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We consider a class of finite-dimensional dynamical systems whose equations of motion are derived
from a non-local-in-time action principle. The action functional has a zeroth-order piece derived from a
local Hamiltonian and a perturbation in the form of a nonlocal functional of the trajectory on phase space.
We prove that the dynamics of these systems admits a local Hamiltonian description to all orders in the
perturbation and we provide explicit formulas for theN th-order Hamiltonian and symplectic form in terms
of the ðN − 1Þth-order Hamiltonian flow. In the context of general relativity, these systems arise in the
study of binary systems such as pairs of black holes or neutron stars in the small mass-ratio and post-
Newtonian approximations. We provide applications of the formalism to binary systems in these regimes.
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I. INTRODUCTION

In this paper we will study a class of finite dimensional
dynamical systems with non-local-in-time interactions. Such
systems can be described in terms of action functionals on
paths in phase space, where the action contains multiple
integrals with respect to time. Their equations of motion
are integrodifferential equations as opposed to the ordinary
differential equations characteristic of Hamiltonian dynami-
cal systems. A simple example of such an integrodifferential
equation is

ẍðtÞ ¼ fðx; tÞ þ
Z

∞

−∞
Kðt; t0Þxðt0Þdt0: ð1Þ

Here fðx; tÞ is the local piece of the force and the integral
is a non-local-in-time force that is a functional of the
position xðt0Þ.
Non-local-in-time interactions generally arise when one

“integrates out” some of the degrees of freedom of a
system, giving rise to a nonlocal interaction between the
remaining degrees of freedom. In the context of general
relativity, in the study of binary systems such as gravitating
pairs of black holes or neutron stars, non-local-in-time
interactions appear in the small mass ratio and post-
Newtonian approximations [1–4]. They are also useful
for the description of cracks and other nonlocal deforma-
tions on materials [5]. Non-local-in-time interactions are
sometimes parametrized in terms of frequency-dependent
coefficients, such as the electric permittivity and suscep-
tibility [6]. They also appear in Fokker-Wheeler-Feynman
electrodynamics [7].
In the case of ordinary differential equations obtained

from a Hamiltonian system, standard existence and

uniqueness theorems [8] state that the space of solutions
can be parametrized by initial data, i.e. points in phase
space. When non-local-in-time interactions are included,
however, it is not clear how to obtain a simple para-
metrization of the space of solutions [9]. However, as is
well known, when non-local-in-time interactions are
treated perturbatively, the resulting dynamics can be cast
as a local dynamical system, order by order. It is less well
known, however, under what circumstances this local
dynamical system admits a Hamiltonian description at
each order. In this paper we derive the existence of such
Hamiltonian description for a broad class of non-local-in-
time action principles [Eq. (8) below].
This paper is organized as follows: In Sec. II, we review

the dynamics obtained from non-local-in-time action prin-
ciples and derive their equations of motion. We then treat
the nonlocalities perturbatively to obtain local equations of
motion order by order. In Sec. III, we prove that the local
dynamics admits a local Hamiltonian description to any
order in the perturbations. We provide explicit expressions
for the Hamiltonian and symplectic form up toN th order in
terms of the ðN − 1Þth Hamiltonian flow. Sections V and
VI apply this result in the context of gravitational binary
systems in general relativity. Uninterested readers can skip
both sections altogether and focus on the rest of the paper.
Section VI specializes to the dynamics of binary systems
in the post-Newtonian approximation, where nonlocal
effects start at fourth order [3,4]. Section V applies the
results of this paper to extreme-mass-ratio inspirals, where
the gravitational self-interaction of a small object orbiting
around a much larger one includes nonlocal effects due to
the backscattering of gravitational waves [1,2]. In previous
work [10,11], the conservative piece of the dynamics of a
binary system in the small mass ratio regime was recast as a
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local Hamiltonian system to first order in the small mass
ratio. This paper generalizes the methods used in
Refs. [10,11] to a more general class of nonlocal systems
and to arbitrary high orders in perturbation theory. It is our
hope that they can be applied in other fields where these
non-local-in-time interactions arise.
This formalism is an extension of work done by Llosa

and Vives [9]. The relation between their work and the
results of this paper is discussed in Appendix A.

II. DYNAMICAL SYSTEMS DESCRIBED
BY NONLOCAL ACTION PRINCIPLES

We start this section by reviewing the description of
phase space flows. Consider a phase space Γ with coor-
dinates

QA ¼ ðqμ; pμÞ ð2Þ

and a symplectic form Ω0 ¼ δpμ ∧ δqμ. We define a flow
in phase space XsðQÞ∶R × Γ → Γ which takes any point
Q∈Γ into XsðQÞ∈Γ. The flow is required to be the
identity map at s ¼ 0

X0ðQÞ ¼ Q ð3Þ

and to satisfy the composition rule

XsðXs0 ðQÞÞ ¼ Xsþs0 ðQÞ ð4Þ

for all s; s0 ∈R. A flow XsðQÞ on phase space will be
determined by a vector field V⃗ ¼ VA

∂A according to

dXA
s ðQÞ
ds

¼ VA½XsðQÞ�: ð5Þ

If we specialize Eq. (5) to s ¼ 0 we get

dXA
s ðQÞ
ds

����
s¼0

¼ VAðQÞ ð6Þ

so the flow is determined by its derivative at s ¼ 0.
Throughout this paper, we will parametrize and character-
ize flows by their derivatives (6) at s ¼ 0 with the under-
standing that the full flows are obtained by solving Eq. (5).
We will consider dynamical systems described by non-

local action functionals of paths Xs of the form

S½X� ¼
Z

pμdqμ −
Z

H0ðXsÞdsþ Snl½X�: ð7Þ

Here, H0ðQÞ is a local Hamiltonian function on phase
space and the nonlocal piece of the action is

