðflÞa ¼ ωðlÞa þDa ln f: ð6Þ

However, ω is invariant under constant rescalings, a fact
which will be useful for our next definition.

Definition 2. The pair ðΔ; ½l�Þ is said to constitute a
weakly isolated horizon (WIH) provided Δ is an NEH and
each null normal la in ½l� satisfies

Llωa ¼ 0: ð7Þ
On a weakly isolated horizon, since we are allowed only
constant rescalings, ωa is invariant and we can drop the
reference to la on ωðlÞ. A WIH does not represent a real
physical restriction on a NEH. We can always choose the
equivalence class ½l� on a NEH, but there is no unique
choice [47]. In numerous applications, a WIH is sufficient
and there is no need to impose any further restrictions. The
laws of black hole mechanics can be shown to hold for
WIHs [44,46] and they are also sufficient for numerous
applications in numerical relativity simulations of black
holes for calculating mass, angular momentum, and higher
multipole moments (see, e.g., [28,67,68]). The zeroth law
will in fact be useful for us. This is the result that the surface
gravity κðlÞ ¼ ωala is constant on Δ.
The condition Llωa ¼ 0 can be written as

½Ll;D�la ¼ 0: ð8Þ

This form makes more explicit that this is a restriction on
Da. An obvious generalization of this condition would be to
require that all components of Da should be time indepen-
dent. This leads us to our third definition.
Definition 3. The pair ðΔ; ½l�Þ is said to constitute an

isolated horizon (IH) provided Δ is an NEH and each null
normal la in ½l� satisfies

½Ll;D� ¼ 0: ð9Þ

If an equivalence class ½l� can be found that satisfies Eq. (9)
then the NEH is said to admit an IH structure. We shall later
summarize the steps required for finding an admissible ½l�
on a NEH.

B. Mass, angular momentum, and higher multipoles

To define the physical parameters of a black hole, and
for the laws of back hole mechanics to hold on the horizon,
it is sufficient to consider a WIH. Unlike other treatments
of this topic where the basic variables of a black hole are
mass and angular momentum and the area is a derived
quantity, here it is more natural to begin with the area and
angular momentum. We have already seen that the area A
(and correspondingly, the radius R) is a geometric invariant
on a NEH. Expressions for angular momentum and mass
are based on Hamiltonian calculations within a suitable
phase space. Here the phase space consists of a spacetime
with a WIH as an inner boundary. It is possible to carry out
the detailed calculation in either metric or connection
variables [43,44,46,70,78,79]. Angular momentum is the
Hamiltonian which generates rotations, while energy is the
generator of time translations. In the context of a
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diffeomorphism invariant theory like general relativity, the
relevant Hamiltonians are all integrals over the boundary
two-surfaces which in our case, are cross sections of a
WIH. This allows a clear identification of the energy and
angular momentum of an axisymmetric WIH. Let us
consider a WIH in a vacuum spacetime with an axial
symmetry φa, i.e.,

Lφqab ¼ 0; Lφωa ¼ 0: ð10Þ

Then, the angular momentum is

J ¼ −
1

8π

I
S
ðφaωaÞϵ̃; ð11Þ

where S is a cross section of Δ. It can be shown that any
cross section S will yield the same value of J and thus, just
like the area, J is a geometric invariant we can talk sensibly
about for an axisymmetric WIH.
Turning now to notions of energy, here we will need a

suitable time translation Killing vector on Δ. This is taken
to be of the form Ala − Ωφa, where A, Ω are constant on a
givenWIH but vary over phase space. In particular,Ω is the
angular velocity. Hamiltonian considerations lead to an
expression for the mass as

M ¼ 1

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 4J2

p
: ð12Þ

Note that for a nonspinning black hole this reduces to the
Schwarzschild expression M ¼ R=2. The Hamiltonian
analysis of [44,46] also yields expressions for the surface
gravity and angular velocity in terms of ðA; JÞ (in fact, the
important point is that the analysis of [44,46] shows that
these quantities can depend only on A and J). We shall need
the expression for the surface gravity later:

κ̃ðA; JÞ ¼ R4 − 4J2

2R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 4J2
p : ð13Þ

This is the usual expression for surface gravity for
a Kerr metric and for Schwarzschild this becomes
κ̃ ¼ ð2RÞ−1 ¼ ð4MÞ−1.
The expression for the angular momentum can also be

expressed in terms of a Weyl tensor component. In terms of
the null tetrad ðla; na; ma; m̄aÞ, the Weyl tensor can be
decomposed into five complex scalar quantities denoted
Ψ0, Ψ1, Ψ2, Ψ3, and Ψ4. These will be described more fully
in Sec. III A, but for now, we only need the expression for
Ψ2 in terms of the Weyl tensor Cabcd:

Ψ2 ¼ Cabcdlambm̄cnd: ð14Þ

We shall see that Ψ2 is a geometric invariant on a WIH.
Its real part yields the scalar curvature R̃ of q̃ab, and

its imaginary part is related to the exterior derivative
of ωa:

R̃ ¼ −4Re½Ψ2�; dω ¼ 2Im½Ψ2�ϵ: ð15Þ

The angular momentum can then be rewritten as

J ¼ −
1

4π

I
S
ζIm½Ψ2�ϵ̃; ð16Þ

where ζ is a “potential” for the φa in the following sense:

φaϵ̃ab ¼ ∂bζ;
I
S
ζϵ̃ ¼ 0: ð17Þ

(For a Kerr black hole, in terms of the usual spherical
coordinates, it turns out that ζ ¼ cos θ).
Beyond the mass and angular momentum, the geometry

of a WIH can be expressed in terms of multipole moments.
The basic idea is to expressΨ2 as an infinite set of numbers
by decomposing it in terms of spherical harmonics.
However, which spherical coordinates should we use,
and how can we compare two different calculations which
might employ different coordinate systems? As shown
in [18], on an axisymmetric WIH one can define a set of
invariant coordinates and orthonormal spherical harmonics
Ym
l which can be used to decompose Ψ2. In this way, we

get a set of mass and spin multipole moments associated
with the real and imaginary parts of Ψ2, respectively:

Il þ iLl ¼ −
I

Ψ2Y0
lðζÞϵ̃: ð18Þ

The zeroth mass moment I0 is a topological invariant:
I0 ¼

ffiffiffi
π
p

. Assuming there are no conical singularities, the
mass-dipole moment vanishes I1 ¼ 0. Similarly, if ω has
no singularities corresponding to a magnetic monopole,
then L0 ¼ 0. From (16), we see also that L1 is proportional
to the angular momentum.
The importance ofΨ2 for us resides in the fact that it also

encodes tidal deformations. Thus, for a black hole with a
binary companion, when its horizon is deformed due to the
tidal field of its companion, this deformation is a pertur-
bation of Ψ2 and thus changes these multipole moments
from their Kerr values. In astrophysical applications where
tidally perturbed black holes are expected to be close to
Kerr, we use the horizon area and L1 to identify the Kerr
parameters. These Kerr parameters identify uniquely all the
higher moments, and any deviations from these Kerr values
are to be interpreted as tidal perturbations of the horizon
geometry.
Finally, we note that there are alternative definitions of

multipole moments available in the literature. After all,
different choices of spherical coordinates are possible,
which lead to different spherical harmonics and thus to
different multipole moments. One should thus be careful in

TIDAL DEFORMATIONS OF SLOWLY SPINNING ISOLATED … PHYS. REV. D 110, 024069 (2024)

024069-7



interpreting the multipole moments and corresponding Love
numbers. We mention in particular the multipole moments
defined in [58] which exploits the conformal geometry of
the horizon cross sections.

C. Constraint equations on an isolated horizon

As discussed in the previous section, the geometry of Δ
is completely specified by the degenerate metric qab, and
the derivative operator Da. Since qablb ¼ 0, the “non-
degenerate part” of qab is simply q̃ab constructed above.
The information withinDa is conveniently written in terms
of the ingoing null normal na to the horizon, which
satisfies the normalization condition l · n ¼ −1. Starting
from an initial cross section S0 and its normal na, we can
extend this everywhere on Δ by requiring Llna ¼ 0 (and
maintaining lana ¼ −1).
We then introduce the tensor Sab:

Sab ¼ Danb: ð19Þ

Without loss of generality, we can take D½anb� ¼ 0 so that
Sab is symmetric. It is easy to verify that ωa ¼ Sablb. The
remaining information in Sab is thus obtained by projecting
to the cross section:

S̃ab ¼ q̃acq̃bdScd: ð20Þ

The trace and tracefree parts of S̃ab yield, respectively, the
expansion and shear of na. The complete characterization
of Δ requires a specification of S̃ab everywhere on Δ. It
can be shown that S̃ab satisfies the following constraint
equation [47]:

LlS̃ab ¼ −κðlÞS̃ab þ D̃ðaω̃bÞ þ ω̃aω̃b −
1

2
R̃ab: ð21Þ

Here R̃ab is the Ricci tensor on the cross section calculated
from the two-metric q̃ab. Thus, by specifying S̃ab on some
initial cross section, a solution of this constraint equation
then yields S̃ab everywhere on Δ.
These geometric quantities and identities can be

employed to choose a suitable equivalence class ½la� on
a NEH and thereby find an admissible IH. As shown
in [47], a suitable condition is to require that the expansion
of na is time independent. Under this condition, one can
choose an equivalence class ½la� if the following elliptic
operator is invertible:

L ≔ D̃2 þ 2ω̃aD̃a þ D̃aω̃a þ ω̃aω̃a −
1

2
R̃: ð22Þ

It is interesting to note that the invertibility of a very similar
operator appears in the stability analysis of marginally
trapped surfaces [80,81]. When the cross section is taken to
be a marginally trapped surface lying on a Cauchy surface,

then the stability of the MOTS under deformations is shown
to be equivalent to the invertibility of L.
Apart from the constraint equation, Eq. (21), it turns out

that there are additional constraints on Ψ2 appearing due to
the algebraic nature of the Weyl tensor. If one imposes
constraints on the other Weyl tensor components, it turns
out that the Bianchi identities restrict Ψ2 as well. This is
important for us because, as we have mentioned earlier, the
geometric multipoles of an IH are determined by Ψ2.
Therefore, such constraints potentially limit the type of
tidal perturbations that are allowed on an IH. As an example,
it was shown in [82–84] that if the Weyl tensor is time
dependent at Δ and is of Petrov type D, i.e., if we can find a
frame in which Ψ2 is the only nonvanishing Weyl tensor
component on the horizon, then it cannot be specified freely
but must satisfy

ððΨ−1=3
2 ¼ 0: ð23Þ

Here ð is the spin-weighted angular derivative operator [85],
which we will formally introduce in Sec. III A (for the action
of the ð operator on the spin-weighted spherical harmonics,
see Appendix B). We will see that this condition implies that
if we require nontrivial tidal perturbations, then Ψ3 and/or
Ψ4 cannot vanish at the horizon. These components of the
Weyl tensor indicate the presence of gravitational radiation
at the horizon which is transverse toΔ, i.e., not infalling into
the black hole. This result shows that such radiation must be
present for a tidally disturbed black hole. The Robinson-
Trautman solutions [72,73] furnish good examples of space-
times with such transverse radiation in the vicinity of an IH;
these solutions will be discussed in Sec. III D.

III. CONSTRUCTING THE NEAR
HORIZON SPACETIME

A. The Newman-Penrose formalism

With the intrinsic geometry of an isolated horizon
understood, here we shall summarize the construction of
the near horizon geometry. It will be convenient to work
with the Newman-Penrose formalism. For this, as men-
tioned earlier, we complete the null normals ðla; naÞ to a
null tetrad ðla; na; ma; m̄aÞ satisfying

l · n ¼ −1; m · m̄ ¼ 1; ð24Þ
with all other inner products vanishing. The directional
covariant derivatives along these basis vectors are denoted as

D ≔ la∇a; Δ ≔ na∇a; δ ≔ ma∇a: ð25Þ

The connection is explicitly represented as a set of 12
complex functions known as the spin coefficients. These are
typically represented in terms of the directional derivatives
of the basis vectors:
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Dl ¼ ðϵþ ϵ̄Þl − κ̄m − κm̄; ð26aÞ

Dn ¼ −ðϵþ ϵ̄Þnþ πmþ π̄m; ð26bÞ

Dm ¼ π̄l − κnþ ðϵ − ϵ̄Þm; ð26cÞ

Δl ¼ ðγ þ γ̄Þl − τ̄m − τm̄; ð26dÞ

Δn ¼ −ðγ þ γ̄Þnþ νmþ ν̄ m̄; ð26eÞ

Δm ¼ ν̄l − τnþ ðγ − γ̄Þm; ð26fÞ

δl ¼ ðᾱþ βÞl − ρ̄m − σm̄; ð26gÞ

δn ¼ −ðᾱþ βÞnþ μmþ λ̄ m̄; ð26hÞ

δm ¼ λ̄l − σnþ ðβ − ᾱÞm; ð26iÞ

δ̄m ¼ μ̄l − ρnþ ðα − β̄Þm: ð26jÞ

A technical benefit of tetrad formalisms is that the covariant
derivatives (here the spin coefficients) can be calculated
using only exterior derivatives. This is useful in practical
calculations because, given a metric, the calculation of the
spin coefficients require a fewer number of derivatives and
no Christoffel symbols are required. It can be shown that the
exterior derivatives of the basis one-forms are

dl ¼ ðϵþ ϵ̄Þl ∧ nþ ½τ̄ − ðαþ β̄Þ�l ∧ m

þ ½τ − ðᾱþ βÞ�l ∧ m̄þ κ̄n ∧ m

þ κn ∧ m̄þ ðρ̄ − ρÞm ∧ m̄; ð27aÞ

dn ¼ ðγ þ γ̄Þl ∧ n − νl ∧ m − ν̄l ∧ m̄

− ½π − ðαþ β̄Þ�n ∧ m − ½π̄ − ðᾱþ βÞ�n ∧ m̄

þ ðμ̄ − μÞm ∧ m̄; ð27bÞ

dm ¼ ðτ þ π̄Þl ∧ n − ½μ̄þ ðγ − γ̄Þ�l ∧ m

þ λ̄l ∧ m̄þ ½ρ − ðϵ − ϵ̄Þ�n ∧ m

þ σn ∧ m̄þ ðᾱ − βÞm ∧ m̄: ð27cÞ

Some important spin coefficients for us are: the real parts
of ρ and μ are the expansion of l and n, respectively; the
imaginary parts yield the twist; σ and λ are the shears of l
and n, respectively; the vanishing of κ and ν implies that l
and n are, respectively, geodesic; ϵþ ϵ̄ and γ þ γ̄ are,
respectively, the accelerations of l and n, α − β̄ yields the
connection in them − m̄ plane and thus the curvature of the
manifold spanned by m − m̄.
Since the null tetrad is typically not a coordinate basis,

the above definitions of the spin coefficients lead to
nontrivial commutation relations:

ðΔD −DΔÞf ¼ ðϵþ ϵ̄ÞΔf þ ðγ þ γ̄ÞDf

− ðτ̄ þ πÞδf − ðτ þ π̄Þδ̄f; ð28aÞ

ðδD −DδÞf ¼ ðᾱþ β − π̄ÞDf þ κΔf

− ðρ̄þ ϵ − ϵ̄Þδf − σδ̄f; ð28bÞ

ðδΔ − ΔδÞf ¼ −ν̄Df þ ðτ − ᾱ − βÞΔf
þ ðμ − γ þ γ̄Þδf þ λ̄ δ̄ f; ð28cÞ

ðδ̄δ − δδ̄Þf ¼ ðμ̄ − μÞDf þ ðρ̄ − ρÞΔf
þ ðα − β̄Þδf − ðᾱ − βÞδ̄f: ð28dÞ

The Weyl tensor Cabcd breaks down into five complex
scalars:

Ψ0 ¼ Cabcdlamblcmd; Ψ1 ¼ Cabcdlamblcnd; ð29aÞ

Ψ2 ¼ Cabcdlambm̄cnd; Ψ3 ¼ Cabcdlanbm̄cnd; ð29bÞ

Ψ4 ¼ Cabcdm̄anbm̄cnd: ð29cÞ

Similar decompositions apply for the Ricci tensor or
Maxwell fields, but since we deal with vacuum spacetimes
in this paper, we do not need these here.
The relation between the spin coefficients and the

curvature components lead to the so-called Newman-
Penrose field equations which are a set of 16 complex
first order differential equations. The Bianchi identities,
∇½aRbc�de ¼ 0, are written explicitly as eight complex
equations involving both the Weyl and Ricci tensor
components, and three real equations involving only
Ricci tensor components. See [75–77] for the full set of
field equations and Bianchi identities (but beware that they
use slightly different conventions such as the sign for the
metric signature and normalization of the null tetrad,
leading to possible minus sign changes).
It will also be useful to use the notion of spin weights and

the ð operator for derivatives in them − m̄ plane (which will
be angular derivatives in our case). A tensor X projected on
them − m̄ plane is said to have spin weight s if under a spin
rotation m → eiψm, it transforms as X → eisψX. Thus, ma

itself has spin weight þ1 while m̄a has weight −1. For
instance, the scalar X ¼ ma1 � � �mapm̄b1 � � � m̄bqXa1���bq has
spin weight s ¼ p − q and the Weyl tensor component Ψk
has spin weight 2 − k.
The ð and ð̄ operators are defined as

ðX ¼ ma1 � � �mapm̄b1 � � � m̄bqδXa1���bq ; ð30Þ

ð̄X ¼ ma1 � � �mapm̄b1 � � � m̄bq δ̄Xa1���bq : ð31Þ
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From Eqs. (26i) and (26j), after projecting onto the m − m̄
plane, we get

δma ¼ ðβ − ᾱÞma; δ̄ma ¼ ðα − β̄Þma: ð32Þ

A short calculation shows that

ðX ¼ δX þ sðᾱ − βÞX; ð̄X ¼ δ̄X − sðα − β̄ÞX: ð33Þ

It is clear that ð and ð̄ act as spin raising and lowering
operators. See [85] for further properties of the ð operator
and its connection to representations of the rotation group.
The transformations of the null tetrad which preserve

their inner product are
Boosts and spin rotations:

l → Al; n → A−1n; m → eiθm; ð34Þ

Null rotations:

l→l; m→mþal; n→nþ āmþam̄þjaj2l; ð35Þ

and the null rotations around n [obtained by interchanging
l and n in Eq. (35)].
We refer to [75–77] for a more complete discussion.

