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The pursuit of a comprehensive theory of gravity has led to the exploration of various alternative models,
necessitating a model-independent framework. The Konoplya-Rezzolla-Zhidenko (KRZ) parametrization
offers a robust method for approximating stationary axisymmetric black hole spacetimes, characterized by
a rapidly converging continued-fraction expansion. However, while analytical metrics benefit from this
approach, numerical metrics derived from complex gravitational theories remain presenting computational
challenges. Bridging this gap, we propose a method for a numerical KRZ parametrization, tested and
demonstrated on pseudonumerical Kerr and Kerr-Sen spacetimes. Our approach involves constructing
numerical grids to represent metric coefficients and using the grids for fitting the parameters up to an
arbitrary order. We analyze the accuracy of our method across different orders of approximation,
considering deviations in the metric functions and shadow images. In both Kerr and Kerr-Sen cases, we
observe rapid convergence of errors with increasing orders of continued fractions, albeit with variations
influenced by spin and charge. Our results underscore the potential of the proposed algorithm for
parametrizing numerical metrics, offering a pathway for further investigations across diverse gravity
theories.
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I. INTRODUCTION

Since its proposal over a century ago [1], Einstein’s
theory of gravity has found applications across a multitude
of astrophysical phenomena in our Universe. Through the
years, it has solidified its position as the standard model for
describing spacetime in the presence of gravitational fields.
While predominantly successful in weak-field tests [2],
only recently have the strong-field predictions of Einstein’s
gravity, also known as the general theory of relativity (GR),
become subject to various testable methods [3–5]. The
proliferation of alternative gravity theories, which aim to
address deficiencies of GR concerning observations such as
dark matter and dark energy, or extend GR to resolve issues

like the quantization of gravity and the curvature singu-
larity, underscores the importance of scrutinizing GR’s
strong-field predictions using the latest techniques and
technologies.
Black holes (BHs), found abundantly throughout our

Universe, serve as ideal testing grounds for theories of
gravity due to the intense gravitational fields surrounding
them. In the framework of GR, under typical astrophysical
conditions, BHs are characterized by a few key parameters,
their mass and spin, rendering them Kerr black holes [6].
The Kerr hypothesis posits that astrophysical BHs adhere to
the Kerr metric, an assumption that defines their simplicity
in GR (for detailed conditions and assumptions, see
Ref. [7]). Alternative gravity theories often introduce
additional parameters, causing deviations from the Kerr
solution.
Exploring the effects of BHs through observations has

been a notable pursuit in physics, offering the potential for
uncovering fascinating phenomena. Various methods
employed include x-ray spectroscopy (leading to the first
measurements of BH spin [8,9]), gravitational wave inter-
ferometry (resulting in the first observation of BH coa-
lescence [10]), and BH imaging (providing the inaugural
capture of an image near the BH horizon [11]).
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In light of the vast variety of alternative gravity theories
and the ongoing quest for a definitive theory, there
is a compelling need to develop a model-independent
framework. Several models have been suggested in the
past [12–14]. In particular, the Konoplya-Rezzolla-
Zhidenko (KRZ) approach introduces a robust and generic
parametrization to approximate stationary axisymmetric
black hole spacetimes. Their methodology involves a
rapidly converging continued-fraction expansion in a com-
pactified radial coordinate allowing for approximations of
high accuracy with only few parameters. The efficacy of
this approach was demonstrated in [15] through a com-
parison of shadow images across various spacetimes.
However, complex gravitational theories that extend

beyond general relativity, lacking simple or exact solutions,
often can only be described via numerical metrics that
cannot be parametrized directly. Contrasting with analytical
metrics, numerical metrics are crafted via computational
simulations. By discretizing spacetime into a mesh or grid
and applying numerical methods, one can approximate the
values of the metric tensor across different points in
spacetime. Although numerical metrics play an important
role in exploring complex situations devoid of exact
solutions, they fall short in computational efficiency when
compared to their analytical counterparts, which demand
less extensive resources. Therefore, a parametrization
technique compatible with numerical metrics would com-
bine the complexity of numerical spacetimes with the
operational efficiency of analytical solutions.
In this paper, we present a way to perform the numerical

KRZ parametrization. We test how the approach works on
pseudonumerical Kerr and Kerr-Sen spacetimes and study
the accuracy for different orders of approximation.
This paper is structured as follows: Section II reviews the

Konoplya-Rezzolla-Zhidenko parametrization approach;
Sec. III discusses how the parametrization can be done
numerically; Sec. IV illustrates the accuracy of Kerr and
Kerr-Sen black hole shadows constructed with the numeri-
cally parametrized metrics as compared to the analytical
metrics; Sec. V presents conclusions and discusses poten-
tial areas for improvement and applications of the work.

