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Although the constraints on general relativity (GR) from each individual gravitational wave (GW) event
can be combined to form a cumulative estimate of the deviations from GR, the ever-increasing number of
GW events used also leads to the ever-increasing computational cost during the parameter estimation.
Therefore, in this paper, we will introduce the deviations from GR into GWs from all events in advance and
then create a modified stochastic gravitational wave background (SGWB) to perform tests of GR. More
precisely, we use the pSEOBNRv4HM_PA model to include the model-independent hairs and calculate the
corresponding SGWB with a given merger rate. Then we turn to the Fisher information matrix to forecast
the constraints on the no-hair theorem from SGWB at frequency 10≲ f ≲ 103 Hz detected by the third-
generation ground-based GW detectors, such as the Cosmic Explorer. We find that the forecasting
constraints on hairs at 68% confidence range are δω220 ¼ 0� 0.1296 and δτ220 ¼ 0� 0.0678when the flat
priors about the merger rate are added, but δω220 ¼ 0� 0.0903 and δτ220 ¼ 0� 0.0608 when the nonflat
priors about the merger rate are added.

DOI: 10.1103/PhysRevD.110.024058

I. INTRODUCTION

There are about 90 compact binary coalescences
observed by the LIGO Scientific Collaboration [1], the
Virgo Collaboration [2], and the KAGRACollaboration [3]
during the first three observing runs [4–6]. Through these
observed gravitational wave (GW) transient events, the full
population of merging compact binaries surrounding us can
be further inferred [7,8]. Consequently, a superposition
of GWs from the surrounding population of these astro-
physical sources will create a stochastic gravitational wave
background (SGWB) with energy density ΩGWðfÞ ∼ 10−9

at frequency 10≲ f ≲ 103 Hz [7]. Because of the limited
sensitivity of the current ground-based GW detectors,
however, no evidence for a SGWB at this frequency span
was found [9–11]. Encouragingly, there are multiple lines
of evidence for an excess SGWB signal with amplitude
ASGWB ∼ 10−14 at frequency f ∼ 10−8 Hz recently in the
NANOGrav 15-yr data [12] and the second data release
from EPTA [13]. Therefore, there is an excellent proba-
bility that a SGWB at frequency 10≲ f ≲ 103 Hz can be
detected by the third-generation ground-based GW

detectors, such as the Cosmic Explorer (CE) [14] and
the Einstein Telescope [15].
The ever-increasing number of detections of GWs from

compact binaries by the current ground-based GW detectors
allows the ever-more sensitive tests of general relativity (GR)
with GW generation, propagation, or polarization [16–18].
More precisely, one can perform a residuals test [19,20], an
inspiral-merger-ringdown (IMR) consistency test [21,22],
extra polarization content searches [23,24], and echo
searches [25,26], as well as parametrized tests of GW
generation and propagation [27–29], spin-induced multi-
pole moment effects [30,31], modified GW dispersion
relation [32–37], and the no-hair theorem [38–40]. All
of these tests will introduce some ad hoc parameters to
account for the deviations from GR. Since these newly
introduced parameters are independent of the individual
sources by construction and cleanly encode information
about the underlying theory of gravity, the constraints on
them from each individual GW event can be combined to
form a cumulative estimate of the deviations from GR. The
more GW events that are taken into consideration, the
tighter cumulative constraints that are obtained. However,
the ever-increasing number of GWevents used also leads to
the ever-increasing computational cost during the param-
eter estimation.*Contact author: wangkey@lzu.edu.cn
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To avoid the time-consuming parameter estimation
procedure, one can combine GWs from all events in
advance and then perform tests of GR. That is to say,
we can use SGWB at frequency 10≲ f ≲ 103 Hz to test
GR. While the information of GW propagation may wash
out in SGWB, the information of GW generation and
polarization must survive SGWB and some deviations from
GR’s GW generation and polarization will lead to some
suppressions or enhancements in SGWB. If such suppres-
sions or enhancements have no particular distinguishing
features, testing GR with SGWB must deal with the
degeneracy between models. However, if one would not
confine oneself to specific modified gravities, one can
search for extra polarization contents in SGWB model
independently [41,42]. Similarly, in this paper, we will
probe the deviations from GR’s GW generation with
SGWB directly. More precisely, we will take the violation
of the no-hair theorem as a heuristic example.
Under the no-hair theorem, the ringdown frequencies and