B. A general construction of the near horizon spacetime

The construction of the near horizon geometry follows, in
principle, the same philosophy as the standard 3þ 1
decomposition: we prescribe initial data on certain hyper-
surfaces and use the Einstein equations to obtain the
spacetime metric in a neighborhood. The difference is that,
instead of specifying data on a spatial hypersurface, we use
a characteristic initial value problem and prescribe data on a
pair of transverse null hypersurfaces [51,86]. We refer here
also to the seminal work by Bondi and collaborators on
constructing the spacetime near null infinity [87] following
a similar procedure.
In the characteristic formalism, the field equations

(i.e., the Einstein equations and the Bianchi identities)
are written as first-order quasilinear equations of the form

XN
J¼1

Aa
IJðx;ψÞ∂aψJ þ FIðx;ψÞ ¼ 0: ð36Þ

Here xa are coordinates on a manifold, and we have N
dependent variables ψ I . In the usual Cauchy problem, we
specify ψ I at some initial time, and solve these equations to
obtain ψ I for later times. Alternatively, within the charac-
teristic formulation, we have a pair of null surfacesN 0 and
N 1 whose intersection is a codimension-2 spacelike sur-
face S. It turns out to be possible to specify appropriate data
on the null surfaces and on S such that the above system of
equations is well posed and has a unique solution, at least

locally near S. We briefly summarize this construction in
our present case.
One of the null surfaces will be the isolated horizon Δ,

while the other null surface N is generated by past-directed
null geodesics emanating from a cross section ofΔ as shown
in Fig. 2. This construction was first proposed in [45,52] and
further elaborated upon in [53,55,88]. We start with the past-
directed null vector −na at the horizon obtained from a
particular cross section S0. Integrating the geodesic equation
(until the conjugate point) gives us the null geodesics
generated by−na, and thus yields a null surfaceN generated
from S0. The spacetime metric is calculated in a character-
istic formulation by prescribing initial data on the null
surfaces N and Δ. The data on N is the Weyl tensor
component Ψ4 while the data on Δ consist of the geometric
information required for an IH, i.e., ðqab;D; ½la�Þ. If we
have coordinates ðv; θ;ϕÞ on Δ such that S0 is a surface of
constant v and ðθ;ϕÞ are coordinates on S0, and r is the
affine parameter along −na, then this construction yields a
coordinate system ðv; r; θ;ϕÞ in a neighborhood of Δ. For
technical convenience, instead of real angular coordinates
ðθ;ϕÞ, we shall work on the stereographic plane with
complex coordinates ðz; z̄Þ.
The above construction implies that we can choose

na ¼ −∂av and na∇a ≔ Δ ¼ −
∂

∂r
: ð37Þ

To satisfy the inner product relations lana ¼ −1 and
mana ¼ 0, the other basis vectors must be of the form

la∇a ≔ D ¼ ∂

∂v
þ U

∂

∂r
þ X

∂

∂z
þ X̄

∂

∂z̄
; ð38aÞ

FIG. 2. The characteristic initial value problem for constructing
the near horizon geometry. Here Δ is the horizon whose geometry
is shown in Fig. 1. The null surface N is generated by past-
directed null geodesics starting from a cross section S with
coordinates ðz; z̄Þ. The affine parameter along the geodesics is r,
and the null vector is na∂a ¼ −∂r. The spacetime metric is
constructed starting with suitable data on Δ, N , and S.
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ma∇a ≔ δ ¼ Ω
∂

∂r
þ ξ1

∂

∂z
þ ξ2

∂

∂z̄
: ð38bÞ

The frame function U is real while X;Ω; ξi are complex.
We wish to now specialize to the case when la is a null
normal of Δ so that the null tetrad is adapted to the horizon.
Since ∂v is tangent to the null generators of Δ, this clearly
requires that U;Xi must vanish on the horizon. Similarly,
we want ma to be tangent to the spheres Sv at the horizon,
so Ω should also vanish on Δ.
Since na is an affinely parametrized geodesic, and l and

m are parallel propagated along na, we have Δn ¼ Δl ¼
Δm ¼ 0. From Eqs. (26d)–(26f), this leads to

γ ¼ τ ¼ ν ¼ 0: ð39Þ

We first impose these conditions to the commutation
relations in Eq. (28). Then, setting f ¼ v in those equations
leads to

π ¼ αþ β̄; μ ¼ μ̄: ð40Þ

These must hold throughout the region where the coor-
dinate system is valid.
The rest of the discussion can be separated into three

parts: (i) equations which involve the time derivatives
along la and include a description of the horizon geom-
etry, (ii) the radial derivatives along na which propagate
geometric information away from Δ, and (iii) equations
which exclusively involve angular derivatives and yield the
“shape” of the two-sphere cross sections. At the horizon,
since the expansion, shear, and twist of la vanish, we have

ρ ≜ 0; κ ≜ 0; σ ≜ 0: ð41Þ

(Equations which hold only on Δ are indicated by “ ≜ ”
instead of the usual “¼”). These three conditions at the
horizon further imply

Ψ0 ≜ 0; Ψ1 ≜ 0: ð42Þ

These two equations can be interpreted as the absence of
ingoing transverse and longitudinal radiation at the hori-
zon. Further, we can requirema to be Lie dragged along la

so that Llma ¼ 0. This leads to

ϵ − ϵ̄ ≜ 0: ð43Þ

In terms of the Newman-Penrose spin coefficients, the
connection one-form ωa is written as

ωa ¼ −nb∇alb ¼ −ðϵþ ϵ̄Þna þ πma þ π̄m̄a: ð44Þ

Thus, Δ will be a WIH if we choose

κ̃ðlÞ ≜ ϵþ ϵ̄ ≜ constant; Dπ ≜ 0: ð45Þ

The first of the above is just the zeroth law of black hole
mechanics stating that the surface gravity is constant.
Notice that Eqs. (41), (42), and (45) further imply that

DΨ2 ≜ 0; Da ≜ 0; ð46Þ

where a ¼ α − β̄ is the connection compatible with
q̃ab. This last equation specifies that the geometry of Δ̃
is constant in time.
With the above conditions on the spin coefficients at

hand, we now impose them in the commutator relations, the
field equations, and the Bianchi identities. The functions
U;Xi;Ω; ξi are determined by the commutation relations
(28) by substituting, in turn, r and xi for f, and imposing
Eqs. (39) and (40) on the spin coefficients. First, the radial
derivatives for the coefficients of the tetrad are

ΔU ¼ −ðϵþ ϵ̄Þ − πΩ − π̄ Ω̄; ð47aÞ

ΔXi ¼ −πξi − π̄ξ̄i; ð47bÞ

ΔΩ ¼ −π̄ − μΩ − λ̄ Ω̄; ð47cÞ

Δξi ¼ −μξi − λ̄ξ̄i; ð47dÞ

while their propagation equations along v are

DΩ − δU ¼ κ þ ρΩþ σΩ̄; ð48aÞ

Dξi − δXi ¼ ðρ̄þ ϵ − ϵ̄Þξi þ σξ̄i: ð48bÞ

Let us now turn to the field equations. After imposing
Eqs. (39) and (40) on the spin coefficients and igno-
ring matter terms, the field equations involving radial
derivatives are

Δλ ¼ −2λμ −Ψ4; ð49aÞ

Δμ ¼ −μ2 − jλj2; ð49bÞ

Δρ ¼ −μρ − σλ −Ψ2; ð49cÞ

Δσ ¼ −μσ − λ̄ρ: ð49dÞ

Δκ ¼ −π̄ρ − πσ −Ψ1; ð49eÞ

Δϵ ¼ −π̄α − πβ −Ψ2; ð49fÞ

Δπ ¼ −πμ − π̄λ −Ψ3; ð49gÞ

Δβ ¼ −μβ − αλ̄; ð49hÞ
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Δα ¼ −βλ − μα −Ψ3: ð49iÞ

The time evolution equations become

Dρ − δ̄κ ¼ ρ2 þ jσj2 þ ðϵþ ϵ̄Þρ − 2ακ; ð50aÞ

Dσ − δκ ¼ ðρþ ρ̄þ ϵþ ϵ̄Þσ − 2βκ þΨ0; ð50bÞ

Dα− δ̄ϵ¼ ðρþ ϵ̄−2ϵÞαþ βσ̄− β̄ϵ− κλþðϵþ ρÞπ; ð50cÞ

Dβ−δϵ¼ðαþπÞσþðρ̄− ϵ̄Þβ−μκ− ðᾱ− π̄ÞϵþΨ1; ð50dÞ

Dλ − δ̄π ¼ ðρ − 2ϵÞλþ σ̄μþ 2απ; ð50eÞ

Dμ − δπ ¼ ðρ̄ − ϵ − ϵ̄Þμþ σλþ 2βπ þ Ψ2: ð50fÞ

The angular field equations are

δρ − δ̄σ ¼ π̄ρ − ð3α − β̄Þσ −Ψ1; ð51aÞ

δα − δ̄β ¼ μρ − λσ þ jαj2 þ jβj2 − 2αβ −Ψ2; ð51bÞ

δλ − δ̄μ ¼ πμþ ðᾱ − 3βÞλ −Ψ3: ð51cÞ

Finally, we have the Bianchi identities which, in the NP
formalism, are written as a set of nine complex and two
real equations; in the absence of matter, only eight
complex equations survive. The radial Bianchi identities
are reduced to

ΔΨ0 − δΨ1 ¼ −μΨ0 − 2βΨ1 þ 3σΨ2; ð52aÞ

ΔΨ1 − δΨ2 ¼ −2μΨ1 þ 2σΨ3; ð52bÞ

ΔΨ2 − δΨ3 ¼ −3μΨ2 þ 2βΨ3 þ σΨ4; ð52cÞ

ΔΨ3 − δΨ4 ¼ −4μΨ3 þ 4βΨ4: ð52dÞ

Note that there is no equation for the radial derivative ofΨ4.
Among all the fields that we are solving for, this is in fact the
only one for which this happens. This means thatΨ4 (in this
case, its radial derivatives) is the free data that must be
specified on the null cone N 0 originating from S0. Notice
that if the spacetime is algebraically special, Ψ4 might
satisfy further constraints, which need to be accounted for in
the previous statement. For instance, for type D spacetimes
Ψ4 (and its radial derivatives) are related to Ψ2 and Ψ3

through 2Ψ2Ψ4 ¼ 3Ψ2
3 [82].

Finally, we have the components of the Bianchi equa-
tions for evolution of the Weyl tensor components:

DΨ1 − δ̄Ψ0 ¼ ðπ − 4αÞΨ0þ 2ð2ρþ ϵÞΨ1 − 3κΨ2; ð53aÞ

DΨ2 − δ̄Ψ1 ¼ −λΨ0þ 2ðπ − αÞΨ1þ 3ρΨ2 − 2κΨ3; ð53bÞ

DΨ3 − δ̄Ψ2 ¼ −2λΨ1þ 3πΨ2þ 2ðρ− ϵÞΨ3 − κΨ4; ð53cÞ

DΨ4− δ̄Ψ3 ¼−3λΨ2þ 2ðαþ 2πÞΨ3þðρ− 4ϵÞΨ4: ð53dÞ

Before proceeding to apply the above equations for a
tidally distorted black hole, it will be instructive to look at
two illustrative examples.

C. Example 1: Constructing
the Schwarzschild spacetime

The reader will be familiar with the Schwarzschild
metric of mass M in ingoing Eddington-Finkelstein coor-
dinates ðv; r; z; z̄Þ. Here we distinguish between the radial
coordinate r defined previously, which vanishes at the
horizon, and the coordinate r, which is the usual
Schwarzschild radial coordinate (at the horizon, r ¼ 2M):

ds2 ¼ −fðrÞdv2 þ 2dvdrþ 2r2

P2
0

dzdz̄: ð54Þ

Here, as usual

f ¼ 1 −
2M
r

: ð55Þ

Instead of the usual spherical coordinates, let us use
complex coordinates z ¼ eiϕ cot θ

2
. The expressions for

the stereographic projection yield

P0 ¼
1ffiffiffi
2
p ð1þ zz̄Þ: ð56Þ

Starting with just the data on the horizon, i.e., a spherically
symmetric horizon, taking N to be a constant-v surface,
and setting Ψ4 ¼ 0 everywhere on N , can we reconstruct
the Schwarzschild metric? In particular, we have the usual
null tetrad and basis one-forms:

la∇a ¼ ∂v þ
f
2
∂r; la ¼ −

f
2
∂avþ ∂ar; ð57aÞ

na∇a ¼ −∂r; na ¼ −∂av; ð57bÞ

ma∇a ¼
P
r
∂z; ma ¼

r
P
∂az̄: ð57cÞ

It is straightforward to calculate the spin coefficients
everywhere. But we want to instead just start with the
spin coefficients at the horizon and recover their values
everywhere following the construction outlined in the
previous section.
This is in fact straightforward and instructive and we

shall see in fact the resulting spacetime is asymptotically
flat as it should be. We begin with the Weyl tensor
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components. We shall first assume that the metric is type D
at the horizon, i.e.,

Ψ0 ≜Ψ1≜Ψ3≜Ψ4≜ 0: ð58Þ

We shall assume further thatΨ2 is spherically symmetric so
that the constraint of Eq. (23) is satisfied. Moreover, let us
take the simplest choice of Ψ4 ¼ 0 on the transverse null
surface N . Next, choose the sphere S0 ¼ N ∩ Δ to be
spherically symmetric, in the sense that the expansion of

na, i.e., μ, is constant on S0 and its shear, λ≜ 0.
The choice of Ψ2 determines the horizon source multi-

pole moments, and in this case we just have a mass
monopole. First we note that if Ψ2 is constant, it must
be real because from Eq. (15)I

S0

ImΨ2ϵ̃ ¼
I
S0

dω ¼ 0: ð59Þ

On the other hand, if ImΨ2 is constant then the above
equation shows that it must vanish. Similarly, from Eq. (16)
the angular momentum J must also vanish, and thus from
Eq. (12), the horizon mass is M ¼ R=2.
The real part Ψ2 is determined by the topology of S0 and

the Gauss-Bonnet theorem. Since R ¼ −4ReΨ2,

8π ¼
I
S0

Rϵ̃ ¼ −4ReΨ2A; ð60Þ

⇒ Ψ2 ¼ −
2π

A
¼ −

1

2R2
¼ −

1

8M2
: ð61Þ

We can now in fact determine the constant value of μ on Δ.
Use the last of the evolution equations [Eq. (50)] on Δ, use
κ ¼ 0 and impose Dμ ¼ 0 to obtain

κ̃ðlÞμ ¼ Ψ2: ð62Þ

Using the canonical value κ̃ [see the discussion around
Eq. (13)], we conclude that μ≜ − 1=ð2MÞ.
To obtain the Schwarzschild metric in the usual coor-

dinates, let us take the radial coordinate such that r ¼ 2M
at the horizon. We begin with the first two radial equations
from Eq. (49) for the shear and expansion on na:

Δλ ¼ −2λμ ⇒ Δðλλ̄Þ ¼ −4μjλj2: ð63aÞ

Δμ ¼ −μ2 − jλj2: ð63bÞ

Note that Δ is −∂=∂r. At the horizon, we have λ ¼ 0, and
therefore the first equation yields

jλj2 ¼ jλ0j2 exp
�Z

r

2M
4μdr

�
: ð64Þ

We conclude immediately that λ ¼ 0 everywhere if λ0 ¼ 0,
as is the case given that λ≜ 0. Substituting this into the
equation for μ yields

dμ
dr
¼ μ2 ⇒

1

μ0
−
1

μ
¼ r − 2M: ð65Þ

Since μ0 ¼ −1=ð2MÞ, we find the solution everywhere
on N :

μ ¼ −
1

r
; ð66Þ

as it should be. With the solution for μ, λ at hand, and using
σ≜ 0, the fourth radial equation from Eq. (49) yields the
solution σ ¼ 0 everywhere on N .
Proceeding similarly, we now consider the radial Bianchi

identities [Eq. (52)] starting from the last to the first. The
above boundary conditions on the Weyl tensor are suffi-
cient to determine it everywhere on N . With Ψ4 ¼ 0, the
last of Eq. (52) becomes