II. KONOPLYA-REZZOLLA-ZHIDENKO
PARAMETRIZATION

We employ the Konoplya-Rezzolla-Zhidenko approach
to parametrize stationary, axisymmetric black holes in a
general framework. For the sake of completeness, we give a
brief review of the parametrization scheme. For more
details, we refer the reader to the original papers by
Rezzolla and Zhidenko [13], and Konoplya, Rezzolla,
and Zhidenko [14]. The line element for an axisymmetric
spacetime possesses a timelike and a spacelike Killing
vector, permitting the selection of coordinates t and ϕ
aligned with these vectors. A general BH metric tensor with
a normalized mass M ¼ 1 is given by

ds2 ¼ −
fðρ; ϑÞ − ω2ðρ; ϑÞsin2ϑ

κ2ðρ; ϑÞ dt2

− 2ωðρ; ϑÞρsin2ϑdtdϕþ κ2ðρ; ϑÞρ2sin2ϑdϕ2

þ σðρ; ϑÞ
�
β2ðρ; ϑÞ
fðρ; ϑÞ dρ

2 þ ρ2dϑ2
�
; ð1Þ

where fðρ;ϑÞ, βðρ; ϑÞ, σðρ; ϑÞ, κðρ; ϑÞ, and ωðρ; ϑÞ are
dimensionless functions dependent solely on the coordi-
nates ρ and ϑ.
By the principle of general covariance, we can always

select a different pair of coordinates, ρ and ϑ, that would
describe the same spacetime. To resolve the ambiguity and
achieve a distinctive parametrization, we choose such
coordinates ðr; θÞ, following [14], that the line element
takes on the following form:

ds2 ¼ −
N2ðr; θÞ −W2ðr; θÞsin2θ

K2ðr; θÞ dt2

− 2Wðr; θÞrsin2θdtdϕþ K2ðr; θÞr2sin2θdϕ2

þ Σðr; θÞ
�
B2ðr; θÞ
N2ðr; θÞ dr

2 þ r2dθ2
�
; ð2Þ

where Nðr; θÞ, Wðr; θÞ, Kðr; θÞ, Bðr; θÞ are arbitrary
functions and

Σðr; θÞ≡ r2 þ a2cos2θ; ð3Þ

with a being a spin parameter. The conversion between the
coordinates is done by solving the set of equations:

N2ðr; θÞr2sin2θ ¼ fðρ; ϑÞρ2sin2ϑ; ð4aÞ

Wðr; θÞrsin2θ ¼ ωðρ; ϑÞρsin2ϑ; ð4bÞ

K2ðr; θÞr2sin2θ ¼ κ2ðρ; ϑÞρ2sin2ϑ; ð4cÞ

N2ðr;θÞ
Σðr;θÞB2ðr;θÞ¼

1

σðρ;ϑÞ
�
fðρ;ϑÞ
β2ðρ;ϑÞ

∂r
∂ρ

∂r
∂ρ

þ 1

ρ2
∂r
∂ϑ

∂r
∂ϑ

�
; ð4dÞ

1

Σðr; θÞr2 ¼
1

σðρ; ϑÞ
�
fðρ; ϑÞ
β2ðρ; ϑÞ

∂θ

∂ρ

∂θ

∂ρ
þ 1

ρ2
∂θ

∂ϑ

∂θ

∂ϑ

�
; ð4eÞ

0 ¼ fðρ; ϑÞ
β2ðρ; ϑÞ

∂r
∂ρ

∂θ

∂ρ
þ 1

ρ2
∂θ

∂ϑ

∂r
∂ϑ

: ð4fÞ

For further convenience, we compactify the radial and
angular coordinates:

x≡1−
r0
r
; y≡ cosθ; ð5Þ

where r0 denotes the horizon radius within the equatorial
plane. Here, x spans from 0 at the horizon to 1 at spatial
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infinity. Consequently, we express the metric functions in
terms of x:

Σ ¼ 1þ a2

r20
ð1 − xÞ2y2; ð6aÞ

W ¼
X∞
i¼0

WiðxÞyi
Σ

; ð6bÞ

K2 −
aW
r

¼ 1þ
X∞
i¼0

KiðxÞyi
Σ

; ð6cÞ

N2 ¼ xA0ðxÞ þ
X∞
i¼1

AiðxÞyi; ð6dÞ

B ¼ 1þ
X∞
i¼0

BiðxÞyi; ð6eÞ

where

WiðxÞ ¼ wi0ð1 − xÞ2 þ W̃iðxÞð1 − xÞ3; ð7aÞ

KiðxÞ ¼ ki0ð1 − xÞ2 þ K̃iðxÞð1 − xÞ3; ð7bÞ

A0ðxÞ ¼ 1 − ϵ0ð1 − xÞ þ ða00 − ϵ0 þ k00Þð1 − xÞ2
þ Ã0ðxÞð1 − xÞ3; ð7cÞ

Ai>0ðxÞ ¼ KiðxÞ þ ϵið1 − xÞ2 þ ai0ð1 − xÞ3
þ ÃiðxÞð1 − xÞ4; ð7dÞ

BiðxÞ ¼ bi0ð1 − xÞ þ B̃iðxÞð1 − xÞ2: ð7eÞ

The tilded functions W̃iðxÞ, K̃iðxÞ, ÃiðxÞ, and B̃iðxÞ
describe the black hole metric near its horizon via Padé
approximants which are given as

W̃iðxÞ ¼
wi1

1þ wi2x
1þwi3x

1þ���

; ð8aÞ

K̃iðxÞ ¼
ki1

1þ ki2x

1þki3x
1þ���

; ð8bÞ

ÃiðxÞ ¼
ai1

1þ ai2x
1þai3x

1þ���

; ð8cÞ

B̃iðxÞ ¼
bi1

1þ bi2x

1þbi3x
1þ���

: ð8dÞ

III. NUMERICAL PARAMETRIZATION

The functions described in Eqs. (6) and (8) are, in
principle, expanded indefinitely. For numerical purposes,

we truncate the y expansion at power m and the continued
fractions at the nth term.
We normalize the black hole’s mass to 1 and construct

numerical metrics as two-dimensional grids spanning Nr
points along the r dimension and Nθ points along the θ
dimension. Each grid point is associated with four metric
coefficients: gtt, gtϕ, grr, and gϕϕ expressed in the coor-
dinates ðr; θÞ that ensure

gθθ ¼ r2 þ a2cos2θ; ð9Þ

thereby removing the necessity for a coordinate trans-
formation. Then, Eq. (6) can be rewritten in terms of metric
tensor coefficients as

Xm
i

WiðxÞyi ¼ −
gtϕ

rsin2θ
Σ; ð10aÞ

Xm
i

KiðxÞyi ¼
�
gϕϕ þ agtϕ
r2sin2θ

− 1

�
Σ; ð10bÞ

xA0ðxÞþ
Xm
i¼1

AiðxÞyi ¼
g2tϕ−gttgϕϕ
r2sin2θ

; ð10cÞ

Xm
i¼0

BiðxÞyi¼
1

rsinθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tϕ−gttgϕϕÞ

Σ

s
−1:

ð10dÞ

The value ofm corresponds to the highest power of cos θ
in the expansion, with higher orders being truncated.
Additionally, assuming the spacetime’s reflection sym-
metry across the equatorial plane, we consider only even
powers of y in the fit.
The fitting parameters are divided into two groups:

asymptotic parameters and strong-field (Padé) parameters.
The former category includes parameters wi0, ki0, ai0, bi0,
and ϵi, i.e., all parameters that are outside the continued
fractions. Consequently, the strong-field parameters
include all the Padé terms. This division necessitates the
construction of a numerical grid that effectively spans both
distant and proximal regions with respect to the black hole.
An illustrative example of such a grid is presented in Fig. 1.
The initial phase in the fitting process involves identify-

