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We study the relationship between the standard or extended thermodynamic phase structure of various
anti–de Sitter black holes and the Lyapunov exponents associated with the null and timelike geodesics. We
consider dyonic, Bardeen, Gauss-Bonnet, and Lorentz-symmetry breaking massive gravity black holes and
calculate the Lyapunov exponents of massless and massive particles in unstable circular geodesics close to
the black hole. We find that the thermal profile of the Lyapunov exponents exhibits distinct behavior in the
small and large black hole phases and can encompass certain aspects of the van der Waals type small/large
black hole phase transition. We further analyze the properties of Lyapunov exponents as an order parameter
and find that its critical exponent is 1=2, near the critical point for all black holes considered here.
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I. INTRODUCTION

Chaos theory is a branch of physics and mathematics that
explores the behavior of dynamic systems highly sensitive
to initial conditions, leading to ostensibly random and
unpredictable outcomes. The theory originated from the
pioneering work of mathematician and meteorologist
Edward Lorenz [1,2], who discovered that small changes
in the initial conditions could lead to vastly different
outcomes in nonintegrable systems, giving rise to the
famous term “butterfly effect”. It has applications in many
scientific fields and is also extensively used in the nascent
field of holography [3–15]. For a summary of recent
developments in holographic chaos, let us refer to the
review paper [16]. Central to chaos theory is the concept
of the Lyapunov exponent [17], which measures the rate
of divergence or convergence of nearby trajectories in a
dynamical system [18]. Positive Lyapunov exponents
indicate divergence, suggesting sensitive dependence on
initial conditions, which is synonymous with chaos, while

negative exponents imply stability and convergence.
Lyapunov exponents provide a quantitative measure of
predictability in a system; higher values signify greater
unpredictability and chaotic dynamics. This mathematical
tool has applications across various scientific disciplines,
including physics, biology, economics, and meteorology,
helping researchers understand and model the inherent
complexity of natural phenomena [19–23].
There has been a significant interest in investigating phase

transitions using chaos diagnosis tools in recent years. This
investigation extends to both classical and quantumdomains
andhas attracted great interest inmany areas of physics, such
as condensed matter and quantum information physics. The
prime examples include the interplay of chaos and the
quantum phase transition in the Dicke model [24], Sachdev-
Ye-Kitaev model (SYK) and its variants [25,26], long-range
models of coupled oscillators [27], finite Fermi and quantum
dot systems [28,29], etc. Two diagnostic tools for quantum
chaos, out-of-time order correlators (OTOCs) and Krylov
complexity have also gathered prominence as subjects of
current scholarly interest [30–34].
Lately, this correlation of chaos and phase transitions has

also left its footprints in general relativity and black hole
physics. The bona fide tabletop laboratories that investigate
such correlation between chaos and phase transition are the
black holes in AdS (anti–de Sitter) spaces. In particular,
black holes in AdS spaces are not only usually thermody-
namically stable but also undergo interesting phase tran-
sitions, such as Hawking/Page or small/large black hole
phase transitions, and exhibit a rich phase structure [35,36].
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The latter transition, in particular, is of great interest as it
generally involves a first-order transition line terminating at
a second-order critical point, with critical exponents iden-
tified with the mean-field type, thereby emulating the
standard van der Waals type phase transition of the
liquid-gas system in black hole context. These interesting
phase transitions are not typically associated and observed
with their asymptotically flat counterparts. After the initial
finding of [36] on charged RN-AdS black hole, such small/
large phase transitions have been observed in various AdS
gravity models in different contexts. The examples are
higher curvature Gauss-Bonnet black holes [37,38], dyonic
black holes [39–46], nonlinear electrodynamics based
regular Bardeen black holes [47], R-charged gauge super-
gravity inspired STU black holes [48–51], hairy lower-
dimensional black holes [52], quasitopological gravity
[53], fðRÞ gravity [54], etc. The phase structure of AdS
black holes becomes even more interesting in the context of
extended phase space thermodynamics, where the cosmo-
logical constant is interpreted as thermodynamic pressure
and treated as another thermodynamic variable [55–59].
See Refs. [60,61] for reviews on this interesting topic.
Free energies are the standard approach to analyzing the

black hole phase transitions. Lately, researchers have
actively sought to explore phase transitions of black holes
through indirect methods; see for instance [62–79] etc. In
such indirect methods, the physical quantities exhibit both
multivaluedness and discontinuity at the phase transition
point, analogous to the thermodynamic variables in ordi-
nary thermodynamics. Lyapunov exponents are another
step in searching for indirect black hole phase transition
probes. Indeed, the fact that recent studies have actively
demonstrated a close relationship between the imaginary
part of quasinormal modes (QNMs) and the Lyapunov
exponents of unstable null geodesics [80,81] and that
QNMs do exhibit noticeable changes near the phase
transition indicates that pronounced modifications may
occur in the structure of Lyapunov exponents near the
black hole phase transition.
Intriguing investigations have recently started on the

correlation of black hole phase transition and Lyapunov
exponent [82–87]. It has been observed that the structure of
black hole phase transitions is imprinted on the Lyapunov
exponents of massive and massless probe particles moving
around the black hole backgrounds in unstable circular
geodesics. For example, we have shown a time slice of
unstable circular geodesics of massive particles around a
Schwarzschild black hole in Fig. 1. In particular, the
Lyapunov exponent exhibits multivaluedness as a function
of temperature, a scenario usually associated with the phase
transition, and its thermal profile simulates the thermal
profile of black hole entropy. Interestingly, the Lyapunov
exponent also becomes single-valued at some critical model-
dependent parameter value, thereby indirectly encoding the
information about the second-order critical point.

This is fascinating, considering that in the context of
gauge/gravity duality, the small/ large black hole phase
transition in AdS spaces corresponds to some largeN phase
transition, N being the number of colors, such as confined/
deconfined phase transition, in the dual boundary field
theory at strong couplings.1 Therefore, the behavior of the
Lyapunov exponent provides another way to look at the
structure of confined/deconfined phases at strong cou-
plings. This, in turn, may also be useful for studying
chaotic properties of strongly coupled QCD systems, an
issue not directly accessible via standard computations like
lattice QCD.
In the present work, we further test this interplay of black

hole phase transition and Lyapunov exponents in various
AdS black holes. Specifically, we concentrate on dyonic
black holes, Bardeen black holes, Gauss-Bonnet black
holes, and massive gravity black holes. These choices of
black holes are motivated by various physical reasons. For
instance, the phase structure of dyonic black holes, which
contain additional magnetic charge, is much richer than
RN-AdS black holes [39–46]. Hence, it would be interest-
ing to see how the magnetic charge modifies the thermal
profile of the Lyapunov exponent. Similarly, the every-
where regular Bardeen black holes are sourced by nonlinear
electrodynamics and do not contain any curvature singu-
larity [89]. Therefore, it would be interesting to see how the
Lyapunov exponent behaves near the phase transition
involving regular black holes. On the other hand, the
Gauss-Bonnet black holes are the simplest prototype of

FIG. 1. This shows a time slice of the unstable circular
geodesics of the massive particles designated by solid red circles,
solid yellow circles, and solid blue circles (with slightly perturbed
specific initial positions and velocities) around a Schwarzschild
black hole (with massM ¼ 0.5 in natural units). The black sphere
in the center represents the black hole.

1The small black hole phase does not correspond to the
confined phase; however, it approximately shares many of its
features. For more discussion on this; see Ref. [88].
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higher-order curvature gravity theories [90,91]. Such higher
curvature theories are expected to play an essential role in
quantum gravity and arise naturally from the low-energy
expansion of string theory [92]. The Gauss-Bonnet black
holes also exhibit a van der Waals-type phase transition,
and it is undoubtedly interesting to investigate whether the
Lyapunov exponent can probe such a phase transition in
higher curvature gravity theories or not [37,38,84]. Similarly,
massive gravity theory corresponds to a non-trivial modifi-
cation of general relativity in which the graviton acquires a
mass. This modification changes general relativity by weak-
ening it at large scales. Still, it leads to the exact prediction as
general relativity at small scales [93–99]. The thermody-
namics of AdS massive gravity further reveals novel phase
transitions in this system [100–105].
In all the above-mentioned black holes, a critical value

of a parameter (usually the black hole charge) appears
below, and these black holes exhibit the small/large black
hole phase transition. However, above this critical value,
no such phase transition occurs. This can be true with and
without extended thermodynamics and in different ensem-
bles. We compute the Lyapunov exponent associated
with both massive and massless particles propagating in
these black hole backgrounds and find that, in all cases,
the thermal profile of the Lyapunov exponent captures the
essence of the phase transition. In particular, the thermal
profile of the Lyapunov exponent is multivalued for
smaller parameter values, whereas it is single-valued
for larger parameter values. Interestingly, this structure
of the Lyapunov exponent also allows us to pinpoint the
critical value of the parameter, thereby indirectly provid-
ing information about the second-order critical point.
Following [84], we further define the Lyapunov exponent
and compute the corresponding critical exponent at the
phase transition point. This critical exponent has a value
of one-half in all black hole backgrounds considered here.
This is true for both standard and extended-phase space
thermodynamics.
The paper is organized as follows. In Sec. II, we discuss

the methodology and main recipe for computing the
Lyapunov exponents associated with massless and massive
particles. We then discuss the black hole phase transition
and its interplay with the Lyapunov exponent (both for
massless and massive particles) for various charged black
holes in Sec. III. The use of discontinuity in the Lyapunov
exponent as an order parameter is illustrated in Sec. IV.
Finally, we conclude our paper by highlighting the princi-
pal results in Sec. V.