ΔΨ3 ¼ −4μΨ3 ⇒
d lnΨ3

dr
¼ 4μ: ð67Þ

This has the solution

Ψ3ðrÞ ¼ Ψ3ðr ¼ 2MÞ exp
�Z

r

2M
4μdr

�
: ð68Þ

The boundary conditionΨ3ðr ¼ 2MÞ ¼ 0 then implies that
Ψ3ðrÞ ¼ 0 everywhere on N . The third radial Bianchi
identity yields

dΨ2

dr
¼ 3μΨ2: ð69Þ

Using the solution μ ¼ −1=r derived above, we get

d lnΨ2

dr
þ 3

r
¼ 0 ⇒ Ψ2r3 ¼ constant: ð70Þ

Using the boundary condition Eq. (61) yields the solution

Ψ2 ¼ −
M
r3

: ð71Þ

This is, again, as expected from the full Schwarzschild
solution. Finally, the first two Bianchi identities (and the
solution σ ¼ 0) giveΨ0ðrÞ ¼ Ψ1ðrÞ ¼ 0 everywhere onN .
We can now proceed with the remaining radial equations

in Eq. (49), which all involve the Weyl tensor components.
We conclude straightforwardly that π ¼ 0 which in turn
gives κ ¼ 0. For ϵ and ρ (with the boundary condition
ϵ≜ 1=8M and ρ≜ 0), we get
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Δϵ ¼ M
r3

⇒ ϵðrÞ ¼ M
2r2

; ð72Þ

Δρ ¼ ρ

r
þM

r3
⇒ ρðrÞ ¼ −

1

2r

�
1 −

2M
r

�
: ð73Þ

We are finally left with α and β. These are related to
the shape of the cross section S0 and the intrinsic two-
dimensional Ricci scalar R̃. These will depend on the
angular coordinates ðz; z̄Þ. From Eq. (40) and π ¼ 0 we get
αþ β̄ ¼ 0. The combination α − β̄ is determined just by
angular derivatives and can be obtained from the two-
metric on S0. Let us denote a ¼ α − β̄. From the third of
Eq. (27), we have

a≜ ∂z̄P
2M

; ð74Þ

where the stereographic function P is defined in Eq. (56).
This is the boundary conditions for the radial equations
involving β and α. From the radial equations:

Δa ¼ −μa ¼ a
r
⇒ aðrÞ ¼ ∂z̄P

r
: ð75Þ

Finally, since the Weyl tensor along with μ, λ, σ are all time
independent onΔ, the above analysis can be repeated on all
the null surfaces starting from other spherically symmetric
sections of Δ. Thus, the expressions obtained above for the
spin coefficients and Weyl tensor components are valid
everywhere outside the horizon for all v. The metric itself is
obtained by integrating the radial equations for the frame
functions, i.e., Eq. (47) and then combining the tetrad to
obtain the metric. We leave this to the reader to verify that
we do indeed obtain the Schwarzschild null tetrad given in
Eq. (57), and thus the Schwarzschild metric in ingoing
Eddington-Finkelstein coordinates.
This concludes our derivation of the Schwarzschild

solution using the characteristic initial value problem.
This might seem to be a rather convoluted derivation of
a simple and well-known metric. Nevertheless, it illustrates
the general procedure and clarifies the role played by the
different quantities and equations (for this reason we have
not spared any of the details). The payoff has been a very
detailed understanding of the spacetime with explicit
expressions for the curvature, connection (and, of course,
also the metric if desired). These features will hold in more
general physical situations as well. All aspects of the
classical isolated horizon formalism are seen to be essential:
(a) The Hamiltonian calculations gave us appropriate values
for mass and surface gravity. (b) The geometric constraints
on the isolated horizon needed to be satisfied in accordance
with the algebraic properties of the Weyl tensor. (c) The
multipole moments yielded Ψ2, and (d) the radial and
angular field equations accomplished the rest. All of these
features will carry over when we introduce tidal distortions.

We can also remark on the asymptotic properties of the
solution as r → ∞ and its global stationarity. We have
obtained an asymptotically flat and stationary solution but
it is clear that this will not hold generally for other choices
of boundary conditions. In fact, from the black hole
uniqueness theorems, we should expect to obtain asymp-
totically flat stationary solutions only for Kerr data on the
horizon and withΨ4 ¼ 0 onN . This issue has been studied
in [54,89]. When tidal perturbations are introduced, the
Weyl tensor will not be algebraically special. The metric
will not be asymptotically flat, corresponding to an external
tidal field acting on the black hole.

D. Example 2: Schwarzschild with (nonfalling)
radiation—The Robinson-Trautman spacetime

In general, the local geometry constructed from the
above procedure will contain radiation. Let us now consider
the simplest generalization to the Schwarzschild construc-
tion above by including a nonvanishingΨ4 in the transverse
null surface N , but still maintaining the intrinsic geometry
on Δ to be the Schwarzschild data. In this way, we would
obtain a spacetime corresponding to a Schwarzschild black
hole with constant area, but possibly with radiation
arbitrarily close to the horizon propagating parallel to
the horizon.
We start with the first two equations in Eq. (49) which

describe the radial behavior of μ, λ, i.e., the expansion and
shear of na. Previously, with vanishing λ and Ψ4, we could
explicitly solve for μ. Following [74], we note that these
two equations can be written as a Ricatti equation:

∂P
∂r
¼ P2 þQ; ð76Þ

where

P ¼
�
μ λ

λ̄ μ

�
; Q ¼

�
0 Ψ4

Ψ̄4 0

�
: ð77Þ

The Ricatti equation can be cast in terms of a linear second-
order equation by the substitution P ¼ −ð∂rYÞY−1 where

Y ¼
�
y1 y2
ȳ1 ȳ2

�
: ð78Þ

Then it can be shown that Y satisfies the linear equation,

∂
2Y
∂r2
¼ −QY: ð79Þ

Thus, with a choice of Ψ4 (i.e., Q), initial conditions at
r ¼ 2M on μ as in Schwarzschild, and λ≜ 0, we can solve
this second order equation for Y, and hence obtain P.
The Robinson-Trautman solutions [72,73] provide an

illustrative example of such an exact solution where Ψ2 is
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unchanged and of the Weyl scalars, only Ψ3 and Ψ4 are
modified from its Schwarzschild values [90]. The standard
form of the Robinson-Trautman solution is written in terms
of outgoing null coordinates ðu; r; z; z̄Þ,

ds2 ¼ −fðu; r; z; z̄Þdu2 − 2dudrþ 2r2

Pðz; z̄; uÞ dzdz̄: ð80Þ

Using the vacuum Einstein equations, specifically
Rabmam̄b ¼ 0, it can be shown that

f ¼ ΔP lnP − 2r
∂

∂u
lnP −

2M
r

: ð81Þ

Here ΔP ≔ 2P2
∂z∂z̄ is the unit two-sphere Laplacian;

note also that ΔP lnP is the Gaussian curvature of the
two-sphere. The parameter M is a positive constant,
namely the mass. When P ¼ P0 [see Eq. (56)] is the
time-independent round two-sphere metric, then we re-
cover the Schwarzschild solution. More generally, it can be
shown that P satisfies the Robinson-Trautman equation:

ΔPΔP lnPþ 12M
∂

∂u
lnP ¼ 0: ð82Þ

This follows from the expression for f given in Eq. (81)
combined with the Raychaudhuri equation along the future-
directed ingoing null direction la given below. Turning to
the Weyl tensor, we use the following null tetrad:

la
∂a ¼

∂

∂u
−
f
2

∂

∂r
; ð83Þ

na∂a ¼
∂

∂r
; ma

∂a ¼
P
r
∂

∂z̄
: ð84Þ

With this tetrad, the Weyl tensor components are
(see, e.g., [92])

Ψ0 ¼ Ψ1 ¼ 0 ð85aÞ

Ψ2 ¼ −
M
r3

ð85bÞ

Ψ3 ¼ −
P
2r2

∂

∂z
ΔP lnP ð85cÞ

Ψ4 ¼ −
1

r
∂

∂z

�
P2

∂
2

∂u∂z
lnP

�
þ 1

2r2
∂

∂z

�
P2

∂

∂z
ΔP lnP

�
:

ð85dÞ

We see thatΨ2 is the same as for Schwarzschild whileΨ4 is
nonvanishing. In this sense, the solution represents a
Schwarzschild black hole with noninfalling radiation as
claimed before. In terms of a characteristic initial value
formulation, the solution can be constructed by prescribing

the conformal factor of the two-metric on a constant u
surface, say at the u ¼ u0 surface in Fig. 3.
There is however one issue which we have not

addressed: Since u is an outgoing null coordinate, the
horizon appears in the limit u → ∞ as shown in the
Penrose diagram in Fig. 3. Can the solution be extended
beyond the future horizon Hþ at u ¼ ∞? For the
Schwarzschild case, it is clear that this can be done,
and one obtains the usual extended Schwarzschild space-
time. As shown by Chruściel [73], this can indeed be done.
To go beyondHþ we can attach the interior Schwarzschild
spacetime and the metric turns out to be sufficiently
smooth (though not C∞). The radiation decays exponen-
tially when we approach Hþ (as we shall shortly see) and
there is nonvanishing transverse radiation arbitrarily close
to the horizon in the exterior. Since Ψ2 is unchanged, this
radiation does not perturb the horizon geometry and its
source multipole moments.
The Robinson-Trautman solution given above is an exact

solution to the Einstein equations. It is instructive to
consider the perturbative limit wherein the amplitude of
Ψ4 is small [93]. Let us take a perturbation given by

Pðz; z̄; uÞ ¼ P0eWðz;z̄;uÞ ð86Þ

with W taken to be small. The linearization of the
Robinson-Trautman equation yields

Δ0Δ0W þ 2Δ0W ¼ −12M
∂W
∂u

: ð87Þ

We can write a solution for W as a linear superposition of
spherical harmonics (eigenfunctions of Δ0). When we take

Wðz; z̄; uÞ ≔
X
l;m

Wlm ¼
X∞
l¼0

Xl

m¼−l
Ym
l ðz; z̄ÞVlðuÞ; ð88Þ

we obtain exponentially decaying solutions

FIG. 3. Penrose diagram for the Robinson-Trautman spacetime.
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VlðuÞ ¼ Ale−klu; kl ¼
lðlþ 1Þðlþ 2Þðl − 1Þ

12M
; ð89Þ

and Al is the amplitude of the l mode. Thus, the radiation
decays exponentially as we approachHþ as claimed above.
A little algebra yields the metric function f as

f¼ 1−
2M
r
þ
X
l;m

ðl−1Þðlþ2Þ
�
1þ r

6M
lðlþ1Þ

�
Wlm: ð90Þ

As for the Weyl tensor, Ψ2 is unchanged. It is straightfor-
ward to check that Ψ3 and Ψ4 are modified and exponen-
tially decaying as u → ∞ while Ψ0 and Ψ1 vanish
identically.

IV. PERTURBATIONS OF THE INTRINSIC
HORIZON GEOMETRY

In the following, we study perturbations of the horizon
detailed in the previous sections. We restrict ourselves to
tidal perturbations so that the area of the perturbed cross
section is unchanged from the unperturbed one. Similarly,
through Eq. (13), the surface gravity of the perturbed
horizon coincides with the unperturbed one. The perturba-
tions to the Weyl scalars Ψ0 and Ψ1 are taken to vanish at
the horizon, so the perturbed horizon remains isolated to
first order. Consequently, the perturbed horizon is still
characterized by a surface of vanishing expansion (and
shear). In this construction, we choose a convenient gauge
motivated by how we want to slice the horizon, and using
this gauge, we derive all quantities at the horizon for a
general tidal perturbation.
It is useful to keep in mind that we construct our

coordinate system such that the horizon is located at r ¼ 0.
Further, we select the perturbed null normal l to be tangent
to the horizon, whence it remains geodetic. The affine
parameter v along l will be chosen as before, so the null
normal l is only perturbed away from the horizon.
Nonetheless, the perturbation modifies the geometry of
the cross section, as well as how it is embedded in
the NEH.
To construct a perturbed NEH, which forms the basis for

perturbing the near-horizon spacetime, we shall proceed in
two steps. The first is to perturb a cross section, which
could be either a given cross section of the NEH, or the base
space Δ̃ arising from the projection Π∶Δ̃ × R → Δ̃. This
perturbed cross section will then be embedded within the
NEH and will determine time derivatives along the horizon.
The main result of this section can be stated as follows.
Perturbations of the horizon geometry are specified by a
perturbation ofΨ2:Ψ2 → Ψ2 þ Ψ̂2. From our discussion of
the multiples, this is equivalent to a perturbation of the
source multipole moments. Since Ψ2 has spin weight zero,
the perturbation Ψ̂2 can be expanded in the usual spherical
harmonics. Keeping the mass fixed, we shall see that we

only need to consider multipoles beyond the dipole:

Ψ̂2≜
X
l≥2;m

k̂lmYlmðz; z̄Þ; ð91Þ

where k̂lm ¼ êlm þ ib̂lm. Given the coefficients k̂lm, we
shall show how the complete geometry of the horizon can
be reconstructed. As a by-product, it will also become clear
that such a perturbation of Ψ2 necessary implies that Ψ4

cannot vanish so that the horizon cannot be of Petrov type
D and that the spacetime must be radiative. The coefficients
êlm; b̂lm are, respectively, related to the electric and mag-
netic moments of the external field, as we will show
in Sec. VI.

A. Perturbing a horizon cross section

The examples shown in the previous section have left
the horizon geometry identical to the Schwarzschild case.
Generically, however, one would expect a perturbation to
modify the horizon multipole moments and therefore
the near horizon geometry. In this section, we detail the
perturbation of the intrinsic horizon geometry. We start
with the two-metric q̃ab defined on a two-sphere S0. This
could be any regular Riemannian two-metric but for the
astrophysical applications that we have in mind, this would
be a distorted Schwarzschild two-sphere metric. Though
not essential, it will be useful to use complex coordinates
ðz; z̄Þ for this purpose so that the two-metric has the form

eds2 ¼ 2R2

P2ðz; z̄Þ dzdz̄; ð92Þ

with R being the area radius of the horizon. The complex
coordinate z can be obtained from the usual spherical
coordinates ðθ;ϕÞ using a stereographic projection. In this
form, the two-metric is conformally flat.
The Ricci scalar R̃ of this two-metric is given in terms

of P as

R̃ ¼ 4P2

R2

∂
2

∂z∂z̄
lnP ¼ 2ΔP lnP; ð93Þ

with ΔP ¼ 2P2=R2
∂z∂z̄ the Laplacian of the sphere of

radius R.
For the Kerr metric, it is relatively straightforward to

work out the transformation to arrive at the ðz; z̄Þ coor-
dinates and the conformal factor. We start with the expres-
sion for the Kerr metric with mass M and specific angular
momentum a in the usual in-going Eddington-Finkelstein
coordinates ðv; r; θ;ϕÞ:
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ds2 ¼ −
�
1 −

2Mr
ρ2

�
dv2 þ 2dvdr − 2asin2θdrdφ

−
4aMrsin2θ

ρ2
dvdφþ ρ2dθ2 þ Σ2sin2θ

ρ2
dφ2; ð94Þ

where

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2;

Σ2 ¼ ðr2 þ a2Þρ2 þ 2a2Mrsin2θ: ð95Þ

Here Δ should not be confused with the directional
derivative along na as defined earlier, and the distinction
should be clear from the context. The horizon is located at
Δ ¼ 0, i.e., at r ¼ rþ, where rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2
p

. The
volume form on a cross section of the horizon (r ¼ rþ and
constant v) is ϵ̃ ¼ ðr2þ þ a2Þ sin θdθ ∧ dφ. Thus, the area
of the horizon is A ¼ 4πðr2þ þ a2Þ and the area radius
is R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

p
.