ing the values of WiðxjÞ, KiðxjÞ, AiðxjÞ, and BiðxjÞ, where
j ranges across all radial points Nr on the grid with
dimensions ðNr; NθÞ. This identification involves perform-
ing a polynomial fit in the angular direction, using y2 ¼
cos2 θ as the polynomial variable. Each radial coordinate xj
is associated with Nθ points on the grid, which are used in
the fitting process. Increasing the value of Nθ can reduce
the error in computing WiðxjÞ, KiðxjÞ, AiðxjÞ, and BiðxjÞ.
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After computingWiðxjÞ, KiðxjÞ, AiðxjÞ, and BiðxjÞ at all
radii of the grid, the next step is determining asymptotic
and Padé parameters. As seen from Eq. (7), the vicinity of
the black hole features both groups of parameters, while the
far region depends predominantly on the asymptotic ones.
Therefore, determining the asymptotic parameters in the far
region first proves to be more practical. At substantial radii
(x → 1), the continued fractions effectively become con-
stants and can be approximated as

W̃iðx → 1Þ ≈ wi1

1þ wi2

1þ wi3
1þ���

; ð11aÞ

K̃iðx → 1Þ ≈ ki1
1þ ki2

1þ ki3
1þ���

; ð11bÞ

Ãiðx → 1Þ ≈ ai1
1þ ai2

1þ ai3
1þ���

; ð11cÞ

B̃iðx → 1Þ ≈ bi1
1þ bi2

1þ bi3
1þ���

: ð11dÞ

Subsequently, Eq. (7) can be approximated as ordinary
polynomials of 1 − x:

Wiðx → 1Þ ≈ wi0ð1 − xÞ2 þ W̃ið1Þð1 − xÞ3; ð12aÞ
Kiðx → 1Þ ≈ ki0ð1 − xÞ2 þ K̃ið1Þð1 − xÞ3; ð12bÞ
A0ðx → 1Þ ≈ 1 − ϵ0ð1 − xÞ þ ða00 − ϵ0 þ k00Þð1 − xÞ2

þ Ã0ð1Þð1 − xÞ3; ð12cÞ

Ai>0ðx → 1Þ ≈ KiðxÞ þ ϵið1 − xÞ2 þ ai0ð1 − xÞ3
þ Ãið1Þð1 − xÞ4; ð12dÞ

Biðx → 1Þ ≈ bi0ð1 − xÞ þ B̃ið1Þð1 − xÞ2: ð12eÞ

Since these functions are, effectively, polynomials in terms
of 1 − x, it is now possible to perform a polynomial fit in
the same manner as it was done in the angular direction.
The previously computed values ofWiðxjÞ, KiðxjÞ, AiðxjÞ,
and BiðxjÞ are used as fitting data points, where j spans
only the large radii in the asymptotic region of the grid, as
visually represented by the blue region in Fig. 1. The fitting
process yields numerical estimates for the parameters wi0,
ki0, ai0, ϵi, and bi0.
From Eq. (7), combined with the knowledge of the

asymptotic parameters, we can deduce the values of the
tilded functions W̃iðxjÞ, K̃iðxjÞ, ÃiðxjÞ, and B̃iðxjÞ in the
black hole’s vicinity, where j ranges across small radii
depicted in red on Fig. 1:

W̃iðxÞð1 − xÞ3 ¼ WiðxÞ − wi0ð1 − xÞ2; ð13aÞ

K̃iðxÞð1 − xÞ3 ¼ KiðxÞ − ki0ð1 − xÞ2; ð13bÞ

Ã0ðxÞð1 − xÞ3 ¼ A0ðxÞ − 1þ ϵ0ð1 − xÞ
− ða − 00 − ϵ0 þ k00Þð1 − xÞ2; ð13cÞ

Ãi>0ðxÞð1 − xÞ4 ¼ AiðxÞ − KiðxÞ − ϵið1 − xÞ2
− ai0ð1 − xÞ3; ð13dÞ

B̃iðxÞð1 − xÞ2 ¼ BiðxÞ − bi0ð1 − xÞ: ð13eÞ

From Eqs. (8) and (13), we determine the Padé parameters.
The tilded functions are not polynomials in their explicit
form. Nevertheless, it is possible to rearrange the continued
fractions into a polynomial form, enabling the construction
of a set of linear equations, which can then be subjected to a
polynomial fitting procedure. The complexity of the
equations significantly increases with the Padé order n.
Alternatively, in this paper we utilized numerical solving
algorithms to determine the strong-field parameters.

