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One of the aims of aether scalar tensor theory (AeST) is to reproduce the successes of modified Newtonian
dynamics (MOND) on galactic scales. Indeed, the quasi-static limit of AeSTachieves precisely this, assuming
that thevector field A⃗ vanishes and that the so-called ghost condensate can beneglected.The effects of theghost
condensate were investigated in detail in previous studies. Here, we focus on the assumption of a vanishing
vector field.We argue that this assumption is not always justified and show how to correctly take into account
the vector field, finding that the quasi-static limit depends on a model parameterm×. In the limitm× → 0, one
recovers the quasi-static limit with a vanishing vector field. In particular, one finds a two-field version of
MOND. In the opposite limit,m× → ∞, one finds a single-field version ofMOND.We show that, in practice,
much of the phenomenology of the quasi-static limit depends only very little on the value ofm×. Still, for some
observational tests, such as those involving wide binaries,m× has percent-level effects that may be important.
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I. INTRODUCTION

Aether scalar tensor theory (AeST) [1,2] is a fully
relativistic model that reproduces many of the successes
of both modified Newtonian dynamics (MOND) [3–5] on
galactic scales and of ΛCDM on cosmological scales. It
also satisfies observational constraints from gravitational
waves that require tensor modes to propagate at the speed
of light [6,7].
One success of MOND that AeST aims to reproduce

is explaining the observed radial acceleration relation
(RAR) [8–10]. The RAR shows a one-to-one correspon-
dence between the Newtonian acceleration due to baryons,
ab, and the actually observed acceleration, aobs. In par-
ticular, for accelerations ab much larger than the accel-
eration scale a0 ≈ 10−10m=s2, the total acceleration aobs is
just the Newtonian baryonic acceleration ab. At small
accelerations, ab ≪ a0, the total acceleration aobs is instead
given by aobs ≈

ffiffiffiffiffiffiffiffiffiffi
a0ab

p
.

That AeST can indeed reproduce MOND phenomenol-
ogy was shown in [1] under the assumption that the vector
field A⃗ (see below) vanishes. Their argument establishes
that AeST reduces to a specific two-field version of MOND
as long as the mass of the so-called ghost condensate is
negligible. The scale where the ghost condensate becomes
important is set by a model parameter that we callm below.
That is,m controls whether AeST reproduces MOND. This
scale and the effects of the ghost condensate are inves-
tigated in detail in previous studies [1,11,12].

Here, we focus on the assumption of a vanishing vector
field A⃗. In general, setting A⃗ to zero is inconsistent [11].
Nevertheless, one might expect it to be a good approxi-
mation in many situations of practical interest. Indeed,
neglecting A⃗ amounts to neglecting a curl term and, in the
context of MOND, neglecting curl terms was often found to
be a good approximation (see, e.g., [13]).
In some cases, however, curl terms can be phenomeno-

logically important. In addition, as we will see, neglecting
the vector field in AeST means neglecting a term whose
prefactor can be arbitrarily large, depending on the choice
of a model parameter. Thus, one might worry that the vector
field cannot be neglected in cases where this prefactor is
large. Here, we demonstrate that, even in these cases, the
ability of AeST to reproduce MOND is not impaired. That
is, AeST still reproduces MOND as long as the ghost
condensate is negligible. More generally, we show how to
correctly take the vector field A⃗ into account and discuss
phenomenological implications.
In particular, we will find that the quasi-static limit of

AeST depends on an additional mass parameter we callm×.
This mass parameter m× should be distinguished from the
mass parameter m that controls the ghost condensate. We
will see that, in contrast tom, the new mass parameterm× is
not related to the ghost condensate, has no effect in
spherical symmetry, and does not affect the ability of
AeST to reproduce MOND.
In the following, we employ units with c ¼ ℏ ¼ 1.

II. THE MODEL

In the quasi-static weak-field limit and with only non-
relativistic matter sources, the action S of AeST can be*Contact author: tobias.mistele@case.edu
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written in terms of the Newtonian gravitational potentialΦ,
a scalar field φ, and a vector field A⃗ [1,11],1

8πĜS ¼ −
Z

d4x

�
ð∇⃗ΦÞ2 − 2∇⃗Φð∇⃗φþQ0A⃗Þ

þ ð∇⃗φþQ0A⃗Þ2 þ J ðð∇⃗φþQ0A⃗Þ2Þ

−m2

�
φ̇

Q0

−Φ
�

2

þ 2KB

2 − KB
∇⃗½iA⃗j�∇⃗½iA⃗j�

þ 8πĜΦρb

�
: ð1Þ

Here, ρb denotes the matter density. We use the notation
ρb because only the baryonic matter is relevant in the cases
we discuss explicitly below. The function J determines
how the model interpolates between the Newtonian regime
(for accelerations larger than a0) and the MOND regime
(for accelerations smaller than a0). That is, J determines
what is called the interpolation function in MOND [14].
Further, Ĝ, Q0, m, and KB are constants with mass
dimension −2, 1, 1, and 0, respectively. In the following,
we sometimes use the notation

U⃗ ≡ ∇⃗φþQ0A⃗: ð2Þ

We do not set φ̇ to zero because any φ̇ ¼ const also
allows for static solutions. Indeed, the AeST model con-
tains a so-called ghost condensate and φ̇ represents the
chemical potential of this condensate. This is explained in
more detail in [11]. The term multiplied by m2 is related to
the condensate’s energy density.
The constant Ĝ is related to the Newtonian gravitational

constant GN as

GN ≡ Ĝf−1G ; ð3Þ

with constant fG. Here, GN is what enters the total
acceleration felt by matter in the Newtonian regime, i.e.
at accelerations larger than a0. That is, in spherical
symmetry and in the Newtonian regime, the total accel-
eration has the formGNM=r2 with the total massM and the
spherical radius r.
The action Eq. (1) depends on the four model parameters

Ĝ,Q0,m, andKB, but only three independent combinations
of these are physical. Below we will mostly use the
following three independent combinations:

fG;m;m× ≡Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − KB

2KB

s
: ð4Þ

To see that this is possible, rescale A⃗ → A⃗=Q0 [as in the
definition of U⃗ from Eq. (2)]. Then, the prefactor of the A⃗
kinetic term becomes 1=m2

×, and the only remaining
appearance of Q0 is in the m2ðφ̇=Q0 −ΦÞ2 term. In the
quasi-static limit that we consider, φ̇=Q0 can be absorbed
into Φ. Thus, only fG, m, and m× are physical.
The function J must satisfy some requirements that

ensure that there is a Newtonian regime at large accel-
erations and a MOND regime at small accelerations. In
particular, the interpolation function μ̃ðjU⃗j=a0Þ≡ J 0ðU⃗2Þ
must have the limits [1,14]

μ̃

�jU⃗j
a0

�����jU⃗j
a0
→0

¼ fG
jU⃗j
a0

; ð5aÞ

μ̃

�jU⃗j
a0

�����jU⃗j
a0
→∞

¼ fG
1 − fG

: ð5bÞ

In the following, we adopt a0 ¼ 1.2 × 10−10 m=s2 [8].
In AeST, ordinary matter is minimally coupled to the

metric gμν in the standard way. The metric has the same
form as in the Newtonian limit of general relativity with the
potentialΦ. There is no additional coupling of matter to the
fields φ and U⃗. Thus, the total acceleration felt by matter is

a⃗tot ≡ −∇⃗Φ: ð6Þ

Just as matter, light is also minimally coupled to the metric
gμν in the standard way [although this is not shown
explicitly in Eq. (1)]. Thus, lensing works as in general
relativity, just with the potentialΦ calculated from different
field equations [2,11].