The metric within a cross section of the horizon can be
written as [18,94]

ds̃2 ¼ R2

�
dζ2

fðζÞ þ fðζÞdϕ2

�
; ð96Þ

where ζ ¼ cos θ and

fðζÞ ¼ ð1 − ζ2Þ
1 − b2ð1 − ζ2Þ ð97Þ

with b ¼ affiffiffiffiffiffiffiffiffi
2Mrþ
p ¼ affiffiffiffiffiffiffiffiffiffi

r2þþa2
p . The complex coordinate z

is then

z ¼ eiϕ−b
2ζ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

1 − ζ

s
: ð98Þ

Finally, the two-metric takes the manifestly conformally
flat form as desired:

ds2 ¼ R2f
zz̄

dzdz̄: ð99Þ

Thus, the function Pðz; z̄Þ is

Pðz; z̄Þ ¼
ffiffiffiffiffiffiffi
2zz̄
f

s
: ð100Þ

The expression (98) is invertible in the small spin limit
a ≪ 1, so the metric function (97) (combined with zz̄ as it
appears in the metric) can be expressed in terms of the new
coordinates fz; z̄g as

fðz; z̄Þ
2zz̄

¼ 2

ð1þ zz̄Þ2
�
1þ 3a2

4M2

ð1− zz̄Þ
ð1þ zz̄Þ2

�
þO½a4�: ð101Þ

The construction above is more general than just for the
Kerr horizon. In fact, any axisymmetric two-sphere can be
expressed in the form of Eq. (96), and Eq. (98) yields the
complex coordinate z.
Going now beyond axisymmetry, while the two-metric

can no longer be expressed as Eq. (96), the conformal
representation still remains valid. Thus, a perturbation of an
axisymmetric metric can be written as a perturbation of P
even when the perturbation is nonaxisymmetric. Thus,
starting from P0, we shall perturb the two-metric by

Pðz; z̄Þ → P0ðz; z̄Þð1þ P̂ðz; z̄ÞÞ; ð102Þ

where P̂ is a small perturbation. We will only keep the
terms of linear order in P̂ in the remainder of this section. In
a given concrete physical situation, the perturbation P̂ will
depend on a small parameter. The prototypical example is a
binary system with the small parameter being a combina-
tion of the mass of the binary companion and the separation
between the two masses.
With the above construction, we still have the freedom to

perform a complex coordinate transformation z → z0. The
form of the metric is unchanged under a fractional linear
transformation corresponding to a SUð2Þ matrix A:

A ¼
�
a b

c d

�
; z → z0 ¼ azþ b

czþ d
: ð103Þ

The round two-sphere metric (denoted by P∘—note the
difference with P0 [95]) is invariant under this trans-
formation:

2

P2∘ðz; z̄Þ
dzdz̄ ¼ 2

P2∘ðz0; z̄0Þ
dz0dz̄0: ð104Þ

Thus, an arbitrary two-metric q̃ab is conformally equivalent
to a three-parameter family of round two-sphere metrics
corresponding to the allowed SUð2Þ fractional linear
transformations.
In summary, any two-sphere metric is written as

eds2 ¼ 2ψ2ðz; z̄Þ
P2∘ðz; z̄Þ

dzdz̄; ð105Þ

and we have a three-parameter family of allowed complex
coordinates ðz; z̄Þ corresponding to the SUð2Þ matrix A.
A procedure for choosing a canonical round two-sphere

metric from this three-parameter family is given in [58],
based on requiring the dipole “area” moment to vanish; see
also [96].
Under a tidal perturbation, the geometry of the cross

section of the horizon is modified. The geometry of Δ is
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determined by ðq̃ab;DÞ or, as discussed earlier, by the two-
metric q̃ab and ωa. The tidal perturbation will modify both
of these. As far as q̃ab is concerned, the gauge-invariant
information of the tidal perturbation is contained in
variations of the scalar curvature R̃. The scalar curvature
is given by Eq. (93) with ΔP the Laplace-Beltrami
compatible with the metric of the cross section S0.
A perturbation of P away from P0 according to Pðz; z̄Þ ¼

P0ð1þ P̂Þ leads in general to a perturbation of the area and
the scalar curvatureR ¼ R0 þ R̂. We assume that the area
is unchanged under the perturbation which can be shown, at
linear order in P̂, to be equivalent toI

S
P̂ ¼ 0: ð106Þ

Thus, for a round two-sphere, when we expand P̂ in terms
of spherical harmonics, this implies that the monopole term
of P̂ should vanish. For the scalar curvature, we obtain
using Eq. (93)

R̂ ¼ −2ðΔ0P̂þR0P̂Þ: ð107Þ

Thus, for a perturbation of a round two-sphere of radius
R (i.e., R0 ¼ 2=R2), the perturbation leaves the scalar
curvature unaffected if

Δ0P̂þ
2

R2
P̂ ¼ 0: ð108Þ

This happens if P̂ is a dipole perturbation, i.e., it is a linear
combination of the three l ¼ 1 spherical harmonics. This
leads to a three-parameter class of perturbations which do
not affect the scalar curvature. Any quadrupolar or higher l
perturbations leads to a genuine perturbation of the scalar
curvature. The above interpretations of the monopole and
dipole parts of P̂ continue to hold under any Möbius
transformation with a SUð2Þ matrix. Then, we can define
the equivalence class of cross sections with curvature
perturbation R̂ as

P̂ ∼ P̂0; if R̂ ¼ R̂0: ð109Þ

Different choices of perturbation within this equivalence
class characterized by R̂ give rise to different gauge
choices on the cross section.
Apart from the curvature R, the other ingredient which

specifies the horizon geometry is the derivative operator D.
Hence, we need to discuss how the perturbation changes the
cross section’s connection, and for later convenience, the
directional derivatives on the sphere. Since ma

∂a ≜P=c∂z,
when P → Pð1þ P̂Þ, it is clear that ma → ma þ P̂ma.
Similarly, using again the notation a ≔ α − β̄, we will have
a → aþ â. It is easy to show that

â≜ a0P̂þ δ0P̂; δ̂≜ P̂δ0: ð110Þ

The perturbed cross section, characterized by this connec-
tion (110), is taken to be a cross section of a NEH Δ. Notice
that we have not added a tilde on these expressions to avoid
cumbersome notation. However, it should be clear from the
context that the derivative operator δ̂ and the cross section’s
connection are computed for the two-dimensional spacelike
manifold Δ̃ ∼ S.
The angular field equations (51) relate the connection of

the cross section with the Weyl scalarΨ2. Perturbing to first
order the real and imaginary part of the second equation in
Eq. (51) yields expressions for the perturbation to the Weyl
scalar Ψ2 as a function of the perturbed connection â and
the spin coefficient π̂:

− 2ReΨ̂2 ≜ δ0âþ δ̄0 ˆ̄a − 2âā0 þ ð 0 ↔^Þ; ð111aÞ

−2iImΨ̂2 ≜ δ0π̂ − δ̄0 ˆ̄π − π̂ā0 þ ˆ̄πa0 þ ð 0 ↔^Þ: ð111bÞ

Expressing Eq. (107) in terms of the perturbation to the
connection (110), and comparing with Eq. (111a) yields

R̂ ¼ −4ReΨ̂2: ð112Þ

Therefore, we see that a perturbation to the real part of the
Weyl scalarΨ2 is fully determined by the perturbation of P.
However, not all of the data on the NEH is determined by
these perturbations. For instance, Eq. (111) relates a
perturbation to the imaginary part of Ψ2 with the perturba-
tions of the connection and the spin coefficient π. The spin
coefficient π cannot be uniquely determined on the cross
section. Rather, we need to specify the foliation of the
horizon to find the dependence of π̂ on the perturbation to
the geometry. We turn to this in the next subsection.

B. Embedding a perturbed cross section within a NEH

In the previous section, we detailed how the connection
and curvature of the cross section are altered by a
perturbation. However, to construct the perturbed NEH
we still need to specify how a perturbation alters the
foliation of the horizon. In this subsection, we detail this
construction, together with the gauge choices we make.
To embed a perturbed cross section into the structure of

the isolated horizon, we need to specify the foliation of the
horizon in two-spheres. Different choices of the one-form
ω̃a, which is the pullback of ωa to S (see Fig. 1),

ω̃a≜ ι⋆ωa ≜ πm̃a þ π̄ ¯̃ma; ð113Þ

can correspond to different foliations. Hence, to construct
the isolated horizon we need to specify how the horizon is
foliated and whether the perturbation changes the foliation.
As discussed in [47], there exists a preferred foliation of the
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unperturbed horizon. In the following, we will review this
construction and choose a foliation for the perturbed
horizon that is convenient to deal with tidal perturbations.
Recall that there are no harmonic one-forms on a sphere,
and so any one-form can be uniquely decomposed in terms
of its exact and coexact parts as

ω̃ ¼ −⋆dU þ dV; ð114Þ

where U and V are smooth, real functions on the cross
section. By taking the exterior derivative of Eqs. (113)
and (114), we see that U and V are potentials for the
divergence and curl of ω̃:

ΔPU ¼ ⋆dω̃ ¼ 2ImΨ2; ð115Þ

ΔPV ¼ divω̃: ð116Þ

Recall that ΔP is the Laplace-Beltrami operator associated
with the metric (92).
We perturb ImΨ2 → ImΨ0

2 þ ImΨ̂2, the rotational
potential as U → U0 þ Û, and also P according to
Eq. (102) (which transforms ΔP). Under these trans-
formations, Eq. (115) leads to

ΔP0
Û ¼ 2ImΨ̂2 − 4P̂ImΨ0

2: ð117Þ

For perturbations of a nonrotating background spacetime,
i.e., ImΨ0

2 ¼ 0, the perturbation to the rotational scalar
potential can be expanded in spherical harmonics as

U ¼ −2R2
X
l;m

b̂lm
lðlþ 1ÞYlm: ð118Þ

The coefficients b̂lm are related to perturbations of the spin
multipole moments.
In Eq. (114), V represents the gauge freedom in

the choice of ω̃. A commonly used gauge choice is
dV ¼ 0 [47], which is related to choosing the so-called
good cuts. We shall use this same gauge choice for the
unperturbed background, i.e., V0 ¼ const. The divergence
of the perturbed ˆ̃ω can then be expressed as

d⋆ ˆ̃ω ¼ ΔP0
V̂ ϵ̃

¼ fδ0π̂ þ δ̄0 ˆ̄π − π̂ā0 − ˆ̄πa0 þ ð 0 ↔^Þgϵ̃0; ð119Þ

where ϵ̃0 ¼ im̃0 ∧ ¯̃m0 is the unperturbed area element.
The second expression in Eq. (119) has been obtained
using Eqs. (27) and (113). The real function V̂ character-
izes the change of foliation with respect to the unperturbed
slicing in v ¼ const surfaces. In other words, if ΔP∘ V̂≜ 0,
the perturbed horizon is still foliated by the good cuts of

the unperturbed horizon. However, for this paper, it is
convenient to choose instead

ΔP0
V̂ ≜ divω̃ ≜ − 2Re½Ψ̂2�; ð120Þ

so that the slicing of the perturbed horizon changes if its
geometry is altered. This choice guarantees that the vector n
and its expansion are not modified regardless of the
perturbation. In other words, the “perturbed” radial coor-
dinate coincides with the unperturbed one. As we will see in
Sec. VI A, this choice facilitates the comparison of our
tidally perturbed black hole with the existing literature on
tidally perturbed black holes (see, for instance, [5–13,37]).
This gauge (120) also simplifies the expressions for the
perturbed Weyl scalars and spin coefficients in terms of the
spin-weighted spherical harmonics.
Finally, it is also worth noting the link between this

gauge condition and quasilocal notions of “momentum”
and “force” on a black hole. It is of interest, especially in
the context of binary black hole simulations, to calculate
linear momentum quasilocally [97]. This is interesting, for
example, when calculating the “kick” imparted to the
remnant black hole. From the perspective of the quasilocal
horizon, momentum is connected with the foliation of the
horizon. A clear example is a “boosted” Kerr black hole in
Kerr-Schild coordinates, and it is easy to check that the
foliation is then determined by the boost parameter [98].
The foliation, as we have seen, is determined by divω̃ and
thus must be connected with the boost, or linear momen-
tum; the curl of ω determines angular momentum while its
divergence determines linear momentum. Our gauge con-
dition links this to ReΨ̂2, which is just the external tidal
force acting on the black hole; for a binary companion of
mass M2 at a distance d, we would have ReΨ̂2 ∼M2=d3.
The external reference frame in which we determine the
momentum is specified by the properties of the past light
cone, namely the expansion of −na.

C. The geometry of a perturbed Schwarzschild horizon

The discussion so far has been for perturbations of any
background cross section characterized by P0. However,
before proceeding to express the perturbed horizon data in
terms of the perturbation, we choose the background to be a
Schwarzschild background (denoted with the subindex ∘
instead of 0), which has a round background cross section.
This simplification allows us to set the following back-
ground quantities to zero:

π∘ ¼ λ∘ ¼ ImΨ∘
2 ¼ Ψ∘

3 ¼ Ψ∘
4 ¼ Ψ∘

1 ¼ Ψ∘
0 ¼ 0; ð121Þ

which will simplify the discussion of the perturbed data.
We start writing the perturbation to the spin coefficient π̂

in a more concise form using the ð operator. First note that
in general, since π ¼ m̄aωa, a short calculation shows that
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ðπ ¼ m̄aδω̃a ¼
1

2
divω̃ −

i
2
⋆dω̃: ð122Þ

Combining the equations for the curl (111b) and divergence
of ω (119) yields ð∘π̂≜ΔP∘ V̂=2 − iIm½Ψ̂2�. Considering
now the perturbations of π and ω̃, noting that these are
already first order quantities, using the gauge condition
(120), the differential equation for π̂ can be concisely
written as

ð∘π̂≜ − Ψ̂2; ð123Þ

so that it is manifest that π̂ can be easily solved in terms of
Ψ̂2 using the properties of the ð operator [99]. The definition
of the ð operator and its action on the spin-weighted
spherical harmonics are summarized in Appendix B.
The third angular equation in Eq. (51) defines the

perturbation of the Weyl scalar Ψ̂3 at the horizon

Ψ̂3≜ δ̄∘μ̂þ ˆ̄δμ∘ − δ∘λ̂þ π̂μ∘ þ ðᾱ∘ − 3β∘Þλ̂: ð124Þ

The perturbed evolution equations at the horizon [see
Eqs. (50) and (53)] imply that the following quantities
are such that

D∘Ψ̂2≜D∘π̂≜D∘α̂≜D∘β̂≜D∘â≜ 0: ð125Þ

Combining the equations for ϵ̂ (50c) and (50d) together
with Eq. (125) we obtain

δ∘ðϵ̂þ ˆ̄ϵÞ≜ − 2ϵ̄∘ð ˆ̄π þ ˆ̄α − β̂Þ − 2 ˆ̄ϵðᾱ∘ þ β∘Þ ð126Þ

δ∘ðϵ̂ − ˆ̄ϵÞ≜ 2ᾱ∘ðϵ̂ − ˆ̄ϵÞ: ð127Þ

Analogously to the general gauge conditions for an
isolated horizon detailed in Sec. III B, we choose a gauge
such that the condition π≜ αþ β̄ holds also to first

order, i.e., π̂≜ α̂þ ˆ̄β and using α∘ ¼ −β̄∘, we see that
δ∘ðϵ̂þ ˆ̄ϵÞ≜ 0. The trivial solution to this equation
is ðϵ̂ − ˆ̄ϵÞ≜ 0, which we shall choose. Therefore
ðϵ̂þ ˆ̄ϵÞ≜ const at the horizon. In this gauge, ϵ̂ is related
to the perturbation of the surface gravity at the horizon,
which we will choose to vanish ϵ̂≜ ˆ̄ϵ≜ 0. This last
condition is not an extra restriction in our construction,
rather, it follows from us limiting our study to linear, tidal
perturbations of isolated horizons. Choosing the area of
the perturbed horizon to coincide with the area of the
unperturbed horizon makes the comparison between these
two horizons more transparent. Therefore, we consider
that the radius of the perturbed horizon does not change
with respect to the unperturbed one, and by Eq. (12), its
mass is perturbed quadratically with the perturbation to J.
Similarly, using Eq. (13), we see that the perturbation to

the surface gravity is at least quadratic in the perturbation.
Therefore, we can set κ̂ðlÞ ¼ ϵ̂þ ˆ̄ϵ≜ 0 without loss of
generality.
Finally, we can now show that with our gauge choice

Eq. (120), μ remains unaffected by the perturbation, i.e.,
μ̂≜ 0. The spin coefficients λ̂ and μ̂ satisfy the equations

D∘λ̂þ κ̃ðlÞλ̂≜ δ̄∘π̂ þ a∘π̂≜ ð̄∘π̂; ð128aÞ

D∘μ̂þ κ̃ðlÞμ̂≜ δ∘π̂ − ā∘π̂ þ Ψ̂2≜ 0; ð128bÞ

where we have used Eq. (123) and our choice of cuts (120)
in the last equation. Notice that the right-hand side of
these expressions is “time independent.” This means that
the spin coefficients μ̂ and λ̂ have solutions of the
form ð1 − e−κ̃ðlÞvÞF½z; z̄�, where the integration constant
is chosen so that μ̂ ¼ λ̂≜ 0 at v ¼ 0. When the horizon is
isolated, the extrinsic curvature (20) is time independent
DS̃ab ≜ 0 (or equivalently Dμ≜Dλ≜ 0) and μ̂≜ 0.
Using Eq. (128), we see that the evolution equation for

the Weyl scalar Ψ̂3 in Eq. (53c),

DΨ̂3 þ κ̃ðlÞΨ̂3≜ ð̄Ψ̂2 þ 3π̂Ψ∘
2; ð129Þ

is equivalent to Eq. (124). Notice that the perturbed spin
coefficients μ̂, and λ̂, and the Weyl scalar Ψ̂3, depend on the
foliation of the horizon [and therefore on our choice of V̂ in
Eq. (120)]. However, the perturbedΨ4 is independent of the
foliation (120), and depends uniquely on the background
quantities and Ψ̂2.
The fact that Ψ̂4 is foliation independent becomes

manifest by taking the D derivative of the time evolution
equation for Ψ4 in (53) and eliminating the terms Dλ̂ and
DΨ̂3 using Eqs. (128) and (129). Simplifying and rearrang-
ing the terms, we obtain the following differential equation
for Ψ̂4:

D2Ψ̂4þ3κ̃ðlÞDΨ̂4þ2κ̃2ðlÞΨ̂4≜ ð̄2∘Ψ̂2þ8π∘δ̄∘Ψ̂2þ12π2∘Ψ̂2:

ð130Þ

For perturbations of the Schwarzschild horizon, the right-
hand side of this expression simplifies to ð̄2∘Ψ̂2. Further,
notice that the right-hand side of this equation is time
independent by Eq. (125), while DΨ̂4 ≠ 0 in general. The
form of Eq. (130) suggests a solution for Ψ̂4 at the horizon
of the form Ψ̂4≜TðvÞYðz; z̄Þ. Using this ansatz we can
separate Eq. (130) in two independent differential equations
for TðvÞ and Yðz; z̄Þ:

D2T þ 3κ̃ðlÞDT þ 2κ̃2ðlÞT≜K; KY≜ ð̄2Ψ̂2; ð131Þ
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where K is a separation constant. Therefore, the angular
dependence of Ψ̂4 can only be freely specified at the
horizon when K ¼ 0, which limits the perturbation to Ψ2

to be a solution of ð̄2Ψ̂2≜ 0, i.e., Ψ̂2 can only be
monopolar or dipolar. As already discussed in Sec. IV
A, a dipolar perturbation of the real part of Ψ2 is pure
gauge, and we impose the monopolar perturbation of Ψ̂2 to
vanish since this term would be related to a black hole’s
mass perturbation. Hence, the only physically relevant
case corresponds to a dipolar perturbation of the imaginary
part of Ψ2, which will be discussed in more detail in
Sec. VI B. Equivalently, Eq. (130) implies that any quad-
rupolar (or higher) perturbation of a type D horizon yields
at least a type II horizon [100] with Ψ̂4 ≠ 0 at the horizon.
In sum, since Ψ2 has spin-weight zero, it can be spanned

using spherical harmonics, in particular,

Ψ̂2≜
X
l≥2;m

k̂lmYlmðz; z̄Þ; ð132Þ

where k̂lm ¼ êlm þ ib̂lm. When we consider an axisym-
metric perturbation, the expression above simplifies to
Ψ̂2 ≜ P

l k̂l0Pl½ðzz̄ − 1Þðzz̄þ 1Þ−1�, where Pl are the
Legendre polynomials. Notice that we have reabsorbed

the constant
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
in the constant k̂l0 to simplify notation.