II. METHODOLOGY

In this section, we briefly establish the calculation
relating the principal Lyapunov exponent λ of massless
and massive particles to the effective potential of unstable
orbits. We will mainly follow the algorithm suggested
in [80,82], and more details can be found there. For this

purpose, we start with the following spherically symmetric
static AdS black hole background:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ
þ r2½dθ2 þ sin2θðdϕ2 þ sin2ϕdψ2Þ�; ð1Þ

where fðrÞ is the blackening function. Here, the metric is
written in five dimensions. However, we will mainly
concentrate on unstable geodesics lying on the equatorial
plane with θ ¼ ϕ ¼ π=2, in which case the expression of
the particle Lagrangian, and hence the associated principal
Lyapunov exponent, will become the same in four and five
dimensions. Also, we have taken the coefficients of gtt and
grr to be reciprocal, as in the case of dyonic, Bardeen,
Gauss-Bonnet, and massive gravity black holes.
We follow the procedure used by Chandrasekhar [106] to

calculate the Lagrangian of the particle’s geodesic motion
for the above spacetime (1),

2L ¼ −fðrÞṫ2 þ ṙ2

fðrÞ þ r2θ̇2 þ r2sin2θϕ̇2

þ r2sin2θsin2ϕψ̇2; ð2Þ

where a dot represents a derivative with respect to the
proper time (τ). The canonical momenta can be derived
from the Lagrangian as

pt ¼
∂L
∂ṫ

¼ −fðrÞṫ ¼ −E; ð3Þ

pr ¼
∂L
∂ṙ

¼ ṙ
fðrÞ ; ð4Þ

pθ ¼
∂L

∂θ̇
¼ r2θ̇; ð5Þ

pϕ ¼ ∂L

∂ϕ̇
¼ r2sin2θϕ̇; ð6Þ

pψ ¼ ∂L
∂ψ̇

¼ r2sin2θsin2ϕψ̇ ¼ L; ð7Þ

where E and L are the particle’s conserved energy and
angular momentum, respectively. Using the above rela-
tions, the Hamiltonian H of the particle can be written as

H ¼ ptṫþ prṙþ pθθ̇ þ pϕϕ̇þ pψ ψ̇ − L; ð8Þ

which simplifies to

2H ¼ −Eṫþ ṙ2

fðrÞ þ r2θ̇2 þ r2sin2θϕ̇2 þ Lψ̇ : ð9Þ
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The Hamiltonian is also equal to the norm of the tangent
vector to the particle’s worldline. This can be verified as

ημη
μ¼gμν

dxμ

dτ
dxν

dτ
¼gttṫ2þgrrṙ2þgθθθ̇

2þgϕϕϕ̇
2þgψψ ψ̇2

¼−fðrÞṫ2þ ṙ2

fðrÞþr2θ̇2þr2sin2θϕ̇2þr2sin2θsin2ϕψ̇2

¼−Eṫþ ṙ2

fðrÞþr2θ̇2þr2sin2θϕ̇2þLψ̇

¼ϵ: ð10Þ

Note that ϵ ¼ −1, respectively 0 corresponds to massive,
respectively massless particles moving along timelike,
respectively null geodesics. Now, restricting our attention
to the equatorial plane θ ¼ ϕ ¼ π=2, we have

ϵ ¼ −Eṫþ ṙ2

fðrÞ þ Lψ̇ ; ð11Þ

which can be rewritten in the form of a radial equation of
motion as

ṙ2 þ VeffðrÞ ¼ E2; ð12Þ

where we introduce the effective potential,

VeffðrÞ ¼ fðrÞ
�
L2

r2
− ϵ

�
: ð13Þ

To determine the radius (r0) of an unstable circular
geodesic, we use the conditions,

V 0
effðr0Þ ¼ 0; V 00

effðr0Þ < 0: ð14Þ

Now, using Eq. (13) we can rewrite the Hamiltonian (8) as

H ¼ VeffðrÞ − E2

2fðrÞ þ fðrÞp2
r

2
þ ϵ

2
; ð15Þ

which gives us the following equations of motion:

ṙ ¼ fðrÞpr;

ṗr ¼ −
V 0
effðrÞ
2fðrÞ −

f0ðrÞp2
r

2
þ VeffðrÞ − E2

2f2ðrÞ f0ðrÞ: ð16Þ

Now, we linearise the above equations around the unstable
circular orbit at r ¼ r0, which gives us,

 dðδrÞ
dτ

dðδprÞ
dτ

!
¼ K

�
δr

δpr

�
; ð17Þ

where K is the linear stability matrix [107] and is given by,

K ¼
�

0 K1

K2 0

�
; ð18Þ

The values of K1 and K2 can be found using Eqs. (12)
and (14) and are given as,

K1 ¼ fðr0Þṫ−1;

K2 ¼ −
V 00
effðr0Þ
2fðr0Þ

ṫ−1: ð19Þ

The relation which gives the principal Lyapunov exponent
for the circular orbits is then derived as [80]

λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
: ð20Þ

Using the values ofK1 andK2 from Eq. (19) in Eq. (20) and
dropping the � sign, we get

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
V 00
effðr0Þ
2ṫ2

r
: ð21Þ

Now, we use Eqs. (12) and (14) to find the expression of
ṫ in both massless and massive cases. For the massless
particles (ϵ ¼ 0), we find that

ṫ ¼ L

r0
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; ð22Þ

which gives us the Lyapunov exponent of the massless
particle in an unstable circular orbit (21) as

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
r20fðr0Þ
2L2

V 00
effðr0Þ

r
: ð23Þ

For the massive particles (ϵ ¼ −1), we have

ṫ ¼ 2

2fðr0Þ − r0f0ðr0Þ
; ð24Þ

from which we can write the formula for the Lyapunov
exponent of the massive particles in an unstable circular
orbit (21) as

λ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0f0ðr0Þ − 2fðr0ÞÞV 00

effðr0Þ
q

: ð25Þ

III. THERMODYNAMICS AND PHASE
STRUCTURE OF CHARGED BLACK HOLES

BASED ON LYAPUNOV EXPONENTS

In this section, we will review the thermodynamic
properties of four important classes of black holes, namely
dyonic, Bardeen, Gauss-Bonnet, and massive gravity in
AdS spaces, and test the conjectured relationship between
phase transitions and Lyapunov exponents.

SHUKLA, DAS, DUDAL, and MAHAPATRA PHYS. REV. D 110, 024068 (2024)

024068-4



A. Dyonic black holes

Because of electromagnetic duality in four dimensions, it
is feasible to obtain black hole solutions with electric and
magnetic charges. Such black holes are called dyonic black
holes and can be considered as the simplest generalizations
of RN-AdS black holes [39,41–44]. The magnetic charge
not only enriches the thermodynamic phase diagram of
RN-AdS black holes but also acquaints the dual boundary
theory with a background magnetic field, thereby making
these solutions relevant for the holographic study of, for
instance, the Hall effect [40], ferromagnetism [46] etc.
Dyonic black holes are solutions of the Einstein-

Maxwell gravity system. The details of the solutions can
be found in [46]. Its line element reads as

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð26Þ

where the blackening function fðrÞ is given by

fðrÞ ¼ 1þ r2

l2
−
2M
r

þ ðq2e þ q2mÞ
r2

; ð27Þ

where qe, qm, l, and M are the electric charge, magnetic
charge, AdS radius and the mass of the black hole,
respectively. From the gauge field (A) solution,

A ¼ qe

�
1

rh
−
1

r

�
dtþ qm cos θdϕ; ð28Þ

one can obtain the relation between the electric potential
(ϕe) and charge qe,

ϕe ¼
qe
rh

; ð29Þ

where rh is the radius of the black hole event horizon
specified from the condition fðrhÞ ¼ 0. The entropy (S) of
the dyonic black hole is

S ¼ πr2h
G4

; ð30Þ

and its temperature is given by

T ¼ f0ðrhÞ
4π

¼ 1

4πr3h

�
−ϕ2

er2h þ
3r4h
l2

þ r2h − q2m

�
; ð31Þ

where G4 is the four-dimensional Newton’s constant. We
set G4 ¼ 1 from here on.
We are mainly interested in the dyonic black hole

thermodynamics in the grand-canonical ensemble, where
we keep the potential ϕe fixed. The corresponding Gibbs

free energy can be obtained from the standard holographic
renormalisation procedure and is given by

G ¼ M − TS − ϕeqe

¼ 1

4G4

�
−ϕ2

erh −
r3h
l2

þ 3q2m
rh

þ rh

�
: ð32Þ

Before we explicitly discuss the phase structure of the
dyonic black hole in the grand-canonical ensemble, it is
important to mention that here, we are treating the magnetic
field as a constant parameter and not a thermodynamic
variable. This is a consistent thermodynamic setup as it
leads to standard thermodynamic relations. Moreover, the
fact that the pressure is equal to the negative of Gibbs free
energy, i.e., P ¼ −G, also signifies the correctness of this
thermodynamic setup.
Below, we discuss the standard thermodynamics of the

dyonic black hole in the grand-canonical ensemble. One
can perform a similar analysis in the extended phase space
as well. Since the thermodynamic results of the extended
phase space are quite identical to the above-discussed
results, we, therefore, concentrate only on standard thermo-
dynamics without losing any generality.
The thermodynamic phase structure of the dyonic black

hole in the grand-canonical ensemble is shown in Fig. 2.2

For jϕej < 1, there appear three black hole branches—
large, intermediate, and small—for small values of qm.
These three branches are explicitly shown in Fig. 2(c). The
large black hole (present when T > T2) and small black
hole (appear when T < T1) phases are thermodynamically
stable, whereas the intermediate phase (present when
T1 ≤ T ≤ T2) is thermodynamically unstable. The behav-
ior of the corresponding Gibbs free energy as a function of
temperature is shown in Fig. 2(b). It exhibits the standard
swallow-tail-like structure, a bona fide behavior generally
associated with the first-order phase transition. The free
energy is single-valued when T < T1 or T > T2 is multi-
valued in the temperature range T1 ≤ T ≤ T2. The Gibbs
free energy of small and large black hole phases also
exchange dominance as the temperature varies. In par-
ticular, the small black hole phase is thermodynamically
favored at low temperatures, whereas the large black hole
phase is favored at high temperatures. This suggests
a phase transition between the large and small black
hole phases. This phase transition happened at T ¼ Tp.
The free energy of the intermediate phase is always
higher than the small and large black hole phases and is,
therefore, always disfavored.
By increasing qm but keeping ϕe fixed, there appears a

critical value qmc above which the three black hole
branches merge to form a single black hole branch that
remains stable at all temperatures. This implies that the