damping times of a perturbedKerr black hole (BH) inGRcan
be predicted by its mass and dimensionless spin [43,44].
Without the no-hair conjecture, a perturbed Kerr BH’s
ringdown frequencies and damping times are also dependent
on the extra hairs/parameters [38–40]. In fact, violating the
no-hair theorem may also modify the whole IMR waveform
for a BH binary. Such overall modifications will degenerate
with other overall effects, for example, changing the total
mass of the BH binary, hence the final mass of its remnant
Kerr BH. That is to say, when the extra hairs dominate the
inspiral and merger regions of a BH binary, the mass and
dimensionless spin of its remnant Kerr BH cannot be
predicted by its intrinsic parameters only, hence an unknown
ringdown region. Therefore, for simplicity, we assume that
the effects of the extra hairs on the inspiral and merger
regions can be summarized by a set of effective intrinsic
parameters under the no-hair theorem and then the residual
effects of these extra hairs will just appear during an effective
ringdown region. It is generally the case when different
modified gravity theories are considered. Here we validate

our above assumption with a specific modified theory of
gravity, as shown in Fig. 1. Finally, the effective complete
IMR time-domain waveform can be described by the
pSEOBNRv4HM_PA model [45,46] explicitly.
This paper is organized as follows. In Sec. II, we

calculate the stochastic gravitational wave background at
frequency 10≲ f ≲ 103 Hz without the no-hair conjecture.
In Sec. III, we forecast the constraints on the no-hair
theorem from SGWB. Finally, a brief summary and
discussions are included in Sec. IV.

II. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND WITHOUT THE NO-HAIR

CONJECTURE

A. Analytical calculation

The radiative degrees of freedom in the transverse-
traceless gauge can be written in terms of two polarizations
hþ and h×,

hij ¼

0
B@

hþ h× 0

h× −hþ 0

0 0 0

1
CA: ð1Þ

After Fourier transform, their representation in the fre-
quency domain is h̃ij ¼ F ðhijÞ,

h̃ij ¼

0
B@

h̃þ h̃× 0

h̃× −h̃þ 0

0 0 0

1
CA: ð2Þ

Then the energy-momentum tensor of GWs is

Tμν ¼
c4

32πG
h∂μhij∂νhiji; ð3Þ

where h…i indicates averaging over several wavelengths
or periods. The energy density of GWs is just the

FIG. 1. The IMR time-domain waveforms predicted by GR and four-derivative scalar-tensor theories (4∂ST) [47]. The black dashed
curve is plotted with fm1 ¼ m2 ¼ 50M⊙; s1;z ¼ s2;z ¼ 0.40g in GR and its 4∂ST counterpart (the blue dotted curve) is also given. The
effects of the extra scalar hairs from 4∂ST on the inspiral and merger regions can be summarized by a set of effective intrinsic parameters
fm1 ¼ 53.5M⊙; m2 ¼ 50.6M⊙; s1;z ¼ 0.32; s2;z ¼ 0.45g in GR and the residual effects of these extra scalar hairs just appear in the
ringdown region (the red solid curve). More precisely, there are obvious differences between the red solid curve and the blue dotted
curve in the ringdown region, while there is an almost complete overlap between these two curves before merger.
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00 component. So the energy flux through a sphere of
radius R is

dE
dt

¼ c3R2

32πG

Z
dΩ

D
ḣijḣ

ij
E
; ð4Þ

and the total energy emitted is

E ¼ c3R2

32πG

Z
dΩ

Z
∞

−∞
dt ḣijḣ

ij; ð5Þ

where dots denote derivative with respect to physical time t
and dΩ is a solid angle element. Here we are considering all
time. So h…i disappears in the integral with respect to t. We
can rewrite the total energy in the frequency domain as

