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It has been established that the famous three-dimensional Thurston geometries have four intrinsically
Lorentzian analogs. We explore these spacetimes in three-dimensional general relativity nonminimally
coupled to a scalar field together with electromagnetic matter. We find that three of these spacetimes
support electromagnetic radiation, while, the other is partially sourced by a nonnull field and supports
gravitational radiation. By addressing this problem we have also found a novel type of gravitational
Cheshire effect.
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I. INTRODUCTION

The eight Thurston geometries are homogeneous spaces
with positive-definite metrics that uniquely characterize
every three-dimensional manifold. In cosmology, they have
been used to build spatially homogeneous anisotropic
models, see Refs. [1–3]. However, they also admit the
interpretation of three-dimensional gravitational instantons.
Along this line, in Ref. [4] they were all shown to be
vacuum solutions of three-dimensional massive gravity,
see Ref. [5].
Three-dimensional Lorentzian spacetimes do not play

the same fundamental role as the Thurston models.1

However, it is also true that some feats of Lorentzian
geometries are impossible for metrics with Euclidean
signature. Such a complementation is found in the work
of Dumitrescu and Zeghib (DZ), Ref. [7], where they
establish that there are only four spacetimes with uniquely
Lorentzian properties that analog the Thurston geometries.2

These three-dimensional geometries are given by the
Minkowski spacetime, the anti–de Sitter (AdS) space, a
plane-wave spacetime and a homogeneous anisotropic
universe; see Eq. (1) below. Incidentally, the maximally

symmetric spaces may be obtained by applying a Wick
rotation to a Thurston geometry. However, that is certainly
not the case for the other two geometries which are time-
dependent Kundt spacetimes.
Let us remark that unlike other homogeneous plane

waves (see Ref. [9]) the DZ gravitational waves are not an
electrovacuum spacetime. This is can be established with
the methods of Ref. [10]. Moreover, in order to prove this
for all the DZ spacetimes we have extended that method in
Appendix B. Nonetheless, the DZ geometries have all been
found to represent vacuum solutions of three-dimensional
massive gravity, Ref. [4]. That is, with the caveat that the
plane waves solve the equations only in the massless limit.
In such a case, the equations of motion are not an extension
of Einstein’s. Thus, this elusive gravitational wave has
escaped full description within general relativity. We fill
this gap by finding appropriate matter sources.
The maximally symmetric DZ metrics are, of course, of

physical relevance and need no further discussion here. The
other two are analogs of the Nil and Sol Thurston
geometries; so-called because their Killing algebras are
nilpotent and solvable, respectively. Those two Thurston
spaces are actually three-dimensional Lie groups, the first
of which is the Heisenberg group whose Lie algebra
appears in the cannonical commutation relations of quan-
tum mechanics. Both nilpotent and solvable isometries
arise in Bianchi cosmologies of type II and type VI0,
respectively. Moreover, in higher-dimensional settings,
black holes have been constructed which also possess
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such isometries, see Refs. [11–15]. The DZ spacetimes
with Nil and Sol isometries and higher-dimensional ver-
sions of them have been studied in a number of different
scenarios from string theory to thermodynamic fluctuation
theory [16–21].
In this work, we find that the DZ spacetimes are all

solutions of three-dimensional general relativity non-
minimally coupled to a scalar field and supplemented by
electromagnetic matter. It is well known that when one
departs from minimal couplings then fields may no longer
curve spacetime [22]. This gravitational effect has also been
reported for composite matter sources such as our own [23].
However, to the best of our knowledge, in this paper we
present the first instance of this situation that incorporates
null electromagnetic fields. In particular, this provides a
new type of gravitational Cheshire effect.
We have organized our manuscript as follows: In Sec. II,

we write down the action principle we consider and its
corresponding equations of motion. Subsequently, in Sec. III
wepresent two sets of solutions: first consideringmatter fields
which are invariant under the isometries of the spacetime
metric and then abandoning this restriction. Thus finding
solutions in three-dimensional gravity with nontrivial scalar
and electromagnetic fields for each DZ spacetime. In the
Appendix, we have included supplementary material. Since
theDZgeometries are left-invariantLorentzianmetrics onLie
groups we summarize their structure and relevant properties
inAppendixA. In order to show theDZ spaces are, in fact, not
three-dimensional electrovacuum spacetimes, we provide a
generalization of the three-dimensional Rainich conditions
for the inclusion of a Chern-Simons term in Appendix B.
Lastly, we find it relevant to discuss the higher-dimensional
versions of the DZ spacetimes as they have already been
previously studied in the literature. Thus, in Appendix C we
show how they solve the equations of motions and in which
cases the theory must be modified in order to accommodate
the higher dimension.