2Here we have set l ¼ 1 and G4 ¼ 1.
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small/large black hole phase transition continues to exist
for qm < qmc, whereas no such phase transition appears
above qmc. Therefore, the qmc defines a second-order
critical point at which the first-order phase transition line
between the small and large black hole phases stops. This
behavior is analogous to the van der Waals-type phase
transition generally seen in liquid/gas systems. Also, note
that the small/large transition temperature Tp decreases
with qm, as can be explicitly seen from Fig. 2.
Moreover, this qmc is a ϕe dependent quantity. The

magnitude of the critical point can be determined from the
condition of the inflection point,

∂T
∂rh

¼ 0;
∂
2T
∂r2h

¼ 0: ð33Þ

This gives us ϕe dependent critical values,

qmc ¼
l
6
ð1 − ϕ2

eÞ; rhc ¼
l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

e

p
ffiffiffi
6

p : ð34Þ

These critical relations are true only for jϕej < 1.
Therefore, the small/large phase transition exists only for
small jϕej < 1, whereas no such phase transition exists for
large jϕej > 1. Let us also mention the special case where
ϕe ¼ 0 and qm ¼ 0 correspond to the AdS-Schwarzschild
black hole. In this case, only the Hawking/Page phase
transition between a stable black hole and thermal-AdS
occurs, and no small/large phase transition appears.
Before explicitly analyzing the Lyapunov exponent

associated with the massless and massive particles moving
in the dyonic black hole background, let us briefly discuss
their effective potential. The expression for the effective
potential (13) using Eq. (27) can be simplified as,

VeffðrÞ ¼
ðr − rhÞðL2 − r2ϵÞðrhðrðrhðrh þ rÞ þ l2 þ r2Þ − l2ϕ2

erhÞ − l2q2mÞ
l2r4rh

; ð35Þ

where L and r are the angular momentum of the particle
and the radius of the particle’s orbit, respectively. The three-
dimensional plot of the effective potential VeffðrÞ as a
function of rh and r is shown in Fig. 3. The 3D plot remains
the same for both the massless and massive particles. Here

we have set L ¼ 20, ϕe ¼ 0.6 and qm ¼ 0.06 for a unit
AdS radius (l ¼ 1).
The curve projected onto the VeffðrÞ ¼ −1500 plane rep-

resents the extrema of the effective potential for the massive
particle (ϵ ¼ −1). The reddish yellow part represents the

FIG. 2. The thermodynamic phase structure of the dyonic black hole. Here, ϕe ¼ 0.6 is used.
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maxima or the radii of the unstable timelike circular
geodesics given by V 0

effðr0Þ ¼ 0 and V 00
effðr0Þ < 0, while

the blueish-white part represents the minima or the radii
of the stable time like circular geodesic given by
V 0
effðr0Þ ¼ 0 and V 00

effðr0Þ > 0. As we increase the rh
slowly, the maxima and the minima shift. At a particular
rh ¼ 0.827, they become equal, represented by the black
line on the curve, after which there are no extrema for the
massive particle. We are only interested in the unstable
circular geodesics, which are important in calculating the
Lyapunov exponents.

1. Massless particles

We now compute the Lyapunov exponent’s thermal
profile associatedwithmassless ormassive particlesmoving
in the dyonic black hole background. For the massless
particle, this can be done using Eqs. (13) and (23). The
Lyapunov exponent as a function of dyonic black holes’
temperature and horizon radius is shown in Fig. 4. Here, the
same color coding and parameter values as in Fig. 2 are used.
When the magnetic charge qm is less than the critical value
qmc, the Lyapunov exponent exhibits multivaluedness in
some temperature range. As we increase T from 0 to T1, λ
decreases gradually, as shown by the blue curve in Fig. 4(a).
At T1, the Lyapunov exponent becomes multivalued.
In particular, in the temperature range T1 ≤ T ≤ T2, there
are two profiles: one for which the Lyapunov exponent
decreases with temperature and one for which it increases
with temperature. The former two profiles appear in the
small and large black hole phases, whereas the latter profile

appears in the intermediate phase. The Lyapunov expo-
nents in the small, intermediate, and large black hole
phases are represented by blue, red, and green lines,
respectively, in Fig. 4(a). The multivalued nature of λ
corresponds to the swallow tail in the G − T diagram. For
convenience, we have also shown the small/large black
hole transition temperature Tp in Fig. 4. The Lyapunov
exponent becomes single-valued for T > T2 when
q < qmc. This behavior is again similar to the free energy
behavior. For large temperatures, the Lyapunov exponent
approaches a constant value.
For q > qmc, when there is no small/large black hole

phase transition, the Lyapunov exponent remains single-
valued for all temperatures. In particular, it gradually
decreases and then attains a constant value as we increase
the temperature. This is shown in Fig. 4(b). The overall
behavior of the Lyapunov exponent as a function of
temperature for different magnetic charge values qm is
shown in Fig. 4(c). Here, we can see that, just like for the
free energy, the thermal profile of the Lyapunov exponent
becomes multivalued for only those values of qm which are
less than qmc. Importantly, this behavior of the Lyapunov
exponent, specifically the transition from multivaluedness
to single-valuedness, correctly pinpoints the second-order
critical point qmc; i.e., the critical point is reflected in the
thermal behavior of the Lyapunov exponent. This suggests
that the information about the thermodynamic phase
structure and transition of dyonic black holes, to some
extent, are encoded in the Lyapunov exponent. For com-
pletion, in Fig. 4(d), we have shown the plot of the
Lyapunov exponent as a function of horizon radius.
Here, the black dot points correspond to the extremal
horizon radius. We observe that the maximum value of λ
decreases as qm increases at the extremal rh. This is true for
all ϕe. Moreover, for large rh, the λ values for different qm
attain a constant value, which is unity for the unit AdS
radius l considered here. This saturation value varies as we
vary the AdS-radius, but it is always unity for a dimension-
less model, i.e., by scaling various variables by l. This is an
interesting result, which is also true in other gravity models
in the following sections, implying some universality in λ.
To gain a comprehensive understanding of how the

magnetic charge impacts the Lyapunov exponent for
massless particles, we have also shown the density plot
of λ in Fig. 5 for two different ϕe values. On the left, we
have fixed the electrical potential ϕe ¼ 0.6, so the result is
similar to that we obtained in Fig. 4(d) but with some extra
details like the continuous decrease of λ as we increase rh
or qm. We get somewhite space in our density plots because
the extremal horizon radius increases as we increase the
magnetic charge, so the allowed range of rh varies for
different qm. One more striking observation is that the
maximum value that λ can reach decreases as we increase
the electrical potential. This can be verified by the above
density plots for two different potentials.

FIG. 3. The 3D plot of the effective potential VeffðrÞ as a
function of horizon radius rh and orbit radius r of the massive
particle when L ¼ 20, ϕe ¼ 0.6, and qm ¼ 0.06. The red and
blue curves projected below correspond to the unstable and stable
equilibria of the circular geodesic, respectively.

INTERPLAY BETWEEN THE LYAPUNOV EXPONENTS AND … PHYS. REV. D 110, 024068 (2024)

024068-7



2. Massive particles

We can similarly compute the thermal behavior of the
Lyapunov exponent associated with the massive particle.
For this, we use Eqs. (13) and (25). Our numerical results

for the Lyapunov exponent are shown in Fig. 6. Here,
we have taken the angular momentum L ¼ 20 for illus-
tration purposes; however, our main results of the
Lyapunov exponent are quite robust for different values

FIG. 4. Lyapunov exponent of the massless particle λ as a function of temperature T and horizon radius rh for the dyonic black hole.
Here, ϕe ¼ 0.6 is used.

FIG. 5. Density plot of λ for the massless particle as a function of the magnetic charge qm and horizon radius rh for the dyonic black
hole. Here fixed ϕe ¼ 0.6 (left) and ϕe ¼ 0.9 (right) are used.
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of L. We again observe that when the magnetic charge qm is
less than the critical value qmc, λ is a multivalued function
of T with three distinct thermal profiles, i.e., in the small
and large stable dyonic black hole background the
Lyapunov exponent decreases with temperature. In con-
trast, the intermediate unstable black hole background
increases with temperature. On the contrary, when qm
exceeds the critical value, λ is single-valued and decreases
monotonically with temperature. Therefore, we again see
that the transition from multivalued to single-valued
behavior of the Lyapunov exponent precisely captures
the details of the critical point qmc.
The above results of the Lyapunov exponent associated

with the massive particle are similar to those associated
with the massless particle. For instance, just like in the
massless particle, it decreases with qm in the small black
hole phase, whereas the effects of qm are minimal in the
large black hole phase. However, there are also a few subtle
differences. In particular, the Lyapunov exponent of the
massive particle approaches zero in the large black hole
phase at some temperature, i.e., at some horizon radius, the
Lyapunov exponent tends to zero for all qm. This can be
explicitly seen in Figs. 6(c) and 6(d). Moreover, this
horizon radius is almost the same for different qm. It
implies that the behavior of the massive particle becomes
nonchaotic in the large black hole phase. The vanishing

Lyapunov exponent is due to the disappearance of unstable
equilibrium at those horizon radii. This behavior should be
contrasted with the Lyapunov exponent of the massless
particle where λ approaches a nonzero constant value at
large horizon radii for all qm.
The density plot of the Lyapunov exponent for massive

particles is shown in Fig. 7 for two different ϕe values.
Once again, these plots add more detail to Fig. 6(d),
suggesting that λ decreases as we increase rh or qm. The
green shade near rh ¼ 0.8 means that λ eventually drops to
zero as we increase the horizon radius for a fixed qm. This
implies that for the time like circular geodesic, we do not
have any extrema after a fixed value of rh, which can also
be seen in Fig. 3 and is explained in the previous section.
Moreover, the allowed range of rh for which λ is nonzero
decreases with qm and ϕe. Also, the maximum value of λ
for ϕe ¼ 0.6 is greater than that of ϕe ¼ 0.9, which means
that the increase of the potential ϕe decreases the range of
values that λ can have.