Equations (111)–(130) make explicit that π̂ and Ψ̂3, λ̂, and
Ψ̂4, can be expanded in terms of spin-1 and spin-2
weighted spherical harmonics, respectively, using the
properties of the ð operator:

π̂≜ −
X
l≥1;m

ffiffiffi
2
p

ck̂lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp −1Ylmðz; z̄Þ ð133aÞ

λ̂≜ 1− e−κ̃ðlÞv

κ̃ðlÞ

X
l≥2;m

k̂lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl− 1Þ

lðlþ 1Þ

s
−2Ylmðz; z̄Þ ð133bÞ

Ψ̂3≜ −
1− e−κ̃ðlÞvffiffiffi

2
p

cκ̃ðlÞ

X
l≥1;m

k̂lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ½lðlþ 1Þ− 3�−1Ylmðz; z̄Þ

ð133cÞ

Ψ̂4 ≜
X
l≥2;m

�
1 −

l2 þ lþ 1

lðlþ 1Þ e−κ̃ðlÞv þ l2 þ lþ 2

lðlþ 1Þ e−2κ̃ðlÞv
�

×
k̂lm

4κ̃2ðlÞc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
−2Ylm: ð133dÞ

Equation (133) satisfies the initial data equations for a
weakly isolated horizon [(123)–(125) and (128)–(130)]

under the assumption that a perturbed spin coefficient or
Weyl scalar X̂ admits a decomposition X̂ ¼P

lm TX̂
lmðvÞ×

YX̂
lmðz; z̄Þ. The data for an isolated horizon can be easily

obtained from these equations by replacing e−κ̃ðlÞv → 0 and
will be used extensively in the next sections [101].
Finally, recall that the metric perturbation P̂ is also

sourced by the perturbation to the real part of Ψ2.
Explicitly,

P̂≜ − 2R2
X
l≥2;m

êlm
ðlþ 2Þðl − 1ÞYlm: ð134Þ

Therefore, specifying the perturbation constants êlm and
b̂lm at the horizon determines fully the free data at the
horizon given the gauge choices we implemented

[Eq. (120), ϵ̂ ¼ 0, π̂≜ α̂þ ˆ̄β, and â ¼ â − ˆ̄β]. The con-
stants êlm and b̂lm are directly related to the electric and
magnetic moments of the tidal field in the standard metric
formulation in [5–11], as we shall see later.

V. THE INTEGRATION OF THE RADIAL
EQUATIONS AND PERTURBING THE NEAR

HORIZON GEOMETRY

Having obtained a perturbed NEH in the previous
section, we are now ready to use it to perturb the near
horizon geometry. For this purpose, we will need to
integrate the radial equations (49).
We propagate the tetrad basis and the coordinate

system defined at the horizon by parallel propagating
all fields along the inward-pointing future-directed null
vector na [55]. In our construction, the directional deriva-
tive Δ ¼ na∇a is not affected by the tidal perturbation:
Δ ¼ Δ∘. To obtain the metric in any spacetime point, we
need to integrate the coupled system of radial differential
equations (49) and (52).
We begin with the expansion μ. Our gauge conditions on

the foliation of the horizon ensure that μ is unaffected by
the perturbation. Moreover, in the equation for Δμ [i.e.
Eq. (49)], note that jλj2 is second order in the smallness
parameter and can be ignored. It is thus evident that the
radial equation for μ is unchanged along with its boundary
value at the horizon. Thus, μ is unchanged even away from
the horizon and we get

μ̂ ¼ c2μ̂Δ
ðrþ cÞ2 ¼ 0; ð135Þ

where the Δ subscript denotes the perturbed data at the
horizon [given by the solution to Eq. (128)]. The constant

c ¼ 2κ̃ðlÞR2 ð136Þ
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naturally arises when building an isolated horizon from a
nonrotating, round cross section [102], and as before, rþ c
is the “standard” Schwarzschild radial coordinate (see
Sec. III C).
To discuss the radial dependence of Ψ̂4, notice first that

the time-derivative operator D (38a) only evolves the fields
in the temporal direction along the horizon. That is because
U≜XA ≜ 0. Away from the horizon,U ≠ 0 in general, and
the operator D contains a radial derivative as well.
Therefore, the radial dependence of Ψ̂4 is specified implic-
itly through the evolution equation for Ψ̂4 (53d) away from
the horizon. This implies that the temporal, radial, and
angular dependence of Ψ̂4 are coupled nontrivially. Hence,
we need to first solve the differential equation for Ψ̂4 before
solving Eqs. (49) and (52). Taking the δ̄ and Δ directional
derivatives of Eqs. (52d) and (53d), respectively, and
combining them to eliminate the Δδ̄Ψ̂3 terms, we obtain
the Teukolsky equation [103,104] for Ψ̂4:

O∘
TΨ̂4 ¼ 0 ð137Þ

with

O∘
T ¼ ½ðΔD− δ̄δÞþð4ϵ−ρÞΔþ5μDþ2ā δ̄þ2δ̄ ā

−aδþΔð4ϵ−ρÞþ2āaþ5μð4ϵ−ρÞ−3Ψ2�∘: ð138Þ

Using the previous ansatz for Ψ̂4, i.e.,

Ψ̂4 ¼ TðvÞXðrÞYðz; z̄Þ; ð139Þ

with the radial function Xðr ¼ 0Þ ¼ 1, and the Schwarz-
schild values for the spin coefficients, Weyl scalars
and unperturbed tetrad components appearing in the
operator O∘

T,

μ∘¼−
1

cþr
; a∘¼

zffiffiffi
2
p ðrþcÞ ; ϵ∘¼

c
4ðcþrÞ2 ; ð140aÞ

ρ∘ ¼ −
r

2ðcþ rÞ2 ; Ψ∘
2 ¼ −

c
2ðcþ rÞ3 ; ð140bÞ

and

la∘ ¼ ∂v þ
r

2ðcþ rÞ ∂r; ð141aÞ

na∘ ¼ −∂r; ð141bÞ

ma∘ ¼
P0

ðcþ rÞ ∂z; ð141cÞ

we can separate the Teukolsky equation in the following
three differential equations:

∂vT
T
¼ −χ; ð142aÞ

½rðrþ cÞ∂2rX þ 3ðcþ 2rÞ∂rX − Xðk − 4Þ�
¼ 2χðcþ rÞ½5X þ ðrþ cÞ∂rX�; ð142bÞ

−
k
2c2

Y ¼ ðrþ cÞ2ð̄∘ð∘Y: ð142cÞ

We denote by χ and k the separation constants and the
directional derivatives are those of the unperturbed basis
vectors [given in Eq. (141)]. Notice that the last equa-
tion (142c) is independent of r given that the ð operator “has
a factor of 1=ðrþ cÞ” [use the definition of this operator
ð∘η ¼ δ∘ηþ sā∘η together with Eqs. (140) and (141)].
Equation (142) needs to satisfy the boundary conditions

at the horizon given by Eq. (131). Combining the temporal
equations, we arrive at

TðvÞðχ − κ̃ðlÞÞðχ − 2κ̃ðlÞÞ≜K; ð143Þ

which has two different solutions

sol 1∶ χ ¼ κ̃ðlÞ or 2κ̃ðlÞ; K ¼ 0; ð144Þ

sol 2∶ χ ¼ 0; K ¼ 2κ̃2ðlÞTðvÞ: ð145Þ

In the first solution, the angular behavior of Ψ̂4 and Ψ̂2 is
independent. The perturbation Ψ̂4 is obtained by solving
Eq. (142) with χ ¼ κ̃ðlÞ or 2κ̃ðlÞ. In particular, the angular
part of the perturbation Ψ4, Y can be spanned using spin
s ¼ −2 spherical harmonics, so Eq. (142c) is solved by
choosing the constant k ¼ ðlþ 1Þðl − 2Þ. The radial equa-
tion in (142) can be solved in terms of confluent Heun
functions. Then, the general form of Ψ̂4 is

Ψ̂4 ¼
X
l≥2;m

X
n¼1;2

ŷlmbnHn
l ðrÞe−nκ̃ðlÞv−2Ylm; ð146Þ

where Hn
l ¼ H½lðl − 1Þ þ 5n − 6; 5n; 3 − n; 3; n;−r=c� is

the confluent Heun function and ŷlm; bn ∈C are constants.
Notice that Ψ̂2 is time independent in this case and satisfies
ð̄2Ψ̂2 ≜ 0, so this decoupling only occurs for the monopolar
and dipolar modes of Eq. (132).
Here we focus instead on the second solution to Eq. (143),

which corresponds to an isolated horizon perturbed by a
generic tidal perturbation that is not monopolar or dipolar.
The second solution represents a time independent pertur-
bation toΨ4 with TðvÞ ¼ K=ð2κ̃2ðlÞÞ. The angular part of Ψ̂4

is given by Yðz; z̄Þ ¼ ð̄2Ψ̂2=2κ̃2ðlÞ, and the radial differential

equation in Eq. (142) can be solved in terms of the
associated Legendre polynomials:
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XðrÞ ¼ k1
rðrþ cÞP

2
γ

�
1þ 2r

c

�
þ k2
rðrþ cÞQ

2
γ

�
1þ 2r

c

�
;

ð147Þ

where Pm
γ and Qm

γ are the associated Legendre functions of
the first and the second kind, and γ ¼ 1

2
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 4k
p Þ. k1

and k2 are integration constants. We set k1 ¼ − 2c2
kðkþ2Þ and

k2 ¼ 0 so that XðrÞ is regular and normalized at the horizon
Xðr ¼ 0Þ ¼ 1. Using again the properties of the ð operator,
it is straightforward to show that the angular function
Yðz; z̄Þ ¼ ð̄2Ψ̂2=2κ̃2ðlÞ is a solution of the Teukolsky equa-

tion (142) for l ≥ 2 and k ¼ ðl − 1Þðlþ 2Þ. This choice for
k yields

Ψ̂4 ¼
X
l≥2;m

k̂lm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þðl − 1Þðlþ 2Þp
4κ̃2ðlÞðrþ cÞ2

× 2F1½−l; lþ 1; 3;−r=c�−2Ylm: ð148Þ

Notice that for l ¼ 2, XðrÞ ¼ 1, so Ψ̂4 ¼ Ψ̂4ðz; z̄Þ. For
l > 2, XðrÞ ∼ rl−2 diverges as r → ∞. Given Ψ̂4, we can
proceed to integrate the radial differential equations (49)
and (52) to first order in the perturbation. We use the data
at the horizon discussed in the previous section, see (133)
for an isolated horizon (with e−κðlÞv → 0), as the boundary
condition at r ¼ 0. In the following, we present the results
for the Weyl scalars, spin coefficients, tetrad components,
and the metric of a tidally perturbed isolated horizon.

Introducing the notation shortcut,

Fl
nðrÞ ≔

�
ðl − 1Þ2F1

�
1 − l; lþ 2; n;−

r
c

�
þ 32F1

�
2 − l; lþ 2; n;−

r
c

��
; ð149Þ

the perturbed Weyl scalars are

Ψ̂0 ¼ −
1

rþ c

Z
r

0

dr0ðr0 þ cÞðð∘Ψ̂1ðr0Þ þ 3σ̂ðr0ÞΨ∘
2ðr0ÞÞ ð150aÞ

Ψ̂1 ¼ −
r

2
ffiffiffi
2
p

κ̃ðlÞðrþ cÞ2
X
l;m

k̂lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
ðlþ 2Þ 1YlmF

l
2ðrÞ −

3c
2ðrþ cÞ2

Z
r

0

dr0
Ω̂ðr0Þ
ðr0 þ cÞ2 ð150bÞ

Ψ̂2 ¼
X
l;m

k̂lmYlm

2κ̃ðlÞðlþ 2Þðrþ cÞF
l
1ðrÞ ð150cÞ

Ψ̂3 ¼
X
l;m

k̂lm−1Ylm

cκ̃ðlÞ
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
2F1

�
lþ 3; 2 − l; 1;−

r
c

�
− ðlþ 2Þðl − 1Þ2F1

�
lþ 3; 2 − l; 2;−

r
c

��
ð150dÞ

Ψ̂4 ¼
X
l≥2;m

k̂lm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þðl − 1Þðlþ 2Þp
4κ̃2ðlÞðrþ cÞ2 2F1½−l; lþ 1; 3;−r=c�−2Ylm: ð150eÞ

The perturbed spin coefficients are

λ̂ ¼
X
l;m

c2k̂lm
κ̃ðlÞðrþ cÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

lðlþ 1Þ

s
2F1

�
−l − 1; l; 2;−

r
c

�
−2Ylm ð151aÞ

ρ̂ ¼
X
l;m

k̂lmr
2κ̃ðlÞðlþ 2Þðrþ cÞYlmFl

2ðrÞ ð151bÞ

π̂ ¼
X
lm

k̂lm−1Ylmffiffiffi
2
p

κ̃ðlÞðlþ 2Þðlðlþ 1ÞÞ3=2ðrþ cÞ

�
−½cð1þ l2 þ l3Þ þ ðl − 1Þðlþ 1Þ2r�2F1

�
1 − l; 2þ l; 1;−

r
c

�
þ ½1 − 2lð1þ lÞ�ðcþ rÞ2F1

�
2 − l; 2þ l; 1;−

r
c

��
ð151cÞ
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σ̂ ¼ −
r2

2ðrþ cÞ
X
lm

ˆ̄klm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1Þ

lðlþ 1Þ

s
−2Ȳlm2F1

�
2 − l; 3þ l; 3;−

r
c

�
ð151dÞ

ϵ̂þ ˆ̄ϵ ¼ 2r
X
l;m

Re½k̂lmYlm�2F1

�
2 − l; 1þ l; 2;−

r
c

�
ð151eÞ

ϵ̂ − ˆ̄ϵ ¼ 2ir
X
l;m

Im½k̂lmYlm�2F1

�
2 − l; 1þ l; 2;−

r
c

�
þ
Z

r

0

dr0ða0ðr0Þ ˆ̄πðr0Þ − ā0ðr0Þπ̂ðr0ÞÞ ð151fÞ

κ̂ ¼
Z

r

0

dr0ðρ∘ðr0Þπ̂ðr0Þ þ Ψ̂1ðr0ÞÞ: ð151gÞ

Finally, the perturbed tetrad functions (38) are

Ω̂ ¼ −X
l;m

ˆ̄klm−1Ȳlmffiffiffi
2
p

κ̃ðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðlþ 2Þ rF

l
2ðrÞ ð152aÞ

ξ̂z ¼ P̂P∘
ðrþ cÞ ð152bÞ

ξ̂z̄ ¼ P0

ðrþ cÞ
X
l;m

ˆ̄klm−2Ȳlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þðlþ 2Þðl − 1Þp �

2c2
�
−1þ 2F1

�
1 − l; 2þ l; 1;−

r
c

��
þ ðlþ 2Þðl − 1Þr22F1

�
2 − l; 3þ l; 3;−

r
c

��
ð152cÞ

Xz ¼ P0

Z
r

0

dr0
π̂ðr0Þ
ðr0 þ cÞ ð152dÞ

Xz̄ ¼ P0

Z
r

0

dr0
ˆ̄πðr0Þ
ðr0 þ cÞ ð152eÞ

Û ¼ 2

Z
r

0

dr0
Z

r0

0

dr00ReΨ̂2ðr00Þ ¼ r2
X
lm

Re½k̂lmYlm�2F1

�
2 − l; lþ 3; 3;−

r
c

�
: ð152fÞ

The metric can be reconstructed using gab ¼
−2lðanbÞ þ 2mðam̄bÞ, together with the tetrad functions.
To first order in the perturbation, the metric elements
are then

gvv ¼ −
r

rþ c
− 2Û ð153aÞ

grv ¼ 1 ð153bÞ

gvz ¼ −
rþ c
P2
0

ððrþ cÞXz̄ þ P0Ω̂Þ ð153cÞ

gzz ¼ −
2ðrþ cÞ3

P3
0

ξ̂z̄ ð153dÞ

gzz̄ ¼
ðrþ cÞ2

P2
0

−
ðrþ cÞ3ð ˆ̄ξz̄ þ ξ̂zÞ

P3
0

: ð153eÞ
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Notice from our expressions for the Weyl scalars (150)
that the spherical harmonics we defined at the horizon can
still be used at r ≫ 0 (as long as our coordinate system
remains valid). In particular, this implies that we can make
the same spherical harmonic decomposition of the Weyl
scalars at the horizon and away from the horizon. We have
then a natural way to decompose the electric and magnetic
parts of the tidal field in spherical harmonics.

