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In the context of fðR; TÞ gravity and other modified theories of gravity, the knowledge of the first order
variation of the trace T of the energy-momentum tensor with respect to the metric is essential for an accurate
characterization of the gravitational field. In this paper, by considering a paradigmatic example of a perfect
fluid whose dynamics is described by a pure k-essence matter Lagrangian in fðR; TÞ ¼ Rþ F ðTÞ gravity,
we show that the first order variation of the trace of the energy-momentum tensor cannot in general be
determined from the proper density, proper pressure, and 4-velocity of the fluid alone, and that the sound
speed of the fluid can directly influence the dynamics of gravity. We also confirm that the second variation of
the matter Lagrangian with respect to the metric should not in general be neglected. These results can be
particularly relevant for cosmological studies of fðR; TÞ gravity in which some of the material content of the
Universe is modeled as a perfect fluid.
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I. INTRODUCTION

The evidence for the current acceleration of the Universe
is overwhelming [1–5]. There are also strong reasons to
believe that a period of acceleration in the early Universe
might be the solution to some of the most profound
cosmological conundrums (see, for example, [6] and refer-
ences therein). In general relativity a period of acceleration,
no matter how short, requires the Universe to be dominated
by a dark energy component violating the strong energy
condition. Although dark energy may be the real origin for
the early and late time acceleration of the expansion of the
Universe, the true cause may be more profound and require
an alternative theory of gravity [7–9].
The exploration of extensions of general relativity, aimed

at providing more natural explanations for the early and late
time dynamics of the Universe, is an extremely active area
of research [7–13]. Within this realm, significant attention is
directed toward broad categories of modified theories of
gravity that consider the possibility of a nonminimal
coupling between geometry and matter [14–22]. In some
of these, such as in the case of fðR; TÞ gravity, the dynamics
of the gravitational and matter fields may depend on the first
variation of the trace of the energy-momentum tensor with
respect to the metric [15,20].
The material content of the Universe is often described as

a collection of fluids, which, as will happen in the present

article, are frequently assumed to be perfect [23]. Although
in the context of general relativity the sound speed of these
fluids does not explicitly appear in the Einstein equations,
we will show that this is not generally the case in the context
theories of gravity in which the dynamics of the gravita-
tional and matter fields depends on the first variation of the
trace of the energy-momentum tensor with respect to the
metric. In this paper fðR; TÞ gravity will be considered as a
prime example of such theories.
In [20] it has been claimed that the second variation of

the matter Lagrangian of a perfect fluid with respect to the
metric tensor cannot generally be neglected in the context
of fðR; TÞ gravity. This claim is also supported by even
more recent results obtained in the context of matter-type
modified gravity theories [22], where it has been shown
that neglecting this term may compromise the Lagrangian
formulation of the theory. In [20] it was also argued that
the first variation of the matter energy-momentum tensor
with respect to the metric tensor can be expressed in
terms of the pressure, the energy-momentum tensor itself,
and the matter fluid 4-velocity. In the present paper we
will revisit these issues, considering a perfect fluid whose
dynamics is described by a pure k-essence matter
Lagrangian in fðR; TÞ ¼ Rþ F ðTÞ gravity. This will turn
out to be a well-controlled model since it will be shown to
be equivalent to a pure k-essence model of an isentropic,
irrotational perfect fluid with conserved particle number
and constant entropy per particle in general relativity. We
shall assess the contribution of the second variation of the*Contact author: pedro.avelino@astro.up.pt
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matter Lagrangian of a perfect fluid with respect to the
metric tensor, and confirm that it cannot generally be
neglected in the context of fðR; TÞ gravity. Furthermore,
we will investigate the potential impact of the sound speed
on the dynamics of the gravitational and matter fields. We
shall see that, although in general relativity the sound
speed does not explicitly appear as a source of gravity, this
might not be the case in the context of fðR; TÞ gravity and
other theories of gravity.
Throughout this paper, we will work in units where

c ¼ 16πG ¼ ℏ ¼ 1 with c, ℏ, and G being, respectively,
the speed of light in vacuum, the reduced Planck constant,
and Newton’s gravitational constant. We also adopt the
metric signature ð−;þ;þ;þÞ. The Einstein summation
convention will be used when a Greek index appears twice
in a single term, once in an upper (superscript) and once in a
lower (subscript) position.

