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The frozen star is a recent proposal for a nonsingular solution of Einstein’s equations that describes an
ultracompact object which closely resembles a black hole from an external perspective. The frozen star is
also meant to be an alternative, classical description of an earlier proposal, the highly quantum polymer
model. Here, we show that the thermodynamic properties of frozen stars closely resemble those of black
holes: frozen stars radiate thermally, with a temperature and an entropy that are perturbatively close to those
of black holes of the same mass. Their entropy is calculated using the Euclidean-action method of Gibbons
and Hawking. We then discuss their dynamical formation by estimating the probability for a collapsing
shell of “normal” matter to transition, quantum mechanically, into a frozen star. This calculation followed
from a reinterpretation of a transitional region between the Euclidean frozen star and its Schwarzschild
exterior as a Euclidean instanton that mediates a phase transition from the Minkowski interior of an
incipient Schwarzschild black hole to a microstate of the frozen star interior. It is shown that, up to
negligible corrections, the probability of this transition is e−A=4, with A being the star’s surface area. Taking
into account that the dimension of the phase space is eþA=4, we conclude that the total probability for the
formation of the frozen star is of order unity. The duration of this transition is estimated, which we then use
to argue, relying on an analogy to previous results, about the scaling of the magnitude of the off-diagonal
corrections to the number operator for the Hawking-like particles. Such scaling was shown to imply that the
corresponding Page curve indeed starts to go down at about the Page time, as required by unitarity.
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I. INTRODUCTION

The frozen star was originally meant to provide a
classical, geometric alternative to the collapsed polymer
model [1], which describes a highly excited configuration
of long, closed, fundamental strings that is lacking a
semiclassical geometric description. The polymer model
is premised on the notion that the interior of any regular
object which successfully mimics a black hole (BH) should
be in a strongly nonclassical state [2], as follows from the
idea that the uncertainty principle prevents the collapse of
matter to a singularity, much in the same way that the
quantum hydrogen atom is stable against collapse. A
strongly nonclassical state is tantamount to having maximal
entropy density, which in turn means maximally positive
radial pressure for a state of fixed energy density. The
frozen star model aims to mimic the properties of this
highly quantum state in terms of a classical geometry,
which amounts to “flipping” the radial pressure from
maximally positive to maximally negative [3,4]. The name

“frozen star” was first adopted in a later article [5] as an
homage to classic literature [6]. The current version of the
frozen star model, along with many technical details, can be
found in [7] (see also [8]).
The relevant aspects of the model will be reviewed in the

next section, but let us take immediate note of some of the
important features of the frozen star. It has been known for
quite a while that large negative pressure provides a way for
stabilizing ultracompact objects against further collapse
[9–12] and for evading singularity theorems [13,14]. Lesser
known is that a star with maximally negative radial pressure
will be ultrastable against perturbations [3,5,8]. Another
feature is that the modifications from general relativity
extend over horizon-sized scales. This happens to be
essential for the self-consistency of the model once
quantum-induced evaporation is included; otherwise, the
radiated energy will far exceed the original mass of the
object [15,16].
As much of the focus of the current paper is on the

thermodynamics of a frozen star, let us recall some of the
lore pertaining to “conventional” BHs. Bekenstein [17] first
proposed that BHs possess an entropy SBH that is propor-
tional to the surface area of the horizon A, and Hawking
[18] later fixed the constant of proportionality according to
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SBH ¼ A
4
. The latter contribution came about when

Hawking discovered that a BH of mass M, emits thermal
radiation with a temperature of TH ¼ 1

8πM. Hawking was
able to subsequently show that the density matrix of the
emitted radiation is exactly thermal, leading to what is
famously known as the information-loss problem [19].
Closely related to this paradox is the no-hair theorem [20],
as well as the trans-Planckian problem [21], and less
closely related is the BH species problem [22]. Although
the mathematics is consensually beyond dispute (however,
see Ref. [23]), interpreting the thermodynamic properties of
BHs and resolving the associated problems remains a
challenge in spite of intense efforts.
As the BH entropy is a critical element of the thermo-

dynamic paradigm, any viable BHmimicker should be able
to account for its exceptionally large value. We will be able
to show that the frozen star can do just that. This is a highly
nontrivial challenge, as even the most compact of stars,
when composed of conventional matter, would have an
associated entropy S that is many orders of magnitude
smaller than that determined by the Bekenstein–Hawking
area law. Indeed, out of the many proposals for ultra-
compact, almost-black objects (See, for example, [24]),
none of these, as far as we know, can replicate the entropy–
area law—including the factor of 1=4—in an unambiguous
way. To understand the difficulty, suppose that we replace
the infinite redshift of the BH horizon with a finite but large
redshift 1=ε2, then what is the line of demarcation between
a(n almost) BH and a very compact star? Meanwhile, the
BH entropy can be viewed as a geometric construct that is
associated with (perfectly black) horizons and cannot be
assigned generically to regular stars, no matter how
compact they might be. This argument is presented at
the end of Gibbons and Hawking’s paper on BH thermo-
dynamics via Euclidean actions and partition functions
[25]. As we will show, Gibbons and Hawking made a
couple of strong assumptions regarding the composition of
the stellar material that are not valid for the frozen star; thus
our results are not in contradiction with theirs.
An outstanding question about the frozen star is how a

collapsing shell of matter might dynamically transition into
a geometry that deviates so dramatically from the
Schwarzschild geometry over a horizon-sized length scale.
If this transition does transpire, such a scenario is rather
suggestive of a quantum-induced phase transition. Here, we
take a first step in support of this idea by applying Mathur’s
argument [26] that such a transition is indeed possible
because the large entropy means there is an exponentially
large number of microstates associated with the final-state
configuration. And so we evaluate the probability of
transition Γ, from the Minkowski interior of collapsing
shell of matter, or incipient BH, geometry to that of a frozen
star and then, following Mathur, view this as the quantum-
transition probability from the initial state to a single
microstate of the frozen star. Our calculation requires us

to interpret a transitional layer straddling the outer surface
of the star as a Euclidean instanton that mediates the stated
transition. We find that the action of this instanton is equal
to the BH entropy up to perturbatively small corrections
and, by the above reasoning, conclude that the probability
to transition to a single microstate is Γ ∼ e−SBH . Finally,
applying Mathur’s argument about multiplying the single-
state probability by the large degeneracy of states, we are
then led to a total probability of order unity, suggesting that
such a transition is not only possible but likely. To our
knowledge, this is the first time such an estimate of the
transition probability has been successfully carried out for
an ultracompact, horizonless object.
The subsequent sections are organized as follows: The