III. WHY ONE MAY BE CAUTIOUS ABOUT
LEAVING OUT THE VECTOR FIELD

To set the stage, we first assume a vanishing vector field A⃗
and show that this assumption is, in general, inconsistent.
Nevertheless, as mentioned above, one may expect that
neglecting A⃗ is a good approximation in many situations of
practical interest.Here,wediscusswhy this is the case andwhy,
in some cases, one may still be cautious about neglecting A⃗.
With A⃗ set to zero, the equations of motion for the

remaining fields φ and Φ read [1]

ΔΦ̂ ¼ fG · 4πGNðρb þ ρcÞ; ð7aÞ

∇⃗
�
μ̃

�j∇⃗φj
a0

�
∇⃗φ

�
¼ fG · 4πGNðρb þ ρcÞ; ð7bÞ

1The derivation follows [1]. We start with a Newtonian gauge
for the metric and use the assumption of a weak-field limit with
no time dependence (except φ̇ ¼ const; see below). Then, the ij
components of the Einstein equations imply that the metric
depends only on a single potential Φ, which we substitute back
into the action. This last step works because the fields φ and A⃗ do
not couple to the metric components gij in this quasi-static weak-
field limit.
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where we defined

Φ̂ ¼ Φ − φ; ð8Þ

and where ρc is the density of the ghost condensate,

ρc ¼
m2

4πGNfG

�
φ̇

Q0

− Φ̂ − φ

�
: ð9Þ

The total acceleration a⃗tot ¼ −∇⃗Φ can be written as the

sum of the accelerations a⃗φ ¼ −∇⃗φ and a⃗Φ̂ ¼ −∇⃗ Φ̂ due to
the fields φ and Φ̂, respectively,

a⃗tot ¼ a⃗φ þ a⃗Φ̂: ð10Þ

These equations giveMOND-like behavior whenever the
effects of the condensate density ρc are negligible. To see
this, consider a spherically symmetric system and consider
first the large-acceleration regime ab ≫ a0. Then, using the
limits of μ̃ from Eq. (5), we find

aφ ¼ ð1 − fGÞab; aΦ̂ ¼ fGab; ð11Þ

which gives

atot ¼ ab; ð12Þ

which is exactly what MOND requires in this large-
acceleration regime. Similarly, in the small-acceleration
regime, ab ≪ a0, we find

atot ≈ aφ ≈
ffiffiffiffiffiffiffiffiffiffi
a0ab

p
; ð13Þ

which again matches MOND. Thus, AeST seems to have
achieved its goal of reproducing MOND-like behavior.
In particular, AeST seems to reproduce a multifield version
of MOND whenever the ghost condensate can be
neglected [14].
The problem is that setting A⃗ to zero is not always

allowed. The reason is that the equations of motion of φ and
Φ, i.e., Eq. (7), are not the only equations that must be
satisfied. The equation of motion of A⃗ must be satisfied as
well. And this A⃗ equation of motion does not in general
have A⃗ ¼ 0 as a solution. Concretely, the A⃗ equation of
motion reads

∇⃗Φ −
1

2m2
×
∇⃗ × ∇⃗ × ðQ0A⃗Þ

¼ ð∇⃗φþQ0A⃗Þ
�
1þ μ̃

�j∇⃗φþQ0A⃗j
a0

��
: ð14Þ

If it is allowed to set A⃗ to zero, this equation must be
satisfied with A⃗ ¼ 0,

∇⃗Φ ¼ ∇⃗φ

�
1þ μ̃

�j∇⃗φj
a0

��
: ð15Þ

We can algebraically solve this equation for ∇⃗φ and then
take the curl to find

∇⃗j∇⃗Φj × ∇⃗Φ ¼ 0: ð16Þ

This condition is not fulfilled, except in some special cases
such as spherical symmetry [15].2 This is important
because for many systems of astrophysical interest—such
as disk galaxies—one cannot assume spherical symmetry
or another of the special cases where Eq. (16) holds.
Thus, setting A⃗ to zero seems to be inconsistent except in

special cases such as spherical symmetry. As we will see
below in Sec. IV B, an exception is the limit m× → 0. In
that limit, a small Oðm2

×Þ curl term in A⃗ allows one to both
avoid Eq. (16) and use the equations of motion Eq. (7) that
were derived assuming A⃗ ¼ 0. In that sense, setting A⃗ to
zero is allowed in the m× → 0 limit, even outside special
cases such as spherical symmetry. The inconsistency
remains, however, when neither the limit m× → 0 nor a
special case such as spherical symmetry is pertinent.
In fact, this inconsistency arises already when setting

only the curl part of A⃗ to zero while still allowing a nonzero
gradient part. That is, the same inconsistency arises when

enforcing that A⃗ is of the form A⃗ ¼ ∇⃗αA for some αA.
Indeed, a symmetry of the quasi-static limit of AeST allows

absorbing such a gradient term into ∇⃗φ so that a vector field

A⃗ ¼ ∇⃗αA is equivalent to A⃗ ¼ 0 [2].
To see this more explicitly, consider a Helmholtz

decomposition of A⃗,

A⃗ ¼ ∇⃗αA þ ∇⃗ × β⃗A; ð17Þ

where β⃗A parametrizes the curl part of A⃗. Using this
decomposition in Eq. (14) and setting the curl part to zero,
β⃗A ¼ 0, we obtain an equation of the same form as Eq. (15),
just with φ replaced by χ ≡ φþQ0αA,

2There is an alternative way to see that A⃗ ¼ 0 is not, in general,
allowed. On the one hand, by subtracting the φ and Φ
equations of motion from Eq. (7) from each other, we find
∇⃗ðμ̃ · ∇⃗φ − ∇⃗ Φ̂Þ ¼ 0 where we left out the argument of μ̃ for
brevity. This implies that μ̃ · ∇⃗φ − ∇⃗ Φ̂ ¼ ∇⃗ × h⃗ for some vector
field h⃗. Here, ∇⃗ × h⃗ is nonzero except in some special cases such
as spherical symmetry [13]. On the other hand, with A⃗ ¼ 0, the A⃗
equation of motion Eq. (14) can be written as μ̃ · ∇⃗φ − ∇⃗ Φ̂ ¼ 0,
which implies ∇⃗ × h⃗ ¼ 0. This is a contradiction (except in
special cases such as spherical symmetry). This contradiction is
resolved by allowing (the curl part of) A⃗ to be nonzero.
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∇⃗Φ ¼ ∇⃗χ

�
1þ μ̃

�j∇⃗χj
a0

��
: ð18Þ

The problematic Eq. (16) and, therefore, the inconsistency

then follow as before, i.e., by algebraically solving for ∇⃗χ
and then taking the curl.
In the context of MOND, neglecting curl terms is often a

good approximation (see, e.g., [13]). Since what is prob-
lematic about setting A⃗ to zero is really setting its curl part
β⃗A to zero, one might expect a similar result here. That is, in
practice, neglecting (the curl part of) A⃗ may still be a good
approximation.
However, there is also reason to be cautious. In AeST,

neglecting the curl part of A⃗ implies neglecting the
following term in Eq. (14):

−
1

2m2
×
∇⃗ × ∇⃗ × ðQ0A⃗Þ: ð19Þ

The prefactor of this term can be arbitrarily large, depend-
ing on the choice of the model parameter m×. Thus, at
least when this prefactor is large, one may worry that
neglecting A⃗ is a bad approximation. Below, we show that
this particular case is not actually problematic and, more
generally, show how to correctly take the vector field into
account.

IV. TAKING THE VECTOR FIELD
INTO ACCOUNT

We now show how to correctly take the vector field A⃗
into account and establish that this does not affect the
ability of AeST to reproduce MOND-like behavior. That is,
we show that AeST still reproduces MOND whenever the
ghost condensate can be neglected. We discuss the phe-
nomenological implications in Secs. VI and VII.
We first write the action in terms of U⃗ [see Eq. (2)],

S ¼ −
Z

d4x

�
1

8πĜ

�
ð∇⃗ΦÞ2 − 2∇⃗ΦU⃗ þ U⃗2 þ J ðU⃗2Þ

−m2

�
φ̇

Q0

−Φ
�

2

þ 1

m2
×
∇⃗½iU⃗j�∇⃗½iU⃗j�

	
þΦρb

�
; ð20Þ

where we used Q2
0∇⃗½iA⃗j� ¼ ∇⃗½iU⃗j�, which follows from

antisymmetry, and we defined the mass scale

m× ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − KB

2KB

s
Q0: ð21Þ

The equation of motion of φ is then of the form
∂tðφ̇ −Q0ΦÞ ¼ 0 which is trivially satisfied in the
quasi-static limit (keeping in mind that the only time

dependence we allow is φ̇ ¼ const).3 This leaves the
equations of motion of Φ and U⃗. They read

ΔΦ − ∇⃗ U⃗ ¼ 4πGNfGðρb þ ρcÞ; ð22aÞ

∇⃗Φ −
1

2m2
×
∇⃗ × ∇⃗ × U⃗ ¼ U⃗

�
1þ μ̃

�jU⃗j
a0

��
: ð22bÞ

These are the equations that must be solved in the quasi-
static limit of AeST. They replace Eq. (7) when one
correctly takes the vector field into account. As we will
see, they are equivalent to Eq. (7) in some special cases
such as in the limit m× → 0 (Sec. IV B). Another, inde-
pendent, special case where Eqs. (7) and (22) are equivalent
is spherical symmetry (Sec. IV C).
To see that Eq. (22) can still describeMOND-likebehavior,

we will first discuss the limits of large and smallm×. Wewill
find that both describe a version ofMOND. Form× → 0, one
recovers the two-field versionofMONDfromEq. (7). That is,
setting A⃗ to zero is justified in this case (but not in general). In
the opposite limit, m× → ∞, one recovers a single-field
version of MOND. Plausibly, other values of m× interpolate
between these single-field and two-field limits.
Two comments are in order here. First, by recovering a

version of MOND we mean recovering equations that
produce MOND-like behavior to the same extent as the
original Eq. (7) derived in Ref. [1] assuming a vanishing
vector field. That is, both the single-field limit and the two-
field limit we discuss below reproduceMOND-like behavior
as long as the effects of the ghost condensate are negligible.
Second, our interest here is not in infinitely large or

infinitely small values of m×. Rather, our interest is in
keeping m× finite and applying the model to systems with
characteristic length scales l that are small or large relative to
1=m×, i.e., m×l ≫ 1 or m×l ≪ 1. That m×l is the relevant
dimensionless quantity can be seen fromEq. (22b) by roughly
estimating spatial derivatives to be of order 1=l (see also
Sec. V). In the following, we obtain the leading-order
behavior for these cases by considering the formal limits
m× → ∞ andm× → 0. But keep in mind that these limits are
only a formal tool. What we are really interested in here are
the casesm×l ≫ 1 andm×l ≪ 1with finite l and finitem×.