II. THEORY AND SETUP

Our problem is set up as follows: We have four specified
spacetime geometries, namely

ds2Mink ¼ −2dudvþ dx2; ð1aÞ

ds2AdS ¼
1

x2
ð−2dudvþ dx2Þ; ð1bÞ

ds2Sol ¼
2x2

u2
du2 − 2dudvþ dx2; ð1cÞ

ds2Nil ¼ −2dudvþ ðdxþ vduÞ2; ð1dÞ

and search for matter fields that source them in accordance
with Einstein’s equations. Almost a century ago, in
Ref. [24], Rainich showed what were the necessary and

sufficient geometric conditions which a spacetime metric
must satisfy in order for it to solve the four-dimensional
Einstein-Maxwell equations together with some nonnull
electromagnetic field. Much more recently, the three-
dimensional Rainich conditions for null and nonnull fields
were established in Ref. [10]. These approaches are ideal
for the problem at hand.
As it turns out, none of the DZ geometries satisfy these

conditions completely. The subtleties present are as fol-
lows. Since the conditions separate according to whether
the supported field is null or not, so do the DZ geometries.
The Minkowski, AdS, and Sol geometries could, in
principle, support null fields, whereas the Nil spacetime
could potentially be sourced by a nonnull field. Since the
Minkowski and AdS spacetimes are Einstein manifolds, the
electromagnetic field which is constructed from the con-
ditions is vanishing. The Sol metric satisfies all but one of
the conditions. As a result, the reconstructed field is
imaginary. The Nil geometry does not satisfy the conditions
presented in Ref. [10]. However, when they are generalized
to account for a Chern-Simons term then all but one of the
conditions are satisfied. As above, the corresponding
electromagnetic field fails to be real.
In three spacetime dimensions, electromagnetic fields

are dual to scalar fields. This allowed for the (2þ 1)-
dimensional Rainich conditions to be written down origi-
nally. However, the same fact discards the possibility of
adding scalar fields to answer the problem we set out to
solve. Nonetheless, this duality is obstructed when one
considers nonminimal coupling.
It has long been known that in flat spacetime confor-

mally coupling a scalar field improves a theory’s renorma-
lizability properties, see Refs. [25,26]. Such a strategy also
led to the first hairy black hole, Ref. [27], one not
necessarily determined in full by its mass, charge, and
angular momentum. Much more recently, in cosmology,
inflation was famously shown to arise from nonminimally
coupling a Higgs field to gravity, see Ref. [28]. Presently,
nonminimally coupled scalar fields are also considered in
quantum field theory on curved spacetimes to generalize
early work on cosmological particle creation, see
Refs. [29,30] and references therein. Moreover, they have
been continuously used as alternatives or complements to
higher-curvature theories, see for example Refs. [31–33].
Hence, we find that opting for nonminimally coupled scalar
fields is a physically reasonable approach.
Thus, we consider the following action functional

S½g;Φ; A� ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p ðR − 2Λ −∇Φ2

− ζRΦ2 −m2Φ2 − F2Þ þ μ

2

Z
A ∧ F; ð2Þ

where the field strength F and the gauge potential A are
related through the definition F ¼ dA. Here, Λ is the
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cosmological constant and ζ is the coupling constant
measuring nonminimal coupling of the scalar field to the
background. The mass of the scalar and gauge fields are m
and μ. We parametrize the scalar field mass as usual, using
m2. However, recall that this quantity need not be positive,
see for instance Refs. [34,35]. Lastly, notice that, for the
gauge field, the mass term is topological.
The equations of motion for the matter sector are

□Φ − ζRΦ −m2Φ ¼ 0; ð3aÞ

d⋆ F þ μF ¼ 0; ð3bÞ

whereas the gravitational field complies with

Gμν þ Λgμν ¼ ∇μΦ∇νΦ −
1

2
∇Φ2gμν −

1

2
m2Φ2gμν

þ ζðgμν□ −∇μ∇ν þ GμνÞΦ2

þ 2FμαFν
α −

1

2
F2gμν: ð3cÞ

III. SOLUTIONS

In this section, we find matter fields which source each of
the DZ spacetimes beginning with fields that respect the
spacetime symmetries of the background supporting them.
The Killing vectors of the maximally symmetric spaces are
well known, while, for the other DZ geometries, they are
found in Appendix A.
In general, the simplest fields to consider are those that

inherit the symmetries of the spacetime supporting them.
Thus, we impose

LXΦ ¼ 0 and LXF ¼ 0; ð4Þ

for any of the background’s Killing vector fields X. As a
consequence, the scalar field must be constant in all cases.
Under such circumstances, the equations of motion are
modified to

m2 ¼ −ζR ð5Þ

and

ð1 − ζΦ2
0ÞGμν þ Λeffgμν ¼ 2FμαFν

α −
1

2
F2gμν; ð6Þ

for some constant scalar field Φ ¼ Φ0. In Eq. (6) we have
defined Λeff ¼ Λþ 1

2
m2Φ2

0.
First, let us point out that there is a singular point

whenever, 1 − ζΦ2
0 ¼ 0. Second, Eq. (5) now represents a

stringent geometrical constraint. For instance, cyclic-
symmetric configurations, such as rotating black holes,
satisfy the constraint only if they have neutral charge