B. Bardeen black holes

Bardeen black holes are the first examples of a regular
black hole satisfying the weak energy conditions [108].
They have a distinct “regular” center, meaning they do not
contain a singularity at their core, unlike the more well-
known Schwarzschild and Kerr black holes. This is because

FIG. 6. Lyapunov exponent of the massive particle λ as a function of temperature T and horizon radius rh for the dyonic black hole.
Here, ϕe ¼ 0.6 is used.
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matter cannot collapse to a point as a zone of repulsive
gravity surrounds Bardeen black holes. The Bardeen black
holes are usually obtained from the Einstein equation with
nonlinear electrodynamics sources [89].3 The various ways
to construct such regular black hole solutions can be found
in [110–115]. Although no astrophysical Bardeen black
holes have been discovered to date, theoretical physicists
still find them an important subject of study as they provide
a unique viewpoint on the nature of black holes and the
underlying laws of physics [116–118].
Here, we focus on the Bardeen black hole obtained

in [89] from a particular nonlinear electromagnetic
source. The line element of this Bardeen-AdS black hole
is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdψ2Þ; ð36Þ

where the blackening function fðrÞ is

fðrÞ ¼ 1 −
2Mr2

ðg2 þ r2Þ32 þ
r2

l2
; ð37Þ

with g as the magnetic charge, M as the mass of the black
hole and l as the AdS radius. The condition of the event
horizon fðrhÞ ¼ 0, gives us the mass expression,

M ¼
�
1þ r2h

l2

� ðr2h þ g2Þ32
2r2h

: ð38Þ

The Hawking temperature of the Bardeen black hole is
given by

T ¼ f0ðrhÞ
4π

¼ 3rh
4πðr2h þ g2Þ þ

3r3h
4πðr2h þ g2Þl2 −

1

2πrh
; ð39Þ

and its entropy is

S ¼ A
4G4

¼ πr2h
G4

; ð40Þ

with A as the horizon area. The differential form of the first
law takes the form,

dM ¼ T dSþΦgdg; ð41Þ

where T ¼ T=ð1 − ΠÞ, Φg ¼ ϕg=ð1 − ΠÞ, Π ¼
1 − r3hðg2 þ r2hÞ−3=2, and Φg is the potential associated
with the charge g. Notice that this first-law expression
differs from the usual first-law differential expression. The
difference mainly arises due to the nonlinear nature of the
gauge field sources [119,120].4

FIG. 7. Density plot of λ for the massive particle as a function of the magnetic charge qm and horizon radius rh for the dyonic black
hole. Here fixed ϕe ¼ 0.6 (left) and ϕe ¼ 0.9 (right) are used.

3Recently, it has been suggested that an infinite tower of
higher-curvature corrections can also give rise to regular black
hole solutions [109].

4The standard version of the first law can also be satisfied in
the Bardeen black hole. This requires logarithmic corrections to
the black hole entropy [121,122]. Unfortunately, this looks
unphysical, as the nonlinear gauge field sources do not give
any additional contribution to the Wald entropy. Therefore, one
also expects the black hole entropy to be given by the horizon
area in the Bardeen black hole.
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Here, we are mainly interested in black hole thermody-
namics in a constant charge ensemble, as the system
exhibits familiar van derWaals-type phase transitions in this
ensemble. The relevant Helmholtz free energy is given by

F ¼ M − T S; ð42Þ

which simplifies to

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ r2h

p
ð2g2ðr2h þ 2l2Þ þ r2hðL2 − r2hÞÞ

4L2r2h
: ð43Þ

The above thermodynamic quantities can be further written
in a dimensionless form as

r̃h¼
rh
l
; g̃¼ g

l
; T̃ ¼ T l; M̃¼M

l
; F̃¼F

l
: ð44Þ

The thermodynamic phase structure of the Bardeen black
hole in the fixed charge ensemble is shown in Fig. 8. For
g̃ ¼ 0, the Bardeen black hole becomes identical to the
Schwarzschild-AdS black hole. Accordingly, it also exhib-
its the Hawking/Page phase transition for g̃ ¼ 0. However,
the essence of the Bardeen black hole appears only for
finite g̃; that is, finite g̃ makes the whole spacetime regular
and the thermodynamic phase structure much richer. For
instance, for small but finite g̃, three coexisting black hole
solutions exist for some temperature range. These solutions
correspond to large, intermediate, and small black hole

solutions. The free energy of these solutions further
exhibits the swallow-tail-like structure, which exchanges
dominance as the temperature varies. In particular, the large
black hole phase has the lowest free energy at high
temperatures, whereas the small black hole phase has the
lowest free energy at low temperatures. The intermediate
black hole, on the other hand, always has a free energy
higher than that of the large or small black hole phases.
Accordingly, a first-order phase transition exists between
the small and large black hole phases as the temperature
varies. This phase transition occurs at temperature T̃ p,
shown by a dashed vertical line in Fig. 8(c).
By further increasing the value of g̃, there appears a

critical value g̃c at which the three black hole phases merge
to form a single black hole phase; i.e., the size of the
swallow-tail decreases with g̃ and completely vanishes at
g̃c. Therefore, the first-order small/large transition line
stops at g̃c. Analogously to the dyonic black hole case,
this g̃c defines a second-order critical point. This implies
that the thermodynamics of the Bardeen-AdS black hole is
heavily affected by the magnetic charge g̃. Also, this
behavior is again completely analogous to the van der
Waals-type phase transition of the liquid/gas system. The
magnitude of the critical point g̃c can be further determined
from the condition of the inflexion point,

∂T̃
∂r̃h

¼ 0;
∂
2T̃

∂r̃h2
¼ 0; ð45Þ

FIG. 8. The thermodynamic phase structure of the Bardeen black hole.
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which gives us the critical values of r̃h and g̃ as

g̃c ¼
1

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð5

ffiffiffiffiffi
10

p
− 13Þ

r
≃ 0.132;

˜rhc ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ð8 −

ffiffiffiffiffi
10

p
Þ

r
≃ 0.423: ð46Þ

Let us now discuss the behavior of the effective potential
in the Bardeen black hole background. This is given by

VeffðrÞ¼
�
−
r̃2ðr̃h2þ1Þðg̃2þ r̃h2Þ3=2

ðg̃2þ r̃2Þ3=2r̃h2
þ r̃2þ1

��
L2

r̃2
−ϵ

�
;

ð47Þ

where L and r are the angular momentum of the particle
and the radius of the particle’s orbit respectively. We can
see that VeffðrÞ is a function of r and rh, and its 3D plot is
shown in Fig. 9 where we have fixed g̃ ¼ 0.05 and L ¼ 20.
The curve with the extrema is projected onto the VeffðrÞ ¼
−1500 plane, where the red part indicates the unstable
maxima and the green part indicates the stable minima.
Beyond a certain value of rh ¼ 0.884, there are no extrema
(marked by the black line on the curve). We are mainly
interested in the red part of the curve, and the analysis is
done in the next subsections.

1. Massless particles

In this subsection, we probe the thermodynamics
of Bardeen AdS black holes with Lyapunov exponents.

The Lyapunov exponent for the massless particles can
be found from Eqs. (23) and (47), and its expression is
given by

λ ¼
ffiffiffi
3

2

r �
1

r̃ðm2Þ7=4r̃h

�n
−½−ðr̃2kðn2=m2Þ3=2Þ=r̃2h þ r̃2 þ 1�

× ½2g̃6mr̃2h þ g̃4ðr̃4knþ 6r̃2mr̃2hÞ
þ g̃2r̃4ðr̃4hnþ r̃2hð−4r̃2nþ nþ 6mÞ − 4r̃2nÞ
þ 2r̃6r̃2hð−2r̃2hn − 2nþmÞ�

o
1=2 ð48Þ

where k ¼ r̃2h þ 1, m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃2 þ r̃2

p
and n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g̃2 þ r̃2h
p

,
which suggests that the Lyapunov exponent depends non-
trivially on parameters g̃ and r̃h of the Bardeen black hole.
Our numerical results for the Lyapunov exponent are
shown in Fig. 10.
We again observe a distinct behavior of λðT̃ Þ depending

on the magnitude of g̃. In particular, when g̃ is less than
the critical value g̃c, λ is single-valued for T̃ ∈ ð0; T̃ 1Þ,
becomes multivalued for T̃ ∈ ðT̃ 1; T̃ 2Þ, and again becomes
single-valued for T̃ > T̃ 2. The small/large transition tem-
perature T̃ p is between T̃ 1 and T̃ 2 and is indicated by the
dashed black line. Therefore, the Lyapunov exponent is
single-valued in the thermodynamically favored small and
large black hole phases and exhibits multivaluedness at the
transition temperature. In contrast, when g̃ exceeds the
critical value, λ is single-valued, showing that only one
black hole solution exists without any phase transition. In
this case, the Lyapunov exponent first increases and
gradually decreases to finally approach a constant value.
In Fig. 10(c), we have shown the effects of the control
parameter g̃ on the Lyapunov exponent. As we continue to
increase the value of g̃ from 0.04 to 0.14, we observe that
the multivalued nature of the Lyapunov exponent gradually
decreases and disappears completely beyond the critical
value, which shows the typical nature of a first-order phase
transition. These observations give weight to the idea that
the Lyapunov exponents can also be used to study the black
hole phase transitions.
The Lyapunov exponent also displays distinct behavior

in the large and small black hole phases, i.e., at low and
high temperatures. In particular, the magnetic charge leaves
imprints on the Lyapunov exponent more in the small black
hole phase than in the large black hole phase. It decreases
substantially with g̃ in the small black hole phase, whereas
it remains almost the same with g̃ in the large black hole
phase. Importantly, like in the dyonic black hole case, the
Lyapunov exponent becomes constant, i.e., independent of
g̃, in the large temperature limit. These results are explicitly
shown in Fig. 10(c). For completion, in Fig. 10(d), we have
further demonstrated the behavior of λ as a function of
horizon radius r̃h. Here, the black dot points correspond to
the extremal horizon radius. The overall structure of the

FIG. 9. The 3D plot of the effective potential VeffðrÞ as a
function of horizon radius r̃h and orbit radius r of the massive
particle. Here, L ¼ 20 and g̃ ¼ 0.05 are used. The red and green
curves projected below correspond to the unstable and stable
equilibria of the timelike circular geodesics, respectively.
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massless Lyapunov exponent in the parameter space of g̃
and r̃h is shown in the density plot in Fig. 11. The density
plot shows that the Lyapunov exponent decreases substan-
tially with g̃ for small horizon radii. In contrast, it remains

almost the same with g̃ for large horizon radii. Interestingly,
like in the case of the dyonic black hole, the Lyapunov
exponent again saturates to a unit value in the large
temperature or rh limit.