4

3This assumes a change of variables from ðA⃗;φÞ to ðU⃗;φÞ. In
terms of ðA⃗;φÞ, the φ equation of motion still reduces to ∂tðφ̇ −
Q0ΦÞ ¼ 0 when combined with the divergence of the A⃗ equation
of motion.

4This distinction is important for the following consideration.
From the action Eq. (20) one sees that, for m× → ∞, all spatial
derivatives of the vector field U⃗ vanish. Indeed, in the full weak-
field limit of AeST [2], all derivatives of U⃗, including time
derivatives, vanish for m× → ∞. Thus, there may be a strong-
coupling problem in the limit m× → ∞. However, this is not a
concern for us. The reason is that we only consider finite m× and
use the limitm× → ∞ only as a formal tool within the quasi-static
limit to obtain the leading-order behavior of systems whose
characteristic length scale l satisfies m×l ≫ 1.
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A. The single-field limit m× → ∞
The complicated part of the equations of motion Eq. (22)

is the double-curl term proportional to 1=m2
× in the U⃗

equation of motion. Luckily, for m× → ∞, this term
vanishes and we can algebraically solve for U⃗. We choose
to write the result in the following form:

U⃗ ¼ ∇⃗Φ
�
1 − fGμ

�j∇⃗Φj
a0

��
; ð23Þ

which implicitly defines the function μ in terms of the
function μ̃. From the limiting behavior of μ̃, Eq. (5), we can
infer the limiting behavior of μ, namely

μ

�j∇⃗Φj
a0

�����j∇⃗Φj
a0

→0

¼ j∇⃗Φj
a0

; ð24aÞ

μ

�j∇⃗Φj
a0

�����j∇⃗Φj
a0

→∞
¼ 1: ð24bÞ

This is the correct behavior for a single-field MOND
interpolation function [14].
Indeed, plugging this solution for U⃗ into the Φ equation

of motion Eq. (22a) gives

∇⃗
�
μ

�j∇⃗Φj
a0

�
∇⃗Φ

�
¼ 4πGNðρb þ ρcÞ; ð25Þ

which is a standard single-field version of MOND [13,14]
up to the ghost condensate density ρc. Without the ghost
condensate, this is known as aquadratic Lagrangian
theory (AQUAL).
This shows that the m× → ∞ limit of AeST reproduces

MOND-like behavior as long as the effects of the ghost
condensate density are negligible. Thus, in that sense,
AeST reproduces a single-field version of MOND in
this limit.

B. The two-field limit m× → 0

In the opposite limit, m× → 0, we cannot neglect the
double-curl term multiplied by 1=m2

×. To deal with this
term, we use the Helmholtz decomposition. One particu-
lar implication of this decomposition is that, instead of
solving a vector field equation X⃗ ¼ 0, one can equiv-

alently solve the system of equations ∇⃗ · X⃗ ¼ 0 and ∇⃗ ×
X⃗ ¼ 0 with the boundary condition that X⃗ vanishes at
infinity [16].
We apply this to the U⃗ equation of motion Eq. (22b).

This gives the two equations

ΔΦ ¼ ∇⃗
�
U⃗

�
1þ μ̃

�jU⃗j
a0

��	
ð26Þ

and

−∇⃗ × ∇⃗ × ∇⃗ × U⃗ ¼ 2m2
×∇⃗ ×

�
U⃗

�
1þ μ̃

�jU⃗j
a0

��	
; ð27Þ

with the reasonable boundary conditions that U⃗ and ∇⃗Φ
vanish at infinity. We also decompose the field U⃗ itself into
a divergence-less and a curl-less part,

U⃗ ¼ U⃗× þ ∇⃗α; ð28Þ

where U⃗× is a vector field with ∇⃗ · U⃗× ¼ 0 and α is a scalar
field. This Helmholtz decomposition is guaranteed to exist
when U⃗ vanishes at least as fast as 1=r for r → ∞. We
assume that to be true for now. Below wewill see that this is
justified for physically reasonable solutions.
We now consider the implications of the limit m× → 0.

The only equation where m× appears is the curl part of the
U⃗ equation, Eq. (27). Using the Helmholtz decomposition
of U⃗, Eq. (28), we find

∇⃗ × ∇⃗ × ∇⃗ × U⃗× ¼ Oðm2
×Þ: ð29Þ

Let us assume that U⃗× (and not just U⃗ itself) vanishes at
infinity. Then, we find

U⃗× ¼ Oðm2
×Þ; ð30Þ

by repeatedly applying the theorem mentioned at the very
beginning of this section. Thus, in the limit m× → 0, the
vector field U⃗ is just the gradient of a scalar field,5

5This means that the vector field A⃗ has no curl part in the
m× → 0 limit. Since a vanishing curl part was shown to be
problematic in Sec. III one may wonder if we end up with the
same problem here. Indeed, when one plugs a vector field U⃗
without a curl term into Eq. (22b) one again arrives at the
problematic Eq. (16). However, this is not what happens here.
The reason is that the Oðm2

×Þ curl part of U⃗ [see Eq. (30)]
cannot be neglected in Eq. (22b) because of the 1=m2

× prefactor of
the ∇⃗ × ∇⃗ × U⃗ term there. Instead of Eq. (15), we now have
∇⃗Φ ¼ Oðm0

×Þ þ ∇⃗αð1þ μ̃Þ. Without the Oð1Þ term this leads to
Eq. (16) and the associated inconsistency. The Oð1Þ term
prevents this conclusion and, thus, the inconsistency. In other
words, the m× → 0 limit affects both the curl part of the vector
field and the 1=m2

× prefactor in Eq. (22b). Both are needed to
avoid the inconsistency. The same does not happen when one
takes the (curl part of the) vector field to zero without also taking
m× → 0, hence the inconsistency we discussed in Sec. III.
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U⃗ ¼ ∇⃗αþOðm2
×Þ: ð31Þ

We can plug this result back into the remaining two
equations, namely the divergence part of the U⃗ equation of
motion Eq. (26) and the Φ equation of motion Eq. (22a),

ΔðΦ − αÞ ¼ 4πGNfGðρb þ ρcÞ; ð32aÞ

∇⃗
�
μ̃

�j∇⃗αj
a0

�
∇⃗α

�
¼ ΔðΦ − αÞ: ð32bÞ

This can be rewritten as

ΔðΦ − αÞ ¼ 4πGNfGðρb þ ρcÞ; ð33aÞ

∇⃗
�
μ̃

�j∇⃗αj
a0

�
∇⃗α

�
¼ 4πGNfGðρb þ ρcÞ: ð33bÞ

This is equivalent to the system of equations, Eq. (7),

obtained by setting the vector field A⃗ to zero, just with ∇⃗φ

replaced by ∇⃗α. Thus, the procedure of [1] is justified in the
m× → 0 limit.
For the original equations of motion obtained in [1],

Eq. (7), the field ∇⃗φ does fall off at least as fast as 1=r
for physical solutions [1,11]. Thus, at least in the limit

m× → 0, the same is true for ∇⃗α ¼ U⃗ and the decom-
position of U⃗ given in Eq. (28) does indeed exist.
This shows that the m× → 0 limit of AeST reproduces

MOND-like behavior as long as the effects of the ghost
condensate density are negligible. Thus, in that sense,
AeST reproduces a two-field version of MOND in this
limit.