next section provides a very brief review on the frozen star.
Longer discussions on its conceptual origins and important
physical features can be found in [3–5,7,8]. In Sec. III, we
explain why the temperature of emitted radiation from the
starwould be perturbatively close to theHawking value [18].
Included is a heuristic calculation that is premised on the
Schwinger effect [27], which was originally presented
in [28]. See Ref. [29] for a recent discussion on the
temperature of compact objects that is similarly based on
the Schwinger effect. Additionally, we show that a recent
discussion, based on the properties of the thermal atmos-
phere [30], applies to ourmodel and can be used to show that
the frozen star radiates at exactly the Hawking temperature.
Section IV begins with a general discussion on Euclidean
BH thermodynamics, following the Euclidean-action
method of Gibbons and Hawking [25]. We go on to confirm
that, at leading order, S ¼ A=4 for the frozen star by
adopting their method, albeit in an unorthodox way as
the outer surface of the star is no longer a boundary for the
Euclidean spacetime like it is in the Schwarzschild case.
This calculation of the entropy is novel and one of the main
results in the paper.We continue on, in Sec.V, to reinterpret a
narrow interpolating layer—smoothly connecting the
Schwarzschild exterior to the frozen star interior—as a
Euclidean instanton which facilitates the transition from the
Minkowski interior of an incipient BH to a single microstate
of the frozen star geometry. We are able to confirm that the
probability of this transition is precisely e−A=4, at leading
order in our perturbative parameters, just as advertised. The
duration of this transition is also estimated, and this result is
used in Sec. VI to argue that the number operator and thus
also the density matrix for the frozen star radiation could
have nontrivial off-diagonal elements. We further argue,
following an earlier treatment [31], that themagnitude of the
off-diagonal elements scales so as to reproduce Page’s
famous curve describing a unitary evaporation process
[32]. Finally, a brief overview is presented in Sec. VII.
There, we point out that the Euclidean picture of the frozen
star closely resembles a BH sourced by a condensate of
stringy winding modes [33] (see also, [34]) and remark on
the significance of this “coincidence.”
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II. THE FROZEN STAR GEOMETRY

Here, we will be reviewing the relevant aspects of the
frozen star geometry, especially as it pertains to the
following analysis. See [5,7] for formal details.
Let us first discuss the frozen star metric. We assume that

it is static and spherically symmetric, ds2 ¼ fðrÞdt2 þ
dr2
fðrÞ þ r2dΩ2, where the equality gtt ¼ −grr follows from

the star’s characteristic equation of state ρþ pr ¼ 0.
As common to textbook discussions, one defines a mass

function,

mðrÞ ¼ 4π

Z
r

0

dx x2ρðxÞ for r ≤ R; ð1Þ

leading to a Schwarzschild-like form for the t–r sector,

fðrÞ ¼ 1 −
2mðrÞ

r
: ð2Þ

If R is the radial size of the star, as implied in Eq. (1), then
the total mass is defined as M ¼ mðRÞ.
We now deviate from Schwarzschild by setting

fðrÞ ¼ ε2, leading to the following line element,

ds2 ¼ −ε2dt2 þ 1

ε2
dr2 þ r2dΩ2: ð3Þ

The dimensionless parameter ε2 should be regarded as a
very small number1 (recently estimated to be smaller than
10−22 [35]) but always finite. With this choice, the mass
function is

mðrÞ ¼ r
2
ð1 − ε2Þ; ð4Þ

and so

fðrÞ ¼ ε2: ð5Þ

To understand the significance of the perturbative
parameter ε2, it is useful to consider the limit ε2 → 0. In
this limiting case, grr → ∞ at the surface of the star, so that
we can identify this limit with the classical one lP → 0

(lP is the Planck length). In other words, ε2 ∼ lP
R.

The matter densities, or diagonal stress-tensor compo-
nents, then take the forms

8πρ ¼ 1 − ðrfÞ0
r2

¼ 1 − ε2

r2
; ð6Þ

8πpr ¼ −
1 − ðrfÞ0

r2
¼ −

1 − ε2

r2
; ð7Þ

8πp⊥ ¼ ðrfÞ00
2r

¼ 0; ð8Þ

where a prime represents a radial differentiation and note
that all of the off-diagonal components are vanishing.
To ensure that the metric of the frozen star interior joins

smoothly to the external Schwarzschild metric, we have
added an outer layer Tout of width 2λR, with λ ≪ 1, that
allows for a continuous transition from one geometry to the
other [5]. As the density in the bulk of the frozen star goes
as ∼ 1

r2 and so is formally divergent at the star’s center, there
is also a need to smooth out the density in the central
region [5]. We have accomplished this by adding a second
transitional layer T in of width ηR that connects the bulk
geometry to a regularized core of width ηR, where η ≪ 1.
The geometry of the frozen star is depicted in Fig. 1.
To understand the significance of the perturbative

parameter λ, we call upon the polymer model and its
string-theoretical perspective. In this picture, the string
energy density is decreasing in the transitional layer from
its finite value in the bulk to zero at the outer surface. This
transitional layer needs to still be introduced in the limit
ε2 → 0, indicating that λ and ε2 are independent perturba-
tive parameters. Since we have already identified small
values of ε2 with the classical limit, it follows that λ controls
the strength of classical stringy effects; that is, the effects of
α0 or the inverse of the string tension. It can then be
concluded that λ2 ∼ α0

R2.
The nonregularized density leads to small corrections of

order η, when integrated over the entirety of this central

ToutITin

B

FIG. 1. The frozen star geometry. The core r ≤ ηR is denoted
by I, the transitional layer ηR < r < 2ηR by T in, the frozen star
bulk 2ηR ≤ r ≤ Rð1 − λÞ by B and the outer transitional layer
connecting the star to the Schwarzschild region Rð1 − λÞ ≤ r ≤
Rð1þ λÞ by Tout. Both transitional layers and the core are not
drawn to scale, so they can be distinguished in the figure. The
actual relative scale is smaller by many orders of magnitude.

1What we now call ε2 had, until recently, been called ε. The
change was made to emphasize its positivity.
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region; meaning that the distinction between the bulk and
regularized expressions is irrelevant to our leading-order
calculations in Sec. IV. Further note that, in both layers, the
condition ρþ pr ¼ 0 is maintained and so it is true
throughout the entirety of the star’s interior. As an imme-
diate consequence, the stress-tensor conservation equation
reduces from its general static form p0

rþ1
2
ðlnfÞ0ðρþprÞþ

2
rðpr−p⊥Þ¼0 to

p0
r þ

2

r
ðpr − p⊥Þ ¼ 0 ð9Þ

or, equivalently,

p⊥ ¼ 1

2r
∂rðr2prÞ: ð10Þ

We define the interior bulk of the frozen star as the region
that ends at r ¼ Rð1 − λÞ ≈ 2Mð1 − λþ ε2Þ, as can be
verified by evaluating M ¼ mðRÞ via Eqs. (1) and (6). The
exterior geometry formally begins at r ¼ Rð1þ λÞ≈
2Mð1þ λþ ε2Þ. The outer transitional layer is interpolat-
ing between the exterior geometry and the interior bulk.
For future reference, one can view the leading-order

scaling relation m ¼ r
2
as meaning that each spherical slice

of the interior is, up to small corrections, like a BH horizon.