(cf. Ref. [36]). In other words, nonvanishing electromagnetic
fields are not always a possibility in such cases. Nonetheless,
this does not represent a problem for the DZ geometries as
they all have constant scalar invariants, see Ref. [37]. Lastly,
Eq. (6) shows under these conditions that the theory
effectively becomes that of Einstein Maxwell. Thus, the
standard Rainich conditions are altered in order to recon-
struct the electromagnetic field. Ultimately, the addition of a
constant scalar field now allows for real-valued electromag-
netic fields on the Sol and Nil geometries.
For the maximally symmetric DZ geometries, symmetry

inheritance implies the electromagnetic field is vanishing.
For the sake of completeness, we summarize how they
solve Eq. (3). The Minkowski solution simply requires
Λ ¼ m2 ¼ 0, while, for the AdS solution we must have
m2 ¼ 6ζ and Λþ 2ζΦ2

0 ¼ −1.
The Sol solution is

ds2 ¼ 2x2

u2
du2 − 2dudvþ dx2; ð7aÞ

Φ ¼ Φ0; ð7bÞ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζΦ2

0 − 1
p

u
du ∧ dx; ð7cÞ

for which we require Λ ¼ m2 ¼ 0, the Minkowski con-
ditions, together with μ ¼ 0 and ζΦ2

0 − 1 > 0. In this
system, electromagnetic waves travel aligned with the
gravitational waves. Since the background is a conformally
flat plane wave spacetime then all of its curvature is given
by the Ricci tensor. Moreover, since the wave profile in the
metric is positive this causes the Ricci curvature to have the
form of a pure-radiation tensor with opposite sign. In
particular, this shows that the waves cannot be sourced
purely by electromagnetic radiation. Furthermore, since the
Ricci tensor couples to the square of the constant scalar
field this causes the contribution of the scalar field to also
have pure-radiation form with opposite sign.
The Nil solution is

ds2 ¼ −2dudvþ ðdxþ vduÞ2; ð8aÞ

Φ ¼ Φ0; ð8bÞ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζΦ2

0 − 1

2

r
du ∧ dv; ð8cÞ

and it requires Λ ¼ 1
4
, m2 ¼ − 1

2
ζ, and μ ¼ 1, as well as

ζΦ2
0 − 1 > 0. This configuration has a homogeneous

electromagnetic field making it quite similar to the
Bertotti-Robinson and Plebański-Hacyan electrovacuum
universes, see Refs. [38–40]. The background belongs
to the Kundt family of geometries, a large class
which generalizes the pp-wave spacetimes. It admits
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two independent null geodesic nonexpanding congruences
which define a cannonical Newman-Penrose triad, see
Ref. [21]. The comoving observer defined by the triad
experiences a constant nonvanishing shear yet no expan-
sion or rotation. The electromagnetic field is aligned with
the triad; however, the field itself is not null. As with the
plane waves above, the total contribution of the matter
sector behaves effectively as an electromagnetic field with
the opposite sign in the energy-momentum tensor. Once
more, this is due to the nonminimal coupling of the
scalar field.
In both cases, the electromagnetic field is dual to the

central element of their Killing-Heisenberg subalgebra ξ;
see Eqs. (A5c) and (A7c). Recall that this vector field is null
for the Sol metric as it is tangent to its null geodesic
congruence. For the Nil spacetime it is decisively spacelike,
which in this context represents a nonnull electromagnetic
field. This duality implies the electromagnetic fields are
covariantly constant along arbitrary vector fields parallel to
ξ. For the Sol solution the field is also covariantly preserved
along arbitrary vector fields parallel to ∂

∂x, as it would be for
any other pp wave. Lastly, let us note that the Sol and Nil
solutions require both a scalar field and a gauge field, for
example, in the limit where the gauge field vanishes Eq. (6)
becomes singular.
To close this section, we investigate traveling waves on

the Nil metric. By which is meant that we construct a Kerr-
Schild spacetime with geometry described by

ds2 ¼ 2Hðu; xÞdu2 − 2dudvþ ðdxþ vduÞ2; ð9aÞ

together with the matter content in Eq. (8), for further
reading on such metrics consult Refs. [41,42]. This
configuration solves Eq. (3) whenever

Hðu; xÞ ¼ F1ðuÞ þ F2ðuÞe−x: ð9bÞ

Of course, the Nil conditions must be satisfied as well, i.e.,
Λ ¼ 1

4
, m2 ¼ − 1

2
ζ, μ ¼ 1, and ζΦ2

0 − 1 > 0. These gravi-
tational waves are similar to the electrovacuum waves
studied in Refs. [40,43–47].