C. Equivalence when curl terms vanish

The only place where m× enters in the equations of

motion Eq. (22) is as the prefactor of ∇⃗ × ∇⃗ × U⃗. In
spherical symmetry, this curl term vanishes. Thus, in
spherical symmetry, the value of m× has no effect and,
consequently, the single-field and two-field limits that we
discussed above must be equivalent. Indeed, this equiv-

alence holds whenever ∇⃗ × ∇⃗ × U⃗ vanishes identically,
though in practice this rarely happens outside spherical
symmetry [15]. Here, we demonstrate how this equivalence
works in practice.
Suppose we are given a solution where ∇⃗ × ∇⃗ × U⃗

vanishes identically. This implies that the curl part of U⃗
vanishes so that U⃗ can be written as the gradient of a scalar

field, U⃗ ¼ ∇⃗α. In this case, the equations of motion
Eq. (22) have the form

ΔðΦ − αÞ ¼ 4πGNfGðρb þ ρcÞ; ð34aÞ

∇⃗ðΦ − αÞ ¼ μ̃

�j∇⃗αj
a0

�
∇⃗α: ð34bÞ

As expected, these are independent of m×. One can

algebraically solve Eq. (34b) for ∇⃗α which gives [see
the definition of μ from Eq. (23)],

∇⃗α ¼ ∇⃗Φ
�
1 − fGμ

�j∇⃗Φj
a0

��
: ð35Þ

Importantly, this implies that the combinations

μ̃ðj∇⃗αj=a0Þ∇⃗α and μðj∇⃗Φj=a0Þ∇⃗Φ are curl-less. This
follows by taking the curl of Eqs. (34b) and (35).
We will now show explicitly that, for such curl-less

fields, the full equations of motion Eq. (34), the single-field
equation Eq. (25), and the two-field equations Eq. (33) are

equivalent. First, since μðj∇⃗Φj=a0Þ∇⃗Φ is curl-less, the
single-field Eq. (25) becomes

μðjxjÞx ¼ y: ð36Þ

Similarly, the two-field equations Eq. (33) become

x − xα ¼ fGy; ð37aÞ

μ̃ðjxαjÞxα ¼ fGy: ð37bÞ

Here, x ¼ ∇NΦ=a0, xα ¼ ∇Nα=a0, and y ¼ j∇⃗ϕN j=a0
where ϕN satisfies the equation ΔϕN ¼ 4πGNðρb þ ρcÞ
and where a subscript N of a vector denotes its compo-

nent in the direction of ∇⃗ϕN . Indeed, whenever a vector F⃗
is curl-less and satisfies an equation of the form

∇⃗ðF⃗ − ∇⃗ϕNÞ ¼ 0, then this equation simplifies to F⃗ ¼
∇⃗ϕN or, equivalently, FN=a0 ¼ y.
The full equations of motion Eq. (34) (not assuming

the single-field or two-field limit) can also be written
using this notation. One finds x − xα ¼ fGy and x −
xα ¼ μ̃ðjxαjÞxα which is directly seen to be equivalent to
the two-field equations Eq. (37). It remains to show that
the two-field equations Eq. (37) are equivalent to the
single-field equation Eq. (36).
There are two implications to show. First, consider a

solution x, xα of the two-field equations Eq. (37). We
show that x also solves the single-field equation Eq. (36).
An important ingredient is the implicit definition of μ in
terms of μ̃ from Eq. (23). In terms of the notation used
here, this implicit definition is based on the equation x ¼
xαð1þ μ̃ðjxαjÞÞ which follows from Eqs. (37a) and (37b).
Indeed, solving this equation for xα gives xα ¼ xð1 −
fGμðjxjÞÞ by our definition of μ. Adding up these two
relations gives μ̃ðjxαjÞxα ¼ fGμðjxjÞx. Using Eq. (37b)
then gives μðjxjÞx ¼ y. This is to say that x solves the
single-field equation Eq. (36), which is what was to
be shown.
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Next, consider a solution x of the single-field equation
Eq. (36). We show that this x is a solution of the two-
field equations Eq. (37). We define a candidate xα as
xα ≡ x − fGy. By construction, this solves Eq. (37a). It
remains to show that it also solves Eq. (37b). To this end,
we again use the implicit definition of μ in terms of μ̃
which again gives μ̃ðjxαjÞxα ¼ fGμðjxjÞx. Using Eq. (36)
then implies μ̃ðjxαjÞxα ¼ fGy which is Eq. (37b). Thus,
the algebraic single-field equation Eq. (36) and the
algebraic two-field equations Eq. (37) are equivalent.
That is, the single-field and two-field limits are equivalent
when the curl part of U⃗ vanishes identically.
For later reference, we note that these algebraic

equations are often a reasonable approximation in the
context of MOND even when the curl terms discussed
here do not vanish identically [14]. Writing the solution
of the equation μðjxjÞx ¼ y in the form x ¼ νðyÞy one
has in this approximation

a⃗tot ¼ a⃗Nν

�ja⃗N j
a0

�
; ð38Þ

where a⃗N is the Newtonian acceleration due to the mass
corresponding to the density ρ≡ ρb þ ρc which includes
both baryonic matter and the ghost condensate, i.e.,

a⃗N ¼ −∇⃗ϕN . Thus, in the case where the ghost con-
densate is negligible, i.e., when a⃗N ≈ a⃗b, this gives the
standard MOND relation

a⃗tot ¼ a⃗bνðja⃗bj=a0Þ: ð39Þ

V. SCALE DEPENDENCE
OF THE TWO LIMITS

Above, we have seen that AeST reduces to a single-
field version of MOND for m× → ∞ and to a two-field
version for m× → 0. Both limits reproduce MOND-like
behavior to the same extent as Eq. (7), which was
originally derived in Ref. [1] assuming a vanishing vector
field. That is, both limits reproduce MOND as long as
the ghost condensate is negligible. Thus, there are two
scales to consider: The model parameter m× controls
whether the single-field limit or the two-field limit
applies, and the model parameter m (that multiplies
the ghost condensate density ρc) controls whether these
limits reproduce MOND [1,11,12].
In practice, whether the single-field or the two-field limit

is applicable depends not only on the value of the model
parameter m×. It also depends on the system under
consideration. In particular, consider a system with typical
length scale l. Then, derivatives can very roughly be
estimated to be of order 1=l. Thus, in practice, the relevant
quantity is m×l [see Eq. (22b)],

m×l ≫ 1∶ single-field limit; ð40Þ

m×l ≪ 1∶ two-field limit: ð41Þ

That is, even after fixing the AeST model parameters, some
systems will behave as in the single-field limit while others
will behave as in the two-field limit. It should be kept in
mind, however, that this distinction is irrelevant in spheri-
cally symmetric situations where these two limits give
equivalent equations.
The quantity m× ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − KBÞ=KB

p
Q0 is, to the best of

our knowledge, not yet constrained phenomenologically.
For the explicit examples of model parameters given in [1],
we have

10−4 Mpc−1 ≲m× ≲ 1 Mpc−1: ð42Þ

Thus, in the following, we will assume this range of
parameter values, though other choices are certainly pos-
sible. For this range of parameter values, the transition from
the two-field limit (small spatial scales) to the single-field
limit (large spatial scales) happens for l ∼Mpc or larger.
To be concrete, this means that the two-field limit is

relevant for wide binaries (l ∼ kAU), and at least the inner
parts of galaxies (l ∼ kpc). For galaxy clusters (l ∼Mpc),
the single-field limit may be relevant depending on the
details of the cluster under consideration and the precise
value of m×.
As discussed above, the single-field and two-field limits

both recover MOND-like behavior when the effects of the
ghost condensate are negligible. Typically, the ghost con-
densate becomes important beyond a critical radius rc
whose scale is set by m [1,11,12],

l≳
�

rM
m2=fG

�
1=3 ≡ rc: ð43Þ

Here, rM ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMb=a0

p
with the baryonic mass of the

system Mb. A typical order of magnitude of m is
1 Mpc−1 [1,2]. Thus, m and m× can be comparable
and—depending on the values of m, m×, l, and Mb—there
are four possible regimes, corresponding to the four
possible combinations of single-field/two-field limit and
significant/negligible ρc.
For the explicit examples we consider below in Secs. VI

and VII—galactic rotation curves and wide binaries—we
expect that the two-field limit applies (m×l ≪ 1) and that the
ghost condensate is unimportant (l ≪ rc). Indeed, with
m ∼ 1 Mpc−1 and with m× in the range given by Eq. (42),
the single-field limit (l ≫ m−1

× ) may never be relevant when
AeST reproduces MOND (l ≪ rc). Below, we nevertheless
also show the results for the single-field limit because this
illustrates the difference to othermodels ofMOND forwhich
the single-field equation Eq. (25) is relevant (e.g., Ref. [13])
and also because (in contrast to m [2,11,12]) the value of
m× is so far not constrained by observations so that choices
other than Eq. (42) are, at least in principle, possible.
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VI. GALACTIC ROTATION CURVES ARE
ALMOST THE SAME IN BOTH LIMITS

Above, we have seen that the quasi-static limit of AeST
is more complicated than what was proposed in [1] based
on the assumption of a vanishing vector field A⃗. The
procedure of [1] is justified for systems much smaller than
the model parameter 1=m×, but not in general. In practice,
however, the value of m× is often unimportant. That is, in
practice, one can often follow the procedure of [1] even for
systems larger than 1=m×.
As discussed in Sec. IV C, one particular example is

spherical symmetry. Many astrophysically relevant systems
are not spherically symmetric, of course. But even in
axisymmetric systems the value of m× does not matter
in practice. This can be seen from Fig. 1, which shows the
Milky Way rotation curve as calculated for the two limits
m× → 0 and m× → ∞ for the Milky Way mass model
from [17]. Here, we assumem2=fG ¼ 0 for simplicity. That
is, we assume that the ghost condensate density vanishes.
This is a good approximation at the radii considered here, at
least for the usual choice

ffiffiffiffiffiffi
fG

p
=m≳Mpc [1,11,12]. Details

of the numerical procedure are described in Appendix A.
For reference, Fig. 1 also shows a rotation curve obtained

from the algebraic relation Eq. (39). This algebraic relation
is often considered a reasonable approximation in MOND,
even outside spherical symmetry. We see that the difference
between the m× → 0 and m× → ∞ limits is much smaller
than that between the algebraic case and either value ofm×.
Indeed, the effect ofm× is much smaller than the systematic
uncertainties in modeling the Milky Way [17]. Thus, in
practice, the value of m× is unlikely to play a role for
galactic rotation curves.