III. HAWKING RADIATION
AND TEMPERATURE

The thermal distribution of outgoing particle emissions
from a BH and their associated temperature [18] is tradi-
tionally calculated under two assumptions: (1) A future,
eternal event horizon forms and (2) the exterior geometry
can be treated as static. However, it turns out that these
assumptions can be relaxed; in which case, compact objects
emit Hawking-like thermal radiation provided that (a) they
are compact enough so that the redshift near their surface is
sufficiently large or, equivalently, the gravitational force
FG ¼ GNME

r2 near their surface is strong enough to produce
particles with energy E ∼ 1=M in Planck units and (b) a
suitable adiabatic condition is satisfied.
There are two separate arguments showing a Hawking

flux is generated if an object has a large enough redshift at
the outer surface so that it is externally indistinguishable
from a schwarzschild black hole for all practical purposes.
(1) The Schwinger pair production argument, discussed

in Sec. III.A and presented recently in [29], does not
depend in any way on knowledge of the interior of the
ultracompact object. It depends only on having a large
redshift. The value of the temperature can only be approx-
imately estimated using this method, but the fact that the
object radiates is clearly established. The backreaction and
the extremely weak time-dependence which is induced by
it, is inconsequential to this conclusion.

(2) Mathur and Mehta in [30], argue convincingly that
the properties of the object’s thermal atmosphere can be
used to fix the temperature of radiated modes at precisely
the Hawking value. Again, establishing that a static
configuration (ignoring the backreaction) can radiate,
provided that it satisfies the following four conditions:
(1) The mass as seen from infinity is M.
(2) Standard semiclassical physics is a good approxi-

mation to the dynamics at r ≥ R.
(3) The redshift in the semiclassical region reaches a a

high value OðM=mPÞ. The mass contained in the
region r ≤ R should be MðRÞ ¼ M − oðMÞ.

(4) Causality holds.
These conditions are all satisfied by the frozen star model

as discussed in Sec. II.
In [36], the two properties (a) Having a compact enough

object and (b) That a suitable adiabatic condition is
satisfied, were formally defined, showing that horizonless
objects will indeed emit thermal radiation but with two
provisions: (i) There is an approximately exponential
relation between the affine parameters for the null gen-
erators on past and future null infinity and (ii) the surface
gravity of the object changes at a slow-enough rate. The
frozen star obeys both requirements and is, therefore,
expected to emit radiation with properties that are similar
to those of BH-emitted Hawking radiation.
In the following, we first recall a heuristic argument

from [28] (see also [29]) that relies on a gravitational
Schwinger process and then apply explicitly the more
formal ideas of [36] to the frozen star.

A. Gravitational particle production analog
of the Schwinger effect

Let us first consider a pair-production event in the
atmosphere of a massive, compact, horizonless object,
which is induced by the gravitational analog of the
Schwinger effect [28]. To recall, the Schwinger equation
[27] predicts the rate per unit volume REl

PP of electron–
positron pair production in an electric field E, such that

REl
PP ¼ α2

π2
E2e−

πm2
e

eE , where α ¼ e2=ð4πÞ, e is the electron’s
charge andme is its mass. Now suppose that one exchanges
the electric forceFE ¼ Eewith the gravitational forceFG in
Schwinger’s equation. IfM is themass of the compact object
and E is the relativistic energy of the positive-energy
particle, the gravitational force is approximately given by
FG ¼ GNME

r2 , wherewe restored the dependence onNewton’s
constant GN . If the object is compact enough so that its
radius satisfies R ≈ 2MGN , then FG ∼ 1

2
E
R. Substituting

m2
e → E2 and eE → 1

2
E
R intoR

El
PP, one finds that the resulting

rate of the gravitational pair production per unit volumeRG
PP

in the proximity of the object’s outer surface is

RG
PP ∼

ℏ
R4

�
RE
2πℏ

�
2

e−
2πRE
ℏ : ð11Þ
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This rate is maximized when E ¼ ℏ
πR, which is of

the order of the Hawking temperature TH ¼ ℏ
4πR of a

Schwarzschild BH; in which case, RG
PP ∼ ℏ

R4. This estimate
suggests that one Hawking-like pair of particles, each with
energy E ∼ TH, is produced per light-crossing time R from
a volume R3, which is the standard Hawking emission
result. Meanwhile, away from the outer surface, the rate of
pair production becomes exponentially small; indicating
that Hawking-like radiation can originate near the outer
surface of a compact object, even if it is not formally a
horizon.

B. Temperature and spectrum of emitted radiation

1. Formal conditions for the validity of the calculation

For a more formal derivation, we recall the results of
[36], which reveals that horizonless objects will indeed
emit thermal radiation under certain conditions.
Following [36], let us first consider null curves starting

from past infinity J − and arriving at future infinity J þ.
There will be some invertible relation between their
respective affine parameters U and u; namely, U ¼ pðuÞ
and u ¼ p−1ðUÞ. The surface gravity can then be defined

formally as κðuÞ ¼ − p̈ðuÞ
ṗðuÞ, where dots denote derivatives

with respect to u. Next, picking one particular null curve
and labeling it by U� on J − and u� on J þ, one can then
write

U ¼ U� þ C�

Z
u

u�
e
−
R

ū

u�
κðũÞdũ

dū; ð12Þ

for some dimensionless constant C�.
Assuming that κðuÞ satisfies the following adiabatic

condition:

jκ̇ðu�Þj
κ2ðu�Þ

≪ 1; ð13Þ

one can further show that outgoing particles reaching J þ at
u� obey a Planckian distribution. In which case, Hawking-
like radiation exists with a temperature of

Tðu�Þ ¼
κðu�Þ
2π

: ð14Þ

These ideas can be applied explicitly to the frozen
star because they rely solely on the nature of spacetime
outside the star. Importantly, the exterior region for r >
Rstar ≡ Rð1þ λÞ ≈ 2Mð1þ λþ ε2Þ is described by the
Schwarzschild metric; thus the affine parameters are the
Eddington-Finkelstein outgoing coordinate u ¼ t − r�,
where r� is the usual tortoise coordinate that is defined
by dr� ¼ drffiffiffiffiffiffiffiffiffiffi

−gttgrr
p , and U is a Kruskal-like coordinate that is

related to u in the standard way. One can write r� for both

the interior and exterior regions and, since r� is continuous
across the inner and outer surfaces of the translational layer
(and throughout the layer itself), u and U are continuous
as well.
The surface gravity for the Schwarzschild metric, when

defined at the surface of a star of radius Rstar, is

κ2 ¼ −
1

2
ð∇μξνÞð∇μξνÞ

���
r¼Rstar

; ð15Þ

where ξ is the timelike Killing vector. As in the case of a
Schwarzschild BH, κ can be expressed as κðrÞ ¼ M

r2, so that,
on the surface r ¼ Rstar of a frozen star, the leading-order
result is simply κ ¼ M