Snl½X� ¼ −
XN
n¼2

ϵn
n

Z
ds1…dsn

× GnðXs1 ;…; Xsn ; s2 − s1;…; sn − s1Þ; ð8Þ

where Gn is some n-point function Gn∶ Γn ×Rn−1 → R.
Here ϵn is a formal expansion parameter used to keep track
of orders in the nonlocal action and N is a finite but
otherwise arbitrary positive integer. Note that because the
n-point function Gn is integrated n times, the nonlocal
action will automatically pick out its fully symmetric piece,
so that without loss of generality we can assume that Gn
satisfies

GnðXs1 ;…; Xsn ; σ12;…; σ1nÞ
¼ GnðXsp1

;…; Xspn
; σp1p2

;…; σp1pn
Þ ð9Þ

for all ðs1;…; snÞ. Here σij ¼ sj − si for short and fpig is
any permutation of the integers from 1 to n. We will also
assume that the n-point functions satisfy asymptotic falloff
conditions given in detail in Eq. (15) below.
We will write the equations of motion in terms of a

function ΦðQ;Q0; ½X�Þ which is a local function of two
points Q and Q0 in phase space in its first two arguments
and a functional of a trajectory Xs which passes through Q0
at s ¼ 0 in its last argument. The definition of Φ is

ΦðQ;Q0; ½X�Þ ¼
XN
n¼2

ϵn

Z
ds2…dsn

× GnðQ;Xs2ðQ0Þ;…; XsnðQ0Þ; s2;…; snÞ:
ð10Þ

The equations of motion are obtained by varying the action
functional (7) with respect to the trajectory X. The variation
of the nth term in the nonlocal piece will give n contri-
butions with derivatives acting on each of the first n
arguments of Gn. From property (9), it follows that all
these contributions coincide, so we can add them up. The
final result is a factor of n times the derivative with respect
to the first argument of Φ. The resulting equations of
motion are

Ω0
AB

dXB
s

ds
¼

�
∂

∂QA H0ðQÞ þ ∂

∂QA ΦðQ;Q0; ½X�Þ
�
Q0¼Q¼Xs

:

ð11Þ

Here the subscript Q0 ¼ Q means that first two arguments
of Φ are evaluated at coincidence after differentiating Φ
with respect to its first entry. Subsequently, the whole right-
hand side is evaluated at Xs.
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A. Local dynamical systems obtained by treating
nonlocalities perturbatively

Equation (11) is an integrodifferential system of equa-
tions for the trajectories Xs on phase space, as opposed to a
differential system of equations that depend locally on a
point Q, as is the case for Hamilton’s equations derived
from action principles without nonlocalities. Because of
this property, solutions will generally not be parametrized
by initial data Q. In fact, the space of initial data required
to determine solutions of integrodifferential systems of
equations can be, in general, infinite dimensional and
require derivatives of xμ and pμ with respect to time of
all orders [9].
However, if we take the nonlocal contribution to the

action to be small we can treat the problem perturbatively.

We define a sequence of phase space flows X̄ðN Þ
s ðQÞ by

induction as follows. The zeroth-order flow X̄ð0Þ
s ðQÞ is

generated by the HamiltonianH0, with all nonlocal terms in
Eq. (11) dropped. Then, we can evaluate the functional
dependence of Φ in Eq. (11) on the zeroth-order flow and

define the first-order flow X̄ð1Þ
s ðQÞ by

Ω0
AB
dX̄ð1ÞB

s ðQÞ
ds

����
s¼0

¼ ∂

∂QA H0

þ
�

∂

∂QA ΦðQ;Q0; ½X̄ð0Þ�Þ
�
Q0¼Q

:

ð12Þ

This process can be repeated to any desired order to define
the N th-order flow in terms of the ðN − 1Þth flow as

Ω0
AB
dX̄ðN ÞB

s ðQÞ
ds

����
s¼0

¼ ∂

∂QA H0

þ
�

∂

∂QA ΦðQ;Q0; ½X̄ðN−1Þ�Þ
�
Q0¼Q

:

ð13Þ

Equation (13) is a set of ordinary differential equations
which determines the N th flow, once the ðN − 1Þth flow
is specified.1 Hence all the flows are determined by
induction.2

The flow determined by Eq. (13) agrees with the exact
flow determined by Eq. (11) up to corrections of order

Oðϵq11 × ϵq22 ×… × ϵqNN Þ with P
N
n¼1 qi ¼ N þ 1. For sim-

plicity, when we expand the Hamiltonian and symplectic
form explicitly below, we will introduce a formal expansion
parameter ϵ such that

OðϵNþ1Þ≡Oðϵq11 × ϵq22 ×…× ϵqNN Þ;
XN
n¼1

qi ¼ N þ 1:

ð14Þ

Wewill also assume that the sequence of flows X̄ðN Þ
s ðQÞ are

such that the n-point functions Gn introduced in the
nonlocal action principle in Eq. (8) satisfy the following
property: For any j∈ ½1; n� and with all sk with k ≠ j fixed,
the limit when sj → �∞ of the n-point function Gn

evaluated on the flow X̄ðN Þ
s is zero

lim
sj→�∞

Gn

�
X̄ðN Þ
s1 ;…; X̄ðN Þ

sj ;…; X̄ðN Þ
sn ;

s2 − s1;…; sj − s1;…; sn − s1
�
¼ 0: ð15Þ

III. LOCAL HAMILTONIAN DESCRIPTION

In this section, we will obtain a local Hamiltonian
description for the N th-order flow, in term of the known
ðN − 1Þth-order flow. We define the Hamiltonian and
symplectic form in this subsection and derive their equiv-
alence to the system (13) in the next subsection.
Given a phase space flow XsðQÞ and a point Q in Γ, we

define a function

ΨðQ; ½X�Þ ¼ 1

2

XN
n¼2

ϵn

Z
ds1…dsnχðs1;…; snÞ

×
∂

∂s1
GðXs1ðQÞ…;XsnðQÞ; s2 − s1;…; sn − s1Þ

ð16Þ

where

χðs1;…; snÞ ¼
sgnðs1Þ − sgnðs2Þ − � � � − sgnðsnÞ

2
: ð17Þ

Here the partial derivative ∂=∂s1 indicates that the deriva-
tive acts only on the explicit dependence of the n-point
function in its last n − 1 arguments and not on the implicit
dependence that arises through Xs1 .
We now define the local Hamiltonian function in terms

of the ðN − 1Þth flow as

HðN ÞðQÞ ¼ H0ðQÞ þΦðN ÞðQÞ þΨðN ÞðQÞ; ð18Þ

where

1Equations of motion like these can be derived from a pseudo-
Hamiltonian function, first defined in Ref. [10]. We detail the
relation of this paper to pseudo-Hamiltonians in Appendix B,
although we will not use that formalism here.

2As is well known, perturbative expansions of this form can
break down after long timescales when there are dissipative
effects present. Here, we are concerned only with conservative
dynamics and so we can neglect this issue.
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ΦðN ÞðQÞ ¼ ΦðQ;Q; ½X̄ðN−1Þ�Þ; ð19aÞ

ΨðN ÞðQÞ ¼ ΨðQ; ½X̄ðN−1Þ�Þ: ð19bÞ

We also define a new function of n points on phase space as

KðN Þ
n ðQ1;…; QnÞ ¼ ϵn

Z
ds1…dsnχðs1;…; snÞ

× Gn

�
X̄ðN−1Þ
s1 ðQ1Þ;…; X̄ðN−1Þ

sn ðQnÞ;

s2 − s1;…; sn − s1
�
: ð20Þ

Note that the subscript n labels the number of arguments in
the n-point function Gn while the superscript ðN Þ denotes
an object constructed from the ðN − 1Þth-order flow and
contains terms of order OðϵN Þ and lower. Using definition
(20) we define the local symplectic form

ΩðN Þ ¼ Ω0 þ ΔΩðN Þ; ð21aÞ

Ω0 ¼ δpμ ∧ δqμ; ð21bÞ

ΔΩðN Þ
AB ðQÞ ¼

"XN
n¼2

Xn
m¼2

∂
2

∂Q½A
1 ∂Q

B�
m

KðN Þ
n ðQ1;…;QnÞ

#
fQjg¼Q

ð21cÞ

where fQjg ¼ Q means that we evaluate at coincidence
Q1 ¼ Q2 ¼ … ¼ Qn ¼ Q. Here, brackets denote antisym-
metrization Ω½AB� ¼ 1

2
ðΩAB −ΩBAÞ.

Both HðN Þ and ΩðN Þ can be expanded perturbatively
using the formal expansion parameter (14) as

HðN Þ ¼ H0 þ
XN
r¼1

ϵrH½r�; ð22aÞ

ΩðN Þ ¼ Ω0 þ
XN
r¼1

ϵrΔΩ½r�; ð22bÞ

where a superscript [r] indicates a term that is exclusively
OðϵrÞ, as opposed to a superscript ðN Þ which indicates a
term that contains contributions of order OðϵN Þ and lower.

A. Derivation of Hamilton formulation

In this subsection we will prove that the Hamiltonian
function (18) equipped with the symplectic form (21)
reproduces the perturbative local dynamical system (13)
up to corrections of order OðϵNþ1Þ.
The Hamiltonian function (18) equipped with the sym-

plectic form (21) determines the flow

½Ω0
AB þ ΔΩðN Þ

AB �dX̄
ðN Þ
s

ds

����
s¼0

¼ ∂

∂QA

�
H0 þΦðN Þ þ ΨðN Þ�:

ð23Þ

First, note that since we want the equations of motion to be
accurate up to corrections of order OðϵNþ1Þ, we can drop
higher order corrections in the second term in the left side
of Eq. (23)

ΔΩðN Þ
AB

dX̄ðN Þ
s

ds

����
s¼0

¼ ΔΩðN Þ
AB

dX̄ðN−1Þ
s

ds

����
s¼0

þOðϵNþ1Þ ð24Þ

where we replaced X̄ðN Þ with X̄ðN−1Þ since ΔΩðN Þ is OðϵÞ.
We will calculate the first term in the right-hand side
of Eq. (24) in a series of steps. First, the contraction