2. Massive particles

We can similarly analyze the thermal structure of the
Lyapunov exponent of the massive particle in the Bardeen
black hole background. The form of the corresponding
effective potential also suggests that the massive Lyapunov
exponent will again depend nontrivially on g̃ and r̃h. Our
numerical results are shown in Fig. 12.We again observe that
when themagnetic chargevalue g̃ is less than the critical value
g̃c, λ is a multivalued function of T̃ in some temperature
range, suggesting multiple black hole branches. On the
contrary, when g̃ exceeds the critical value, λ is single-valued,
showing that only one black hole solution exists. InFig. 12(c),
we have demonstrated the effect of g̃ on the Lyapunov
exponent. As we continue to increase the value of g̃ from
0.04 to 0.14, themultivaluednature of theLyapunovexponent
gradually changes, and it disappears entirely beyond the
critical value g̃c. These observations are again similar to our
previous results and suggest encoding of the phase transition
critical points in the massive Lyapunov exponent.
Interestingly, as in the dyonic case, the Lyapunov

exponent of the massive particle also goes to zero at a

FIG. 10. Lyapunov exponent λ of the massless particle as a function of temperature T̃ and horizon radius rh for the Bardeen black hole.

FIG. 11. Density plot of λ for massless particles as a function of
the magnetic charge g̃ and horizon radius r̃h for the Bardeen
black hole.
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specific horizon radius. This behavior is true irrespective of
whether g̃ is less than or greater than g̃ and is explicitly
shown in Fig. 12(d). These parameter values always
correspond to the large black hole phase, leading to
the absence of chaos in certain large black holes. The
Lyapunov exponent is always positive and finite for
the small black hole phase. The Lyapunov exponent
decreases with magnetic charge in the small black hole
phase. The overall structure of the massive Lyapunov
exponent in the parameter space of g̃ and r̃h is shown in
the density plot in Fig. 13. Like for the massless particle,
the magnetic charge again substantially affects the mas-
sive Lyapunov exponent when r̃h is small, whereas its
effects are negligible for large r̃h. Also, λ drops to zero as
we increase r̃h at a fixed g̃ in the case of massive particles
for the reasons previously explained.

C. Gauss-Bonnet black holes

Gauss-Bonnet black holes are distinct black holes that
can manifest in spacetime with more than four dimensions,
owing to the presence of curvature terms that go beyond the
standard Einstein-Hilbert action. The Gauss-Bonnet invari-
ant, a fourth-order polynomial derived from the Riemann
curvature tensor, gives rise to these curvature terms. The
Gauss-Bonnet black holes are the simplest prototype of
higher-order curvature gravity theories that arise naturally

in quantum gravity theories such as string theory and
are expected to play an important role in quantum gravity
[90–92]. In addition to the typical features of black holes,
such as a singularity and an event horizon, Gauss-Bonnet

FIG. 12. Lyapunov exponent λ of the massless particle as a function of temperature T̃ and Horizon radius rh for the Bardeen black hole.

FIG. 13. Density plot of λ for massive particles as a function of
the magnetic charge g̃ and horizon radius r̃h for the Bardeen
black hole.
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black holes exhibit attractive geometric qualities. For
example, the Gauss-Bonnet theorem, which links the total
curvature of a closed surface to its topology, has been
extended to Gauss-Bonnet black holes. Specifically, the
topology of the event horizon determines the Gauss-Bonnet
coupling constant, which measures the strength of the
curvature terms. These black holes have been the subject
of extensive research in recent years, both for their
mathematical characteristics and potential relevance to
astrophysics [37,123–127].
The Gauss-Bonnet black holes exist only in spacetime

dimensions greater than four; i.e., the Gauss-Bonnet term
becomes topological (or to a total derivative term) in four
dimensions. It does not contribute to the field equations.
However, in dimensions greater than or equal to five, the
Gauss-Bonnet term does contribute to the Einstein equation
and leads to interesting solutions and properties. For
instance, the Gauss-Bonnet black hole solutions not only
come with different horizon topologies, such as the planar,
spherical, or hyperbolic topologies, but their thermody-
namic phase structure also becomes much more interesting.
In particular, the spherical charged Gauss-Bonnet black
hole exhibits the Hawking/Page and small/large black hole
phase transitions, and the associated critical points depend
on the dimensions as well as the Gauss-Bonnet coupling
constant [37,123]. Similarly, the extended phase space
thermodynamic of the Gauss-Bonnet black hole exhibits
P − V criticality and small/large black hole phase transi-
tions in five dimensions that, depending on the magnitude
of the Gauss-Bonnet coupling constant and charge, may
change in higher dimensions [37].
It is instructive to analyze the interplay of phase

transitions and Lyapunov exponent in higher derivative
Gauss-Bonnet black holes. This interplay was discussed
in [84] for the standard thermodynamics. Here, we con-
centrate on this interplay in the extended-phase space
thermodynamics. We will also comment on this interplay
in the standard thermodynamics, thereby complementing
the work of [84] and making nontrivial new observations
not discussed there. For the extended phase thermodynam-
ics of Gauss-Bonnet black holes, we follow [37,126]. We
will work in five dimensions for simplicity as the dis-
cussion can be easily generalized for higher dimensions.
The line element of five-dimensional charged Gauss-

Bonnet-AdS black holes with spherical horizon topology is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ
þ r2½dθ2 þ sin2θðdϕ2 þ sin2ϕdψ2Þ�; ð49Þ

where fðrÞ is given by

fðrÞ¼ 1þ r2

4α

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ64αM

3πr4
−
8αQ2

3r6
−
32παP

3

s !
; ð50Þ

withM, Q, α, and P as the black hole mass, charge, Gauss-
Bonnet coupling constant, and pressure, respectively. In the
extended phase space, the pressure P is equated with the
cosmological constant P ¼ − Λ

8π ¼ 3
8πl2. The requirement

of a well-defined vacuum solution, corresponding to
M ¼ Q ¼ 0, puts a constraint on α and P,

0 ≤
32παP

3
≤ 1: ð51Þ

The horizon radius rh is obtained by the largest real root of
the equation fðrhÞ ¼ 0, and the black hole mass can be
expressed in terms of rh as

M ¼ 3πr2h
8

�
1þ 2α

r2h
þ 4πPr2h

3

�
þ πQ2

8r2h
: ð52Þ

It is worth pointing out that the black hole massM acts as the
enthalpyH rather than the internal energy of the gravitational
system in the extended phase thermodynamics [57].
Similarly, the expressions for temperature (T), entropy
(S), volume (V), and electric potential (Φ) are given by5

T ¼ 16πPr6h þ 6r4h − 2Q2

12πr3hð4αþ r2hÞ
; ð53Þ

S ¼ 6απ2rh þ
1

2
π2r3h; ð54Þ

V ¼ π2r4h
2

; ð55Þ

Φ ¼ πQ
4r2h

: ð56Þ

These thermodynamic variables satisfy the differential
first law,

dH ¼ TdSþΦdQþ VdP; ð57Þ

and the Gibbs free energy is defined as

G ¼ H − TS;

¼ πðr6hð3 − 144παPÞ − 4πPr8h þ 72α2r2h − 18αr4hÞ
24r2hð4αþ r2hÞ

þ πQ2ð36αþ 5r2hÞ
24r2hð4αþ r2hÞ

ð58Þ

From the above equations, one can find the equation
of state,

5We have set the five-dimensional Newton’s constant to one in
these expressions.
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P ¼ 3

4rh

�
1þ 4α

r2h

�
T −

3

8πr2h
þ Q2

8πr6h
: ð59Þ

The above equation of state can be compared with the van
der Waals equation by expanding the latter with the inverse
specific volume v,

P ¼ T
v − b

−
a
v2

≈
T
v
þ bT − a

v2
þOðv−3Þ; ð60Þ

which also allows us to identify the specific volume v
with the horizon radius rh. In the P − V diagram, the
critical point, as usual, is determined from the condition of
the inflexion point,

∂P
∂rh

����
rh¼rhc;T¼Tc

¼ 0;
∂
2P
∂r2h

����
rh¼rhc;T¼Tc

¼ 0: ð61Þ

These equations give us the critical temperature and
pressure,

Tc ¼
r4hc −Q2

πr3hcð12αþ r2hcÞ
;

Pc ¼ −
5Q2r2hc þ 12αr4hc − 3r6hc þ 12αQ2

8πr6hcð12αþ r2hcÞ
; ð62Þ

and lead to the following equation:

r6hc − 12r4hcα − 5r2hcQ
2 − 36αQ2 ¼ 0; ð63Þ

from which the critical horizon radius rhc can be obtained.
The above equations suggest the critical points are α and Q
dependent quantities. Although the above equation can be
solved analytically for rhc, it is too long to reproduce here
and is not very informative.
In the following discussion, we take α ¼ 0.01 and

Q ¼ 0.2 without loss of generality. The critical points
for these values of α andQ are rhc ≃ 0.735, Pc ≃ 0.124, and
Tc ≃ 0.0161. The condition (51) also constrains the P value
to be P < 2.984. The thermodynamic phase structure is
shown in Fig. 14, where the orange line denotes the critical
isotherm. Three black hole phases exist in some temper-
ature range for a fixed pressure lower than the critical one.
Depending upon the relative magnitude of rh, these phases
correspond to large, intermediate, and small phases. The
small and large black hole phases have a positive specific
heat and compression coefficient, thus corresponding to
stable phases. Between them is an intermediate unstable
phase with a negative specific heat and compression
coefficient. Therefore, the isothermal line allows two
physical horizon radii for appropriate temperature values.
This leads to a phase transition between the small and large
horizon radii phases.
The corresponding Gibbs free energy behavior is shown

in Fig. 14(b). As expected, it exhibits the swallow-tail-like
structure for P < Pc and exchange dominance as the
temperature varies. In particular, the small/large black hole
phase has the lowest free energy at small/large temper-
atures, indicating the existence of small/large black hole

FIG. 14. Thermodynamic phase structure of the charged Gauss-Bonnet black hole. Here, α ¼ 0.01 and Q ¼ 0.2 are used.
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phase transition when P < Pc. When P ¼ Pc, the two
physical horizon radii coincide, resulting in coexistence.
Meanwhile, for P > Pc, only one black hole phase appears,
which always has a positive specific heat and compression
coefficient. This small/large black hole phase transition
phenomenon is reminiscent of the van der Waals system’s
liquid/gas phase transition. Such phase transition is first order
for P < Pc, while it becomes second order at Pc, i.e., a first-
order phase transition line exists between small and large
black hole phases, which terminates at a second-order point.
The above phase structure of the Gauss-Bonnet black

hole is quite similar to the dyonic or Bardeen black holes
discussed earlier. However, there is one major difference. In
the Gauss-Bonnet case, the small/large black hole phase
transition appears even without charge, i.e., when Q ¼ 0.