A. Asymptotic behavior for large r

It is interesting to analyze the asymptotic behavior
(the limit r → ∞) of the quantities presented above. In
particular, as we will discuss in the next section, the
asymptotic behavior of Ψ̂2 and Û has special relevance
since it can be related to the field Love numbers. Let us start
with Ψ̂2. Notice that Ψ̂2 can be rewritten in the compact form

Ψ̂2 ¼
X
l;m

k̂lmYlm2F1

�
2 − l; lþ 3; 1;−

r
c

�
: ð154Þ

The proof that this expression is equivalent to the one
presented in Eq. (150) can be found in Appendix C.
However, it is interesting to highlight that this simplification
occurs only because we can factor out a term (rþ c) from
the functionFl

1ðrÞ. Interestingly, despite the similar structure
between Fl

1ðrÞ and Fl
2ðrÞ, this simplification does not occur

for Fl
2ðrÞ, nor any other combination of hypergeometric

functions in Eqs. (151) and (152). We used Eq. (154) to
integrate the expressions for ϵ̂þ ˆ̄ϵ and Û.
Recall that when one of the two first entries of the

hypergeometric function is negative or zero, the hyper-
geometric function has finitely many terms and it is defined
for any argument

2F1½−m; b; c; z� ¼
Xm
n¼0
ð−1Þn

�
m

n

� ðbÞn
ðcÞn

zn; ð155Þ

with m∈Zþ and ðbÞn ¼ ðbþ n − 1Þ!=ðb − 1Þ! the
Pochhammer symbol. We can use this last property (155)
to expand Ψ̂2 in a finite series in r:

Ψ̂2 ¼
X
l;m

k̂lmYlm

Xl−2
n¼0

�
l − 2

n

� ðlþ 3Þn
ð1Þn

�
r
c

�
n
: ð156Þ

From this expression we can see that the dominant
asymptotic behavior is rl−2, while the least dominant term
is constant. In other words,

lim
r→∞

Ψ̂2 ∼ rl−2; rl−3;…r0: ð157Þ

Similarly, expanding the hypergeometric function in Û, we
see that

lim
r→∞

Û∼rl; rl−1;…r2 ð158Þ

the leading order terms goes like rl and the subdominant
one as r2.
For completeness, we also provide the asymptotic

behaviors of the Weyl scalars, spin coefficients, and tetrad
components presented in Eqs. (151) and (152). Using
Eq. (150), it is straightforward to check that all of the
Weyl scalars have the same asymptotic behavior, given by

Ψ̂0; Ψ̂1; Ψ̂2; Ψ̂3; Ψ̂4 ∼ rl−2: ð159Þ

Finally, the spin coefficients and tetrad functions in
Eqs. (151) and (152) have the asymptotic behavior

λ̂; π̂; σ̂; ϵ̂; κ ∼ rl−1; ρ̂∼ rl−2; ð160Þ

and

Ω̂; ξ̂z̄; Xz; Xz̄ ∼ rl−1; Û ∼ rl; ξ̂z ∼ r−1: ð161Þ

In Sec. VI A, we specialize the solution to a quadrupolar
perturbation of Ψ2. We will further show that the isolated
horizon coincides with the known solution of a tidally
perturbed Schwarzschild black hole in the literature derived
using the metric formulation [5–11].

VI. TIDALLY PERTURBED BLACK
HOLE SPACETIME

With the general expressions obtained in the previous
sections at hand, we are now ready to construct the metric
of a tidally perturbed black hole. In this section, we first
consider a nonspinning tidally perturbed black hole fol-
lowed by the slowly spinning case.

A. Tidally perturbed nonspinning black hole

We specialize the general Eqs. (150)–(153) in the
previous section to the case of a quadrupolar l ¼ 2

perturbation to the Weyl scalar Ψ̂2. Since we consider
perturbations of the Schwarzschild spacetime we can set
m ¼ 0 without loss of generality. Integrating the expres-
sions for Ψ̂0 and Ψ̂1 and simplifying the above expressions,
we obtain for the Weyl scalars

Ψ0 ¼
ffiffiffi
3

2

r
r2

ðrþ cÞ2 k̂202Y20 ð162aÞ

Ψ1 ¼ −
ffiffiffi
3
p

r1Y20

4ðrþ cÞ3 ½ð2r
2 þ 7rcþ 4c2Þê20

þ ið2r2 þ 5rcþ 4c2Þb̂20� ð162bÞ
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Ψ2 ¼ −
c

2ðcþ rÞ3 þ k̂20Y20 ð162cÞ

Ψ3 ¼ −
ffiffiffi
3
p

k̂20−1Y20 ð162dÞ

Ψ4 ¼ 2
ffiffiffi
6
p

k̂20−2Y20; ð162eÞ

where the spin-weighted spherical harmonics are
given explicitly in Appendix B, and the constant c¼
2κ̃ðlÞR2 ¼ 2M. Similarly, the same procedure for the spin
coefficients yields

ρ ¼ −
r

2ðrþ cÞ2 þ k̂20
rðrþ 2cÞ
2ðrþ cÞ Y20 ð163aÞ

π ¼ −k̂20
3r2 þ 6crþ 2c2

2
ffiffiffi
3
p −1Y20 ð163bÞ

κ ¼ −
r21Y20

4
ffiffiffi
3
p ðrþ cÞ2 ½ð7cþ 9rÞê20þ ið5cþ 3rÞk̂20� ð163cÞ

σ ¼ −
r2 ˆ̄k20ffiffiffi
6
p ðrþ cÞ 2Y20 ð163dÞ

ϵ ¼ c
4ðrþ cÞ2 þ r

�
ê20 − i

r
2ðrþ cÞ b̂20

�
Y20

− i
b̂20rð3rþ 2cÞ

4ðrþ cÞ

ffiffiffi
5

π

r
3zz̄ − 1

ð1þ zz̄Þ2 ð163eÞ

μ ¼ −
1

rþ c
ð163fÞ

λ ¼ 2k̂20

ffiffiffi
2

3

r
ðrþ cÞ−20Y20: ð163gÞ

Finally, using the tetrad functions (152) for the case
l ¼ 2, together with Eq. (153), we can reconstruct the
metric of a nonrotating isolated horizon with a quad-
rupolar perturbation:

gvv ¼ −
�

r
rþ c

þ 2r2ê20Y20

�
ð164aÞ

gvr ¼ 1 ð164bÞ

gvz ¼ −
2

3

rðrþ cÞ2
P∘

ˆ̄k201Y20 ð164cÞ

gzz ¼ −2
ffiffiffi
2

3

r
ˆ̄k20

rðrþ cÞ2ðrþ 2cÞ
P2∘ 2Y20 ð164dÞ

gzz̄ ¼
ðrþ cÞ2

P2∘
−

ffiffiffi
5

π

r
2c2ðrþ cÞ2ð1 − 2zz̄Þê20

ð1þ zz̄Þ4 : ð164eÞ

The complex coordinates fz; z̄g are related to the usual
spherical coordinates of the background Schwarzschild
spacetime fθ;ϕg though

z¼
ffiffiffiffiffiffiffiffiffiffi
1þ ζ

1− ζ

s
eiϕ

�
1þR2

4

ffiffiffi
5

π

r
ðê20ð1− ζÞ− ib̂20ζÞ

�
; ð165Þ

where ζ ¼ cos θ and R is the radius of the unperturbed
horizon. Notice that in the absence of the perturbation
ê20 ¼ b̂20 ¼ 0, the coordinate transformation coincides
with Eq. (98). Further, this transformation is not unique as
discussed in Sec. IVA. Transforming the metric (164) to
the coordinates fv; r; θ;ϕg (with r ¼ rþ c) yields the
metric of a tidally perturbed Schwarzschild black hole
presented in Eqs. (1.5)–(1.7) of Ref. [6] upon the
identification

ê20 ¼
1

2
Eð2Þ0 ; b̂20 ¼

1

2
Bð2Þ0 : ð166Þ

Here Eð2Þ0 and Bð2Þ0 are the components of the electric and
magnetic tidal moments spanned in a basis of spherical
harmonics, i.e.,

ELxL ¼ rl
X
m

EðlÞm Ylm ¼ rlEðlÞ; ð167Þ

where EL is an l × l symmetric trace-free tensor with
multi-index L ¼ a1;…al defined in a quasi-Cartesian
system with xa ¼ fcosϕ sin θ; sinϕ sin θ; cos θg, and EðlÞ
is the electric tidal scalar potential. Recall that for us the
constants ê20 and b̂20 have a transparent geometric mean-
ing: they encode the magnitude of the real and imaginary
parts of the quadrupolar perturbation to the Weyl scalar
Ψ̂2, which we have connected in Sec. IVA to the
deformation of the cross section, and how it is embedded
in the isolated horizon structure (see Sec. IV B).
Notice that the coordinate transformation (165) and the

identification (166) only take the above forms when the
perturbation is purely quadrupolar. For a general perturba-
tion, our constants êlm and b̂lm are related to the components
of the tidal electric and magnetic fields defined in [6,105]
through

êlm ¼
ðl − 2Þ!ðlþ 2Þ!

2ð2lÞ! cl−2EðlÞm ; ð168Þ

b̂lm ¼
ðlþ 1Þðl − 2Þ!ðlþ 2Þ!

3!ð2lÞ! cl−2BðlÞm : ð169Þ
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The coordinate transformation (165) can be easily worked
out for each multipole using the above identification. Notice
that similarly to [6], we could also define our “electric” tidal
potential El through

El ¼
X
m

êlmYlm ¼
ðl − 2Þ!ðlþ 2Þ!

2ð2lÞ! cl−2EðlÞ; ð170Þ

which is proportional to EðlÞ. However, contrary to [6],
we can also define a “magnetic” scalar tidal potential Bl
through

Bl ¼
X
m

b̂lmYlm; ð171Þ

so that our perturbation to the Weyl scalar Ψ2 reads

Ψ̂2 ¼
X
l

ðElm þ iBlmÞ2F1

�
2 − l; lþ 3; 1;−

r
c

�
: ð172Þ

B. Slowly rotating tidally perturbed black hole

Next, we consider perturbations of the Schwarzschild
horizon such that Ψ4 ¼ 0. As discussed above, this choice
of initial data at the horizon only allows for a monopolar or

a dipolar perturbation of the Weyl scalar Ψ2, [k̂lm ≜ 0 for
l ≥ 2 in Eq. (132)]. Recall that the real and imaginary parts
of Ψ2 are related to the mass and angular momentum
multipole moments, respectively. Therefore, since we
consider isolated horizons, the only physically relevant
perturbed horizon left corresponds to

b̂00 ¼ ê00 ¼ 0; ê1m ¼ 0; k̂lm ¼ 0 for l≥ 2: ð173Þ

Since we describe spacetimes without infalling flux of
matter or radiation into the black hole, its mass is not
modified. This implies ê00 ¼ 0 and an angular momentum
monopole is not physical, so b̂00 ¼ 0. Further, the mass
dipole moment is related to the rest frame of the black hole.
Setting ê1m ≠ 0 “kicks” the hole out of the rest frame, but it
does not modify its geometry. In other words, the only
physically relevant perturbation is to the angular momen-
tum dipole b̂1m ≠ 0, which yields

Ψ̂2≜ i
X
m

b̂1mY1m: ð174Þ

Given the symmetries of the Schwarzschild spacetime,
without loss of generality, we can choose a gauge in which
the perturbation is only given in terms of the m ¼ 0
spherical harmonic

Ψ̂2 ≜ ib̂10

ffiffiffiffiffiffi
3

4π

r
zz̄ − 1

zz̄þ 1
: ð175Þ

This perturbation, together with the isolated horizon
assumption, gives rise to the slowly rotating limit of the
Kerr isolated horizon, as we will show. Notice that this
initial data would not be suitable to describe the Kerr
horizon with arbitrary spin, since the rotation of the hole
deforms the cross section’s geometry of the Kerr black
hole, which we have not accounted for in Re½Ψ̂2�. However,
at linear order in these perturbations, this is a consistent
solution as the horizon’s geometry is only deformed at the
second order.
As we discussed in Sec. IV, we take the Schwarzschild

isolated horizon data as our unperturbed spacetime, so the
background Weyl scalars and spin coefficients in Eq. (121)
vanish. The nontrivial spin coefficients andWeyl scalars for
the basis Schwarzschild spacetime are given in Eq. (140),
and the unperturbed tetrad in Eq. (141).
The perturbations to the initial data are given by

Eqs. (132) and (133), together with the condition in the
expansion constants discussed above (173). Using
Eq. (133), together with Eq. (124), we see that λ̂≜ 0,
P̂≜ 0, Ψ̂3 needs to be time independent, and the most
general form for Ψ̂4 is given by Eq. (146) with b1 ¼ 0, i.e.,

Ψ̂4≜
X
l≥2;m

ŷlmH2
l ðrÞe−2κ̃ðlÞv−2Ylm: ð176Þ

This initial data would yield a perturbative version of the
Robinson-Trautman spacetime discussed in Sec. III D with
a slow rotating horizon in the gauge discussed in Sec. IV.
However, here we will restrict ourselves to the simplest
nontrivial case, i.e., since Ψ̂4 is independent of the pertur-
bation to Ψ2, we can simply set it to zero [Ψ̂4 ¼ 0].
Recall that Re½Ψ̂2�≜ 0, so the horizon is foliated by good

cuts divω̃≜ 0, and the connection on the two-sphere is not
modified â≜ 0. Similarly, μ̂≜ λ̂≜ 0. Explicitly, the non-
trivial perturbed spin coefficients and Weyl scalars at the
horizon are

π̂≜ − icb̂10−1Y10; Ψ̂3≜ ib̂10−1Y10: ð177Þ

Integrating Eq. (49), we obtained τ̂¼ σ̂¼ γ̂¼ ν̂¼ λ̂¼ 0

and Ψ̂0 ¼ Ψ̂4 ¼ 0. The tetrad is modified with the functions
Û ¼ ξ̂A ¼ 0 and

X̂A ¼ i
crb̂10ð4r4 þ 9crþ 6c2Þ

4
ffiffiffiffiffiffi
3π
p ðcþ rÞ3 fz;−z̄g ð178aÞ

Ω̂ ¼ −
ic2rðrþ 2cÞb̂10

2ðrþ cÞ2 1Y10: ð178bÞ

The remaining spin coefficients and Weyl scalars are
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ρ̂ ¼ ic2rðrþ 2cÞb̂10
2ðcþ rÞ3 Y10 ð179aÞ

α̂ ¼ −
ic4b̂10

2ðcþ rÞ3 −1Y10 ð179bÞ

π̂ ¼ −
ic2ðr2 þ 2crþ 2c2Þb̂10

2ðcþ rÞ3 −1Y10 ð179cÞ

β̂ ¼ −
ic2b̂10
2ðcþ rÞ 1Y10 ð179dÞ

κ̂ ¼ −
ic2r2b̂10
4ðcþ rÞ3 1Y10 ð179eÞ

ϵ̂ ¼ −
icrb̂10

6ðrþ cÞ3
�
rð2rþ 3cÞY10þ

ffiffiffiffiffiffi
3

4π

r
4r2 þ 9crþ 6c2

1þ zz̄

�
ð179fÞ

Ψ̂1 ¼ −
ic3rð3rþ 4cÞb̂10

4ðcþ rÞ5 1Y10 ð179gÞ

Ψ̂3 ¼
ic4b̂10
ðcþ rÞ4 −1Y10 ð179hÞ

Ψ̂2 ¼ −
c

2ðcþ rÞ3 þ
ic4b̂10
ðcþ rÞ4 Y10 ð179iÞ

which yields the metric

ds2 ¼ ds2Sch þ b̂10
4icrðr2 þ 3crþ 3c2Þffiffiffiffiffiffi
3π
p ðcþ rÞð1þ zz̄Þ2 dvðz̄dz − zdz̄Þ;

ð180Þ

where ds2Sch is the Schwarzschild line element (54) in
fv; r; z; z̄g coordinates.
We could show that this line element corresponds to the

slow rotating limit of the Kerr metric by direct comparison
of the line element with the small a limit of Eqs. (41), (52),
and (55) in [106]. However, the slicing we choose (120) is
different from the one used in Ref. [106], which can be
computed using their Eqs. (57) and (62a), and our Eq. (119).
Further, the angular coordinates used in Ref. [106] are
different from both our complex fz; z̄g and real fζ;ϕg
coordinates, even in the small a limit. Therefore, to directly
compare Eq. (180) we should simultaneously modify the
slicing of our horizon and our coordinates, which is quite
cumbersome. Instead, we show that the line element (180)
corresponds to the slow rotating limit of the Kerr black hole
by analyzing its mass monopole and angular momentum
dipole, and by showing that this spacetime is indeed type D.