ΔΩðN Þ
AB dX̄ðN−1Þ

s =dsjs¼0 will have two pieces coming from
the antisymetrization of the indices AB in Eq. (21c). The
first one is

dX̄ðN−1ÞB
s

ds

����
s¼0

×

�
∂
2

∂QA
1 ∂Q

B
m
KðN Þ

n ðQ1;…;QnÞ
�
fQjg¼Q

: ð25Þ

The derivative of X̄ðN−1ÞB
s is evaluated at Q but we are

allowed to move it inside the brackets and evaluate it atQm,
since the bracket is evaluated at coincidence fQjg ¼ Q.
Using property (4), the contraction dX̄B

s =dsjs¼0∂=∂Q
B

acting on any function fðX̄sðQÞ; sÞ will create a total
derivative d=ds, minus a correction ∂=∂s due to the explicit
time dependence of f

dX̄A

ds
∂

∂QA fðX̄sðQÞ; sÞ ¼ d
dΔs

����
Δs¼0

fðX̄sþΔsðQÞ; sÞ

¼
�
d
ds

−
∂

∂s

�
fðX̄sðQÞ; sÞ: ð26Þ

Using the identity (26) in Eq. (25) we get

	
∂

∂QA
1

Z
ds1…dsnχðs1;…; snÞ

�
d

dsm
−

∂

∂sm

�

× Gn

�
X̄ðN−1Þ
s1 ðQ1Þ;…; X̄ðN−1Þ

sn ðQnÞ;

s2 − s1;…; sn − s1
�


fQjg¼Q
: ð27Þ

We integrate by parts the total derivative d=dsm, use
property (15) to throw away boundary terms, relabel
sm ↔ s1 and use the properties (9) and

d
dsj

χðs1;…; snÞ ¼
	þδðs1Þ for j ¼ 1

−δðsjÞ for j ¼ 2;…; n
ð28Þ
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to get �
∂

∂QA
m

Z
ds2…dsnGn

�
Q1; X̄

ðN−1Þ
s2 ðQ2Þ…; X̄ðN−1Þ

sn ðQnÞ; s2;…; sn
��

fQjg¼Q
: ð29Þ

Note that once we sum over n and m this term will give the n − 1 last derivatives of the n-point function Gn in Eq. (10),
which can be expressed as �

∂

∂QA0 ΦðQ;Q0; ½X̄ðN−1Þ�Þ
�
Q0¼Q

; ð30Þ

where the prime index in QA0
means that the derivative acts on Q0 but not Q. Regarding the term proportional to the partial

derivative ∂=∂sm in Eq. (27), note that we can pull the sum
P

n
m¼2 from Eq. (21c) inside K to get

�
∂

∂QA
1

Z
ds1…dsnχðs1;…; snÞ

�
−
Xn
m¼2

∂

∂sm

�
Gn

�
X̄ðN−1Þ
s1 ðQ1Þ;…; X̄ðN−1Þ

sn ðQnÞ; s2 − s1;…; sn − s1
��

fQjg¼Q

¼
�

∂

∂QA
1

Z
ds1…dsnχðs1;…; snÞ

∂

∂s1
Gn

�
X̄ðN−1Þ
s1 ðQ1Þ;…; X̄ðN−1Þ

sn ðQnÞ; s2 − s1;…; sn − s1
��

fQjg¼Q
ð31Þ

where we used a chain rule to replace the derivatives respect
to all the sm with a derivative respect to s1.
Now, we move on to the other piece of the contraction

ΔΩðN Þ
AB dX̄ðN−1Þ

s =dsjs¼0 coming from the antisymmetriza-
tion of indices AB in Eq. (21c)

−
dX̄ðN−1ÞB

s

ds

����
s¼0

×

�
∂
2

∂QA
m∂QB

1

KðN Þ
n ðQ1;…; QnÞ

�
fQjg¼Q

:

ð32Þ

The contraction once again will give a total derivative
d=ds1 minus a correction ∂=∂s1 due to the explicit time
dependence on K. Integrating by parts the total derivative
recovers Eq. (29). The term proportional to the partial
derivative is

�
∂

∂QA
m

Z
ds1…dsnχðs1;…; snÞ

∂

∂s1

× Gn

�
X̄ðN−1Þ
s1 ðQ1Þ;…; X̄ðN−1Þ

sn ðQnÞ;

s2 − s1;…; sn − s1
��

Qn¼…¼Q
: ð33Þ

Now we apply the sum overm to this last term and add it to
the term in Eq. (31) to create a derivative ∂A acting on every
argument of K. Putting Eqs. (29), (31), and (33) together
we get that

ΔΩðN Þ
AB

dX̄ðN Þ
s

ds

����
s¼0

¼
�

∂

∂QA0 Φ
�
Q;Q0; ½X̄ðN−1Þ���

Q0¼Q

þ ∂AΨðN ÞðQÞ þOðϵNþ1Þ: ð34Þ

Plugging this into Eq. (23) we see that the first term on the
right-hand side of Eq. (34) cancels all the extra derivatives
with respect to the last (n − 1) arguments of the n-point
function in ∂AΦ in Eq. (23). The last term in the right-hand
side of Eq. (34) cancels the term ∂AΨðN Þ in Eq. (23) and we
recover Eq. (13) up to corrections of order OðϵNþ1Þ as
desired.