The same holds for observables based on the vertical
acceleration above the Milky Way disk (see, e.g., [18,19]).
This is illustrated in Fig. 2 which shows almost no
difference between the limits m× → 0 and m× → ∞.

VII. PERCENT-LEVEL EFFECT
FOR WIDE BINARIES

The field equations of MOND are inherently nonlinear.
As a result, the environment of a system can affect its
internal dynamics. This is the so-called external field effect
(EFE), and it violates the strong equivalence principle.
A version of this EFE also exists in AeST because its field
equations share the same type of nonlinearity. For us, the
important thing is that the single-field limit m× → ∞ and
the two-field limit m× → 0 of AeST do not produce the
same EFE [20].
One particular type of system where the EFE is impor-

tant is that of wide binary stars (see, for example, [21–25]).
Intriguingly, recent observational studies of wide bina-
ries are getting close to percent-level accuracy in
acceleration [26–30]. Thus, even small differences in what
AeST predicts compared to other models can be important.
As discussed in Sec. V, wide binaries satisfy m×l ≪ 1

and l ≪ rc. Thus, the relevant limit of AeST is the two-field
limitm× → 0with a negligible ghost condensate density ρc.
Previous works have not considered this two-field version
of MOND, focusing on other models such as that obtained
in the m× → ∞ limit of AeST, i.e., AQUAL [22,23]. Thus,
any difference between these two limits indicates that the
AeST prediction for wide binaries deviates from what
previous studies considered. In this regard, a more general
point is that different models that reproduce the same basic
tenets of MOND, such as being able to explain the RAR,
may differ in their secondary predictions such as the size of
the EFE [31,32].

FIG. 1. The rotation curve of the Milky Way for the single-field
limit m× → 0 (dashed blue line), for the two-field limit m× → 0
(dash-dotted red line), and as calculated from the algebraic
MOND relation Eq. (39). This is with the simple interpolation
function μðxÞ ¼ x=ð1þ xÞ, fG ¼ 0.99, and without the ghost
condensate mass, i.e., form2=fG ¼ 0. We assume the Milky Way
mass model from [17].

FIG. 2. The vertical acceleration for the sameMilkyWay model
as shown in Fig. 1 at the solar radius R ¼ 8.1 kpc for the single-
field limit m× → ∞ (dashed blue line), for the two-field limit
m× → 0 (dash-dotted red line), and as calculated from the
algebraic MOND relation from Eq. (39).
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As we will now show, there can indeed be percent-level
differences between the single-field and two-field limits of
AeST. However, there is also reason to be careful with
quantitative statements. As we will argue, in the two-field
limit, wide binaries are much more sensitive to the details
of the local Galactic field than in the single-field limit. Any
quantitative statement about the difference between these
two limits must be understood to be relative to a particular
model of the Milky Way, and it is plausible that different
Milky Way models erase or significantly enhance the
percent-level differences mentioned above.
To see this, we again assume that the ghost condensate’s

mass is not important or, equivalently, that m2=fG ¼ 0.
This is a good approximation on the small scales, l ∼ kAU,
that are relevant here. We also assume that the EFE
dominates everywhere in the wide binary system under
consideration. This approximation is reasonable when the
distance between the two stars in the binary system is
relatively large [22,23]. Importantly, these approximations
allow us to make analytical estimates. More involved
numerical calculations are left for future work.
As already mentioned, for the internal dynamics of wide

binaries, the two-field limitm× → 0 is the relevant one. For
simplicity, we assume that the external field produced by
the Milky Way can be calculated using the same limit. We
expect this to be a good approximation, since the m× → 0
limit is valid up to scales of order 1=m× which in our case
means up to 1 Mpc–104 Mpc. Thus, we generally expect
only sub-percent differences between the actual external
field and that calculated using the m× → 0 limit.6

For reference, we first consider the single-field limit
m× → ∞, assuming that the external field is also calculated
in this limit. This is equivalent to AQUAL and is explicitly
discussed in [22]. They find for the radial acceleration
in the binary system, a, relative to that in the Newtonian
case, aN ,

a
aN

����
m×→∞

¼ 1

μðxeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 θLðxeÞ

p : ð44Þ

Here, μðxÞ is the interpolation function of single-field
MOND (see Sec. IVA), LðxÞ is its logarithmic derivative,

LðxÞ≡ xμ0ðxÞ
μðxÞ ; ð45Þ

xe is the gradient of the external gravitational potential Φe
relative to a0,

xe ¼
j∇⃗Φej
a0

; ð46Þ

and θ is the angle between the radial direction (connecting
the two stars in the binary system) and the external field.
It is straightforward to adopt the procedure of [22] to the

two-field limit m× → 0. We find

a
aN

����
m×→0

¼ fG

0
B@1þ 1

μ̃ðxφ;eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 θL̃ðxφ;eÞ

q
1
CA; ð47Þ

where μ̃ðxÞ is the two-field version of the interpolation
function (see Sec. IV B), L̃ðxÞ is its logarithmic derivative,
and xφ;e is the gradient of the external gravitational
potential φe relative to a0,

xφ;e ¼
j∇⃗φej
a0

: ð48Þ

This expression for a=aN has a very similar structure as the
corresponding single-field expression Eq. (44), except there
are now two terms, corresponding to the two fields Φ and
φ: the single-field interpolation function μ is replaced with
its two-field counterpart μ̃, and there is an overall factor
of fG.
Importantly, in the two-field limit, it is only the external

field of the field φ that plays a role; the external field ofΦ is
irrelevant. This is because the Φ equation of motion is
linear so that there is no EFE.
This is related to an important complication in the two-

field limit, regarding how to choose the value of xφ;e. In the
single-field limit, a simple way to choose the external
gravitational field is to reproduce the observed circular
rotation curve of the Milky Way at the solar radius,

xe ¼
j∇⃗Φej
a0

≡ 1

a0

V2
c

R⊙
: ð49Þ

In the two-field limit, reproducing the value of V2
c=R⊙

means

xΦ;e þ xφ;e ¼ j∇⃗Φe þ ∇⃗φej≡ 1

a0

V2
c

R⊙
; ð50Þ

where xΦ;e ≡ j∇⃗Φej=a0 and, for simplicity, we assumed

that ∇⃗Φe and ∇⃗φe point in the same direction. The
important point is that, in the single-field case, the observed
value of V2

c=R⊙ directly gives xe and that is all that is
needed to calculate a=aN from Eq. (44). This is different in
the two-field case. The observed value of V2

c=R⊙ only gives
the sum xΦ;e þ xφ;e, while calculating a=aN from Eq. (47)
requires the xφ;e part of that sum individually.

6In Appendix B, we consider what happens when the external
and internal fields cannot be calculated using the same
assumption about whether m×l is large or small. We show that,
in this case, the external fields xe and xφ;e (see below) have to be
calculated differently but Eqs. (44) and (47) remain valid. Thus,
any deviations from our results due to this can be captured in a
factor f as introduced below in Eq. (55).
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This is the complication for the two-field case mentioned
above. It requires additional assumptions about the external
field to know which part of the total acceleration V2

c=R⊙
comes from Φ and which part comes from φ.
Here, we first consider a spherically symmetric external

field. Of course, the Milky Way is not spherically sym-
metric, but this case serves as an illustrative starting point.
We discuss more general cases below. Assuming spherical

symmetry, the total acceleration xtot;e ≡ j∇⃗Φe þ ∇⃗φej=a0
in the two-field case satisfies the standard algebraic MOND
relation with the interpolation function μ from the single-
field limit (see also Sec. IV C)