Using the expressions (11) and (12), we see that the horizon
has mass and spin given by

M ¼ R
2
þ Oðb̂210Þ; J ¼ −

b̂10R2

2
ffiffiffiffiffiffi
3π
p þ Oðb̂210Þ; ð181Þ

where b̂10 ∼ a is small and the mass of the black hole is only
modified to the second order in the perturbation. All higher
mass and angular momentum multiples, which do not
vanish for the Kerr solution, are at least second order in
the spin, so we take them to vanish in the slowly rotating
limit. Further, we can show that this horizon is type D by
using the invariant

I ≔ jðδ̄þ α − β̄Þδ̄ðΨ2Þ−1=3j ð182Þ

defined in [82]. The invariant I measures the deviation of a
generic isolated horizon from a horizon of the Kerr family.
In other words, when I ¼ 0, the horizon is type D, and
therefore belongs to the Kerr family. Using Eq. (179), it can
be easily shown that

I ≜O½b̂10�2: ð183Þ

Therefore, this horizon belongs to the Kerr family and has
mass and spin given by Eq. (181). We can show that this is
indeed the slow rotating limit of a Kerr black hole by
comparing the mass and spin multipole moments with those
of the Kerr black hole evaluated at the horizon. In [28], we
see that for Kerr Il ¼ 0 (Ll ¼ 0) for l odd (even) and
Ll; Il ∝ al. Hence, our solution coincides with the slow
rotating limit of the Kerr horizon up to linear order in
the spin.
Finally, notice that although our gauge choices for the

slowly rotating limit of the Kerr black hole do not allow a
straightforward comparison with [106], they are consistent
with the gauge choices we used to describe the tidally
perturbed Schwarzschild black hole. Consequently, the
tidally perturbed slowly rotating limit of the Kerr black
hole follows by combining the perturbations to the spin
coefficients, Weyl scalars, and metric components in
Eqs. (150)–(152) with those of the slowly rotating Kerr
horizon Eqs. (178) and (179). Further, although cumber-
some, the solution for the tidally perturbed Kerr black hole
with arbitrary (subextremal) spin could in principle be
obtained in a straightforward manner using our formalism.
We would need to combine the equations for the tidally
perturbed Schwarzschild horizon with the spin coefficients,
Weyl scalars, and tetrad components resulting from higher a
terms in the slowly rotating spin expansion. These contri-
butions can be obtained by expanding the multipole
moments of the Kerr black hole at the horizon, computed
in [28], in a Taylor series around a ¼ 0. The perturbations to
the real and imaginary parts of Ψ2 will be of the form (132),
so the perturbations to the initial data would follow trivially
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from Sec. IV. By resuming the infinite terms in the series, we
would obtain the tidally perturbed Kerr solution. This
application of our formalism will be discussed in detail
elsewhere.

VII. FIELD VS SURFICIAL LOVE NUMBERS

A. The vanishing of the tidal Love numbers

The notion of tidal Love numbers of stars and compact
objects plays an important role in astrophysics and it is
particularly important in gravitational wave astronomy. The
basic idea is straightforward: under the influence of an
external field, say due to a binary companion, the shape of a
star and its gravitational field can both be distorted, and at
leading order, the distortion is linearly proportional to the
strength of the external field. The value of this proportion-
ality constant, call it Λ, can be measured. Detailed studies in
the context of self-gravitating objects in Newtonian theory
date back to 1933 [107,108]. More recently, the measure-
ment of the tidal Love numbers allows us to constrain the
equation of state of neutron stars from the observations of
binary neutron star mergers (see, e.g., [2–4]); see [109] for a
review. Love number measurements might also allow us to
distinguish black holes from neutron stars based purely on
gravitational wave observations (see, e.g., [110]). This relies
on the claim that black holes have vanishing Love num-
bers [6,12].
Following [1,111] (see also [12,112]), let Φext be the

external gravitational potential acting on a star. This leads
to an external quadrupolar tidal field,

Eij ¼
∂
2Φext

∂xi∂xj
; ð184Þ

where the xi are the so-called asymptotically mass-centered
coordinates [33,113]. In these coordinates, the time-time
component of the metric is given by

−
ð1þ g00Þ

2
¼ −

M
r
−
3Qij

2r3

�
ninj −

1

3
δij

�
þOðr−4Þ

þ 1

2
Eijxixj þOðr3Þ; ð185Þ

where ni ≔ xi=r, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðxiÞ2
p

. In this coordinate sys-
tem, the mass dipole moment vanishes by construction. At
leading order, it can be shown that the quadrupole moment
Qij is related linearly to the external tidal field:

Qij ¼ −λEij: ð186Þ

The Love number k2 is the dimensionless constant con-
structed from λ and the star’s radius R as

k2 ¼
3

2
λR5: ð187Þ

The Love number turns out to depend on the equation of
state, and it vanishes for a black hole. The Love number is
typically incorporated heuristically in the gravitational
wave signal as a contribution to the fifth post-Newtonian
energy and flux [32]; in the PN expansion, it appears as a
contribution to the x5 term with x ¼ ðMωÞ2=3 being the
dimensionless post-Newtonian parameter, ω and M are,
respectively, the angular velocity and total mass of the
binary. Alternatively, tidal effects can also be included as
part of the effective-one-body formalism [13], or as part of
modeling based on numerical relativity simulations [114].
Implicit in the expansion of Eq. (185) is the existence of a
buffer region typically used in the process of carrying out
matched asymptotic expansions [33,113]. Inside this buffer
region, the gravitational field is dominated by the black hole,
while outside this region the external universe dominates.
It is evident that the above discussion is based on the

properties of the gravitational field of the compact object.
The Love number thus defined may be referred to as the
“field” or “gravitational” Love number. Whenever we refer
to “Love number” without any other qualifications, we shall
always refer to these field Love numbers. However, corre-
sponding to the distortion of the gravitational field, the
surface of the star is distorted by tidal effects as well. Just
like the above Love number, one can introduce the “surficial
Love numbers” by employing source multipole moments.
For a neutron star, these would be based on the distribution
of matter fields, or for a black hole as surface integrals like
we have used in this paper. Within general relativity, the
surficial Love numbers generally differ from the field Love
numbers; see also [14,19,20].
Our calculations here can be used to evaluate both the

field and surficial Love numbers for black holes as we now
discuss. The main ingredient will be the asymptotic behavior
of theWeyl tensor at large r. The discussion presented below
is not formulated with a sufficient level of rigor in terms of
the asymptotic conditions; it should rather be viewed in the
same spirit as [33], i.e., as being useful for astrophysical
applications. The issue is that the tidally perturbed spacetime
is not asymptotically flat, and the curvature components do
not vanish asymptotically. Neither is the spacetime asymp-
totically de Sitter or some other universal class of known
solutions. This is natural because our solutions are local and
the typical application we have in mind is, say, a binary
black hole system. The “asymptotic” region with large r thus
includes the region between the two black holes. At present
we therefore do not have, say, well developed notions of
asymptotic symmetries, conserved quantities, or fluxes such
as we do at null and spatial infinity for asymptotically flat
spacetimes.
We have already described the perturbation of the

geometry of Δ, which can be encoded as perturbations
of the geometric multipole moments ðIl; LlÞ defined in
Eq. (18). These can be taken to be source multipole
moments for our purposes (after rescaling them suitably
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to get the right dimensions and normalizations). The
important point here is that these moments are obtained
by a spherical harmonic decomposition of the Weyl tensor
component Ψ2. In fact, it is Ψ2 that also appears in the
definition of the field multipole moments and Love
numbers. This is seen from Eq. (153) which expresses
gvv in terms of Û. After accounting for the fact that our
radial coordinate starts with r ¼ 0 at the horizon and is thus
shifted with respect to the area coordinate in the
Schwarzschild solution, it is evident that the potential Û
is the analog of the quantity −ð1þ g00Þ=2 appearing above
[in our case −Û ∼ ð1þ gvvÞ=2with gvv given in Eq. (153)].
Since Û is a potential for Ψ̂2, it becomes clear that we can
also discuss the Love numbers and field multipole moments
in terms ofΨ2. Moreover, since our construction of the near
horizon metric is based on a Bondi-like coordinate system,
it explicitly connects the horizon with the asymptotic
region and it provides thereby an unambiguous link
between the source and field multipole moments and
Love numbers. Concretely, our construction connects
spherical harmonics at the horizon and in the asymptotic
region, and thus also provides the link between the field and
surficial Love numbers. The value of the perturbation Ψ̂2 at
the horizon gives us the perturbations of the source (i.e., the
surficial) multipole moments in terms of k̂20, which is
related to the external perturbation. In the absence of these
perturbations, the asymptotic form of the Weyl tensor can
be written schematically as

Ψ2 ∼
Massmonopole

r3
þ Spin dipole

r4
þ � � � : ð188Þ

The additional terms will be higher powers of 1=r and also,
for a Kerr black hole, higher powers of the spin. Therefore,
since we restrict ourselves to slowly spinning black holes,
we shall only consider the first two terms for our purposes.
When we perturb Ψ2 → Ψ2 þ Ψ̂2, asymptotically the per-
turbations develop additional terms. In the case of a
nonspinning tidally perturbed black hole, we get

Ψ̂2 ∼
Mass quadrupole

r5
þ External quadrupole pert: ð189Þ

The constant (r independent) term represents the external
quadrupolar perturbation, and the mass quadrupole term is
the response of the black hole to this perturbation. These
two are linearly related as in Eq. (186) via the Love number.
More generally, we will have

Ψ̂2 ∼
X
l≥2

�
Al

rlþ3
þ Blrl−2

�
: ð190Þ

(Here we are suppressing the angular spherical harmonics
to avoid clutter.) As before, the nonasymptotically flat
terms (i.e., the Bl) represent the external fields, while the

Al represent the response of the black holes. The linear
relation between these yield the Love numbers; the real
parts of the Al are the (perturbations of) mass multipole
moments while the imaginary parts are the (perturbations
of) spin (or magnetic) moments. From the result of
Eq. (162a), we see that there are no additional powers of
1=r beyond M=r3, which means that the field tidal Love
numbers vanish. The same is true for the slowly spinning
case shown in Eq. (179). Thus we again conclude, as
elsewhere in the literature, that the tidal Love numbers
vanish for slowly spinning Kerr black holes.

B. Systematic uncertainties in the field
multipole moments

We now turn to potential limitations of the above
discussion, related to systematic uncertainties connected
with the measurements of mass, spin (and multipole
moments) based on the asymptotic behavior of the field.
This discussion follows closely the work of Hartle and
Thorne [33], which employs matched asymptotic expan-
sions to find the equation of motion of a black hole moving
in an external field (see also [34,115]).
Consider a black hole of mass M moving in a back-

ground spacetime with a radius of curvature R, taken to be
much larger than M. We can then construct two different
expansions for the spacetime metric in the vicinity of the
black hole. The first is the expansion whereR is taken to be
a large parameter:

gab ¼ g½0�ab þR−1g½1�ab þR−2g½2�ab þ � � � : ð191Þ

Here g½0�ab is just the Kerr or Schwarzschild metric and the
successive terms are perturbations due to the effect of
the external universe. The second expansion is to start with
the external universe metric at the location of the black
hole, with M now taken to be a small parameter:

gab ¼ gð0Þab þMgð1Þab þM2gð2Þab þ � � � : ð192Þ

Within this formalism, it is assumed that the mass of a black
hole can be defined (and measured) precisely only for an
isolated black hole in an asymptotically flat spacetime. This

corresponds to using the Kerr metric g½0�ab, consider it as an
expansion in powers ofM=r, and define the mass based on
the asymptotic behavior of this metric for large r, by using
surface integrals/multipole decompositions. We thus
assume the existence of a buffer zone surrounding the
black hole, with a radius much larger than M but simulta-
neously much smaller thanR. In this buffer region, we then
attempt to measure the physical parameters of the black
hole again via surface integrals/multipole expansions. In
this procedure, we can move terms from one part of
expansion to another. Thus, as argued in [33], when
measuring the mass of the black hole, terms of the form
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ofM3=ðrR2Þ need to be considered as well. This leads to a
systematic uncertainty in mass measurements:

ΔM
M

∼
M2

R2
: ð193Þ

For our purposes here, the same argument can be applied to

the quadrupole moment. This appears at order 1=r3 in g½0�ab,
which can be mimicked by terms of the form M2=ðr3R2Þ.
Thus, the uncertainty in measurements of the quadrupole
moment is also of the form

ΔQ
Q

∼
M2

R2
: ð194Þ

For a binary system, the external universe is just
the gravitational field of the companion. If M2 is the
mass of the companion and if the separation is d, then
R2 ∼ d3=M2 so that

ΔQ
Q

∼
M2M2

d3
: ð195Þ

This is in practice a rather small uncertainty and not
relevant for current observations. If we have M2 ¼ qM
and, in the worst case, if the black holes are close to the
merger so that d ∼ 2M þ 2M2 ¼ 2Mð1þ qÞ, then

ΔQ
Q

∼
q

8ð1þ qÞ3 : ð196Þ

This has a maximum value of 1=54 for q ¼ 1=2. This
corresponds to, at worst, < 2% uncertainty, much smaller
than uncertainties for any of the binary merger events
observed thus far. Realistic estimates will be smaller than
this, since they will apply to larger values of d. This might
however be relevant for loud events observed by the next
generation of ground- and space-based gravitational wave
detectors.

C. The surficial tidal Love numbers

We can contrast the above discussion with how the source
(i.e., the “surficial”) multipole moments respond to the
external perturbation. The surficial Love numbers are
indeed modified by the external perturbation, and the
corresponding Love numbers of both electric and magnetic
type can again be read off fromΨ2, but now from its value at
the horizon. Let us discuss how this can be done. The
starting point for our analysis was to choose a perturbation
Ψ̂2 at the horizon given in Eq. (132). The coefficients k̂lm ¼
êlm þ ib̂lm appearing here are perturbations of the corre-
sponding source multipole moments, with êlm being the
electric component and b̂lm being the magnetic component.
Starting with this horizon perturbation, we have derived the

solution for Ψ̂2 away from the horizon including its
asymptotic behavior; see Eq. (156). Considering the dom-
inant term for each Ylm, we get the following asymptotic
behavior:

Ψ̂∞
2 ∼

X
l;m

k̂∞lm

�
r
c

�
l−2

Ylm: ð197Þ

The value of k̂∞lm is obtained by taking the n ¼ l − 2 term in
the sum over n in Eq. (156):

k̂∞lm ¼ k̂lm
ðlþ 3Þl−2
ð1Þl−2

: ð198Þ

Turning our mathematical procedure around, we interpret
the horizon deformation as having been caused by this
asymptotic external tidal field. Thus, one possible definition
of the surficial Love number—which is natural from this
perspective—is just the ratios of these coefficients. Writing
k̂∞lm ¼ ê∞lm þ ib̂∞lm, the electric and magnetic surficial Love
numbers would be, respectively,

êlm
ê∞lm

and
b̂lm
b̂∞lm

: ð199Þ

Our solution for Ψ̂2 then shows that both of these ratios are
independent of m and are equal to

h0l ¼
ð1Þl−2
ðlþ 3Þl−2

¼ ðl − 2Þ!ðlþ 2Þ!
ð2lÞ! : ð200Þ

Numerical values of this ratio for some values of l are

h02 ¼ 1; h03 ¼
1

6
; h04 ¼

1

28
: ð201Þ

It will also be worthwhile to compare this with other
calculations of black hole surficial Love numbers, referred
to as the “shape” Love numbers hl by Damour–Lecian and
Poisson–Landry [19,20]. Their approach is based on a study
of the static, axisymmetric Weyl solution for two black
holes. The horizon distortion there is defined in terms of the
moments of the Gaussian curvature of the horizon, while the
external tidal field is taken to be the external gravitational
potential (due to the other black hole) at the unperturbed
location of the horizon. The shape Love number is the ratio
between these, and it leads to the following result:

hl ¼
lþ 1

l − 1

ðl!Þ2
2ð2lÞ! : ð202Þ

While these are similar to the h0l (e.g., both decay rapidly
with increasing l), they are not identical:
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h0l
hl
¼ 2ðlþ 2Þ

l
: ð203Þ

It is not surprising that the two results differ, and in fact the
difference can be understood just as a different scaling of
the potential and scalar curvature components with l. In this
work, Ψ̂2 serves a double role: at the horizon, it provides the
distortion of the horizon geometry, while asymptotically it
yields the external tidal potential. We have accordingly used
it to define surficial Love numbers.
On the other hand, Refs. [19,20] use the external

potential at the location of the worldline (in the absence
of the black hole) instead of the asymptotic form of Ψ̂2.
Note that in our case, we can obtain the external potential
also by taking the limit of a vanishingly small black hole,
i.e., c → 0, for fixed r [116]. Once again, this will select the
n ¼ l − 2 term in Eq. (156) as the dominant one. Moreover,
Refs. [19,20] also use different conventions. They take the
external potential to be of the form

X
l

rl

lðl − 1Þ fl; ð204Þ

where fl is an angular function (ignoring constant
l-independent terms). On the other hand, the perturbation
of the scalar curvature at the horizon is taken to be of
the form

X
l

4ðlþ 2Þ
l

hlRl−2fl: ð205Þ

We thus find different l-dependent factors in these expan-
sions compared to our results, and this also affects the
definition of the Love numbers. It is easy to verify that this
accounts for the differences in the Love number definitions
and that we recover the results given in [19,20] for hl if we
were to use these redefinitions.
As we have mentioned earlier, the field multipole

moments are believed to be important for the gravitational
wave signal and have thus justifiably attracted greater
attention. We have also argued above that the systematic
uncertainties in these should be negligible for current
gravitational wave observations. Nonetheless, for loud
events in the next-generation detectors, where precision
tests of general relativity will be especially interesting,
these uncertainties might need to be taken into account.
Nevertheless, can we make a case for the relevance of the
surficial Love numbers? Here we note that it is in fact now
common in numerical relativity to calculate black hole
masses and spins from surface measurements at horizons
following Eqs. (11) and (12) (see, e.g., [67]). These turn out
to be reliable even in dynamical situations close to the
merger. If one were to study tidal deformabilities in
numerical simulations, it would be difficult in practice to

work in the mass-centered coordinate system, which is
assumed in all of the current analytical work. On the other
hand, surface deformations of horizons and the surficial
multipole moments are much easier to compute in these
simulations [30]. Since the multipole moments determine
the near horizon metric as we have seen here, it is plausible
that they could appear in the gravitational waveform as well,
though it is not yet clear how. For the purposes of both high-
precision gravitational wave astronomy and numerical
studies, it would therefore be of interest to explore if the
surficial Love numbers can be measured directly from
gravitational wave signals.