IV. ALTERNATIVE FORMULATION
OF LOCAL HAMILTONIAN SYSTEM

In this section we prove that, up to any order in ϵ1; ϵ2;…,
ϵn, there exists a diffeomorphism in phase space that puts
the symplectic form (21) in canonical form. We then apply
this result up to second order and give explicit expressions
for the diffeomorphism and the resulting Hamiltonian. We
use arrows V⃗ ¼ VA

∂A for vectors and tildes ω̃ ¼ ωAdQA

for 1-forms. Indices will be raised and lowered by con-
traction with the first index on the zeroth order symplectic
form ΩAB.
We consider a one-parameter family of diffeomorphisms

φðϵÞ∶Γ → Γ that transform the N th order Hamiltonian
system ðΩ0 þ ΔΩðN Þ; HðN ÞÞ to an equivalent Hamiltonian
system

ðφ�Ω0 þ φ�ΔΩðN Þ;φ�HðN ÞÞ ð35Þ
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where φ� is the pullback3 defined by the diffeomor-
phism φðϵÞ.
We now specialize the diffeomorphism φ to make the

new Hamiltonian system take the form ðΩ0;φ�HðN ÞÞ, i.e. to
make the transformed symplectic form coincide with the
original zeroth order symplectic form

φ�ΩðN Þ ¼ Ω0 þOðϵNþ1Þ: ð36Þ

First, note that we can express the perturbation (21) to the
symplectic form ΔΩðN Þ as an exact form. We define the
1-form

ξðN Þ
A ¼ −

1

2

XN
n¼2

�
∂

∂QA
1

KðN Þ
n ðQ1;…; QnÞ

�
fQjg¼Q

ð37Þ

such that the perturbation to the symplectic form is

ΔΩðN Þ
AB ðQÞ ¼ ðdξ̃ðN ÞÞAB

¼ ∂Aξ
ðN Þ
B − ∂Bξ

ðN Þ
A : ð38Þ

The 1-form ξ̃ðN Þ is sourced by the ðN − 1Þth order flow
and is accurate up to corrections of order OðϵNþ1Þ.
Plugging Eq. (38) into the symplectic form (21) we get

ΩðN Þ ¼ Ω0 þ dξ̃ðN Þ þOðϵNþ1Þ: ð39Þ

Now, consider a one-parameter family of diffemorphisms
φðϵÞ∶Γ → Γ. We parametrize this diffeomorphism up to
order N by N vector fields ζ⃗i with i ¼ 1;…;N as

φðϵÞ ¼ Dζ⃗N
ðϵN Þ∘Dζ⃗N−1

ðϵN−1Þ∘…∘Dζ⃗1
ðϵÞ½1þOðϵNþ1Þ�;

ð40Þ

where the mappingDζ⃗ðϵÞmoves any point ϵ units along the

vector field ζ⃗. The pullback φ� can be expressed in terms of
Lie derivatives as

φ� ¼ 1þ ϵLζ⃗1
þ ϵ2

2
Lζ⃗1

Lζ⃗1
þ ϵ3

6
Lζ⃗1

Lζ⃗1
Lζ⃗1

þ ϵ2Lζ⃗2
þ ϵ3Lζ⃗1

Lζ⃗2
þ ϵ3Lζ⃗3

þ… ð41Þ

We want this diffeomorphism to make the symplectic
form coincide with Ω0 up to N th order, as in Eq. (36).

Combining Eqs. (36) and (41) and inverting the pullback
perturbatively, we can invert Eq. (36) to get

ΩðN Þ ¼ Ω0 − ϵLζ⃗1
Ω0 þ

ϵ2

2
Lζ⃗1

Lζ⃗1
Ω0 −

ϵ3

6
Lζ⃗1

Lζ⃗1
Lζ⃗1

Ω0

− ϵ3Lζ⃗2
Ω0 þ ϵ3Lζ⃗2

Lζ⃗1
Ω0 − ϵ3Lζ⃗3

Ω0 þ… ð42Þ

We expand the 1-form (37) in powers of the formal
parameter ϵ defined in Eq. (14)

ξ̃ðN Þ ¼
XN
r¼1

ϵrξ̃½r� ð43Þ

where ξ̃½r� is the piece of ξ̃ðN Þ of order OðϵrÞ and can be

obtained by expanding the flow X̄ðN−1Þ
s ðQÞ in the definition

(20) and plugging the expansion back into Eq. (37). We
plug the expansion (43) into (39) and then into Eq. (42) and
equate coefficients of powers of ϵ on both sides to obtain

Lζ⃗1
Ω0 ¼ −dξ̃½1�; ð44aÞ

Lζ⃗2
Ω0 ¼ −dξ̃½2� þ 1

2
Lζ⃗1

Lζ⃗1
Ω0; ð44bÞ

Lζ⃗3
Ω0 ¼ −dξ̃½3� þ Lζ⃗2

Lζ⃗1
Ω0 −

1

6
Lζ⃗1

Lζ⃗1
Lζ⃗1

Ω0;

..

. ð44cÞ

Using Cartan’s magic formula and the fact that the
symplectic form Ω0 is closed, we can prove that the Lie
derivative of the zeroth order symplectic form Ω0 with
respect to any vector field V⃗ is exact

LV⃗Ω0 ¼ iV⃗dΩ0 þ dðiV⃗Ω0Þ
¼ dðiV⃗Ω0Þ
¼ dṼ: ð45Þ

Here iV⃗ω̃ is the interior product, which contracts V⃗ with the
first entry of any differential form it acts on. In the last line
of Eq. (45) we used the zeroth order symplectic form to
lower the index VB ¼ VAΩ0