μðxtot;eÞxtot;e ¼ ye; ð51Þ

where ye is the gradient of the Newtonian external potential
relative to a0. This follows from Eq. (33) in spherical
symmetry and the definition of μ in terms of μ̃ Eq. (23). In
addition, we have xΦ;e ¼ fGye directly from Eq. (33). This
gives

xφ;e ¼ x⊙ð1 − fGμðx⊙ÞÞ with x⊙ ≡ 1

a0

V2
c

R⊙
: ð52Þ

Thus, assuming spherical symmetry, we can calculate
a=aN from just V2

c=R⊙ even in the two-field limit.
Explicitly, we have

a
aN

����spherical
m×→0

¼ fG

0
B@1þ 1

μ̃ðxφ;eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 θL̃ðxφ;eÞ

q
1
CA; ð53Þ

with xφ;e¼x⊙ð1−fGμðx⊙ÞÞ and x⊙ as defined in Eq. (52).
This should be compared to the single-field result Eq. (44)
with xe ¼ x⊙. We quantitatively compare these two cases
in Fig. 3.
From Fig. 3, we see that the two-field and the single-field

limits give the same acceleration when the external field
points in the radial direction, sin2 θ ¼ 0. In contrast, when
the external field is perpendicular, sin2 θ ¼ 1, the accel-
eration in the two-field limit is a few percent smaller than in
the single-field limit. Following [23], one may also con-
sider an acceleration averaged over θ,

hai≡ 1

2

Z
π

0

dθ sin θa: ð54Þ

As we can see from Fig. 3, this averaged acceleration is
again smaller for the two-field limit than for the single-field
limit. The magnitude of the effect after averaging is similar
to that in the perpendicular case without averaging.
These results are often a good approximation even beyond

spherical symmetry, namely whenever the algebraic relation

μðxtot;eÞxtot;e ¼ ye from Eq. (51) is a good approximation.
This is indeed often the case (see, e.g., [13,33]).
However, one also must be careful here. Since the

difference between the single-field and the two-field limits
is just a few percent, one should use the algebraic relation
Eq. (51) only if it is valid well below the percent level.
Otherwise, any real effect may be washed out by errors in
the external field.
We show the effect of deviations from the algebraic

relation Eq. (51) in Fig. 4. In particular, we show how the
averaged acceleration ratio hai=aN in the two-field limit
changes when the gradient of the external field xφ;e deviates
from what the algebraic relation Eq. (51) says it should be.
We parametrize the deviation of xφ;e from its value derived
from this algebraic relation by a factor f,

f ≡ xφ;e
xalgebraicφ;e

≡ xφ;e
x⊙ð1 − fGμðx⊙ÞÞ

: ð55Þ

From Fig. 4, we see that a deviation of xφ;e from its
algebraic value by a few percent also changes the accel-
eration hai=aN by a few percent. In particular, smaller
values of xφ;e bring the single-field and the two-field
limit closer together, while larger values push them apart.

FIG. 3. The radial acceleration in a wide binary system relative
to that in the Newtonian case for the single-field limit m× → ∞
(blue line) and the two-field limit m× → 0 (red line) of AeST. For
real-world wide binaries with separations l ∼ kAU, the two-field
limit m× → 0 is the relevant one. Markers with a diamond shape
indicate an external field parallel to the radial direction,
sin2 θ ¼ 0, markers with a triangle shape indicate a perpendicular
external field, sin2 θ ¼ 1, and markers with a circle shape
indicate the angular average from Eq. (54). We assume that
the external field dominates everywhere in the binary system and
use the simple interpolation function μðxÞ ¼ x=ð1þ xÞ. We
further assume fG ¼ 0.99 and no ghost condensate mass, i.e.,
m2=fG ¼ 0. The external field is calculated from the acceleration
V2
c=R at the solar radius R ¼ 8.1 kpc for the Milky Way model

shown in Fig. 1. For the single-field limit, the value of V2
c=R

alone suffices to calculate a=aN . For the two-field limit, we
additionally assume the algebraic MOND relation Eq. (39).
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A moderately smaller value, f ≈ 0.95, erases the difference
between the two limits.
Thus, compared to the single-field limit, one needs to

know the details of the Milky Way’s gravitational field
much more precisely when making predictions for wide
binaries in the two-field limit. As one particular example,
we here consider the axisymmetric Milky Way model
already discussed in Sec. VI. In that model, comparing
the numerically computed value of xφ;e at the solar radius to
that inferred from the algebraic relation Eq. (51) gives

f ≈ 0.963: ð56Þ

This value is also highlighted in Fig. 4. We see that this
leaves a difference of only about 1.5 percentage points
between the single-field and the two-field limit.
One might conclude that the value of m× makes very

little difference for wide binaries. That is, one might expect
that the AeST prediction (corresponding to the two-field
limit m× → 0) is very close to what previous studies have
found for AQUAL (i.e. for the single-field limit m× → ∞).
However, as we have seen, any quantitative statement
depends sensitively on the details of the local gravitational
field of the Milky Way. Indeed, the Milky Way disk is
found not to be in equilibrium and nonaxisymmetries may
not be negligible [17,34,35]. Plausibly, such effects can
either erase or significantly enhance the percent-level
differences between AeST and other models of MOND.
Thus, quantitative predictions require more involved
numerical studies that take such effects into account.

They also require carefully evaluating how accurate such
predictions can be given the observational uncertainties.
This is left for future work.

VIII. PHENOMENOLOGY OF CURL TERMS

Above, we have seen that the single-field limit m× → ∞
and the two-field limit m× → 0 produce practically indis-
tinguishable rotation curves in galaxies but show larger
differences in wide binaries. Here, we show that the larger
effect of m× in wide binaries is due to curl terms that are
closely related to (but not identical with) the curl part of the
vector field U⃗.
We first note that the curl part of U⃗ is not the only

relevant curl in the quasi-static limit of AeST. Indeed, the
equations of motion in the single-field limit, Eq. (25), and
in the two-field limit, Eq. (33), are both of the form

∇⃗ F⃗ ¼ 4πGρ. This is equivalent to ∇⃗ðF⃗ − ∇⃗ϕNÞ where
ϕN satisfies the Newtonian Poisson equation ΔϕN ¼
4πGρ. In general, this implies F⃗ ¼ ∇⃗ϕN þ ∇⃗ × h⃗ for some

vector field h⃗; i.e., F⃗ matches ∇⃗ϕN up to a curl term ∇⃗ × h⃗.

As we will see, curl terms such as ∇⃗ × h⃗ are directly
responsible for the fact that m× has a larger effect in wide
binaries than in galaxies.
Specifically, in the single-field limit m× → ∞ we have

μ

�j∇⃗Φj
a0

�
∇⃗Φ ¼ ∇⃗ϕN þ ∇⃗ × h⃗∞ ð57Þ

for some vector field h⃗∞. Similarly, in the two-field limit
m× → 0, we have

∇⃗ðΦ − αÞ ¼ fG∇⃗ϕN; ð58aÞ

μ̃

�j∇⃗αj
a0

�
∇⃗α ¼ fG∇⃗ϕN þ ∇⃗ × h⃗0; ð58bÞ

for some vector field h⃗0. There is no curl term for Eq. (58a)

since any potential curl term ∇⃗ × h⃗ that one might add to
Eq. (58a) can be shown to vanish by taking the curl on
both sides.
As discussed in Sec. IV C, when these curl terms vanish,

the single-field limit and the two-field limit are equivalent;
i.e. both limits produce the same total acceleration felt by

matter a⃗tot ¼ −∇⃗Φ. In this case, one has

∇⃗Φjno curl ¼ ν

�j∇⃗ϕN j
a0

�
∇⃗ϕN; ð59Þ

irrespective of the value of m×. Thus, any difference
between the m× → 0 and m× → ∞ limits must be due to

nonzero curl terms such as ∇⃗ × h⃗∞ and ∇⃗ × h⃗0.

FIG. 4. The angle-averaged acceleration Eq. (54) in a wide
binary system relative to the Newtonian case as a function of how
much the external field xφ;e in the two-field limit m× → 0
deviates from what the algebraic relation Eq. (39) implies (solid
red line). For comparison we also show the single-field limit
m× → ∞ (dashed blue line) which does not depend on f. Apart
from this factor f, the calculation is the same as in Fig. 3. The
vertical dashed line denotes the prediction for an external field
that follows the algebraic MOND relation, f ¼ 1, while the
dotted vertical line shows what we find for the axisymmetric
Milky Way model from [17]; see also Fig. 1.
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Indeed, when these curl terms do not vanish, Eq. (59)
receives corrections that we parametrize in terms of a vector
field C⃗, defined by

∇⃗Φ≡ ν

�j∇⃗ϕN j
a0

�
∇⃗ϕN − C⃗: ð60Þ

Given a curl term ∇⃗ × h⃗∞ (in the single-field limit) or ∇⃗ × h⃗0
(in the two-field limit) it is straightforward to obtain the
corresponding C⃗ by first algebraically solving Eq. (57) or

Eq. (58) for ∇⃗Φ and then subtracting ∇⃗Φ from

νðj∇⃗ϕN j=a0Þ∇⃗ϕN . In the following we will mostly consider

C⃗ instead of ∇⃗ × h⃗∞ and ∇⃗ × h⃗0 because C⃗ is more directly
related to observations. Indeed, C⃗ is the additional accel-
eration induced by the curl terms. We refer to the rest of the
acceleration (not induced by curl terms) as the algebraic part
a⃗algebraic of the total acceleration, i.e., a⃗tot ¼ a⃗algebraic þ C⃗.
Figure 5 shows the acceleration induced by the curl

terms, C⃗, relative to the algebraic acceleration, a⃗algebraic, for
the Milky Way model considered in Sec. VI at z ¼ 0. We
see that the curl terms affect the acceleration on the percent
level. This is what produces the percent-level difference
between the rotation curve calculated from the algebraic
MOND relation Eq. (39) and the full numerical solutions
(see Fig. 1). However, this curl-induced acceleration is
almost identical for the two-field limit m× → 0 and the
single-field limit m× → ∞. This is why these two limits

produce rotation curves that differ by much less than a
percent (see Fig. 1).
Consider now the internal acceleration in wide binaries.