R2.
With the above relations in hand, we can now define the

affine parameters U on J − and u on J þ for the frozen star,

U ≈U�
H − A�e−κ�u; ð16Þ

u ¼ −
1

κ�
ln

�
U�

H −U
A�

�
; ð17Þ

where A� is a dimensional constant, the best estimate for the
would-be horizon is at U�

H ¼ Rstar ≈ R and notice that κ�
satisfies κ� ¼ −Ü=U̇.
The surface gravity naively vanishes in the interior of the

frozen star because of the constancy of gtt and grr.
However, as we will argue later, each spherical slice of
the interior maintains the same properties that one would
attribute to a would-be horizon of that radial size. The
physical reason that these inner slices do not directly
contribute to the radiation is not that their Killing vector
vanishes but because of the large interior redshift greatly
suppressing the propagation of particles in the bulk of the
frozen star. So that, even if such particles are produced, they
are effectively trapped within the star.
The adiabatic condition (13) for the frozen star model

can be verified by evaluating the derivatives of the surface
gravity. In general, for a star of radius Rstar,

κ̇ ¼ dκ
du

¼ ∂κ

∂t
− fðrÞ ∂κ

∂r

����
r¼Rstar

: ð18Þ

In the frozen star case, ∂κ
∂t ¼ 0 and κðrÞ ¼ M

r2, and so

κ̇ ¼ 2M
r3

fðrÞ
���
r¼Rstar

; ð19Þ

which at leading order becomes

κ̇ ¼ ε2 þ λ

R2
: ð20Þ

On the other hand, at r ¼ Rstar, another leading-order
result is
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κ2 ¼ 1

4R2
; ð21Þ

so that the adiabatic condition (13) translates into

jκ̇j
κ2

¼ 1

4
ðε2 þ λÞ ≪ 1; ð22Þ

meaning that the adiabatic condition for the frozen star is
easily satisfied.

2. Hawking-like radiation from a frozen star

We are now well equipped to derive the thermal
spectrum of the emitted radiation for a frozen star by
suitably adapting the derivation in [36].
Defining the modes on J − as

ξðuÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωu ð23Þ

and those on J þ as

ΦðUÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4πΩ

p e−iΩU; ð24Þ

we can express the Bogoliubov coefficient

αωΩ ¼ i
Z

dU½∂UΦ�ξ −Φ�
∂Uξ� ð25Þ

as

αωΩ ¼ −
1

4π
ffiffiffiffiffiffiffi
ωΩ

p
Z

U�
H

−∞
dUeiΩU

�
Ω
�
U�

H −U
A�

�iω
κ�

þ ω

κ�

�
U�

H −U
A�

�iω
κ�−1

�
: ð26Þ

Recalling that βωΩ ≈ −iαωΩ and i ¼ ei
π
2, we then find

that

βωΩ ¼ −i
1

2π

ffiffiffiffi
ω

Ω

r ðΩÞ−iω
κ�

κ�
e

πω
2κ�Γ

�
iω
κ�

�
; ð27Þ

which allows us to calculate the expectation value of the
number operator for the outgoing particles via the usual
definition h0jb†bj0i ¼ R

∞
0 dΩβωΩβ�ω0Ω. The result is

jβωΩj2 ¼
1

e
2πω
κ� − 1

δðω −ΩÞ: ð28Þ

The frozen star temperature can now be readily identi-
fied as

TFS ¼
κ�
2π

¼ 1

8πM
¼ TH; ð29Þ

to leading order in ε2 and λ.
One might be concerned with the effects of the back-

reaction on the geometry due to the emission of Hawking-
like modes, as such effects could modify the position of the
star’s outer surface with respect to its Schwarzschild radius
(or would-be horizon). However, if the surface starts out
having an exponentially large relation between the affine
parameters as in our Eq. (16), it will remain so for a long
time, while the coefficient κ� can be treated as a constant.
This is essentially the same argument that Hawking had
made in Ref. [19] to justify using the eternal black hole
geometry for the purposes of computing the spectrum of
radiation. The geometry can be treated as static at each
instant of time, with the frozen star solution then para-
metrized by the appropriate mass and corresponding radius.
None of this is specific to the existence or not of a formal
horizon, and so is equally applicable to our model or any
other one that starts out with an exponentially large relation
between the affine parameters as in Eq. (16). As such, our
derivation of the temperature of emission and the upcoming
one for the entropy of the star are justified.
In summary, the temperature of the emitted radiation

from a frozen star is the same as Hawking temperature up to
a perturbatively small correction.

IV. ENTROPY

We start here with a calculation of the entropy of the
frozen star by integrating the first law, as was first done by
Bekenstein and Hawking [17,18]. Following this, the
entropy of the frozen star will be calculated using the
Euclidean-action method as pioneered by Gibbons and
Hawking [25].

A. Entropy from the first law

The first law states, in the current context, that

dS ¼ βðMÞdM; ð30Þ

where βðMÞ is the inverse of the temperature.
To derive the entropy of a frozen star of mass M, it is

helpful to first consider a star of much-smaller mass
m0 ≪ M. From the calculation of the temperature in the
previous section, the inverse temperature at leading order is

βðm0Þ ¼ 8πm0: ð31Þ

One can now imagine increasing the mass of the frozen
star by a small amount Δm, so that m0 þ Δm is the new
mass and 8πðm0 þ ΔmÞ is the new inverse temperature. It
follows that
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SFSðm0 þ ΔmÞ ¼ SFSðm0Þ þ 8πm0ΔmþOðΔm2Þ: ð32Þ

Integrating the previous equation, with the key obser-
vation that βðmÞ grows linearly with m,2

βðmÞ ¼ 8πm; ð33Þ

one obtains

SFSðMÞ ¼ SFSðm0Þ þ
Z

M

m0

dm 8πm

¼ SFSðm0Þ þ 4πðM2 −m2
0Þ

¼ SFSðm0Þ þ SBHðMÞ − SBHðm0Þ: ð34Þ

If we start out with the frozen star’s seed radius being close
to its core radius, thenSFSðm0Þ and SBHðm0Þ are negligible in
comparison to SBHðMÞ. The conclusion is that, to leading
perturbative order, the frozen star entropy is equal to the
Bekenstein–Hawking entropy of a same-mass BH,