A. Less restrictive solutions

In the previous section, we discussed one way in which
the Minkowski and AdS spacetimes are solutions of
Eq. (3). The matter content in those solutions inherit the
symmetries of the background supporting them; they
satisfy Eq. (4). As a consequence, the gauge field vanishes.
We now dispose of such a restriction in order to find
solutions with a nonvanishing electromagnetic field.
Stealth, as defined in Ref. [48], is a noteworthy manner
in which we rely on to construct such fields. A supreme
example of stealth is provided by the gravitational Cheshire
effect, in which nontrivial fields go undetected by flat
spacetime (see Ref. [22]).

By their very nature, stealth fields may forgo any sort of
spacetime symmetry inheritance. On the other hand, fields
representing pure radiation very closely resemble stealth
fields in that they solve very nearly the same set of
equations of motion. Such similarity was kept in mind
in Ref. [49] where pp-wave spacetimes sourced by non-
minimally coupled matter were analyzed. In this work, we
follow suit as the Rainich conditions show that the
Minkowski, AdS, and Sol spacetimes have adequate
geometries for supporting electromagnetic radiation.
Let us start by writing down our ansatz as

ds2 ¼ −2dudvþ dx2; ð10aÞ

Φ ¼ ΦðuÞ; ð10bÞ

F ¼ fðuÞdu ∧ dx; ð10cÞ

for which Eq. (3) are satisfied when Λ ¼ m2 ¼ μ ¼ 0 and

2ζΦΦ00 − ð1 − 2ζÞðΦ0Þ2 ¼ 2fðuÞ2: ð11Þ

Once the profile of the radiation field is specified this
equation may be solved for the scalar field. Indeed, by
making the redefinition fðuÞ ¼ hðuÞΦ0 then Eq. (11)
becomes

2ζ
ðΦΦ0Þ0
ðΦ0Þ2 − 1 ¼ 2hðuÞ2; ð12Þ

whose solution is

Φ ¼ c2 exp

�
−2ξ

Z
du

c1 þ ð1 − 4ξÞuþ 2
R
hðuÞ2du

�
: ð13Þ

These solutions constitute a type of gravitational
Cheshire effect. In this version, radiation propagates
through Minkowski spacetime without curving it due to
the presence of a scalar field that couples to the background
in such a way that it exactly cancels the electromagnetic
energy-momentum tensor. Let us recall that the standard
Cheshire effect allows for a self-interaction potential. In the
present case, the Maxwell field is null and does not play an
effective substitution of the self-interacting potential. It is
genuinely a novel kind of gravitational effect.
Notice that when one considers flat spacetimewith trivial

fields the value of the on-shell action vanishes, cf. Eq. (2).
This is unsurprising as this is a very basic configuration of
the theory. However, for fields given by Eq. (10) the action
also vanishes

Son shell ¼ 0: ð14Þ

This happens because the Maxwell field is null and the
scalar field is perceived by the action as pure radiation.

FLORES-ALFONSO, LOPEZ-MONSALVO, and MACEDA PHYS. REV. D 110, 024063 (2024)

024063-4



Thus, the solutions we have found that constitute a new
type of Cheshire effect are energetically on par with the
most basic flat space solution.
We also remark on the fact that half of the spacetime

symmetries are not themselves symmetries of the fields.
Curiously enough, the fields do inherit the symmetries of
the Killing Heisenberg subalgebra conformed by

P ¼ ∂

∂x
; ð15aÞ

Q ¼ x
∂

∂v
þ u

∂

∂x
; ð15bÞ

ξ ¼ ∂

∂v
: ð15cÞ

As it turns out, given a scalar field exhibiting stealth on
some spacetime then it is possible to use it as a seed
solution to generate new configurations via conformal
transformations, see Refs. [50,51] and references therein.
This is relevant to us since the Minkowski, AdS, and Sol
geometries are in the same conformal class.
Our next step is to establish AdS spacetime as a solution

of Eq. (3) with a nonvanishing gauge field. For this we use
the conformal factor relating AdS spacetime to flat space,
i.e., Ω ¼ 1

x. Indeed, by using Eq. (10) as a seed solution we
find that the configuration

ds2 ¼ Ω2ð−2dudvþ dx2Þ; ð16aÞ

Φ ¼ Ω−sΦMink; ð16bÞ

F ¼ Ω1−sFMink; ð16cÞ

also solves Eq. (3) and reduces to Eq. (11), where s ¼ 2ζ
1−4ζ.