In dyonic or Bardeen black holes, the small/large phase
transition occurs only when the charge is switched on, and
in the absence of it, instead, the Hawking/Page phase
transition between the black hole and thermal-AdS phases
appears. For Q ¼ 0, the thermodynamic phase structure of
the Gauss-Bonnet black hole is shown in Fig. 15, where one
can explicitly see the existence of the first-order small/large
black hole phase transition and the second-order critical
point. For Q ¼ 0, the magnitude of pressure, temperature,
and horizon radii at the critical point is Pc ¼ 1=ð96πÞ,
Tc ¼ 1=ð4π ffiffiffi

3
p Þ, and rhc ¼ 2

ffiffiffi
3

p
.

Now, we will discuss the effective potential for massless
and massive particles in the background of the Gauss-
Bonnet black hole. The potential is given by,

VeffðrÞ ¼ −
1

12αr2
ðL2 − r2ϵÞ

0
BB@r2

0
BB@ ffiffiffi

3
p
0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 8αð4πPr6hþ3r4hþQ2Þ

r4r2h

− 8αð4πPr6þQ2−6αr2Þ
r6

vuuut
1
CCA − 3

1
CCA − 12α

1
CCA; ð64Þ

where, once again, L is the particle’s angular momentum,
and r is the radius of the particle’s orbit. The 3D Plot of
VeffðrÞ as a function of r and rh is shown in Fig. 16 for a
fixed L ¼ 20, P ¼ 0.1, α ¼ 0.01 and Q ¼ 0.2.
Again, the extrema are projected below the 3D plot onto

the plane VeffðrÞ ¼ −300. Here, the part with the pink
gradient represents the maxima, the unstable stationary
points, and the green gradient represents the minima, the
stable stationary points of the circular geodesic. We are
mainly concerned with the pink region, which appears in
the calculation of the Lyapunov exponents.

1. Massless particles

Using Eq. (64) for ϵ ¼ 0 and (23), we can probe the
thermodynamics of Gauss-Bonnet black holes with
Lyapunov exponents for massless particles. It is shown

in Fig. 17 for a fixed α ¼ 0.01 andQ ¼ 0.2. We work in the
extended phase space where the cosmological constant is
treated like the pressure P. When P is less than the critical
pressure Pc, as calculated in Eq. (62), the Lyapunov
exponent again shows a multivalued nature. Specifically,
λ is single-valued when T < T1 (small black hole phase) or
T > T2 (large black hole phase) but is multivalued when
T1 < T < T2, with the small/large black hole phase tran-
sition occurring at Tp. As we increase the pressure beyond
the critical value, this multivaluedness disappears, and we
have a single thermal profile of λ. This is explicitly shown
in Fig. 17(b). This means that even in the extended phase
space, the Lyapunov exponent can be a useful tool in
studying black hole phase transition, and the second-order
critical point can be precisely obtained from its thermal
structure. For completion, the plot of rh vs λ is also shown

FIG. 15. Temperature as a function of horizon radius (left) and Gibbs free energy G as a function of the temperature T (right) for
Gauss-Bonnet black holes when Q ¼ 0 and α ¼ 0.01.
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in Fig. 17(d). Here, we can observe that λ first slightly
increases and gradually decreases until it attains different
saturation values for different P.
Unlike the dyonic and Bardeen black holes studied in

the previous subsections, since we are slowly increasing
the pressure and taking it beyond the critical value, the
Lyapunov exponent does not attain the same fixed constant
value at large T. This is illustrated in Fig. 17(c). The reason
is that changing the pressure (or cosmological constant)
ultimately changes the AdS radius. If we take l ¼ 1 and
work in the standard phase space, then λ saturates to a
constant value at large T and rh even in the Gauss-Bonnet
black hole background as well.
The density plot of λ is shown in Fig. 18 for two different

α values. On the left, we have used α ¼ 0.01 to observe that
the maximum value that λ attains lies in the sky blue region,
λ ≃ 1.50. In this case, at a fixed horizon radius, as we move
from left to right in the density plot; i.e., increasing the
pressure, λ slightly increases. On the contrary, at a fixed
pressure, as we move from bottom to top in the density plot;
i.e., increasing the horizon radius, λ gradually decreases
and finally attains a constant value. Coming to the right, for
α ¼ 0.8, we observe similar behavior as we go left to right
or bottom to top for a fixed horizon radius/pressure. The
only difference is in the range of values that λ can have.

FIG. 16. The 3D plot of the effective potential VeffðrÞ as a
function of horizon radius rh and orbit radius r for the massive
particle when L ¼ 20, P ¼ 0.1, α ¼ 0.01 and Q ¼ 0.2. The pink
and green curves projected in the lower part correspond to the
unstable and stable equilibria of the timelike circular geodesics.

FIG. 17. Lyapunov exponent of the massless particle λ as a function of temperature T and horizon radius rh for the Gauss-Bonnet black
hole. Here, α ¼ 0.01 and Q ¼ 0.2 are used.
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Here, the maximum value of λ lies in the light pink region,
where λ ≃ 0.32. Thus, increasing the Gauss-Bonnet cou-
pling parameter α makes particle motion less chaotic.

2. Massive particles

Using Eq. (64) for ϵ ¼ −1 and (25), we can similarly
analyze the phase structure of the Gauss-Bonnet black hole
via the Lyapunov exponents of massive particles. This is
shown in Fig. 19. The behavior of the Lyapunov exponent,
in this case, is quite similar to the massless particle, with
one major difference being that here λ drops to zero in the
large black hole phase at some temperature (or horizon
radius) for all P values. This is illustrated in Figs. 19(c)
and 19(d). The reason for this drop is the disappearance of
the unstable equilibrium at those horizon radii, an example
of which can be seen from the 3D plot of the effective
potential in Fig. 16 where P ¼ 0.1 is used. There is no
extremum on the right-hand side of the marked black line,
and hence, the Lyapunov exponent approaches zero as rh
comes close to the black line in the 3D plot.
The density plot of λ, shown in Fig. 20, further confirms

the above results. The top boundary for α ¼ 0.01 and
α ¼ 0.8 cases is dark green, corresponding to λ ¼ 0.
Another important observation from the density plot is
that the horizon radius at which λ drops to zero decreases as
we increase the pressure for both α values. The maximum
allowed value of rh at a fixed pressure is greater for α ¼ 0.8
than α ¼ 0.01. This implies that by increasing the value of
α, the allowed rh range for which λ is nonzero increases.
Similarly, like for the massless case, the magnitude of λ
decreases as we increase α, implying less chaos in the
massive particle motion with the Gauss-Bonnet coupling.

D. AdS black holes in massive gravity

The study of AdS black holes with massive gravity is an
exciting and dynamic field of theoretical research [93–99].
Giving the graviton a mass considerably changes general
relativity by weakening it at large scales, but nonetheless, it
leads to the same predictions as general relativity at small
scales. In principle, the massive gravity systems could
explain the acceleration of the Universe without introduc-
ing the dark energy component, thereby making them
highly popular in gravitation studies. By adding an effec-
tive mass to the graviton, the large graviton modifies the
gravitational potential and affects how the black hole
solutions behave. Compared to their general relativity
counterparts, these black holes have unique characteristics
such as altered horizon structures, thermodynamics, and
dynamics. The study of massive gravity in AdS spaces has
also revealed new information on thermodynamic phase
transitions, the nature of gravitational waves, and the
holographic dualities between massive gravity and their
boundary theories. For more information and the current
status of the massive gravity theories, we refer the readers
to review papers [98,99,128]. From the perspective of this
paper, the AdS massive gravity also exhibits interesting
phase transitions. Therefore, it is worthwhile to explore
further the interplay between phase transitions and the
Lyapunov exponent in these gravity systems.
Of the many avatars of massive gravity theories, we will

examine a theory with Lorentz symmetry breaking. See
Refs. [129,130], for a review of Lorentz violating massive
gravity theory. The metric of such massive gravity black
holes was obtained in [131,132], and their extended phase
space thermodynamics were discussed in [105].

FIG. 18. Density plot of λ for the massless particle as a function of the pressure P and horizon radius rh for the Gauss-Bonnet black
hole. Here, fixed α ¼ 0.01 (left) and α ¼ 0.8 (right) are used.
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FIG. 20. Density plot of λ for the massive particle as a function of the pressure P and horizon radius rh for the Gauss-Bonnet black
hole. Here, fixed α ¼ 0.01 (left) and α ¼ 0.8 (right) are used.