AB. Using identity (45),
Eq. (44a) becomes

dζ̃1 ¼ −dξ̃½1�: ð46Þ

From the definition of ξ̃ in (37) we obtain the solution

ζA1 ¼ ΩAB
0 ξ½1�B

¼ −
1

2
ΩAB

0

XN
n¼2

�
∂

∂QB
1

Kð1Þ
n ðQ1;…; QnÞ

�
fQjg¼Q

: ð47Þ

3As is well known, these transformations can be seen from a
passive or an active viewpoint. The passive viewpoint considers
the transformation to be a coordinate transformation, keeping all
fields fixed. The active viewpoint considers the transformation as
a field redefinition instead, with all coordinates unchanged. Both
viewpoints are equivalent, but in this paper we adopt the active
viewpoint for clarity.
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Now, we use the identity (45) in Eq. (44) to get

dζ̃2 ¼ −dξ̃½2� þ 1

2
Lζ⃗1

dζ̃1

¼ −dξ̃½2� þ d



1

2
Lζ⃗1

ζ̃1

�
: ð48Þ

A solution of this equation for the second order vector
field is

ζA2 ¼ ΩAB
0 ξðN ;2Þ

B −
1

2
ΩAB

0 ðLζ⃗1
ζ̃1ÞB: ð49Þ

It is easy to see that using Eq. (44) and the identity (45)
and the fact that exterior derivatives and Lie derivatives
commute, we can find solutions for the vector fields ζ⃗i that
parametrize the diffeomorphism φðϵÞ up to any order.

A. Transformed second order Hamiltonian

We now compute the transformed Hamiltonian function
(35) starting with the expression (18) for the N th order
Hamiltonian HðN Þ and specializing to second order for
simplicity. The second order Hamiltonian will be expressed
in terms of the following functions:

Φð2ÞðQÞ ¼ ΦðQ;Q; ½X̄ð1Þ�Þ; ð50aÞ

Ψð2ÞðQÞ ¼ ΨðQ; ½X̄ð1Þ�Þ ð50bÞ

where the right-hand side terms were defined in Eqs. (10),
(16), and (19). Both Φð2Þ and Ψð2Þ in Eqs. (50a) and (50b)
have contributions of order OðϵÞ and Oðϵ2Þ.
We now specialize the order of the expansion of the

diffeomorphism (40) to second order. Its action on the
Hamiltonian will produce a new Hamiltonian Ĥð2Þ ¼
φ�Hð2Þ given by

Ĥð2Þ ¼


1þ ϵLζ⃗1

þ ϵ2Lζ⃗2
þ 1

2
ϵ2Lζ⃗1

Lζ⃗1

�
Hð2Þ þOðϵ3Þ:

ð51Þ

We can simplify this expression using the results (47)
and (49) for ζ⃗1 and ζ⃗2. We can also use Eq. (43) to regroup
ϵξA½1� þ ϵ2ξA½2� ¼ ξAð2Þ þOðϵ3Þ. The result is

Ĥð2Þ ¼ Hð2Þ − ξAð2Þ∂AH
ð2Þ −

1

2
ΩAB

0

�
Lξ⃗ð2Þ

ξ̃ð2Þ
�
B
∂AHð2Þ

þ 1

2
ξAð2Þ∂A

�
ξBð2Þ∂BH

ð2Þ�þOðϵ3Þ: ð52Þ

In order to calculate Ĥ we will make frequent use of the
identity (34), specialized to N ¼ 2, which becomes

ΔΩð2Þ
AB
dX̄ð1ÞB

s

ds

����
s¼0

¼
�

∂

∂QA0 ΦðQ;Q0; ½X̄ð1Þ�Þ
�
Q0¼Q

þ ∂AΨð2ÞðQÞ þOðϵ3nÞ: ð53Þ

We will also use

ξð2ÞA
dX̄ð1ÞA

ds
¼ 1

2
Φð2Þ þ Ψð2Þ ð54Þ

which can be derived from Eq. (47) using techniques
similar to the ones in Sec. III A [see, for example, Eq. (25)].
The first correction in Eq. (52) is ξAð2Þ∂AH

ð2Þ. We use the

equations of motion (23) to replace ∂AHð2Þ byΩð2Þ
ABdX̄

ð1ÞB=ds

ξAð2Þ∂AH
ð2Þ ¼ ξAð2ÞðΩ0

AB þ ΔΩð2Þ
ABÞ

dX̄ð1ÞB

ds
þOðϵ3Þ: ð55Þ

Now, we use identity (54) for the first term and identity (53)
for the second term to get

ξAð2ÞH
ð2Þ ¼ 1

2
Φð2Þ þΨð2Þ þ ξAð2Þ

�
∂

∂QA0 ΦðQ;Q0; ½X̄ð1Þ�Þ
�
Q0¼Q

þ ξAð2Þ∂AΨ
ð2Þ þOðϵ3Þ: ð56Þ

The second correction term in Eq. (52) is more involved, let
us simplify it first. Using Cartan’s magic formula we can
write

Lξ⃗ð2Þ
ξ̃ð2Þ ¼ iξ⃗ð2Þdξ̃ð2Þ

¼ iξ⃗ð2ÞΔΩ
ð2Þ ð57Þ

where we used Eq. (38) to replace dξ̃ð2Þ by the correction to
the symplectic form ΔΩð2Þ. Next, we use the equations of
motion to replace ∂AHð2Þ byΩ0

AB
dX̄ð1ÞB
ds þOðϵ2Þ. Combining

this with Eq. (57), the second term in Eq. (52) becomes

−
1

2
ΩAB

0 ξCð2ÞΔΩCBΩ0
AD

dX̄ð1ÞD

ds
: ð58Þ

Now, we use identity (53) to get

1

2
ξAð2Þ

�
∂

∂QA0 ΦðQ;Q0; ½X̄ð1Þ�Þ
�
Q0¼Q

þ 1

2
ξAð2Þ∂AΨ

ð2ÞðQÞ þOðϵ3nÞ: ð59Þ

The last term in Eq. (52) is

1

2
ξAð2Þ∂A

�
ξBð2Þ∂BH

ð2Þ�: ð60Þ
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Again, we use Hamilton’s equations to replace ∂BHð2Þ ¼
Ω0