IV. RESULTS

In this work, the Kerr and Kerr-Sen metric values are
expressed on a grid and are constructed as pseudonumerical
metrics for testing purposes. We compare the levels of
accuracy for different orders n of the continued fractions in
both spacetimes. In all tests, we fix the highest cosine term
in the polar expansion as cos2 θ, since both metrics do not
require higher-order cosine terms. Additionally, we are not
interested in analyzing the parametrization accuracy in the
polar direction for different orders m, since the polar
parametrization is rather trivial and does not require an
in-depth analysis. Thus, we only consider m ¼ 2 in
our tests.
After computing the parameters, we construct parame-

trized metric coefficients gnμν and compare them to the
analytical coefficients gaμν. The relative error is computed as

FIG. 1. Numerical grid with two dimensions: compactified
radial coordinate x (unitless) and angular θ (degrees). The red
points are used to fit the Padé approximants near the horizon. The
blue points are used to determine the asymptotic parameters.

MUKAZHANOV, ROY, MIRZAEV, and BAMBI PHYS. REV. D 110, 024060 (2024)

024060-4



εmetric
μν ¼

����1 − gnμν
gaμν

����: ð14Þ

Apart from the metric values, we compare shadows which
are constructed by “backlit” photons revolving multiple
times around the black hole before reaching the observer
screen. The screen is divided into 360 degrees and the
shadow error is computed as

εsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðrni − rai Þ2P
i ðrai Þ2

s
; ð15Þ

where rni and rai are numerical and analytical shadow radii
on the screen at every degree.

A. Kerr parametrization

The Kerr spacetime serves as a foundational example
where the metric is precisely parametrized using a minimal
set of parameters [14]. The line element in Boyer-Lindquist
(BL) coordinates requires parameters only up to cos2 θ
(m ¼ 2) and up to the third Padé order (n ¼ 3).
Additionally, the BL coordinates coincide with the coor-
dinates of choice in the KRZ parametrization, since

gKerrθθ ¼ r2 þ a2cos2θ: ð16Þ

Therefore, no transformations are necessary for the con-
struction of the numerical grid.
For testing purposes, following the procedure detailed in

Sec. III, we numerically compute continued fractions with
orders n ¼ 1, 2, 3. We do not consider parameters
corresponding to terms higher than cos2 θ and n ¼ 3, since
higher orders do not provide nonvanishing values.
After computing the parameters, we construct para-

metrized metric coefficients gnμν and compare them to the
analytical coefficients gaμν. Regions closer to the horizon
are associated with higher deviations. Additionally, the
relative error blows up at the ergosphere where gtt ¼ 0. To
avoid such numerical singularities, we consider the error
over the region x∈ ð0.3; 1Þ, where x ¼ 0.3 corresponds to
r ≈ 1.4r0. This radius excludes the ergosphere but
includes the shadow and innermost stable circular orbit
(ISCO) radii for all the considered spins. Figure 2 depicts
the maximum relative error in the region for the metric
functions grr, gtt, and gϕϕ. The error for gtϕ is universally
zero since the Kerr metric does not require any continued
fractions to describe this function. The error for gθθ is zero
by construction, as we define it to be gθθ ¼ r2 þ a2 cos2 θ.
The upward trend in error versus spin is evident from

Fig. 2. The reason is as follows: as the spin increases, the
horizon radius r0 shrinks and becomes exposed to stronger
gravitational fields, rendering numerical approximations
less accurate. Additionally, since the case n ¼ 3 is sup-
posed to describe the Kerr spacetime exactly, its error trend

illustrated on the figure is contributed by numerical errors
of the algorithm that are not associated with the KRZ
parametrization technique. Additionally, these small errors
may occasionally manifest as spikes below 10−4, which are
visible on the plot. The maximum errors at a� ¼ 0.9 for
n ¼ 1 and n ¼ 2 remain below 10% and 1%, respectively.
Table I displays the accuracy of all numerically com-

puted parameters that do not vanish in the Kerr spacetime
with spin a� ¼ 0.998. The error is computed relative to the
analytical values. Asymptotic coefficients are generally
independent of the Padé order n, except for a20, which
approaches the expected value with higher orders.
Similarly, strong-field parameters become more accurate
at higher n.