FIG. 19. Lyapunov exponent of the massive particle λ as a function of temperature T and horizon radius rh for the Gauss-Bonnet
black hole.
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The metric of AdS black holes in massive gravity is
given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð65Þ

where

fðrÞ ¼ 1 −
2M
r

− γ
Q2

rω
−
Λr2

3
: ð66Þ

The above solution approaches the usual AdS-
Schwarzschild black hole for large distances when
ω > 1, whereas the Arnowitt-Deser-Misner mass of such
solutions becomes divergent when ω < 1. Hence, here we
will consider ω > 1. The parameter γ can take two values 1
or −1 [105]. In our analysis, we choose γ ¼ −1, for which
the geometry matches the RN-AdS charged black hole with
two horizons.
The expressions of the Hawking temperature, mass, and

entropy of the black hole are

T ¼ 1

4π

�
2M
r2h

þ γQ2ω

rωþ1
h

−
2Λrh
3

�
;

M ¼ rh
2
−

γQ2

2rω−1h

−
r3hΛ
6

;

S ¼ πr2h: ð67Þ

The potential corresponding to the charge Q is given by

Φ ¼ −
γQ
rω−1h

: ð68Þ

Again, we would like to probe the black hole thermody-
namics in the extended phase space. The pressure is related
to the cosmological constant as

P ¼ −
Λ
8π

¼ 3

8πl2
; ð69Þ

with the corresponding conjugate volume V given by

V ¼ 4πr3h
3

: ð70Þ

These thermodynamic variables satisfy the difference form,

dM ¼ TdSþΦdQþ VdP; ð71Þ

with the usual condition that M should be identified with
the enthalpy, H of the system. Accordingly, the Gibbs free
energy is defined as

G ¼ H − TS ¼ r
4
−

γQ2

4rω−1
ð1þ ωÞ − 2πPr3

3
: ð72Þ

For the above equations, we can further find the equation
of state,

P ¼ T
2rh

þ γQ2ð1 − ωÞ
8πrωþ2

h

−
1

8πr2h
: ð73Þ

Comparing this with Eq. (60) allows us to identify the
specific volume v ¼ 2rh. The condition of the inflexion
point [Eq. (61)] gives following the critical points in the
P − V diagram:

Tc ¼
ω

πð1þ ωÞ ðQ
2ðω2 − 1Þðωþ 2Þ2ω−1Þ−1=ω;

Pc ¼
ω

2πð2þ ωÞ ðQ
2ðω2 − 1Þðωþ 2Þ2ω−1Þ−2=ω;

rhc ¼
1

2
ðQ2ðω2 − 1Þðωþ 2Þ2ω−1Þ1=ω; ð74Þ

where we have used γ ¼ −1. One can easily check that no
inflexion point exists when γ ¼ 1. Therefore, at the critical
point, we have

Pcvc
Tc

¼ ωþ 1

2ðωþ 2Þ : ð75Þ

As expected, the right-hand side of the above ratio
simplifies to 3=8 for ω ¼ 2, which has the same value
obtained for the van der Waals gas-liquid system. Notice
that the critical points depend nontrivially on ω and Q.
The thermodynamic phase structure of the Lorentz

symmetry-breaking massive black hole is shown in
Fig. 21. Here, we have set ω ¼ 3 and Q ¼ 0.1. For these
values, the critical points are rhc ≃ 0.585, Pc ≃ 0.0698, and
Tc ≃ 0.204. The orange line denotes the critical isotherm.
Again, three black hole phases exist when P < Pc in some
temperature range. The small and large black hole phases
have a positive specific heat and compression coefficient,
thus corresponding to stable phases. In contrast, the
intermediate phase connecting them has an unstable neg-
ative specific heat and compression coefficient. Similarly,
the Gibbs free energy exhibits the swallow-tail-like struc-
ture for P < Pc and exchange dominance as the temper-
ature is varied, i.e., the small/large black hole phase has the
lowest free energy at small/large temperatures, indicating
the existence of a first-order small/large black hole phase
transition when P < Pc. When P ¼ Pc, the small and large
physical horizon radii coincide, resulting in coexistence.
Meanwhile, for P > Pc, only one stable black hole phase
appears, always with a positive specific heat and compres-
sion coefficient. Thus, this thermodynamic behavior is
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reminiscent of the van der Waals system’s liquid/gas phase
transition, with Pc acting as a second-order critical point.
Although the critical points are explicit Q dependent, the
van der Waals behavior of a massive gravity black hole is
true for all Q as long as it is nonzero. For Q ¼ 0, the
massive gravity geometry reduces the AdS-Schwarzschild
black hole, and in this case, we only get the Hawking/Page
phase transition between the AdS-Schwarzschild black
hole and thermal-AdS.
The effective potential of particles [Eq. (13)] is given by

VeffðrÞ ¼
1

3

�
L2

r2
− ϵ

��
rhð3γQ2r−ωh − 8πPr2h − 3Þ

r

− 3γQ2r−ω þ 8πPr2 þ 3

�
; ð76Þ

which shows that it is a nontrivial function of
L;Q;P; γ;ω; r and rh. For the massive particle, the
behavior of Veff is shown in Fig. 22 for a fixed L ¼ 20,
P ¼ 0.001, γ ¼ −1, Q ¼ 0.1, and ω ¼ 3. Similar behavior
appears for the massless particle as well.
The orbit radius of the massive particle is shown in the

lower part of Fig. 22, which is the projection of stationary
points of the effective potential [V 0

effðrÞ ¼ 0] onto the
VeffðrÞ ¼ −200 plane. The unstable/stable orbit parts are
shown in brown/cyan colors. As we slowly increase rh, the
brown and cyan parts move closer to each other and finally
meet at the black-marked line, beyond which there is no

stationary point for the effective potential. Again, we
mainly focus on the brown region and the unstable
equilibria, for which we will calculate the Lyapunov
exponents in the next section.

FIG. 22. The 3D plot of the effective potential VeffðrÞ as a
function of horizon radius r̃h and orbit radius r for the massive
particle when L ¼ 20, P ¼ 0.001, γ ¼ −1, Q ¼ 0.1, and ω ¼ 3.
The brownand cyan curves projected in the lower part correspond to
the unstable and stable equilibria of the timelike circular geodesics.

FIG. 21. Thermodynamic phase structure of the massive gravity black hole. Here, ω ¼ 3 and Q ¼ 0.1 are used.
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1. Massless particles

The thermal profile of the Lyapunov exponent associated
with the massless particle is shown in Fig. 23 for a fixed
γ ¼ −1, ω ¼ 3, and Q ¼ 0.1 in the extended phase space.
Once again, we observe that below the critical value Pc, the
Lyapunov exponent is multivalued between T1 and T2,
where once again, Tp stands for the phase transition
temperature. Whereas, above Pc, the multivalued nature
of λ disappears, and λ becomes single-valued. This is
shown in Figs. 23(a) and 23(b). As we increase P, the
maximum value that λ can achieve increases, which comes
with the additional price of the disappearance of the
multivaluedness in λ. For a fixed P, λ stays constant in
the small black hole branch and gradually decreases as we
increase the temperature and then finally attain a constant
value in the large black hole branch, similar to what we
observed in the Gauss-Bonnet case. For the sake of
completion and to further scrutinise the role of horizon
radius in the analysis of the Lyapunov exponent, we have
also added the rh vs λ plot in Fig. 23(d). For a fixed P, λ
starts from the extremal rh (represented by black dots). As
we slowly increase rh beyond the extremal value, λ first
slowly increases and then gradually decreases till it attains a
constant saturation value. This is true for all P values, with
the difference being that the constant saturation value
differs for different P. This difference arises because we

are working in an extended phase space. Therefore, differ-
ent P signifies different cosmological constant values and,
hence, different AdS radii.
The density plot of λ is shown in Fig. 24, where a

comparison is made between different values of ω, keeping
Q ¼ 0.1 and γ ¼ −1 fixed. The left density plot is for
ω ¼ 2, which shows that increasing the pressure P while
keeping the horizon radius rh constant increases the
Lyapunov exponent λ. In contrast, by increasing rh while
keeping P fixed, the Lyapunov exponent increases slowly
and then decreases until it attains a constant saturation
value. This is also true for ω ¼ 3 (middle) and ω ¼ 4
(right). The effect of increasing ω can be seen in the
decreased available range for λ; the higher the ω, the lower
the values that λ can achieve.

2. Massive particles

Using Eqs. (76) and (25) for the massive particle, we can
investigate the thermal behavior of the Lyapunov exponent
in AdS massive gravity background. The results are shown
in Fig. 25. Again, the results are similar to the Lyapunov
exponent behavior of the massive particle discussed in the
earlier gravity backgrounds. We again observe that when
the pressure P is less than the critical value Pc, λ is a
multivalued function of T with three black hole branches.
In contrast, when the value exceeds the critical value, λ is

FIG. 23. Lyapunov exponent λ of the massless particle as a function of temperature T and horizon radius rh for the AdS black hole in
massive gravity. Here, k ¼ −1, ω ¼ 3, and Q ¼ 0.1 are used.
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single-valued with only one black hole branch. Once again,
the Lyapunov exponent approaches zero for the massive
particle as we gradually increase T or rh. This is again since
after a certain rh; there are no stationary points, also visible
in Fig. 22, indicated by the black line. This maximal rh,
beyond which there are no stationary points, varies as we
increase the pressure.
The plot of the Lyapunov exponent as a function of

temperature for different P values is shown in Fig. 25(c).

Since we are working in the extended phase space, λ
approaches zero at different T values for different P values.
To highlight this point, the plot λ vs rh is also shown in
Fig. 25(d), where we can see that the rh value where λ
approaches zero decreases as we increase P. This is further
elaborated and visualized for different ω values in the
density plot of λ shown in Fig. 26. For a fixedP, going from
bottom to top; i.e., increasing rh decreases λ slowly until it
approaches zero at some rh. A red line in the density plot

FIG. 25. Lyapunov exponent of the massive particle λ as a function of temperature T and horizon radius rh for the AdS black hole in
massive gravity. Here, γ ¼ −1, ω ¼ 3, and Q ¼ 0.1 are used.

FIG. 24. Density plot of λ for the massless particle as a function of the pressure P and horizon radius rh for the AdS black hole in
massive gravity. Here ω ¼ 2 (left), ω ¼ 3 (center) and ω ¼ 4 (right) with fixed Q ¼ 0.1 and γ ¼ −1 are used.
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shows this. The same is true for ω ¼ 3 and ω ¼ 4 as well.
Just like in the massless case, here, too, the effect
of increasing the value of ω is to decrease the available
range of λ.