VIII. CONCLUSION

In this work, we have considered tidal deformations of
slowly spinning black holes and we have calculated the field
and surficial Love numbers. Similar results have appeared
in the literature previously but what is new here is the
application of the notions of isolated horizons (and the
Newman-Penrose formalism) to the problem. This yields
the near horizon geometry in greater detail than before and
provides us with the metric, spin coefficients, and curvature
components. Moreover, this approach clarifies in various
places the role of the horizon geometry and the various
assumptions commonly employed in these calculations. For
example, requiring time independence at the horizon and the
radiation content already imposes strong restrictions on the
allowed tidal perturbations of the Weyl tensor component
Ψ2. Apart from calculations of Love numbers and the
relation between field and surficial deformations that we
have focused on, these results can help in further applica-
tions of the near horizon geometry. These include the effect
on the light ring, particle orbits, black hole shadows, and
construction of initial data. The extension to a general Kerr
black hole with arbitrary spins is, in principle, a straightfor-
ward extension of this work and will be presented else-
where. Moreover, it should also be possible to include
additional fields within alternate theories of gravity that
admit black hole solutions.
This work can be extended in several useful directions

and we mention a few here. The first is to extend the
perturbative framework to include small amounts of infal-
ling radiation, i.e., nonvanishing Ψ0 at the horizon. In the
present work, our boundary conditions impose that the
horizon is precisely nonexpanding and this should be
relaxed. A nonexpanding horizon can indeed be perturbed
by including infalling radiation to linear order [58], and
fluxes and charges can be computed. This would allow, for
instance, to explore the connection between the horizon
geometry and the tidal heating [117]. The characteristic
formulation can be extended to encompass this situation.
This analysis would open a way to an analytical study of
correlations between the outgoing radiation far away from
the black hole (i.e., Ψ4 on N ) and the ingoing flux at the
horizon (i.e., Ψ0 at Δ), thus providing a link between
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gravitational wave observations and horizon dynamics. This
has previously been investigated as well in numerical
studies (see, e.g., [28,29,118–120]).
The second avenue for future applications is in extracting

gauge invariant information from numerically computed
binary black hole spacetimes. In a numerical simulation, it is
generally useful to keep track of black hole mass, angular
momentum, and higher multipole moments. Now in a
binary black hole merger, we will have a regime late in
the inspiral (but before the merger) when the two black
holes are sufficiently distorted due to the tidal effects of its
companion. Moreover, numerical results show that, some-
what surprisingly, the two horizons are in fact close to
isolated in this regime with insignificant area increase [56].
Thus, the results of this work should be applicable and it
should be possible to model the near horizon spacetime in a
characteristic formalism like we have done here. A suc-
cessful completion of this program should lead to more
insights in the binary black hole problem.
We finally speculate on a potential application in

gravitational wave astronomy. An important goal of gravi-
tational wave astronomy is to be able to distinguish
between black hole and neutron stars on the basis of the
gravitational Love number measurements (see, e.g., [110]);
vanishing gravitational Love numbers are taken to be
signatures of black holes while, for neutron stars, gravita-
tional Love number measurements are employed to infer
the equation of state for neutron star matter. As discussed in
Sec. VII, there might be a role for the surficial Love
numbers in the late inspiral where we may not have access
to the gravitational Love numbers. In this regime, the
gravitational wave signal might carry an imprint of
the surficial Love numbers. This is likely not important
for the currently operating gravitational wave detectors, but
might be relevant for high-precision measurements with the
next generation observatories.
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APPENDIX A: NOTATION, CONVENTIONS,
AND SOME BASIC FORMULAS

To aid the reader in following the main text, in this
appendix we collect some of the basic formulas and
notation used throughout this paper. There are cases where
the same symbol is used for different objects, and need to
be understood in context. For example,Δ is the null surface
representing a NEH/WIH and it is also the directional
derivative along na: Δ ¼ na∇a.

(i) All manifolds and fields are assumed to be smooth
unless stated otherwise. The spacetime metric is gab

with signature ð−þþþÞ. The spacetime derivative
operator compatible with gab is∇a, and the Riemann
tensor is defined via 2∇½a∇b�Xc ¼ Rabc

dXd, the
Ricci tensor is Rab ¼ Racb

c, and Ricci scalar is
R ¼ gabRab. We use the usual notation for symmet-
rization and antisymmetrization of indices XðabÞ ¼
1
2
ðXab þ XbaÞ, and X½ab� ¼ 1

2
ðXab − XbaÞ.

(ii) Isolated horizon: Δ ∼ Δ̃ × R is the null surface
representing the horizon while Δ̃ is the “base space”
of spherical topology obtained by taking the quotient
by the null generators.

(iii) Quantities with a ∼ represent fields on either Δ̃ or a
cross section of the horizon. Thus, ðqab; ϵab;ωaÞ are,
respectively, the metric, volume two-form, and
connection one-form on Δ, while ðq̃ab; ϵ̃ab; ω̃aÞ
are, respectively, the corresponding quantities on
Δ̃ or projected onto a cross section S of Δ.

(iv) The Newman-Penrose null tetrad is ðl; n; m; m̄Þ,
with the corresponding directional derivatives
ðD;Δ; δ; δ̄Þ. While these are defined in a neighbor-
hood of the horizon following our construction of
the near horizon geometry, when referring to the
horizon, the vector ma lives on Δ̃ or it is tangent to a
cross section ofΔ. Similarly, la is a null normal toΔ
while na is the one-form orthogonal to cross sections
of Δ.

(v) Quantities on unit two-spheres. We shall frequently
deal with a two-manifold S of spherical topology,
and we often work with complex coordinates ðz; z̄Þ
on S. The metric on a unit two-sphere is

ds2 ¼ 2

P2ðz; z̄Þ dzdz̄: ðA1Þ

For a “round” two-sphere, we denote P by P0 and

P0 ¼
1ffiffiffi
2
p ð1þ zz̄Þ: ðA2Þ

For a sphere of area-radius R, we need to modify
P → P=R in all the expressions appearing in the
rest of this appendix. The complex null one-form
ma and the vector ma (satisfying m · m̄ ¼ 1) are,
respectively,

m ¼ 1

P
dz; ma

∂a ¼ P
∂

∂z̄
: ðA3Þ

Its exterior derivative is useful:

dm ¼ ∂P
∂z̄

m ∧ m̄: ðA4Þ

The volume two-form is ϵ̃ ¼ im ∧ m̄, and the
Hodge dual of a one-form is ⋆Xa ¼ ϵ̃a

bXb. Note
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that ⋆ma ¼ ima and ⋆⋆X ¼ −X. As an example,
for ω̃a ¼ πma þ π̄m̄a, its dual is

⋆ω̃a ¼ iπma − iπ̄m̄a: ðA5Þ

(vi) Covariant derivatives on S are encapsulated by a
single complex number which, in the Newman-
Penrose notation is α − β̄ which has been called
a in the main text. This is easily calculated using
δm ¼ ðβ − ᾱÞm which implies

β − ᾱ ¼ m̄aδm ¼ m̄amb∇bma ðA6Þ

¼ m̄ambð∇bma −∇ambÞ ¼ −
∂P
∂z̄

: ðA7Þ

(vii) The ð operator. We have defined the ð operator in
Eqs. (30)–(33). Here we give some basic expressions
for its action on the spin coefficient π, which is the
quantity of most interest for us in this regard. First,
using π ¼ m̄aω̃a, we see that π has spin weight −1
so that ðπ will have spin weight 0. From the
definition it follows that

ðπ ¼ m̄aδω̃a ¼ δπ −
∂P
∂z̄

π ¼ P2
∂

∂z̄

�
π

P

�
: ðA8Þ

(viii) The Laplace-Beltrami operator. For the metric given
in Eq. (A1), the Laplace-Beltrami operator is de-
noted ΔP. Acting on a scalar f it can be directly
calculated as

ΔPf ≔
1ffiffiffĩ
q
p ∂

∂xa

� ffiffiffĩ
q

p
q̃ab

∂f
∂xb

�
¼ 2P2

∂
2f

∂z∂z̄
: ðA9Þ

From the definitions above, this can also be
written as

ΔPf ¼ −⋆d⋆df: ðA10Þ

Similarly, the definition for the divergence of ω̃a and
some alternate expressions used for it in the main
text are

divω̃ ¼ 1ffiffiffĩ
q
p ∂

∂xa
ð

ffiffiffĩ
q

p
q̃abω̃bÞ ðA11Þ

¼ −⋆d⋆ω̃ ¼ ðπ þ ð̄ π̄ : ðA12Þ

APPENDIX B: SPIN-WEIGHTED SPHERICAL
HARMONICS

The spin-weighted spherical harmonics are defined in
[85] as

sYlm ¼
almffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sÞ!ðlþ sÞ!p ð1þ zz̄Þ−l

×
X
p

�
l − s

p

��
lþ s

pþ s −m

�
zpð−z̄Þpþs−m ðB1Þ

and alm ¼ ð−1Þl−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!ðl−mÞ!ð2lþ1Þ

4π

q
for the complex coor-

dinates fz; z̄g, where

l ≥ 0; −l ≤ m ≤ l; jsj ≤ l: ðB2Þ

In Table I, we present explicitly the three lowest
harmonics l ¼ 1; 2; 3 with m ¼ 0 for the spins s ¼ 0, 1,
and 2, which appear in our expressions for the tidally
perturbed Schwarzschild isolated horizon (150)–(152).
The spin-weighted spherical harmonics with negative spin
can be easily obtained from Table I using (see for instance
Eq. (C2) in Ref. [121])

sȲlm ¼ ð−1Þmþs−sYl−m: ðB3Þ

The operator ð is defined in the main text in
Eqs. (30)–(33) for an arbitrary derivative operator δ.
In practice, we used the angular derivative operator of
the unperturbed spacetime (Schwarzschild) to compute
the expressions in Table I, i.e.,

δ ¼ P∘
ðrþ cÞ ∂z; ðB4Þ

where

P∘ ¼
1ffiffiffi
2
p ð1þ zz̄Þ: ðB5Þ

At the horizon r ¼ 0, this operator is simply δ ¼ 1þzz̄ffiffi
2
p

c
∂z. It

is useful to notice that we can express the Laplacian in
terms of the ð and ð̄ operators for a spin-0 quantity

ΔPη ¼ 2ð̄ðη: ðB6Þ

Finally, we recap some of the most important properties of
the spin-s spherical harmonics summarized in [85]:

TABLE I. Spin-weighted spherical harmonics in the complex
coordinates fz; z̄g for m ¼ 0, l ¼ 1, 2, 3, and s ¼ 0; 1; 2.

sYlm l ¼ 1 l ¼ 2 l ¼ 3

s ¼ 0
ffiffiffiffi
3
4π

q
zz̄−1
zz̄þ1

ffiffiffiffi
5
4π

q
1−4zz̄þz2 z̄2
ðzz̄þ1Þ2

ffiffiffiffi
7
4π

q
−1þ9zz̄−9z2 z̄2þz3 z̄3

ðzz̄þ1Þ3
s ¼ 1

ffiffiffiffi
3
4π

q
z̄

1þzz̄
ffiffiffiffi
15
2π

q
z̄ðzz̄−1Þ
ðzz̄þ1Þ2

ffiffiffiffi
21
π

q
z̄ð1−3zz̄þz2 z̄2Þ
ð1þzz̄Þ3

s ¼ 2
ffiffiffiffi
15
2π

q
z̄2

ð1þzz̄Þ2 −
ffiffiffiffiffiffi
105
8π

q
z̄2 1−2zz̄
ð1þzz̄Þ3
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ðsYlm ¼
1ffiffiffi

2
p ðrþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm; ðB7Þ

ð̄sYlm ¼ −
1ffiffiffi

2
p ðrþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm; ðB8Þ

ð̄ðsYlm ¼ −
ðl − sÞðlþ sþ 1Þ

2ðrþ cÞ2 sYlm: ðB9Þ

APPENDIX C: THE ASYMPTOTIC BEHAVIOR
OF Ψ̂2 AND Û

In the following, we analyze in detail the asymptotic
behavior of Ψ̂2 and Û, which have been summarized in
Sec. VA. For convenience, let us take the r-dependent
piece of Ψ̂2,

Il ¼
Fl
1ðrÞ

rþ c
; ðC1Þ

defined in Eq. (149). Since the first argument in both
hypergeometric functions is negative for l ≥ 2, the hyper-
geometric series has a finite number of terms and converges
for arbitrary argument, i.e., we can use

2F1½−m; b; c; z� ¼
Xm
n¼0
ð−1Þn

�
m

n

� ðbÞn
ðcÞn

zn; ðC2Þ

wherem ≥ 0 and ðbÞn ¼ Γ½bþ n�=Γ½b� is the Pochhammer
symbol (see for instance chapter 9.1 in [122]) to rewrite
Il as

Il ¼
1

rþ c

�
ðl − 1Þ

Xl−1
n¼0

�
l − 1

n

� ðlþ 2Þn
ð1Þn

�
r
c

�
n

þ3
Xl−2
n¼0

�
l − 2

n

� ðlþ 2Þn
ð1Þn

�
r
c

�
n
�
: ðC3Þ

Extracting the last term from the first sum, and simplifying
the coefficients we can write the above expression as

Il ¼
1

rþ c

�
Al

�
r
c

�
l−1
þ
Xl−2
n¼0

Bn;l

�
r
c

�
n
�
; ðC4Þ

where

Al ¼
ð2lÞ!

ðl − 2Þ!ðlþ 1Þ! ;

Bl;n ¼
ðlþ nþ 1Þ!ðl2 þ l − 3n − 2Þ
ðl − n − 1Þ!n!n!lðl2 − 1Þ : ðC5Þ

From this expression, we can conclude that in the large r
limit Il has the following r powers:

lim
r→∞

Il ∼ rl−2; rl−3;… r0;
1

r
: ðC6Þ

The subdominant asymptotic term 1=r would yield a
logarithmic term in the asymptotic behavior of Û (recall
that Û ¼ R

dr
R
drReΨ̂2), implying the presence of nonzero

field Love numbers for an isolated horizon. However, as we
will see now, we can factor out a term (rþ c) from the
numerator of Il, i.e., the numerator of Il can be written as

ðrþ cÞ
Xl−2
n¼0

Cn;l

�
r
c

�
n
: ðC7Þ

The simplest way to show this statement is by using the
following trick: the numerator of Il,

Nl ¼ Al

�
r
c

�
l−1
þ
Xl−2
n¼0

Bn;l

�
r
c

�
n
; ðC8Þ

is just a polynomial in r of degree l − 1. As such, it is easy
to test whether r ¼ −c is a root of this polynomial. If it is,
then we can rewrite this expression as (C7). Of course, our
coordinate r ≥ 0, so it cannot take the value −c; this is
merely a trick to show that we can factorize this term. This
allows us to analyze the correct asymptotic behavior of Ψ̂2

and Û. Then,

Nlðr ¼ −cÞ ¼ Alð−1Þl−1 þ
Xl−2
n¼0

Bn;lð−1Þn: ðC9Þ

Using Eq. (C5) we can sum the Bn;l,

Bl ¼
Xl−2
n¼0

Bn;lð−1Þn ¼ ð−1Þlðl − 1Þ Γ½1þ 2l�
lðlþ 1ÞΓ½l�2 : ðC10Þ

Combining the above equation with (C5) and (C9), we
conclude

Nlðr ¼ −cÞ ¼ 0: ðC11Þ

Consequently, Il can be written as

Il ¼
Xl−2
n¼0

Cl;n

�
r
c

�
n

ðC12Þ

with

Cl;0 ¼
Bl;0

c
; Cl;l−2 ¼

Al

c
ðC13Þ

and
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Cl;n ¼
Xn
k¼0
ð−1Þkþn Bl;k

c
; 1 ≤ n ≤ l − 2: ðC14Þ

From Eq. (C12), it is straightforward to see that in the limit
r → ∞, the dominant term goes like rl−2, while the least
dominant term is constant, i.e.,

lim
r→∞

Il ∼ rl−2; rl−3;… r0: ðC15Þ

Finally, combining Eqs. (C13) and (C14) with Eq. (C12),
we find

Il ¼
Xl−2
n¼0

�
r
c

�
n Xn
k¼0
ð−1Þkþn Bl;k

c

¼
Xl−2
n¼0

ðlþ nþ 2Þ!
clðl2 − 1Þðl − n − 2Þ!ðn!Þ2

�
r
c

�
n
: ðC16Þ

Using Eq. (C2), we can rewrite Il in the compact form

Il ¼
ðlþ 2Þ

c 2F1

�
2 − l; lþ 3; 1;−

r
c

�
: ðC17Þ

Integrating this expression twice with respect to r (recall
that Û ¼ R

dr
R
drReΨ̂2), we obtain the radial dependence

of Û,

Jl ¼ r2
ðlþ 2Þ
2c 2F1

�
2 − l; 3þ l; 3;−

r
c

�
: ðC18Þ

Using again Eq. (C2), we can easily analyze the asymptotic
behavior of Û. In series form Jl reads as

Jl ¼
ðlþ 2Þr2

2c

Xl−2
n¼0

�
l − 2

n

� ðlþ 3Þn
ð3Þn

�
r
c

�
n
: ðC19Þ

In the limit of large r, Jl has the dominant term rl and the
least term r2, i.e.,

lim
r→∞

Û∼rl; rl−1;… r2: ðC20Þ
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