FIG. 2. Maximum relative error of the numerically parame-
trized Kerr metric functions versus spin a� for different orders of
continued fractions n. The order of polar expansion ism ¼ 2. The
maximum is taken over the range from rmin ¼ 1.4r0 to infinity.
The minimum radius rmin is taken in such a way that avoids
gtt ¼ 0 while still including shadow and ISCO radii. The errors
for gtϕ and gθθ are universally zero and not included in the plot.

TABLE I. Accuracy of numerically computed parameters that
are nonvanishing in the Kerr spacetime. All the parameters not
included in the table are zero. The coefficients w00, k00, ϵ0, and
a20 correspond to asymptotic parameters and are independent of
the Padé order n. Some cells are empty because lower orders do
not support parameters of higher orders.

a� ¼ 0.998

Error (%)

Parameter n ¼ 1 n ¼ 2 n ¼ 3

w00 1 × 10−7 1 × 10−7 1 × 10−7

k00 5 × 10−8 5 × 10−8 5 × 10−8

k21 0.9 7 × 10−2 9 × 10−4

k22 9 1 × 10−4

k23 1 × 10−3

ϵ0 6 × 10−8 5 × 10−8 5 × 10−8

a20 12 0.4 6 × 10−2

a21 26 0.9 0.1
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The shadow error behavior versus spin a� is depicted on
Fig. 3. As expected, the trend is upward and deviations
significantly decrease with every subsequent order of
continued fractions. In particular, at n ¼ 3, the error
accumulates due to numerical imprecision in the parameter
calculations and the raytracing routines.
Figure 4 illustrates how the error depends on the

inclination angle ι. In the equatorial plane, where
cos θ ¼ 0, the deviations are minimal. In the Kerr case
specifically, the equatorial plane can be parametrized
without the need for continued fractions, resulting in the
exact ISCO radius for all values of n.

B. Kerr-Sen parametrization

Sen’s work [16] introduced a solution for a rotating
charged black hole by adapting the Kerr solution within the
context of string theory’s action in four dimensions. This
adaptation leverages the intrinsic characteristics of string
theory to extend the classical Kerr solution to include

electrical charge, thus leading to the formulation of the
Kerr-Sen (KS) metric.
In the Boyer-Lindquist-like coordinates, the term gKSθθ is

expressed as

gKSθθ ¼ ρðρþQ2Þ þ a2cos2θ; ð17Þ

where Q is the dilaton charge and a is the spin. Since gKSθθ
does not follow the conventions outlined in Sec. II, a
transformation of the radial coordinate is required.
Specifically, we modify the radial coordinate as follows:

r ¼ Q2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 2ρ

Q2

�
2

− 1

s
; ð18aÞ

ρ ¼ Q2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2

Q4

s
− 1

�
: ð18bÞ

The event horizon radius is expressed as

r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

Q2

2

�
2

− a2

s �2

−
Q4

4

vuut : ð19Þ

This relation highlights how the horizon is influenced by
both the black hole’s spin and charge. Figure 5 graphically
delineates the configurations of spin and charge that admit
either black hole or naked singularity solutions in the
theory.
The Kerr-Sen black hole cannot be parametrized exactly

with a finite number of parameters [14]. However, a
truncated form can approximate the spacetime with an
arbitrary level of accuracy that converges fast with sub-
sequent orders of Padé approximants.

FIG. 3. Logarithm of Kerr shadow error versus spin a� for
different orders of continued fractions n. The order of polar
expansion is m ¼ 2. The inclination angle is ι ¼ 30°.

FIG. 4. Logarithm of Kerr shadow error versus inclination
angle ι for different orders of continued fractions n. The order of
polar expansion is m ¼ 2. The spin is a� ¼ 0.9.