The configuration requires Λ ¼ −1 and

m2 ¼ 6ζðζ − 1=8Þðζ − 1=6Þ
ðζ − 1=4Þ2 ; ð16dÞ

μ ¼ ζ=2
ζ − 1=4

; ð16eÞ

meaning both the scalar and gauge field are massive. This is
the same mass that was found for scalar fields in Ref. [49].
Whereas, the gauge field has a mass simply given by the
opposite of the parameter s. The scalar field may be
massless in some cases, e.g., when it couples conformally
to the background and so ζ ¼ 1

8
. However, the gauge field

is always massive signaling that it is crucially non-
Maxwellian.
This solution represents electromagnetic waves

travelling undetected over AdS spacetime. Nonminimal
coupling of the free scalar field counterbalances the

energy-momentum tensor carried by the waves. Regarding
symmetry inheritance, the configuration is quite remark-
able. Since the background is maximally symmetric its
isometry group is six dimensional. Yet the only symmetry
inherited by the fields is translation along the null geodesic
congruence.
To close this section, we explore noninheriting fields not

exhibiting stealth focusing on the special value ζ ¼ 1
4
. To

begin, let us take a second look at the Killing subalgebra in
Eq. (15). If one thinks of the Minkowski spacetime as a flat
plane wave, then the subalgebra under consideration
represents the Heisenberg symmetry characteristic of all
plane-wave spacetimes, see Refs. [8,17]. Since, the Sol
geometry is also such a gravitational wave we consider the
following ansatz

ds2 ¼ 2x2

u2
du2 − 2dudvþ dx2; ð17aÞ

Φ ¼ ΦðuÞ; ð17bÞ

F ¼ fðuÞdu ∧ dx; ð17cÞ

whose fields do not inherit the scaling symmetry associated
with Eq. (A5d).
Inserting our chosen ansatz into Eq. (3) yields

Φ2

4

�
log

Φ
u

�00
−

1

u2
¼ fðuÞ2; ð18Þ

together with Λ ¼ m2 ¼ μ ¼ 0. A particular solution is
given by

Φ ¼ u exp ðkuþ σ0Þ þΦ0; ð19Þ

where k, σ0, and Φ0 are constants satisfying k ≥ 0 and
Φ0 ≥ 2, of which the latter is equivalent to 1 − ζΦ2

0 ≥ 0.
The limit σ0 → −∞ recovers the solution of the previous
section evaluated at ζ ¼ 1

4
. A stealthy field is found outside

of the allowed range, as it should, where Φ0 ¼ 0.

IV. CLOSING REMARKS

In this work, we have considered three-dimensional
general relativity with an electromagnetic field together
with a scalar field nonminimally coupled to gravity.
Moreover, each of the fields is allowed to be massive.
Our objective has been to find a matter model that is able to
source each of the four spacetime geometries found by
Dumitrescu and Zeghib in Ref. [7]. Due to their properties
these spacetimes are of mathematical interest; however,
they have also been recently shown to be vacuum solutions
of three-dimensional massive gravity, see Ref. [4].
The geometries are all of Kundt type and include max-
imally symmetric spaces, as well as, a gravitational-wave
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spacetime. Moreover, metrics quite similar to them have
previously arisen in the physics literature. Thus, we
consider them to be of physical relevance.
In summary, we have found self-gravitating systems

whose background metric is given by one of the following:
(i) Minkowski spacetime, (ii) anti–de Sitter space,
(iii) time-dependent homogeneous plane waves, or (iv) a
homogeneous universe with Bianchi II anisotropy.
Searching for fields that themselves respect the spacetime
symmetries of the background led us to the unique
solutions within the theory, since the backgrounds are
highly symmetric. For the maximally symmetric space-
times this implies that the fields are trivial. Which is also
expected given that they are Einstein spaces.
In order to fully probe the theory, we have also

considered less constrained systems finding nontrivial
fields over the maximally symmetric spacetimes. These
fields are able to solve the equations of motion since their
total energy-momentum tensor cancels itself out. Stealthy
behavior of matter such as this is possible when scalar fields
are nonminimally coupled to gravity, see Ref. [48]. In
particular, our results provide a novel kind of gravitational
Cheshire effect (Ref. [22]) in which electromagnetic
radiation overflies flat space undetected due to a counter-
acting scalar field; an effect present in all spacetime
dimensions. Although we focus primarily on the three-
dimensional case we have also outlined how our results
carry over to higher dimensions. Thus, although one can
raise an argument on the physics of stealth fields, their
mathematical properties provides us with a tool for gen-
erating new solutions via conformal transformations.
To close, let us mention that none of our targeted