The curl-induced part of this internal acceleration is
illustrated in Fig. 6. For simplicity, Fig. 6 shows the case
where the external field satisfies the algebraic MOND
relation Eq. (39).
We see that, in wide binaries, curl terms induce a much

larger change in acceleration, on the order of ten percent.
The difference in these curl terms between the single-field
and two-field limits has similarly increased: The curl terms
for m× → ∞ and m× → 0 differ on the percent level. This
explains why we find percent-level differences between the
m× → 0 and m× → ∞ limits for wide binaries but not for
galactic rotation curves.
Figure 6 also shows that, for sin2 θ ¼ 0, the curl terms in

the m× → ∞ and m× → 0 limits induce exactly the same
change in acceleration. As a result, both limits give the
same total acceleration in this case. This matches our
results from Sec. VII (see Fig. 3).
The curl terms discussed here, which explain the differ-

ence between the single-field and two-field limits,
are related to—but not identical with—the curl part
of the vector field U⃗ (or equivalently A⃗) discussed in
Secs. III and IV. Indeed, in the single-field limit, the
curl part of U⃗ directly matches the curl term discussed

FIG. 5. The acceleration induced by curl terms in the single-
field limit m× → ∞ [dashed blue line; see Eq. (57)] and the two-
field limit m× → 0 [dash-dotted red line; see Eq. (58)] for the
Milky Way model from Sec. VI at z ¼ 0. These curl-induced
accelerations are why, in general, the single-field and two-field
limits are not equivalent. The part of the total acceleration that is
not induced by curl terms, a⃗algebraic, is independent of m× (see
Sec. IV C). For the Milky Way model considered here, the curl-
induced accelerations in the single-field and two-field limits are
almost identical which is why the corresponding rotation curves
are almost identical in both limits (see Fig. 1).

FIG. 6. The internal acceleration in wide binaries induced by
curl terms in the single-field limit m× → ∞ (dashed blue line)
and the two-field limit m× → 0 (dash-dotted red line), assuming
that the external field satisfies the algebraic MOND relation
Eq. (39), i.e., assuming that only the internal acceleration is
affected by curl terms. Here, a and aalgebraic refer to the
acceleration components in the radial direction connecting the
two stars in the binary system. The difference between the curl-
induced accelerations in the single-field and two-field limits is
larger than for rotation curves (see Fig. 5). This is why the value
of m× makes a larger, percent-level difference for wide binaries
(see Sec. VII). For sin2 θ ¼ 0, the curl-induced acceleration is the
same in the single-field and two-field limits. This is why, in this
case, the total internal acceleration is the same for both limits
(see Fig. 3).
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here, U⃗ ¼ −fG∇⃗ × h⃗∞ þ ðcurl-lessÞ. This follows from
Eqs. (23) and (57). In contrast, in the two-field limit,
U⃗ is curl-less to leading order, U⃗ ¼ Oðm2

×Þ þ ðcurl-lessÞ
[see Eq. (30)]. But the Oðm2

×Þ curl term in U⃗ is still related
to the curl terms discussed here. Specifically, to leading
order in m2

×, we have U⃗ ¼ U⃗× þ ðcurl-lessÞ where U⃗× is

determined by ΔU⃗× ¼ 2m2
×∇⃗ × h⃗0. This follows by using

the Helmholtz decomposition Eq. (28) in Eq. (22b),
expanding in m2

×, using the fact that U⃗× is of order m2
×,

and comparing the result to Eq. (58). Thus, the curl part of
U⃗ is indeed closely related to the curl terms that explain
whym× has a larger effect in wide binaries than in galaxies.

IX. CONCLUSION

Previous studies have shown that the quasi-static limit of
AeST depends on a scale m that is related to the so-called
ghost condensate and that determines on which scales
AeST reproduces MOND. Here, we have shown that the
quasi-static limit additionally depends on a scale m× that is
related to the vector field A⃗. In previous studies, this vector
field was assumed to vanish. Above, we have argued that
this assumption is, in general, not justified and we have
shown how to correctly take the vector field and the
associated scale m× into account.
In the limitsm× → ∞ andm× → 0 one recovers a single-

field and a two-field version of MOND, respectively. More
precisely, these limits lead to single-field and two-field
equations of motion that produce MOND-like behavior to
the same extent as the equations originally derived assum-
ing a vanishing vector field. That is, the single-field and
two-field limits still reproduce MOND as long as the ghost
condensate can be neglected. These single-field and two-
field limits are relevant in systems whose characteristic
length scales l satisfy m×l ≫ 1 and m×l ≪ 1, respectively.
The two-field limit is precisely what was found in

previous works where the vector field was neglected.
Thus, these previous works are justified for m×l ≪ 1,
but not in general. Outside the special cases m×l ≫ 1
and m×l ≪ 1, the quasi-static limit of AeST represents
a novel version of MOND that does not reduce to any of
the previously proposed versions such as AQUAL [13],
quasi-linear MOND (QUMOND) [32,36], or modified
inertia [37].
In practice, however, numerical calculations indicate that

the value of m× makes almost no difference for radial and
vertical accelerations in galaxies. Thus, for rotation curves,
for example, our results are of purely theoretical interest.
In contrast, we find that there may be a percent-level

difference for the acceleration in wide binaries. This is of
practical interest since observations are getting close to
reaching that level of precision. Unfortunately, for the
phenomenologically relevant two-field limit m× → 0,
the acceleration in wide binaries depends sensitively on

the details of the local gravitational field of the Milky Way.
Thus, quantitative theoretical predictions require numerical
follow-up studies that take into account the full complexity
of the solar neighborhood.
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APPENDIX A: NUMERICAL PROCEDURE

We numerically solve the equations of motion
Eq. (33) (for the two-field limit m× → 0) and Eq. (25)
(for the single-field limit m× → ∞) using the Julia package
Gridap.jl [38,39]. We here describe our procedure for the
two-field limit Eq. (33). The simpler single-field limit
Eq. (25) works analogously. The procedure described here
also applies to the original equations in Eq. (7) from
Ref. [1], since these are equivalent to those from the two-
field limit Eq. (33).
We use cylindrical coordinates R and z that we rescale to

dimensionless coordinates Rx ¼ R=l, zx ¼ z=l with the
length scale l ¼ 10 kpc. We solve the equations of motion
Eq. (33) in terms of the fields Φ̂ ¼ Φ − α and α. We further
rescale these fields by a factor A ¼ 10−7, giving uΦ̂ ¼ Φ̂=A
and uα ¼ α=A.
We solve the equations in a spherical region with radius

r < 100 kpc≡ rmax, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ z2x

p
< 10≡ rx;max. We

assume that solutions are symmetric under z → −z which
corresponds to the z → −z symmetry of the Milky Way
mass model from [17] that we consider here.

Gridap.jl expects the equations to be given in weak form.
This means we do not directly solve Eq. (33) but an integral
version of these equations. Specifically, we find functions
uΦ̂ and uα for which the following integral vanishes for
arbitrary test functions v and w that vanish at the Dirichlet
boundary (i.e., at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ z2x

p
¼ rx;max; see below):

0 ¼
Z

rx;max

0

dRxRx

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x;max−R2

x

p

0

dzxIðRx; zxÞ; ðA1Þ

with the integrand IðRx; zxÞ given by

IðRx; zxÞ≡ −ð∂ivÞ · ð∂iuΦ̂Þ − ð∂iwÞ ·
�
μ̃

�
Aj∇⃗uαj
la0

�
∂iuα

�

− ðvþ wÞ · 4πGNl2

A
fGρbðRx; zxÞ: ðA2Þ

Here, the subscript i of ∂i runs over Rx and zx. Similarly,

j∇⃗uαj means
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∂iuαÞð∂iuαÞ

p
. We left out the condensate
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density ρc since we are only interested in the case
m2=fG ¼ 0. The baryonic energy density ρbðR; zÞ is that
of the Milky Way model from [17]. We show how this
integral form of Eq. (33) is derived below.
The integral in Eq. (A1) is evaluated on a mesh that we

generate using Gmsh [40]. The mesh has size Rx;max and is
generated with a “mesh_size_callback” function that
returns the default cell size or 0.005 · ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ z2x

p
Þ,

whichever is smaller.
On the boundary

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ z2x

p
¼ rx;max, we impose a

constant value for uα and uΦ̂. That is, we impose that
the fields are spherically symmetric there. Which values we
impose does not matter because the absolute values of uα
and uΦ̂ are inconsequential in the m2=fG ¼ 0 case we
consider here. We choose uα ¼ 4.1 and uΦ̂ ¼ −5.0. On the
other boundary, zx ¼ 0, the form of the integral Eq. (A1)
implicitly imposes homogeneous Neumann boundary con-
ditions which encode the z → −z symmetry (see below).
We now discuss how to obtain the integral form Eq. (A1)

of the equations of motion Eq. (33). We first multiply the
two equations of motion Eq. (33), respectively, by two
arbitrary test functions v and w. Then, we add up these two
equations and integrate both sides of the resulting equation
over the volume V in which we want to solve the equations.
This gives