SFSðMÞ ¼ SBHðMÞ: ð35Þ

B. Entropy from Euclidean action

Next is the calculation of the entropy of the frozen star
using the method of Gibbons and Hawking [25]. We start
by calculating the action of the bulk of the frozen star,
which extends from the center up to the beginning of the
outer transitional layer. We then calculate the entropy of the
bulk and show that it is equal, at leading order in ε2 and λ, to
the entropy of a same-mass BH. The action of the outer
transitional layer will then be calculated separately. In the
next section, this outer layer will be interpreted as a
Euclidean instanton that mediates the transition between
a collapsing shell of ordinary matter with a Minkowski
interior and the bulk of a frozen star. The current section
ends with a calculation of the entropy for the total
spacetime, which again agrees at leading order with that
of a BH of the same mass.
The Euclidean-action method then provides us with two

ways of determining the frozen star entropy; either by
calculating the action of the bulk of the interior or by
evaluating the action for the total spacetime. This duality
then provides us, in turn, a means for realizing both of the
competing perspectives on the entropy, matter based and
geometric, but with no ambiguity in the final answer. Note
that the geometric point of view follows automatically if the
limits ε2 → 0 and λ → 0 are imposed; in which case, the
outer surface of the star tends to that of a true horizon.
However, it is more interesting and realistic to consider
what happens when ε2 and λ differ from zero.

Let us now recall how the calculation in [25] is
performed. Gibbons and Hawking started out by evaluating
the action of the Euclidean BH solution I½g� and applying
the identification

I½g� ¼ lnZ½β� ¼ −βF ¼ S − βM; ð36Þ

where lnZ½β� is the logarithm of the thermal partition
function and F is the Helmholtz free energy.
The Euclidean Einstein action consists of both a volume

and a surface contribution,

I½g� ¼ −
1

16π

Z
M

ffiffiffi
g

p
R −

1

8π

Z
∂M

ffiffiffi
h

p
½K�: ð37Þ

The integrand of the volume portion trivially vanishes for
the Schwarzschild solution, and one is left only with the
boundary contributions from the horizon and timelike
infinity, each of which is an integral of the trace of the
extrinsic curvature K (or second fundamental form), where
[K] indicates that the contribution from flat space has been
subtracted off. The Euclidean geometry has zero area at the
horizon and, once the conical singularity at the horizon has
been resolved by assigning the Euclidean time τ with its
appropriate periodicity, Δτ ¼ β ¼ 8πM ¼ 4πR, the con-
tribution from the horizon vanishes.
The only surviving contribution is then that of the

asymptotic boundary I∞. The Schwarzschild result goes as

I∞ ¼ −
1

8π

I
dτ

ffiffiffiffiffiffi
grr

p
∂rð4πr2

ffiffiffiffiffiffi
gττ

p Þjr≫2M: ð38Þ

After appropriately subtracting the divergent flat-space
contribution and taking the r → ∞ limit at the end, one
finds that

I ¼ −
1

2
βM: ð39Þ

Now recalling Eq. (36), one arrives at an entropy of
S ¼ βM=2 or, since β ¼ 8πM, S ¼ 4πM2. This is simply
S ¼ SBH ¼ A=4 and thus the Bekenstein–Hawking area
law [17,18]. For future reference, one should notice that
I∞ ¼ −SBH.
The Gibbons-Hawking calculation relies on the fact that

the Euclidean action is a boundary term on the solution of
the Einstein equations of motion. Clearly, if the sole
contribution to the Euclidean action comes from the
boundary term at infinity, one is guaranteed to get exactly
the BH entropy. In the original calculation, the interior of
the BH is excised, the horizon shrinks to a point and the
conical singularity is removed. Therefore, the sole con-
tribution does indeed come from the asymptotic boundary
term. However, in Sec. 5 of [38], it was pointed out that the
same result is still obtained for a horizonless and non-
singular spherical geometry for which the volume of the

2A similar scaling relation is used in [37] to define an effective
surface gravity.
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sphere at the origin shrinks to zero. In this case, there is no
contribution from the inner boundary and the entropy is
exactly equal to that of a BH. We will encounter a similar
situation in what follows.

1. Entropy of the frozen star bulk

To calculate the entropy of the bulk (again to leading
order in ε2 and λ), it is important to realize that β depends
on r. From Eq. (33) and from the relation mðrÞ ¼ 1

2
r in

Eq. (4), it follows that

βðrÞ ¼ 4πr; ð40Þ

which is obviously different than the constant βH ¼ 8πM
in [25]. A radially dependent compactification scale may
seem unusual, but then so is the frozen star, which features
large deviations from Schwarzschild over the entirety of its
interior. The Euclidean geometry of the frozen star is
depicted in Fig. 2. A similar geometry was found in [34].
It is possible to understand this peculiar dependence by

considering the near-horizon geometry of the Euclidean
Schwarzschild BH, for which the relevant part of the metric
can be expressed as 4π2

β2H
r̃2dτ2 þ dr̃2. Now, replacing the

constant βH by β ∼ r and taking into account that r̃ ∼ r for
the frozen star interior, one finds a constant gττ. In any case,
such radial dependence inside of the frozen star does not
affect the validity of the method. As we have already
observed in Sec. III, in the exterior of the frozen star, the
temperature is a constant and its inverse is equal at leading
order to the standard value of βH.
The Euclidean action of the bulk does not receive any

contribution from the extrinsic-curvature boundary terms
because, as argued above, it vanishes at r ¼ 0 due to the
shrinking of the volume of the sphere to zero at the origin
and the outermost surface of the bulk is not a true boundary
of spacetime. The remaining volume integral is

IBulk ¼ −
1

16π

Z
Bulk

d4x
ffiffiffi
g

p
R; ð41Þ

and using Eq. (40) for the compactification scale of the
Euclidean time direction, one can rewrite this as

IBulk ¼ −
1

4

Z
R

0

dr 4πr2rR: ð42Þ

Let us next use the trace of Einstein’s equations, while
recalling the form of the stress tensor T a

b from Sec. II, to
recast the scalar curvature in terms of the energy density
and pressure in the frozen star’s bulk, R ¼ −8πT ¼
−8πð−ρþ pr þ 2p⊥Þ ¼ 16πρ ¼ 2

r2. So that

IBulk ¼ −2π
Z

R

0

dr r ¼ −πR2 ð43Þ

and, therefore,

IBulk ¼ −
1

2
βðRÞM: ð44Þ

Using the relationship (36) between the action and the
entropy, we conclude that SBulk ¼ SBH.
It is worthwhile to understand how we managed to evade