spacetimes are electrovacuum solutions. This is due to
the nature of their curvature. This is to say, when one
employs rigorous methods in order to reconstruct an
electromagnetic field source from the geometry the result
is either that the field vanishes or that it is imaginary. In our
solutions, electromagnetic fields cannot act alone for this
very reason. Moreover, in three dimensions, standard scalar
fields are dual to electromagnetic fields and so cannot
resolve this issue. However, by nonminimally coupling
scalar fields to gravity we have found a resolution.
In most of our solutions, the gauge field is null thus

representing electromagnetic waves. Hence, in order for the
equations to be solved the scalar sector must cancel out this
contribution and account for the spacetime curvature at the
same time. However, if the electromagnetic field is turned
off the scalar sector becomes singular. In other words, the
scalar field cannot act alone either.
For the Einstein spaces, this cancelation occurs com-

pletely within the matter sector. This is to say, the standard
contributions to the energy-momentum tensor are exactly
canceled by the effects of nonminimal coupling to gravity.
Consequently, the fields conform a composite stealth

system. One in which neither of the fields exhibit stealth
by themselves. Three-dimensional black holes with this
behavior were found in Ref. [23]. However, our solutions
are the first instance of this occurring with electromagnetic
radiation.
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APPENDIX A: GROUP AND GEOMETRIC
STRUCTURE

The DZ homogeneous spacetimes are the unique intrinsi-
cally Lorentzian maximal geometries that can be modeled
on compact three manifolds. The four of them are Lie
groups with left-invariant metrics. Geometrically, they are
all of Kundt type, meaning they possess a geodesic null
congruence whose orthogonal distribution is integrable and
represents a totally geodesic foliation of spacetime, see
Refs. [52,53]. This structure is parametrized by a vector
field V that is tangent to the congruence and a 1-form α
such that

∇XV ¼ αðXÞV; ðA1Þ

for all vector fields X orthogonal to V. What is more, for
three-dimensional Lie groups these structures are neces-
sarily generated by left-invariant vector fields. Throughout,
we use coordinates fu; v; xg adapted to the geodesic null
congruence so that it corresponds to translations along v.
For all but one of the DZ geometries, these translations
conform a Killing congruence as well, see the table
just below.

Spacetime Group α Killing congruence

Mink E(3) du Yes
AdS fSLð2;RÞ −1=xdx Yes
Sol Sol du Yes
Nil H(3) 1=2dx No

Two of DZ geometries are irreducible symmetric spaces:
the Minkowski and AdS spacetimes. The other two are left-
invariant metrics on solvable Lie groups. On the Sol group
the metric happens to be conformally flat. Lastly, on the
Heisenberg group the metric is such that the center of its
Killing algebra is a spacelike vector field.
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The Minkowski metric

ds2 ¼ −2dudvþ dx2; ðA2Þ

describes the unique intrinsically Lorentzian geometry,
which can placed on the Euclidean group. It is also
supported by the Sol and Heisenberg groups; however,
in the Sol case the geometry is not maximal (the details are
described in Ref. [7]). In the Heisenberg case, the center of
its nilpotent algebra is a null vector field. However, the fact
that such a metric is flat is a dimensional accident, as
explained in Ref. [54].
In contrast, the universal cover of SLð2;RÞ admits three

distinct intrinsically Lorentzian geometries. However,
among them only the one with constant sectional curvature
is maximal, i.e.,

ds2 ¼ 1

x2
ð−2dudvþ dx2Þ: ðA3Þ

Notice that when it comes to curvature, the AdS spacetime
is a much more closely related to the hyperbolic Thurston
geometry than to fSLð2;RÞ.
The Sol geometry, described by

ds2 ¼ 2x2

u2
du2 − 2dudvþ dx2; ðA4Þ

has one of seven left-invariant Lorentzian metrics on the
Sol group, two of which are pp waves. This list of metrics
was reported in Ref. [55]. The Sol metric describes plane
waves travelling over a Minkowskian background and is
the only such (nonflat) spacetime to admit compact models.
Among the DZ geometries, only the Sol geometry is
geodesically incomplete; a property that it shares with
all nonunimodular homogeneous plane waves (cf. Ref. [8]).
The Killing algebra of the Sol spacetime is generated by

P ¼ 2

3
ux

∂

∂v
þ 1

3
u2

∂

∂x
; ðA5aÞ

Q ¼ x
u2

∂

∂v
−
1

u
∂

∂x
; ðA5bÞ

ξ ¼ ∂

∂v
; ðA5cÞ

T ¼ u
∂

∂u
− v

∂

∂v
; ðA5dÞ

of which T, Q, and ξ are left-invariant fields satisfying the
Sol algebra: ½ξ; Q� ¼ 0, ½T; ξ� ¼ ξ, and ½T;Q� ¼ −Q. Its
derived algebra locally represents the action of the
Heisenberg group on all plane wave spacetimes, more in
depth discussions are found in Refs. [8,17]. For the Sol
plane wave the Heisenberg algebra is extended by a scaling