0¼
Z
V
dV

�
v · ½ΔΦ̂−4πGNfGðρbþρcÞ�

þw ·

�
∇⃗
�
μ̃

�j∇⃗αj
a0

�
∇⃗α

�
−4πGNfGðρbþρcÞ

	�
: ðA3Þ

Finding fields Φ̂ and α that solve the two equations of
motion Eq. (33) is equivalent to finding fields Φ̂ and α for
which the integral Eq. (A3) is zero for arbitrary test
functions v and w. From Eq. (A3) one finds the integral
form Eq. (A1) used in our numerical procedure by
integrating by parts, neglecting ρc, using cylindrical coor-
dinates, assuming axisymmetry, and switching to the
rescaled fields uΦ̂ and uα and the rescaled coordinates
Rx and zx.
The only subtlety lies in the boundary term that one

obtains when integrating by parts. This boundary term is
proportional to

Z
∂V

dS⃗ ·

�
v∇⃗ Φ̂þwμ̃

�j∇⃗αj
a0

�
∇⃗α

	
: ðA4Þ

How to handle this boundary term depends on the type of
boundary conditions one wants to impose and the precise
mathematical functional spaces from which one chooses
the test functions v and w and the fields Φ̂ and α. In our
case, since we impose mixed Dirichlet and homogeneous
Neumann boundary conditions, the correct procedure is to

leave out the boundary term Eq. (A4), use test functions v
and w that vanish on the Dirichlet boundary (i.e., at
r ¼ rmax), and consider fields Φ̂ and α from a functional
space that only contains fields that satisfy the Dirichlet
boundary condition. Unfortunately, there are some subtle-
ties in rigorously deriving this result. For these, we refer to
the mathematical literature (see, for example, Ref. [41]). In
practice, one can follow the nice tutorial7 provided by
Gridap.jl [38,39] on precisely the type of equation we are
dealing with here.
We have validated this numerical procedure against a

previous numerical code used in Ref. [33] where a very
similar set of equations was solved numerically. The
numerical code from Ref. [33] does not require deriving
the integral form of these equations. Thus, that both
numerical codes agree indicates that Eq. (A1) is indeed
the correct integral form of the equations of motion
Eq. (33). The advantage of the numerical procedure used
here [based on Gridap.jl and Eq. (A1)] is that it runs faster
and is more flexible.

APPENDIX B: MORE GENERAL
EXTERNAL FIELDS

In Sec. VII, we assumed the same limit—m× → 0 or
m× → ∞—for both the internal and the external fields of
wide binary systems. But, in principle, it can happen that
the external field cannot be calculated using the same limit
as the internal field (see Sec. V). Here, we show that in such
a case Eqs. (44) and (47) remain valid. Only the external
fields xe and xφ;e that enter these equations need to be
calculated differently.
To see this, we first write down the equations of motion

Eq. (22) without assuming a particular value of m× for a
system embedded in external fields U⃗e and Φe, giving

ΔΦ − ∇⃗ U⃗ ¼ 4πGNfGðρb þ ρcÞ ðB1Þ

and

∇⃗Φ −
1

2m2
×
∇⃗ × ∇⃗ × U⃗

¼ U⃗ þ ðU⃗ þ U⃗eÞμ̃
�jU⃗ þ U⃗ej

a0

�
− U⃗eμ̃

�jU⃗ej
a0

�
; ðB2Þ

where we used that ρc is linear in the field Φ. As in
Sec. VII, we assume that the external field dominates
everywhere. For this case, we find the linear equations

7https://gridap.github.io/Tutorials/stable/pages/t004_p_laplacian/.
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ΔΦ−∇⃗U⃗¼S;

∇⃗Φ−
1

2m2
×
∇⃗×∇⃗×U⃗¼U⃗þU⃗μ̃eþðU⃗ ·U⃗eÞ

Ûe

a0
μ̃0e; ðB3Þ

where Ûe denotes the direction of U⃗e and we use the
shorthand notations

μ̃e ≡ μ̃

�jU⃗ej
a0

�
; μ̃0e ≡ μ̃0

�jU⃗ej
a0

�
; ðB4Þ

as well as

S≡ 4πGNfGðρb þ ρcÞ: ðB5Þ

We now consider wide binary systems with typical
length scale lwb and consider the cases where m×lwb is
large or small without assuming anything about the external
field. Below, we show that in this case we still reproduce
Eq. (44) for m×lwb ≫ 1 and Eq. (47) for m×lwb ≪ 1, but
with adjusted definitions of xΦ and xφ;e compared to

Sec. VII. For concreteness, we assume that U⃗e points in
the positive z direction.

1. The case m×lwb ≪ 1

Consider first the case m×lwb ≪ 1. Following the same
steps as in Sec. IV B, we find from Eq. (B3) that

U⃗ ¼ ∇⃗αþOððm×lwbÞ2Þ, which leads to

ΔðΦ − αÞ ¼ S; ðB6aÞ

ΔðΦ − αÞ ¼ μ̃eð∂2xαþ ∂
2
yαÞ þ μ̃eð1þ L̃eÞ∂2zα; ðB6bÞ

with the shorthand notation

L̃e ¼
jU⃗ej
a0

μ̃0e
μ̃e

: ðB7Þ

This is equivalent to

ΔðΦ − αÞ ¼ S; ðB8aÞ

μ̃eð∂2xαþ ∂
2
yαÞ þ μ̃eð1þ L̃eÞ∂2zα ¼ S: ðB8bÞ

Following the procedure of [22] and neglecting the ghost
condensate density ρc, this gives the two-field expression
for a=aN from Eq. (47), just with the replacement

xφ;e →
jU⃗ej
a0

: ðB9Þ

2. The case m×lwb ≫ 1

Consider next the case m×lwb ≫ 1. In this case, we find
from Eq. (B3),

ΔΦ − ∇⃗ U⃗ ¼ S; ðB10aÞ

∂kΦ ¼ Ukð1þ μ̃eÞ; ðB10bÞ

∂zΦ ¼ Uzð1þ μ̃eÞ þ Uzμ̃eL̃e; ðB10cÞ

where k ¼ x; y. We can algebraically solve for U⃗ and plug
the result back into the first of these equations to find

�
1 −

1

1þ μ̃e

�
ð∂2xΦþ ∂

2
yΦÞ

þ
�
1 −

1

1þ μ̃eð1þ L̃eÞ
�
∂
2
zΦ ¼ S: ðB11Þ

To make contact with Eq. (44), we must rewrite all
occurrences of μ̃ in terms of μ. In Sec. IVA, the function
μ is implicitly defined in terms of the function μ̃ by the
relations

x≡ uð1þ μ̃ðuÞÞ; ðB12aÞ

u ¼ xð1 − fGμðxÞÞ; ðB12bÞ

for all positive u. From both relations we can infer an
expression for u=x. Equating these gives a useful direct
relation between μ̃ and μ,

ð1þ μ̃ðuÞÞð1 − fGμðxÞÞ ¼ 1: ðB13Þ

By taking a derivative of this relation with respect to x and
using ∂u=∂x ¼ 1 − fGμðxÞð1þ LðxÞÞ we find

1þ L̃ðuÞ ¼ ð1þ LðxÞÞ 1 − fGμðxÞ
1 − fGμðxÞð1þ LðxÞÞ : ðB14Þ

After some algebra, we then obtain the relations

1 −
1

1þ μ̃ðuÞ ¼ fGμðxÞ;

1 −
1

1þ μ̃ðuÞð1þ L̃ðuÞÞ ¼ fGμðxÞð1þ LðxÞÞ: ðB15Þ

Thus, we have

μeð∂2xΦþ ∂
2
yΦÞ þ μeð1þ LeÞ∂2zΦ ¼ S; ðB16Þ

with the shorthand notation
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μe ≡ μðxuÞ;

Le ≡ xuμ0ðxuÞ
μðxuÞ

;

xu ≡ jU⃗ej
a0

�
1þ μ̃

�jU⃗ej
a0

��
: ðB17Þ

Following the procedure of [22] and neglecting the ghost
condensate density ρc, this gives the single-field expression
for a=aN from Eq. (44), just with the replacement

xe →
jU⃗ej
a0

�
1þ μ̃

�jU⃗ej
a0

��
: ðB18Þ
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