Gibbons and Hawking’s conclusion that a normal star or,
for that matter, any horizonless object could not have a
geometric entropy, regardless of how compact it may be
[25]. Looking at the discussion leading up to their
Eq. (3.16), one can identify two critical assumptions:
(1) The star is composed of “normal” matter in thermal
equilibrium and (2) its radius R and temperature T satisfy
R3 ≫ T−3. Note that T here is not the Hawking temperature
but rather the actual thermodynamic temperature of the
matter.
The condition (VT3 ≫ 1), as well as an approximately

flat spacetime. Both of these conditions are violated in a
major way by the frozen star model. The same is true of
Eq. (3.17), which generalizes (3.16) to curved space
provided that 1=T is much smaller than gravitational length
scales. In our case, these length scales are parametrically
equal. The former condition does not apply to our model, as
the source of the frozen star is exotic matter at zero
temperature.3 We would like to emphasize that although
we eventually express our results in terms of the energy
density and pressure, this is done only for convenience, as
our own calculation of the thermodynamic potential is
based on the Euclidean Einstein action and certain com-
ponents of the Einstein (geometric) tensor. In other words,
in spite of some appearances to the contrary, our calculationFIG. 2. The frozen star Euclidean geometry. The exterior

geometry is essentially the same as the Euclidean Schwarzschild
geometry. The bulk has the geometry of a cylinder of radius

ffiffiffiffiffi
ε2

p
and the geometry of the inner transitional layer, drawn here not to
scale, expands back to the asymptotic radius.

3Fundamentally, the frozen star would consist of a state of
strings close to Hagedorn temperature [1], but this matter is no
less exotic.
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of the entropy is best viewed as being primarily a geo-
metric one.

2. Action of the outer transitional layer

It is straightforward to evaluate the action of the outer
transitional layer ITL using the metric and stress-tensor
components as presented in Sec. II. Recall that this transi-
tional layer is a thin shell of width 2λR, with λ ≪ 1. The
metric of this layer smoothly connects the bulk metric to the
exterior Schwarzschild metric. For simplicity, we evaluate
the action to leadingorder in ε2 and λ and similarly for the rest
of the calculations. Here, we only need to evaluate the
volume term in the action because the boundary terms are
supported only on the true boundaries at r ¼ 0 and r → ∞,
which are outside the domain of integration. In this layer, it
remains true that p ¼ −ρ, but p⊥ is nonvanishing and large,
so that now R ¼ −8πT ¼ 16πðρ − p⊥Þ. It follows that

ITL ¼ −4πβ
Z
TL

dr r2ðρ − p⊥Þ; ð45Þ

where, in principle, β could be a function of r; however, since
thewidthof the boundary layer scales as∼λ and thevalue ofβ
at the outer edge of the layer is β ¼ 4πR, we can ignore any
possible r dependence at leading order.
We now recall our first formof the frozen star conservation

equation (9) and also consider that p0
r ∼

jprj
λ ≫ jprj; ρ, from

which it can be deduced that p⊥ ∼ pr
λ ≫ jprj; ρ. Hence, we

can ignore the contribution from ρ in Eq. (45) at leading
order. Also recalling our second form of the conservation
equation (10) and observing that the factors of r appearing in
Eq. (45) can be approximated as R’s, we can reexpress the
action ITL as

ITL ¼ 16π2R
Z

Rð1þε2þλÞ

Rð1þε2−λÞ
dr

R
2
∂rðr2pÞ

¼ 8π2R2ðr2pÞ��Rð1þε2þλÞ
Rð1þε2−λÞ : ð46Þ

The value of p at the upper end is its Schwarzschild
value of p ¼ 0, while the value of p at the lower end is its
frozen star bulk value of r2p ¼ − 1

8π, meaning that

ITL ¼ þπR2 ¼ SBH: ð47Þ
3. Total entropy of the frozen star

The action of the Schwarzschild exterior is given by

IEXT¼−
1

16π

Z
r>Rð1þε2þλÞ

dx4
ffiffiffi
g

p
R−

1

8π

Z
∂M

ffiffiffi
h

p
½K�: ð48Þ

The volume term vanishes for the exterior Schwarzschild
metric and the surface contribution comes only from the
boundary at infinity, as the boundary at r ¼ 0 is outside the
domain of integration.

The contribution of the boundary at infinity is given in
Eq. (39) and is equal to −SBH, so that

IEXT ¼ −
1

2
βM ¼ −SBH; ð49Þ

which can be combined with our previous calculations to
give

I½frozen star� ¼ IBulk þ ITL þ IEXT

¼ −SBH þ SBH − SBH ¼ −SBH: ð50Þ

It follows that the frozen star has a leading-order entropy
that is equal to that of a BH with the same mass,

SFS ¼ SBH: ð51Þ

Let us comment that, because the outer surface becomes
a true horizon in the ε2, λ → 0 limits, it must be true that the
zeroth-order contributions to IBulk and ITL exactly cancel,
just as was found above. This tells us, unequivocally, that
the scaling relation β ¼ 4πr is the correct choice as
anything else would have offset the required cancellation.
It should be noted that, as long as the temperature is

known, a high redshift is not required for evaluating the
Euclidean path integral, which can be understood in two
ways. First, one can integrate over the whole space and then
notice, as in Ref. [38], that the action is a total derivative
and that there are two boundary terms, one at r → ∞ and
the other at r ¼ 0. The contribution from infinity gives the
same entropy as a black hole of the same mass, so that, for
the action to give the correct value of the entropy, the
contribution from r ¼ 0 has to vanish, which it does. This
calculation is formally valid regardless of the value of the
redshift at the surface of the frozen star. The other way is to
calculate the bulk action of the frozen star by identifying
the inverse temperature, as we did in Eq. (40), and then
calculate the action of the transition layer and the exterior.
Here, again the calculation is formally valid for any
redshift. The fact that the redshift is high determines
how well the leading term in ε2 and λ estimates the action.

V. DYNAMICAL COLLAPSE OF MATTER
TO A FROZEN STAR

As suggested in the Introduction, it is unreasonable to
expect a “normal” system of collapsing matter to slowly
evolve into an ultracompact object whose geometry devi-
ates from the Schwarzschild geometry on horizon-order
length scales. What is rather needed is something akin to a
quantum-induced phase transition, where we have implic-
itly recalled that the final system of matter is, in its
fundamental description, a highly quantum state of strings
at a finite temperature. It is then natural, in the Euclidean
picture, to regard the transitional layer as a gravitational
instanton that mediates the transition from an infalling shell
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of matter with a Schwarzschild exterior and an empty
interior to a frozen star.
There is, indeed, a long tradition of using Euclidean

instantons in just this way, whether it has been to facilitate
bounces between two phases of de Sitter (e.g., [39]), to
induce a quantum-tunneling process from nothingness to a
Lorentzian inflationary cosmology (e.g., [40]) or, in the
guise of a domain wall, to trigger the creation of a pair of
BHs (e.g., [41]). For a general discussion, see Refs. [42,43].
The theme in all these works, in analogy to similar ideas in
quantum mechanics, is that the probability of transition is
given (up to a numerical prefactor) by Γ ¼ e−IInst, where the
instanton action IInst is typically evaluated using either the
on-shell solution or at a saddle point of an appropriate
partition function. The instanton interpolates between an
initial spacelike section of some specific solution, which is
typically the false vacuum solution, and a final spacelike
section of another solution, so that the action IInst can be
defined by a subtraction procedure of the respective
Euclidean actions of these two solutions.
In our case, the initial-state geometry is defined on the