symmetry, cf. Eq. (A5d). Gravitational waves with exactly
these symmetries have been found to be exactly solvable
string models (see Ref. [16]) and to arise as the Penrose
limit of a large class of spacetimes with singularities, for
further details consult Refs. [17,18,56,57].
Along the same lines as above, the Heisenberg group

admits a metric whose entire list of curvature scalars are
constant. This is not obvious, as in the cases above, yet all
constant scalar invariant spacetimes are known in three
dimensions from Ref. [37]. Moreover, of the DZ spaces,
only the Nil geometry

ds2 ¼ −2dudvþ ðdxþ vduÞ2; ðA6Þ

is not conformally flat. It is also the only instance in which
the left-invariant vector field V does not define a Killing
congruence. Indeed, the Killing vector fields of the Nil
spacetime are

P ¼ ∂

∂u
; ðA7aÞ

Q ¼ ∂

∂v
þ u

∂

∂x
; ðA7bÞ

ξ ¼ ∂

∂x
; ðA7cÞ

T ¼ u
∂

∂u
− v

∂

∂v
: ðA7dÞ

In this case, T is not a left-invariant vector field and the
underlying Heisenberg algebra is ½P;Q� ¼ ξ, ½P; ξ� ¼ 0,
and ½Q; ξ� ¼ 0. Notice that the central element ξ is space-
like, as mentioned above. This is relevant as it was shown in
Ref. [58] that there are only three left-invariant metrics on
the Heisenberg group and that distinguished by their central
element, depending on whether that vector field is space-
like, timelike, or null.
In three dimensions, the Ricci and Cotton tensors

together play a role similar to the Ricci and Weyl tensors
in higher dimensions. In this case, the Riemann tensor is
completely determined by the Ricci curvature and the
Cotton tensor is traceless and conformally invariant.
Thus, topologically massive gravity (TMG) is a remarkable
theory of gravity as its equations of motion relate these two
tensors; details are described in Refs. [59,60]. For TMG
vacua a nonambiguous algebraic type is determined and a
Goldberg-Sachs theorem applies [61]. Except for the Sol
geometry, the DZ spacetimes are TMG vacua and so the
theorem implies they are algebraically special. What is
more, their algebraic type is D or more special and so they
possess two distinct divergence-free geodesic null
congruences.
None of the DZ geometries represents an eletrovacuum

spacetime of general relativity. However, the degree to
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which they fail to do so is a geometric measure, as
determined by the Rainich conditions of Ref. [10]. A
combination of curvature scalars separates spaces into
those which could support null or nonnull electromagnetic
fields. The Nil metric satisfies the nonnull condition and is,
in fact, an electrovacuum of TMG. As exemplified in
Ref. [21], the Nil metric supports a nonnull Maxwell-
Chern-Simons field. In order to fully exploit the three-
dimensional version of the Rainich conditions we slightly
generalize the results of Ref. [10] in Appendix B by
considering the possibility of a Chern-Simons term. The
remaining DZ spacetimes satisfy the null field condition,
however, since they are conformally flat there is no hope of
them describing TMG electrovacua. In Sec. II, we show
that they all satisfy the Einstein equations when the
background is nonminimally coupled to a scalar field
and supports an electromagnetic field as well. A relevant
property of these solutions is that the scalar curvature is
constant. In the table below we display the Ricci scalar R of
each DZ metric future reference.

Spacetime Curvature R Conformally flat

Mink Flat 0 Yes
AdS CSCa −6 Yes
Sol VSIb 0 Yes
Nil CSIc 1=2 No

aConstant sectional curvature.
bVanishing scalar invariants.
cConstant scalar invariants.

APPENDIX B: RAINICH CONDITIONS FOR
EINSTEIN-MAXWELL-CHERN-SIMONS THEORY

The necessary and sufficient conditions for a (2þ 1)-
dimensional spacetime to satisfy the Einstein-Maxwell
equations,

Gμν þ Λgμν ¼ 2FμαFν
α −

1

2
FαβFαβgμν; ðB1Þ

for some field F that also complies with the Maxwell-
Chern-Simons equations

dF ¼ 0; and d⋆ F þ μF ¼ 0; ðB2Þ

are called the Rainich conditions. The conditions separate
according to whether the field is null or not,
i.e., FαβFαβ ¼ 0.
For a nonnull field it is instructive to define the following

Einstein scalars

G ¼ Gα
α; 2G ¼ Gβ

αGα
β; 3G ¼ Gβ

αG
γ
βG

α
γ ; ðB3Þ

and the tensor whose components are

Hμν ¼ Gμν − ðGþ 2BÞgμν; ðB4Þ

where

B ¼ 1

2

1
3
G2G − 3G

2G − 1
3
G2

: ðB5Þ

The Rainich conditions are then

2G −
1

3
G2 ≠ 0; ðB6Þ

HαβXαXβ > 0; ðB7Þ

B ¼ Λ; ðB8Þ

Hμ½νHρ�σ ¼ 0; ðB9Þ

for some vector field X and

HμνHρ½σ;τ� þHμρHν½σ;τ� þHνρ½;σHτ�μ ¼ −μεσταHμνHα
ρ:

ðB10Þ

When these requirements are met, the field is deter-
mined by

Fμν ¼ εμναvα and vμvν ¼
1

2
Hμν: ðB11Þ

Now, for a null field the conditions are instead

SαβXαXβ > 0; ðB12Þ

G ¼ −3Λ; ðB13Þ

Sμ½νSρ�σ ¼ 0; ðB14Þ

for some vector field X and

SμνSρ½σ;τ� þ SμρSν½σ;τ� þ Sνρ½;σSτ�μ ¼ −μεσταSμνSαρ: ðB15Þ

Here, Sμν are the components of the traceless Einstein
tensor. Moreover, the field is constructed from

Fμν ¼ εμναvα and vμvν ¼
1

2
Sμν: ðB16Þ

These conditions constitute a generalization of the ones
provided in Ref. [10], which are recovered upon setting μ,
the topological mass of the gauge field, to zero. The proof is
straightforward and is along the same lines of that work.
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APPENDIX C: DIMENSIONS
HIGHER THAN THREE

The composite version of the gravitational Cheshire
effect which we have found in this paper occurs in every
dimension; it is not a three-dimensional phenomena.
Indeed, the solution provided by Eq. (13) is unaltered if
one adds flat dimensions to the metric in Eq. (10). In
contrast, the stealth fields overflying the AdS spacetime
possesses gauge fields that are always massive. As a
consequence, those Maxwell-Chern-Simons fields do not
carry over to higher-dimensional versions. Nonetheless,
Proca fields may be employed in all dimensions if so
desired. The calculations are straightforward and follow
from our approach in the previous section. It would be
interesting to study configurations such as these with a
Stückelberg field, thus complementing investigations such
as those of Refs. [62,63].
As mentioned above, higher-dimensional versions of the

Sol plane waves have been studied in different gravitational
contexts. A noninheriting solution to Eq. (3), in arbitrary
spacetime dimension D, is found over the conformally flat
plane wave spacetime

ds2 ¼ −2dudvþ
XD−2

i¼1

dx2i þ
2x2i
u2

du2; ðC1Þ

with Eq. (19), as is, and Maxwell field given by

fðuÞ2 ¼ Φ2

4

�
log

Φ
uD−2

�00
−
D − 2

u2
: ðC2Þ

Homogeneous plane waves with this precise time
dependence arise as Penrose limits, Refs. [64,65], of
spacetimes near their singularity. This occurs near cosmo-
logical and black hole singularities alike, in dimensions
greater than or equal to four, see Ref. [18].
On a similar note, recall that higher-dimensional ver-

sions of the Nil universe have also been studied in
gravitational settings. For example, Minkowski and AdS
spacetimes emerge as fluctuations on such Heisenberg
spaces, as explained in Ref. [66]. Here, we show that these
odd-dimensional manifolds are sourced by constant

nonminimally coupled scalar fields and nonnull Maxwell-
Chern-Simons fields. To illustrate this point consider the
five-dimensional case, where Eq. (3) is modified only in
that the gauge field must instead comply with

d⋆ F þ μF ∧ F ¼ 0: ðC3Þ

To closely follow the three-dimensional case, we con-
sider a Lorentzian spacetime with Kundt geometry on the
five-dimensional Heisenberg group. Such geometries are
natural generalizations of five-dimensional pp waves, as
discussed in Ref. [67]. The system is composed by

ds2 ¼ −2dudvþ dy2 þ dz2 þ ðdxþ vduþ ydzÞ2; ðC4aÞ

Φ ¼ Φ0; ðC4bÞ

F ¼ qdu ∧ dvþ pdy ∧ dz: ðC4cÞ

It requires

Λ ¼ m2 ¼ 0; μ ¼ −
pþ q
2pq

; ðC5aÞ

together with

Φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp2 þ q2Þ þ 1

ζ

s
and p2 ¼ q2: ðC5bÞ

This five-dimensional solution shows that the appearance
of the Chern-Simons term in the three-dimensional case is
not a dimensional accident and one should expect their
appearance in the higher-dimensional cases. Moreover, it
illustrates that, in some dimensions, the gauge field allows
for a massless solution: a Maxwell field.
In this section, we have presented higher-dimensional

pp waves and generalizations of them whose underlying
structure is that of a nilmanifold or a solvmanifold. Such
solutions complement the use of these spaces in gravita-
tional physics such as the black hole spacetimes con-
structed in Refs. [12,13].
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