II. f ðR;TÞ GRAVITY

Consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR; TÞ þ Lm�; ð1Þ

where g is the determinant of the metric gμν, Lm is the
Lagrangian of the matter fields, and fðR; TÞ is a generic
function of the Ricci scalar R and of the trace of the energy-
momentum tensor T. The corresponding equations of
motion for the gravitational field are given by [15]

2ðRμν − ΔμνÞf;R − gμνR ¼ Tμν; ð2Þ

where Rμν is the Ricci tensor, R ¼ gαβRαβ, Δμν ≡
∇μ∇ν − gμν□, □≡∇μ∇μ, a comma denotes a partial
derivative, and

Tμν ¼ Tμν þ ðf − RÞgμν − 2f;TðTμν þ TμνÞ: ð3Þ

Here,

Tμν ¼ gαβ
δTαβ

δgμν
; ð4Þ

and the components of the energy-momentum tensor,

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ gμνLm − 2
δLm

δgμν
; ð5Þ

are related by

δT
δgμν

¼ Tμν þ Tμν; ð6Þ

where T ¼ gαβTαβ. Using Eq. (5), it can also be shown that

δT
δgμν

¼ −Tμν þ gμνLm − 2gαβ
δ2Lm

δgμνδgαβ
; ð7Þ

or, equivalently, that

Tμν ¼ −2Tμν þ gμνLm − 2gαβ
δ2Lm

δgμνδgαβ
: ð8Þ

A. R+F ðTÞ gravity
If f;R ¼ 1, then fðR; TÞ ¼ Rþ F ðTÞ, where F ðTÞ is a

generic function of T. In this case, the Einstein equations,

Gμν ¼ Rμν −
1

2
gμνR ¼ 1

2
Tμν; ð9Þ

are satisfied except for the replacement Tμν → Tμν. Here,

Tμν ¼ Tμν þ T�
μν; ð10Þ

with

T�
μν ¼ Fgμν − 2F ;TðTμν þ TμνÞ; ð11Þ

is covariantly conserved, so that

∇μTμν ¼ 0: ð12Þ

On the other hand,

∇μTμν ¼ −Qν; ∇μT�
μν ¼ Qν; ð13Þ

with

Qν ¼
1

1 − 2F ;T
½∇νF − 2F ;T∇μTμν

þ 2ðTμν þ TμνÞ∇μF ;T �; ð14Þ

thus showing that Tμν and T�
μν will be nonminimally

coupled (see [22] for a nonminimal interacting two-field
model perspective in the context of energy-momentum
squared gravity).
In Rþ F ðTÞ gravity

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi−gp ðLm þ F Þ�

δgμν
; ð15Þ

thus highlighting the fact that this model of gravity is totally
equivalent to general relativity with the modified matter
Lagrangian Lm ¼ Lm þ F . The equivalence with general
relativity makes this model specially suited for investigat-
ing generic features of fðR; TÞ gravity in a well-controlled
manner. We will then consider this model of gravity in the
remainder of this paper.
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III. THE ROLE OF THE SOUND SPEED

Here, we start by considering a scalar field ϕ described
by a pure k-essence Lagrangian LmðXÞ, where

X ¼ −
1

2
∇μϕ∇μϕ ð16Þ

is a standard kinetic term (see [24] for a thorough
discussion of signal propagation and causality in the
context of k-essence). If X > 0, the components of the
associated energy-momentum tensor, given by

Tμν ¼ Lm;X∇μϕ∇νϕþ Lmgμν; ð17Þ

may be written in a perfect fluid form

Tμν ¼ ðρþ pÞuμuν þ pgμν: ð18Þ

In Eq. (18), ρ ¼ 2XLm;X − Lm and p ¼ Lm represent,
respectively, the proper energy density and the proper
pressure of the fluid, and uμ ¼ −∇μϕ=

ffiffiffiffiffiffi
2X

p
are the

components of its 4-velocity (satisfying uμuμ ¼ −1). The
trace of the energy-momentum tensor is a function of X
alone, being equal to

T ¼ −ρþ 3p ¼ −2XLm;X þ 4Lm: ð19Þ

Here, we will start by writing the last term in Eqs. (7)
and (8) as a function of the physical variables of the fluid.
Taking into account that