IV. CRITICAL EXPONENT FOR CHARGED
BLACK HOLES BASED ON LYAPUNOV

EXPONENTS

In the mean-field theories, critical exponents play an
important role and are only defined as limiting power laws
as T → Tc [133], which means that if any observable, say,
aðt ¼ jT − TcjÞ has critical exponent ξ then,

aðtÞ ∼ tξ; ð77Þ

which implies that,

ξ ¼ lim
t→0

log aðtÞ
log t

: ð78Þ

Depending upon the physical observable under consid-
eration, one can associate different mean-field critical
exponents at the phase transition point, such as those
associated with the specific heat, susceptibility, com-
pressibility, etc. The one we are most interested in and
whose existence forms the basis of the famous Landau
theory is the order parameter critical exponent [134]. The
order parameter is the observable whose expectation
value is nonzero below the transition temperature and
zero above the transition temperature [135]. For the van
der Waals liquid/gas phase transition, the density shows
discontinuity between the two phases and is considered
the order parameter. The order parameter critical expo-
nent for it was found to be 1=2 [136].
The small/large black hole phase transition we saw in

previous sections for different charged black holes is
similar to the van der Waals liquid/gas transition [137].
The temperature at which this first-order phase transition

occurs is denoted by Tp in our work. Let us also denote
the Lyapunov exponent of small and large black holes,
calculated at Tp, by λs and λl, respectively and the one
calculated at the second-order critical point by λc.
Therefore, λs ¼ λl ¼ λc at the second-order critical point.
Following [82,134], one can consider the discontinuity in
the Lyapunov exponent Δλ ¼ λs − λl at the first-order
phase transition as an order parameter. In particular, we
can try to find the critical exponent β, satisfying Δλ,

Δλ ∼ ajT − Tcjβ ð79Þ

A. Theoretical verification

We use the method illustrated in [84,138] to calculate
this critical exponent β related to the order parameter Δλ.
First, we do a Taylor expansion of λðrhÞ up to the first order
around the critical point as,

λðrhÞ ¼ λc þ
�
∂λ

∂rh

�
c
ðrh − rcÞ þOðrhÞ: ð80Þ

The horizon radius rh can be written in terms of horizon
radius at the critical point rhc as,

rh ¼ rcð1þ ΔÞ; ð81Þ

with jΔj ≪ 1. Now Eq. (80) for small and large black
holes is

λsðrhsÞ ¼ λc þ
�
∂λ

∂rh

�
c
ðrhs − rcÞ þOðr2hsÞ;

λlðrhlÞ ¼ λc þ
�
∂λ

∂rh

�
c
ðrhl − rcÞ þOðr2hlÞ; ð82Þ

where the subscript l and s stands for large and small. Using
Eqs. (81) and (82), we can get

FIG. 26. Density plot of λ for the massive particle as a function of the pressure P and horizon radius rh for the AdS black hole in
massive gravity. Here ω ¼ 2 (left), ω ¼ 3 (center) and ω ¼ 4 (right) with fixed Q ¼ 0.1 and γ ¼ −1 are used.
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Δλ ¼ λs − λl ¼ rhc

�
∂λ

∂rh

�
c
ðΔs − ΔlÞ; ð83Þ

where Δs and Δl are the values of Δ for small and large
black hole branches respectively. Similarly, the Hawking
temperature TðrhÞ can be written as

TðrhÞ ¼ Tcð1þ δÞ; ð84Þ

where Tc is the critical temperature and jδj ≪ 1. The Taylor
expansion of TðrhÞ up to the second order around the
critical point is

TðrhÞ ¼ Tc þ
�
∂T
∂rh

�
c
ðrh − rcÞ þ

1

2

�
∂
2T
∂r2h

�
c

ðrh − rcÞ2

þOðr3hÞ: ð85Þ

FIG. 27. Plots of the rescaled discontinuity in the Lyapunov exponent Δλ=λc vs rescaled phase transition temperature t ¼ Tp=Tc for
the massless particle case.
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Now, at the critical point, the slope ½∂T
∂rh
�c → 0. Using

Eq. (81), we can rewrite Eq. (85), after ignoring higher
order terms, as

TðrhÞ ¼ Tc þ
1

2

�
∂
2T
∂r2h

�
c

rc2Δ2: ð86Þ

Comparing Eq. (84) and Eq. (86), we get, suppressing for
now the subscripts s or l,

Δ ¼ 1

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tcδ

1
2
½∂2T
∂rh2

�
c

s
: ð87Þ

Finally, substituting the values of Δs;l from Eq. (87) into
Eq. (83) gives us the desired relation,

Δλ
λc

¼ kjt − 1j1=2; ð88Þ

FIG. 28. Plots of the rescaled discontinuity in the Lyapunov exponent Δλ=λc vs rescaled phase transition temperature t ¼ Tp=Tc for
the massive particle case.
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where

k ¼
ffiffiffiffiffi
Tc

p
λc

�
∂λ

∂rh

�
c

�
1

2

∂
2T
∂r2h

�−1=2
c

; ð89Þ

and

t ¼ TðrhÞ
Tc

: ð90Þ

Thus, we conclude that the critical exponent β related to the
order parameter Δλ is 1=2, the same as the van der Waals
fluid [136]. The same critical exponent of 1=2 was also
found in [85] for another class of black holes, stressing its
quite universal value.
Next, we will provide numerical evidence to solidify our

theoretical result further.

B. Numerical verification

The plot of the rescaled order parameter Δλ=λc vs
t ¼ Tp=Tc for the massless particle is shown in Fig. 27.
Here, we have shown the diagram for all four charged

black holes considered in the previous sections, i.e.,
dyonic, Bardeen, Gauss-Bonnet, and massive gravity.
The plot near the critical value is shown in the overlay
boxes, where open-circle markers show the data
points. The solid lines represent the curve fitting. The
expressionΔλ=λc ¼ kjt − 1j1=2 perfectly fits the numerical
data points for all the considered charged black holes.
Although the value of k can differ, the critical exponent β
is always one-half for these black holes. The same is also
true for the massive particle. This is shown in Fig. 28.
Thus, we can readily say that the discontinuity in the
Lyapunov exponent Δλ can be the order parameter with
critical exponent 1=2.

V. CONCLUSIONS

In this work, we have further tested the suggested
relationship between black hole phase transitions and the
Lyapunov exponents for various physically motivated
charged black holes in AdS spaces. In particular, we
considered the dyonic, Bardeen, Gauss-Bonnet, and mas-
sive gravity black holes. These black holes were chosen not
only because they have a rich phase structure by exhibiting
interesting liquid/gas type van der Waals phase transition
between the small and large black hole phases but also
because they are of paramount importance in various (dual)
gravitational studies. We tested this relationship for both
extended and nonextended thermodynamics. In our analy-
sis, we found that, like the thermal behavior of the relevant
free energy, when the control parameter is less than its
critical value, the Lyapunov exponent exhibits multivalued-
ness over some temperature range. In particular, the

Lyapunov exponent displays distinct thermal behavior in
the small, large, and intermediate black hole phases.
Similarly, the Lyapunov exponent becomes single-valued
for all temperatures when the control parameter exceeds its
critical value. This behavior of the Lyapunov exponent,
specifically the transition from multi-to single-valuedness,
correctly pinpoints the model-dependent second-order
critical points, i.e., the critical point is reflected in the
thermal behavior of the Lyapunov exponent. This suggests
that the information about the thermodynamic phase
structure of considered AdS black holes, to some extent,
is encoded in the Lyapunov exponent.
Our analysis further suggested that the Lyapunov expo-

nent of the massive and massless particles behaves dis-
tinctly in the large black hole phase. Particularly, the
Lyapunov exponent of the massless particle approaches
a parameter-independent constant value asymptotically in
the large radius limit. Interestingly, this asymptotic value
scales with the AdS length l and takes a unit value for l ¼ 1
for all gravity models considered here. The Lyapunov
exponent of the massive particle goes to zero at a certain
radius, which is also explained in the diagrams of the
corresponding effective potential. We illustrated the com-
plete dependence of the massive and massless particles’
Lyapunov exponent on various parameters of the gravity
models in density plots. We found that the Lyapunov
exponents modify significantly in the small black hole
phases compared to the large black hole phase when a
certain parameter is varied. We then discussed the pos-
sibility of the difference between the Lyapunov exponents
of the small and large black hole phases near the critical
point as an order parameter. Interestingly, the correspond-
ing critical exponent is 1=2 for all the gravity models, the
same as in the van der Waals phase transition.
Let us end this paper by pointing out a few limitations

one faces by probing the black hole thermodynamic phase
structure from Lyapunov exponents. An important point
that we would like to mention, one which we think has not
been discussed much, is that although the Lyapunov
exponents of particles do seem to epitomise the presence
of the black hole phase transition, they do not give any
information about the transition temperature, especially if
the transition is of the first order. The λ vs T curves only
emphasise the importance of T1 around which λ starts to
show multivaluedness. However, the first-order small/large
black hole phase transition occurs at T > T1, which cannot
be determined from the thermal behavior of the Lyapunov
exponents. This should be contrasted with the information
on the second-order critical points, which can be inferred
from Lyapunov exponents. Another important point is that
using the Lyapunov exponent presents a few issues, even
within general relativity. In particular, since it amounts to
the deviation of two nearby trajectories in time, the whole
Lyapunov exponent analysis heavily depends on the
considered time coordinate. This coordinate dependence
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can sometimes lead to wrong conclusions, for instance, by
predicting zero Lyapunov exponents even for genuinely
chaotic systems [139–141]. However, this coordinate-
dependent issue can be minimized when a preferred time
direction exists, such as black hole geometries containing a
timelike Killing vector, and meaningful results can be
obtained [107]. In other words, if we are asymptotically far
from the black hole, we can assign well-defined time
coordinates in our observations. Our work also has a
timelike Killing vector for all the black hole cases dis-
cussed. Moreover, we compare all timescales in the same

coordinate system, making the whole Lyapunov exponent
analysis credible.
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