outermost slice of the transitional layer and corresponds to
the solution when the collapsing shell of matter, which can
also be viewed as a domain wall, is just on the brink of
passing through its would-be horizon. The interior of the
shell at this initial time contains the false vacuum, which is
simply flat Minkowski space. All this is in agreement with
our calculation at the end of the last section, which makes it
clear that the Euclidean action vanishes on the initial-state
spacelike slice, since a Schwarzschild exterior enclosing
normal matter will have a negligible free energy until a
horizon forms.
Meanwhile, the final-state geometry is defined on the

innermost slice of the transitional layer, at a radius just
inside the would-be horizon.4 Once this time has been
reached, the shell and its once-empty interior has transi-
tioned into a fully formed frozen star. From this perspec-
tive, the inner-most slice represents a bubble enclosing the
true vacuum, as the frozen star represents a state of maximal
entropy or minimal free energy.
This picture depends on having, from an external

perspective, a finite initial thickness for the matter shell
and a slow velocity for its descent. Given that the shell’s
width far exceeds that of the transitional layer, 2λR, and that
its collapse is slow, dr

dt ∼ λ, the phase transition can be
triggered long before the entirety of the shell passes
through its Schwarzschild radius.
The standard prescription in the case of a bubble or

bounce (B) mediated transition at finite temperature from a
false vacuum (FV) to the true one is an exponent of the
form [42,43]

lnΓ ¼ IB − IFV; ð52Þ

which is, in our case,

lnΓ ¼ I½Rð1þ ε2 − λÞ� − I½Rð1þ ε2 þ λÞ� ¼ −ITL; ð53Þ

and so

Γ ∼ e−SBH ; ð54Þ

as previously advertised. Formally, in the classical limit of
lP → 0, the transition probability vanishes and the frozen
star never forms; the shell rather continues on to form a
singular BH. As will soon be shown, there is evidence that,
if a frozen star does form, its evaporation is unitary,
painting a nicely consistent picture.
We now follow Mathur (e.g., [26]) and identify this as

the probability for transition to any one of the eSFS ¼ eSBH
frozen star microstates, so that the total probability is

ΓTot ∼ eþSBHΓ ∼ 1: ð55Þ

That is to say, the transition from an incipient BH to any
frozen star configuration of equal mass is a likely, if not
certain, outcome.

A. How fast?

As for the duration of the transition from an external
observer’s perspective, this is simply the width of the
transitional layer 2λR, divided by the shell’s approximate
radial velocity in the outer layer λ� ε2 ∼ λ. In other words, a
timescale of order R, the light-crossing time of the star.
Consider though that the analog calculation for a BH is
exponentially large. However, from the perspective of a
particle that exits the matter shell just before the frozen star
has fully formed, the relevant timescale is the proper-time
equivalent or, quite simply, thewidth of the transitional layer
divided by a speed of order unity, T trans ∼ λR ∼

ffiffiffiffi
α0

p
∼ ls,

wherewe have recalled a discussion from Sec. II relating λ to
the inverse of the string tension and ls is the fundamental
string length, which in weakly coupled string theory satisfies
lP ¼ lsgs with gs being the string-coupling strength.
The scale T trans can be compared to the analog timescale

in general relativity that is used in the calculation of the
Hawking effect, where the transition (or horizon formation)
is assumed to be instantaneous. This string-scale fuzziness
in the transition time—or, equivalently, in the thickness of
the transitional layer—will be important in what follows.

VI. RADIATION REVISITED

In this section, we argue on the basis of previous
discussions in [31,44] that, when the entropy SBH is finite,
the evaporation of the radiation is consistent with unitarity.
The key observation is that this finiteness implies that the

4One of our working assumptions is that ε2 < λ (see Sec. II),
and so Rþ ε2 − λ < R.
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would-be horizon is not a surface of infinite redshift but
rather a surface of large, finite redshift and, consequently,
has some quantum width. As a result, the number operator
of the Hawking particles is no longer diagonal and likewise
for the density matrix of the emitted radiation.
It proves to be a worthwhile exercise to think about the

radiation process of the frozen star in the context of
Hawking’s seminal calculation of the thermal spectrum
[18]. In Hawking’s original model, one considers a col-
lapsing shell of matter, viewed as an incipient BH, and
focuses on a certain class of null rays. Namely, those rays
which enter the interior of the shell when its radius Rshell is
substantially larger than its Schwarzschild radius R but exit
the interior at a time close to that of horizon formation, so
that ðRshell − RÞin ≫ ðRshell − RÞout. Because the ray exits
when ðRshell − RÞout=R ≪ 1, it undergoes an exponentially
large redshift after passing through the interior region.
From the perspective of an asymptotic observer, it is this
strong time-dependent effect that leads to the creation of
Hawking particles. Hawking was able, of course, to make
this description of particle emission from an incipient BH
quantitatively precise.
The analogous situation for the frozen star is that the null

ray must enter the collapsing matter shell before the
transition (as described in Sec. V) takes place but then
exit the shell only after the transition has transpired. This is
the only way in which the ray can experience the effect of a
suitably large enough redshift. It can then be deduced that,
if the transition occurs at an advanced time of v ¼ vtrans, the
prospective Hawking mode should have entered the matter
distribution no later than this time. What should now be
clear is that vtrans is the analog of Hawking’s v0, which is
defined by the last incoming ray that can exit before the
horizon finally forms. For now on, we will denote both of
these cutoff times by v⋆.
If the transition from ordinary matter to a frozen star was

an instantaneous process, this would be the end of the story,
as the mathematics would basically replicate those of the
Hawking calculation. However, as discussed in the pre-
vious section, the timescale of the transition is, locally,
given by T trans ∼ λR ∼ ls

5; meaning that v⋆ in the frozen
star model should not be regarded as precise but should
rather be smeared over this scale. Alternatively, one could
view the smearing as an uncertainty in the location of the
would-be horizon. Either way, this smearing modifies the
Hawking calculation in a subtle but important manner.
Fortunately, we are well positioned to account for just such
an effect, as will now be explained.
Let us recall an earlier discussion [44], where the effects

of a quantum-uncertain horizon position were incorporated
into the otherwise standard Hawking calculation. Here, we

will just sketch the argument, leaving a precise calculation
to a future publication.
The key revision of Hawking’s calculation in [44] is

based on an integral that appears in Hawking’s original
calculation of the number operator for the outgoing
particles,