FIG. 5. The shaded region includes all configurations of spin
and charge that correspond to a black hole solution. In the
unshaded region, the spacetime admits a naked singularity.
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On the other hand, similarly to the Kerr scenario, the
Kerr-Sen metric is exactly expanded in the polar direction
up to the second cosine order, m ¼ 2.
In our tests, we parametrize the Kerr-Sen spacetime up to

the second order of cos θ (m ¼ 2) and consider four
different orders of continued fractions, n ¼ 1, 2, 3, 4.
Analogously to the Kerr case, we observe the maximum
deviations in the parametrized metric coefficients over the
range x∈ ð0.3; 1Þ, where x ¼ 0 corresponds to r ≈ 1.4r0.
Figure 6 depicts the errors for the metric coefficients grr,
gtt, and gϕϕ. We observe the spiky nature for errors below
10−4 resulting from numerical errors of the algorithm. As
spin approaches extreme values, the errors start to diverge.
This behavior is not observed in the Kerr case depicted in

Fig. 2, because the horizon remains relatively distant from
the singularity. Figure 5 shows that the configuration with
a ¼ 0.9 and Q ¼ 0.4 is much closer to the naked singu-
larity than the Kerr BH with the same spin. Additionally,
gtϕ is no longer trivial in the presence of a charge Q.
Figure 7 illustrates how accurate gtϕ is for different charges.
Shadow accuracy is shown on Fig. 8. The Fig. 8(a)

illustrates a clear trend, which is also observed in the Kerr
case. On the other hand, the Fig. 8(b) shows that para-
metrization with n ¼ 3 and n ¼ 4 produces similar results,
where we reach the limit of numerical accuracy and obtain
curves with no particular trend.
The errors remain consistent across the entire range of

the inclination angle ι, as depicted on Fig. 9. Higher charges
at a fixed spin correspond to a smaller horizon radius,
yielding greater deviations from the expected images. At
the order n ¼ 3 and below, the errors decrease to the limit
of numerical precision, where no clear trend exists. The
improvement at n ¼ 4 is marginal.

FIG. 6. Maximum relative error of the numerically parame-
trized Kerr-Sen metric functions versus spin a� for different
orders of continued fractions n. The order of polar expansion is
m ¼ 2. The maximum is taken over the range from rmin ¼ 1.4r0
to infinity. The minimum radius rmin is taken in such a way that
avoids gtt ¼ 0 while still including shadow and ISCO radii. The
error for gθθ is universally zero and not included in the plot. The
charge is Q ¼ 0.4.

FIG. 7. Maximum relative error of the numerically parame-
trized Kerr-Sen metric function gntϕ compared to the analytical
counterpart gatϕ versus charge Q for different orders of continued
fractions n. The order of polar expansion is m ¼ 2. The
maximum is taken over the range of all spins.

FIG. 8. Kerr-Sen shadow error versus spin a� for different
orders of continued fractions, and different charges Q. The order
of polar expansion ism ¼ 2. The inclination angle is ι ¼ 30°. The
trend is clear for n ¼ 1 and n ¼ 2. In the case of n ¼ 3 and n ¼ 4,
errors reach the limit of numerical precision, where no clear trend
is observed. (a) n ¼ 1; 2 and (b) n ¼ 3; 4
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Table II illustrates the errors of all nonvanishing numeri-
cally computed parameters in the Kerr-Sen spacetime with
a spin of a� ¼ 0.4 and charge Q ¼ 1.0. The selected black
hole parameters produce an extreme scenario characterized
by significant spin and charge. The error is evaluated

relative to analytical values obtained through a direct
expansion of the analytical metric. Similar to the Kerr
case, asymptotic coefficients remain precise for all n.
Generally, Padé parameters exhibit increased accuracy with
higher n, with the exception of a2i, whose accuracy remains
relatively stable as the Padé order increases. This can be
attributed to their lesser contribution to the overall
spacetime.

V. CONCLUSION

We have developed an algorithm to perform the
Konoplya-Rezzolla-Zhidenko parametrization on numeri-
cal stationary axisymmetric metrics and tested the tech-
nique on pseudonumerical Kerr and Kerr-Sen spacetimes.
The test metric is constructed as a two-dimensional grid,
where the radial and polar dimensions range from the
horizon to the spatial infinity and from the pole to the
equatorial plane, respectively. We analyzed numerical
deviations from the analytical metric functions and com-
pared shadow images.
The errors of metric functions and shadows rapidly