δLm

δgμν
¼ Lm;X

δX
δgμν

¼ −
1

2
Lm;X∇μϕ∇νϕ; ð20Þ

it can be shown that

−2gαβ
δ2Lm

δgμνδgαβ
¼ XLm;XX∇μϕ∇νϕ

¼ 2X2Lm;XXuμuν

¼ ρþ p
2

�
1 − c2s
c2s

�
uμuν; ð21Þ

where the sound speed squared is given by

c2s ¼
dp
dρ

¼ p;X

ρ;X
¼ Lm;X

2XLm;XX þ Lm;X
: ð22Þ

Hence, we confirm the claim made in [20] that the second
variation of the matter Lagrangian of a perfect fluid with
respect to the metric tensor components cannot be gen-
erally neglected in the context of fðR; TÞ gravity.
However, it provides a contribution which cannot be
inferred from the knowledge of the proper density, proper
pressure, and 4-velocity alone, since it also depends on the

sound speed of the fluid. Notice that this term is never
zero, except if c2s ¼ 1. Also notice that all the calculations
leading to the result given in Eq. (21) were made off shell
(this is in fact required in order to obtain the correct
result).
Using Eqs. (8), (17), (18), and (21), one finds that

Tμν ¼
ρþ p
2

�
1 − 5c2s

c2s

�
uμuν − pgμν; ð23Þ

or, equivalently, that

δT
δgμν

¼ ρþ p
2

�
1 − 3c2s

c2s

�
uμuν: ð24Þ

On the other hand, Eqs. (10), (18), and (23) imply that

Tμν ¼ ðρ̃þ p̃Þuμuν þ p̃gμν

¼
�
ðρþ pÞ

�
1þ F ;T

�
3c2s − 1

c2s

���
uμuν

þ ðpþ F Þgμν; ð25Þ

where

ρ̃ ¼ ðρþ pÞ
�
1þ F ;T

�
3c2s − 1

c2s

��
− ðpþ F Þ; ð26Þ

p̃ ¼ pþ F: ð27Þ

Again notice that our model is equivalent to general
relativity with the modified matter Lagrangian Lm ¼
Lm þ F , in which case, the Tμν would represent the
components of the corresponding energy-momentum tensor.
Consider the identifications

p̃ ¼ Lm; ð28Þ

ρ̃ ¼ 2XLm;X − Lm; ð29Þ

uμ ¼ −∇μϕ=
ffiffiffiffiffiffi
2X

p
; ð30Þ

μ̃ ¼
ffiffiffiffiffiffi
2X

p
; ð31Þ

ñ ¼
ffiffiffiffiffiffi
2X

p
Lm;X; ð32Þ

where ρ̃, p̃, uμ, ñ ¼ dp̃=dμ̃ and μ̃ ¼ dρ̃=dñ define,
respectively, the proper energy density, proper pressure,
4-velocity, proper particle number density, and chemical
potential of the perfect fluid described by the matter
Lagrangian LmðXÞ. The equation of motion of the scalar
field,

∇μðLm;X∇μϕÞ ¼ ∇μðñuμÞ ¼ 0; ð33Þ
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ensures particle number conservation. On the other hand,
Eqs. (28), and (32) imply that the first law of thermody-
namics for an isentropic fluid with a conserved particle
number,

d

�
ρ̃

ñ

�
þ p̃d

�
1

ñ

�
¼ 0; ð34Þ

is verified. Therefore, the pure k-essence Lagrangian
LmðXÞ describes an irrotational perfect fluid with con-
served particle number and constant entropy per particle.

IV. CONCLUSIONS

In this paper we considered theories of gravity in which
the first order variation of the trace of the energy-
momentum tensor with respect to the metric is a source
of the gravitational field. Using fðR; TÞ ¼ Rþ F ðTÞ grav-
ity minimally coupled to a perfect fluid described by a pure
k-essence matter Lagrangian as a well controlled illustrative
example, we have shown that the first order variation of
the trace of the energy-momentum tensor with respect to the
metric depends not only on the proper density, proper
pressure, and 4-velocity, but also on the sound speed of the

fluid. We found that this is so because the second variation
of the matter Lagrangian with respect to the metric—which
has been disregarded in several previous studies—cannot in
general be neglected and has a significant dependence on
the sound speed. These results are essential for an accurate
description of the gravitational and matter fields in the
context of fðR; TÞ gravity—or of other theories of gravity
whose dynamics depends on the first order variation of the
trace of the energy-momentum tensor with respect to the
metric—when considering cosmic matter fields described
by perfect fluids whose pressure is a function of the proper
particle number density alone.
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