BC
X̄ð1ÞC
ds þOðϵ2Þ. We then use identity (54) to get

1

2
ξAð2Þ∂A



1

2
Φð2Þ þ Ψð2Þ

�
: ð61Þ

Combining Eqs. (56), (59), and (61) and plugging them into
Eq. (52), the final expression for the new Hamiltonian is

Ĥð2Þ ¼ H0 þ
1

2
Φð2Þ −

1

4
ξAð2Þ∂AΦ

ð2Þ

þ 1

2
ξAð2Þ

�
∂

∂QA ΦðQ;Q0; ½X̄ð1Þ�Þ
�
Q0¼Q

þOðϵ3Þ: ð62Þ

Note that the third and fourth terms include contributions of
order Oðϵ3Þ which could be discarded without affecting the
accuracy of the result.

V. APPLICATION: HAMILTONIAN DESCRIPTION
OF THE CONSERVATIVE SELF-FORCE ON

POINT PARTICLES IN GENERAL RELATIVITY

We now turn to studying binary systems in the small
mass-ratio approximation in general relativity. These sys-
tems consist of a primary object of massM and a secondary
of mass m with m ≪ M orbiting around it. The dynamics
of the secondary are described by its position and momen-
tum QA ¼ ðxμ; pμÞ. When the secondary’s mass is zero, it
moves on a geodesic determined by the metric sourced by
the primary. To leading order in the mass ratio ϵ≡m=M,
the motion of the secondary deviates from geodesic motion
due to its interaction with its own gravitational field, known
as the self-force. In [10], we found that the conservative
piece of the gravitational self-force to leading order in the
mass ratio can be derived from a nonlocal action principle
with zeroth order Hamiltonian

H0ðQÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνpμpν

p ð63Þ

and a nonlocal perturbation

Snl½X� ¼
ϵ

2

Z
dsds0G

�
X̄ð1Þ
s ðQÞ; X̄ð1Þ

s0 ðQÞ�þOðϵ2Þ ð64Þ

where the 2-point function is

GðQ;Q0Þ ¼Gμνα0β0 ðx;x0Þ pμpνpα0pβ0

ð−gρσpρpσÞð−gρ0σ0pρ0pσ0 Þ
: ð65Þ

Here Gμνα0β0 ðx; x0Þ is the time symmetric Green’s function
for the linearized Einstein equations in the Lorenz gauge.
The parameter s is proper time in the background metric.
The leading order conservative piece of the scalar and
electromagnetic self-forces can be derived from the same
Hamiltonian by replacing the 2-point function by

GscalarðQ;Q0Þ ¼ Gðx; x0Þ; ð66aÞ

GEMðQ;Q0Þ ¼ Gμν0 ðx; x0Þ pμpν0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσpρpσ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρ0σ0pρ0pσ0

q
ð66bÞ

with G and Gμν the time-symmetric pieces of the Green’s
function for the Klein-Gordon equation and the Maxwell
equations, respectively. The gravitational, electromagnetic,
and scalar Green’s functions are regularized using the
Detweiler-Whiting prescription [12]. Since these 2-point
functions are all symmetric under exchange of arguments,
the results of Sec. III show that the conservative first order
dynamics have a local Hamiltonian description. This was
shown in [10], using a method more restrictive than the
one presented in this paper, valid only to first order in
perturbation theory.
In [13], we show how to express the second-order self-

force as the integral of a 3-point function and then apply the
results of this paper to derive the Hamiltonian description
of the conservative piece of the scalar self-force up to
second order for nonspinning particles in any stationary
spacetime.

VI. APPLICATION: BINARY SYSTEMS IN
GENERAL RELATIVITY IN THE POST-

NEWTONIAN APPROXIMATION

The motion of binary systems in general relativity can be
studied in the post-Newtonian approximation, where their
dynamics is expanded in powers of 1=c2. A term of order
1=c2n is called nPN in the literature. In [14], Damour et al.
give an explicit expression for the 4PN nonlocal
Hamiltonian4 of two nonspinning point particles with phase
space coordinates QA ¼ ðxa;paÞ and masses ma with
a ¼ 1, 2 and boldface representing 3-vectors. Following
the notation of this paper, we use Xs for a trajectory in
phase space parametrized by s. Their result is

H≤4PNðQ; ½X�Þ ¼ H<4PNðQÞ þHlocal
4PN ðQÞ

þHnonlocal
4PN ðQ; ½X�Þ ð67Þ

where H<4PN gathers all the contributions of order 3PN or
less andHlocal

4PN gives the local piece of the 4PN Hamiltonian.
We will focus on the last term, which is written in terms of
the quadrupole moment

4In a follow-up paper [15], the same authors utilize an
(infinite-)order-reduction of the nonlocal dynamics to a local
dynamical system. This procedure is similar to the one carried in
Sec. II A and, similarly, does not result in a Hamiltonian system.
Instead, the procedure determines a pseudo-Hamiltonian dynami-
cal system (see Appendix B for details).
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IijðxaÞ ¼
X2
a¼1

ma



xiax

j
a −

1

3
δijjxaj2

�
ð68Þ

as

Hnonlocal
4PN ðQ; ½X�Þ ¼ 1

c8
C ⃛I ijðQÞ

Z
∞

−∞
dτ

⃛IijðXτÞ
jτj ð69Þ

where C is a normalization factor whose value is not
important here. Hnonlocal

4PN is the nonlocal or “tail” piece of
the 4PN Hamiltonian. The nonlocality arises from the
integral over the full trajectory Xτ. In Eq. (5.1) of [14], they
also derive a nonlocal contribution to the action principle
from which Hnonlocal