converge as the order of Padé approximants increases.
The strong-field parametrization parameters tend to
approach their expected values as the Padé order n
increases, while the asymptotic parameters remain accurate
for all cases. As the horizon shrinks due to higher spin and/
or higher charge, it becomes exposed to stronger gravita-
tional curvature, necessitating a greater number of param-
eters for an accurate expansion at the horizon. However,
even the most extreme cases require a small number of
terms in the continued fractions.
An important point that is beyond the scope of this paper

but is worth mentioning here nonetheless is the precision of
the numerical data and how it might affect the paramet-
rization accuracy. A numerical metric is expected to contain
some inherent errors, which might also result in a non-
spherical horizon. Since we employ polynomial fitting in
the algorithm described in Sec. III, an increase in grid
points might help reduce some noise in the data, provided
that the noise is unbiased. Similarly, if the horizon radius
contains evenly spread deviations at different angles,
averaging across multiple angular points will improve
the radius precision.
The numerical 2D grid used in this paper describes the

metrics in the conventional coordinates, ðr; θÞ, that ensure
gθθ ¼ r2 þ a2 cos2 θ. In principle, a numerical metric can
be represented as a 3D grid in arbitrary coordinates,
potentially containing removable ϕ dependence coming
from gauge effects. Therefore, some preprocessing needs to
be done to convert such a metric into a 2D grid in the
conventional coordinates. In future work, enhancing the
algorithm’s flexibility by incorporating an option for
numerical coordinate transformations would streamline
the process of metric preparation and enable analysis in
alternative coordinate systems.

FIG. 9. Kerr-Sen shadow error versus inclination angle ι for
different orders of continued fractions n and different charges Q.
The order of polar expansion is m ¼ 2. The spin is a� ¼ 0.9.

TABLE II. Accuracy of numerically computed parameters that
are nonvanishing in the Kerr-Sen spacetime. All the parameters
not included in the table are zero. The coefficients w00, k00, ϵ0,
a00, and a20 correspond to asymptotic parameters and are
independent of the Padé order n. Some cells are empty because
lower orders do not support parameters of higher orders.

a� ¼ 0.4 Q ¼ 1.0

Error (%)

Parameter n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

w00 5 × 10−6 1 × 10−5 5 × 10−6 5 × 10−6

w01 0.2 3 × 10−3 2 × 10−4 2 × 10−4

w02 1 3 × 10−3 3 × 10−5

w03 2 5 × 10−2

w04 3

k00 5 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4

k21 0.6 2 × 10−2 5 × 10−4 5 × 10−4

k22 4 8 × 10−4 9 × 10−4

k23 0.2 2 × 10−2

k24 9

ϵ0 3 × 10−5 3 × 10−5 3 × 10−5 3 × 10−5

a00 4 × 10−5 3 × 10−5 4 × 10−5 4 × 10−5

a01 0.3 3 × 10−2 2 × 10−5 2 × 10−4

a02 8 1 × 10−2 4 × 10−4

a03 1 2 × 10−2

a04 1

a20 5 × 10−2 9 × 10−3 2 × 10−2 6 × 10−2

a21 8 × 10−2 2 × 10−2 4 × 10−2 0.2
a22 0.8 0.2 0.7
a23 5 8
a24 9
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Apart from working solely with pseudonumerical Kerr
and Kerr-Sen spacetimes, it is important to conduct tests on
a broader range of spacetimes derived from various gravity
theories, such as EDGB [17,18], Horndeski/Galileon [19–21],
or nonlinear electrodynamics theories [22,23].
Additionally, beyond evaluating the parametrization’s

accuracy for black hole shadows, there is potential to
broaden the scope of our tests to encompass other obser-
vational phenomena, such as x-ray data [24–27] and
gravitational waves. Establishing a framework for comput-
ing quasinormal modes (QNMs) for a KRZ metric could
significantly expand the range of metrics suitable for QNM
studies [28,29].
Ultimately, the main motivation of this project is to

approximate actual numerical metrics with an analytical
form. Hence, conducting experiments on spacetimes with
unknown exact expressions is essential. Without having
expected results to compare errors against, it is possible

to compare different orders of approximation instead, given
the rapid and guaranteed convergence of the Konoplya-
Rezzolla-Zhidenko parametrization. Computationally inten-
sive projects like General relativistic magnetohydrodynamic
(GRMHD) simulations would be perfect testing grounds for
the algorithm [30].
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