IC ¼ 1

2π

Z
∞

−∞
dv eivðω0−ω00Þ ¼ δðω0 − ω00Þ; ð56Þ

where ω0 and ω00 are incoming-particle frequencies and the
advanced time is defined as v ¼ tþ r�. For a formal
definition of the number operator, see Sec. III. This integral
is to be adapted so that it includes the effects of semi-
classical physics. In [44], these effects resulted from the
quantum blurring of the horizon position; while here, they
result from the string-scale blurring in the transition time.
The resulting modified integral depends on an additional
parameter vshell,

ISCðω0 − ω00; vshellÞ ¼
1

2π

Z
∞

−∞
dv eiðv−vshellÞðω0−ω00Þ; ð57Þ

where vshell is to be regarded as a variable that is to be
integrated against a normalized Gaussian probability dis-
tribution PðvshellÞ with width σ. In the case of the frozen
star, σ ∝ T trans.
The diagonal and off-diagonal contributions are then

separated,

hISCðω0 − ω00; vshellÞi

¼ δðω0 − ω00Þ þ
�

1

2π

Z
vshell

0

dv0 eiv0ðω0−ω00Þ
	
; ð58Þ

where hfðvÞi ¼ R
dvPðvÞfðvÞ.

Having mapped out a formally similar framework to that
of [44], we can now simply recall the end result. After an
extremely long calculation, it was revealed that the number
operator for outgoing particles picks up an off-diagonal
part6 that is a rather complicated combination of gamma
functions and exponential factors whose arguments con-
tain the two out-frequencies ω, ω̃ and their difference
Δω ¼ ω − ω̃. Most important for current considerations is
that the off-diagonal contribution scales with σ=R, which,
on general grounds, should scale as 1=

ffiffiffiffiffiffiffiffi
SBH

p
[31].

Although the formal steps has been glossed over, it is
useful to consider the actual mechanism that is responsible
for the off-diagonal terms in the number operator. First,
in the Hawking calculation, the number operator is meas-
uring the overlap of two incoming waves at the same
advanced time v. Such waves form an orthogonal basis in

5We use the local timescale Rλ and not the asymptotic scale R
as what is required is the analog of Hawking’s instantaneous-
collapse model.

6It is explained in [44] as to why the other two types of two-
point functions, that of ingoing particles and mixed, are un-
affected by the inclusion of quantum blurring.
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frequency-space, leading to adiagonal expression in fre-
quency space IC ∼ δðω0 − ωÞ. This diagonal character is
then preserved by the outgoing waves in the number
operator after performing a subsequent Fourier transform.
On the other hand, if these modes becomewavepackets that
are smeared over a finite timescale, then the orthogonality
condition is modified in such a way that the would-be delta
function becomes a Gaussian and the strength of the off-
diagonal elements in the number operator scales linearly
with the duration of the smearing scale. This happens in
part because there are two subsequent Fourier transforms
that are each weighted by a Gaussian. The first is the
“expectation value” appearing in Eq. (58) and the second
transforms a function of ω0 − ω00 into a function of
Δω ¼ ω − ω̃, namely, the number operator.
Another long calculation, this time in [31], reveals

that an off-diagonal correction of this strength in the
number operator translates into off-diagonal elements in
the multiparticle density matrix that are suppressed by a
factor of ðσ=RÞ2 with respect to the diagonal elements.
Consequently, the off-diagonal contributions are exponen-
tially suppressed at early times but will become significant
and eventually dominate, once the number of emitted
particles N ≲ SBH is enough to compensate for the sup-
pression factor ðσ=RÞ2 ≳ 1=SBH. This tipping point occurs
near the midway point of evaporation, the so-called Page
time [32]. Moreover, this type of relation between diagonal
and off-diagonal elements is exactly what is needed to
reproduce the famous Page curve [32], which can be
viewed as evidence of a unitary evaporation process.
That this is so has already been verified in [31]. Here,
we recall our previous form of the entropy-versus-time plot,
reproduced in Fig. 3 and refer back to the original source
for mathematical details.
Tracking this flow of information over the lifetime of the

star is operationally unfeasible. Hence, this form of density
matrix is in agreement with a previous argument that a

standard BH and a BH mimicker, such as the frozen star,
should be observationally indistinguishable when in equi-
librium [45]. Observational differences would rather
require an out-of-equilibrium event such as a BH merger
in which the BH is emitting a macroscopic amount of
energy in the form of gravitational waves.

VII. CONCLUSION

Our main lesson is that the frozen star may be unique
among ultracompact but horizonless objects in that it is able
to reproduce, up to perturbative corrections, the same
entropy–area law as that of a conventional BH. We have
also shown that there is a natural choice for a Euclidean
instanton which mediates the phase transition between the
interior geometries of an incipient BH and a frozen star.
Standard techniques were used to reveal a probability of
transition that goes as e−S, just as expected via statistical
reasoning. Moreover, we have argued, following Mathur,
that the large degeneracy of the frozen star predicts a total
transition probability of order unity. Meaning that the
transition from a collapsing matter system to a frozen star
would be commonplace if it is at all possible.
An unexpected consequence of the probability-of-

transition calculation is that it yields an extremely large
action for the intervening layer, being of the same order as the
bulk action of the frozen star itself. The actual matter content,
however, is suppressed by a factor of λ, the shell width in
Schwarzschild units, as a rather simple calculation reveals. A
possible interpretation is that this matter might be in a highly
excited state, which is suggestive of a BH “firewall” [46]. If
this interpretation of the large action is indeed correct, it
would be interesting to understand why a firewall-like
structure is associated with a horizonless object.
It should be reemphasized that our calculation of the

entropy is fundamentally geometric in that it is based
directly on the Euclidean-action method. The energy
density appears but has no obvious connection to matter
fields in the context of the frozen star model. The micro-
scopic origin of the matter densities must rather be gleaned
from the polymer model which is a string-theoretic
description of the same compact object. The frozen star
and collapsed polymer models are supposed to be two
different perspectives of the same physical object. That the
two models are describing the same object is supported by
the similarities of this Euclidean geometry with that of the
punctured cigar which is discussed in [33]. In the punctured
cigar, the Euclidean time circles are decreasing with r from
the outer surface to the origin and are cut off, or “punc-
tured,” close to the r ¼ 0 tip. The frozen star geometry
puncture comes about because of its small, central, regu-
larized zone. This similarity is relevant because the polymer
model, once Euclideanized, can also be viewed as a
condensate for the winding modes of the thermal scalar
[47–49]. We hope to solidify this connection in the future,
as BH physics—which is becoming more and more

FIG. 3. Dependence of the Rényi entropy H2 of the BH
radiation on the number of emitted particles N for the case of
off-diagonal elements discussed in the text (dashed). For com-
parison, the solid line depicts the prediction of the Page model.
Figure reproduced from [31].
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accessible as gravitational-wave data collection and analy-
sis improves—could then provide a window into funda-
mental string theory.
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