4PN can be derived, which is

Snl½X� ¼ −
1

c8
C
Z

dτdτ0
⃛I ijðXτÞ ⃛IijðXτ0 Þ

jτ − τ0j : ð70Þ

Note that in Eqs. (69) and (70) we are dropping the
regularization prescription used in [16] to take care of the
ultraviolet divergences of Hnonlocal

4PN that occur at the coinci-
dence limit τ → τ0. The regularization can be reapplied after
a local Hamiltonian is obtained.
We now show that the dynamical system (67) can be

casted as a local Hamiltonian system by using the results of
Sec. III. We define a 2-point function

G2ðQ1; Q2; σÞ ¼ C
⃛IijðQ1Þ ⃛IijðQ2Þ

jσj ð71Þ

such that the nonlocal action in (70) takes the form of
Eq. (8). Following the steps of Sec. III, we can evaluate the
functional dependence of the nonlocal Hamiltonian (69) on
the 0PN flow X̄ð0Þ, which is the Newtonian solution to the
equations of motion. It is not necessary to include correc-
tions of order 1=c2 or higher in the flow, since that would
give corrections to the Hamiltonian at 5PN and higher.
It follows that the nonlocal Hamiltonian H≤4PN admits a

local Hamiltonian description up to Oð1=c8Þ, with
Hamiltonian function and symplectic form given by the
results in Sec. III.

VII. CONCLUSIONS

In this paper we described a class of dynamical systems
whose equations of motion are derived from nonlocal
action principles. We reviewed the well-known procedure
for deriving local equations of motion by treating the
nonlocalities perturbatively. Then we proved that the
perturbative local dynamics admit a local Hamiltonian
descriptions up to any order in perturbation theory. We
discussed a diffeomorphism on phase space that puts the
symplectic form into canonical form up to any order and
gave an explicit expression for the new Hamiltonian up to

second order in perturbation theory. Finally, we applied
these results to the small mass-ratio and post-Newtonian
approximations for the study of binary systems in the
context of general relativity.
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APPENDIX A: RELATION TO THE WORK
OF LLOSA AND VIVES

Llosa and Vives [9] consider non-local-in-time action
principles in configuration space ðxμ; ẋμÞ, which they
describe as a nonlocal Lagrangian L½x� which is a func-
tional of x. In this paper we consider, instead, an action
functional of a phase space trajectory QA ¼ ðxμ; pμÞ.
Furthermore, they do not carry the perturbative expansion
of the nonlocalities explicitly but rather leave the nonlocal
piece of the action principle unspecified. This affects their
final results in two ways. First, their expressions for the
local Hamiltonian and symplectic forms depend on func-
tional derivatives of the action functional. Second, without
using a perturbative expansion of the nonlocalities, the
space of initial data for the Hamiltonian flow is not defined.
They assume that an order reduction procedure to make the
dynamics local exists and work with this unspecified space
of initial data instead. In this paper, we expand the non-
local-in-time piece of the action functional as a series of
integrals of N-point functions, which allows us to derive a
simpler local Hamiltonian and symplectic form, expressed
explicitly in terms of integrals of said N-point functions,
evaluated on points in the unperturbed phase space, which
constitutes our space of initial data. Although it is possible
that the results of Sec. III could be obtained from results in
their work, our results are derived using a different method
and provide a simpler and more streamlined framework
for studying non-local-in-time perturbations to all orders.
Sections IV–VI are entirely original results.

APPENDIX B: RELATION TO
PSEUDO-HAMILTONIAN SYSTEMS

We define a pseudo-Hamiltonian dynamical system to
consist of a phase space Γ, a closed, nondegenerate 2-form
ΩAB and a smooth pseudo-Hamiltonian function
H∶Γ × Γ → R, for which the dynamics are given by
integral curves of the vector field

vA ¼ ΩAB ∂

∂QB HðQ;Q0Þ��Q0¼Q; ðB1Þ

where ΩABΩBC ¼ δAC and QA are coordinates on Γ.
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The perturbative local dynamical systems derived in
Sec. II A are examples of pseudo-Hamiltonian systems which
are perturbations of a Hamiltonian system. The symplectic
form and pseudo-Hamiltonian up to N th order are

ΩAB ¼ Ω0AB; ðB2aÞ

HðN ÞðQ;Q0Þ ¼ H0ðQÞ þΦðQ;Q0; ½X̄ðN−1Þ�Þ; ðB2bÞ

where ΦðQ;Q0; ½X�Þ is defined in Eq. (10). The local
equations of motion (23) are obtained by plugging the
pseudo-Hamiltonian system (B2) into Eq. (B1).
In this paper, we derived pseudo-Hamiltonian equations

of motion from a nonlocal action principle. However,

pseudo-Hamiltonians can be used in a broader context,
and need not be derived from a variational principle. In that
case, the n-point functions Gn that appear in the defini-
tion (10) of ΦðQ;Q0; ½X�Þ need not satisfy the symmetry
property (9). A pseudo-Hamiltonian system obtained by
starting from Eqs. (10) and (B2b), without imposing that
the n-point functions obey the symmetry property (9) can
include dissipative effects [17]. In the context of the
first-order gravitational self-force, for example, we can
construct a pseudo-Hamiltonian using the retarded Green’s
function, which encodes both dissipative and conservative
effects, as opposed to the time-symmetric Green’s func-
tion, which only describes the conservative piece of the
dynamics.
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