E ¼ πc3R2

4G

Z
dΩ

Z
∞

0

df f2h̃ijðfÞh̃�ijðfÞ: ð6Þ

So the energy spectrum is given by

dE
df

¼ πc3R2f2

4G

Z
dΩh̃ijðfÞh̃�ijðfÞ

¼ πc3R2f2

2G

Z
dΩ

����h̃þðfÞ
���2 þ ���h̃×ðfÞ

���2�: ð7Þ

Next we will do the integral with respect to dΩ. The
general GW signal can be described as a linear combination
of the two polarization states or expressed in terms of series
of spin-weighted spherical harmonics,

h≡ hþ − ih×

¼
X
lm

hlmY−2
lmðφ; ιÞ; ð8Þ

whereφ is the azimuthal direction to the observer and ι is the
inclination angle. Here we use the spin-weighted spherical
harmonics to describe the whole IMR waveform including
the ringdown waveform, even though the spin-weighted
spheroidal harmonics aremore accurate for the remnant Kerr
BHs. In fact, the spherical version is a sufficiently good
approximation of its spheroidal counterpart [44,48]. For the
two dominant modes with l ¼ 2 and m ¼ �2, the spin-
weighted spherical harmonics are [49,50]

Y−2
2−2ðφ; ιÞ≡

ffiffiffiffiffiffiffiffi
5

64π

r
ð1 − cos ιÞ2e−2iφ;

Y−2
22 ðφ; ιÞ≡

ffiffiffiffiffiffiffiffi
5

64π

r
ð1þ cos ιÞ2e2iφ: ð9Þ

When φ ¼ 0 and ι ¼ 0, for example, we have the GW signal
as

hðφ ¼ ι ¼ 0Þ ≈ 4

ffiffiffiffiffiffiffiffi
5

64π

r
h22: ð10Þ

According to Eq. (8), we rewrite

dE
df

≈
πc3R2f2

2G

Z
dΩ

����h̃22Y−2
22 ðφ; ιÞ

���2þ ���h̃2–2Y−2
2–2ðφ; ιÞ

���2�:
ð11Þ

Because of the orthonormality of spin-weighted spherical
harmonics, the integral can be done easily

dE
df

≈
πc3R2f2

2G

����h̃22

���2 þ ���h̃2–2

���2�

≈
πc3R2f2

G

���h̃22

���2; ð12Þ

wherewe have used the equatorial symmetry h22 ¼ ðh2–2Þ�.
According to Eqs. (8) and (10), we can express the energy
spectrum approximately as

dE
df

≈
4π2c3R2f2

5G

���h̃ðφ ¼ ι ¼ 0Þ
����
2

≈
4π2c3R2f2

5G

����h̃þðφ ¼ ι ¼ 0Þ
���2 þ ���h̃×ðφ ¼ ι ¼ 0Þ

���2�:
ð13Þ

Although here we have fixed the two angles φ ¼ ι ¼ 0, the
values of them do not affect the total energy emitted. When
the higher-order modes are taken into consideration, we can
express the energy spectrum more accurately as

dE
df

¼ πc3R2f2

2G

X
lm

Z
dΩ

���h̃lmY−2
lmðφ; ιÞ

���2

¼ πc3R2f2

G

X
ljmj

���h̃lm

���2; ð14Þ

where we have used the equatorial symmetry of all modes
ðl; jmjÞ and h̃lm can be numerically obtained because
h̃lmY−2

lmðφ; ιÞ as a whole can be numerically obtained at
fixed angles, for example, φ ¼ 0 and ι ¼ π=2. Unless
otherwise stated, in our following calculations, we used
the (2, 2) mode only.
The dimensionless GW energy density per logarithmic

frequency interval is

ΩGW ¼ f
ρc

dρGW
df

; ð15Þ

where ρc ¼ 3H2
0c

2=8πG is the critical energy density and
H0 ¼ 67.36 km s−1 Mpc−1 [51]. The contribution of BH
binary mergers can be estimated as [9]

ΩGW;BH ¼ f
ρc

Z
zmax

0

dz
RBHðzÞhdEs=dfsiBH

ð1þ zÞHðzÞ ; ð16Þ
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where fs ¼ fð1þ zÞ is frequency in the source frame. The
Hubble parameter is HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
,

where Ωm ¼ 0.3153 is the matter density parameter and
ΩΛ ¼ 0.6847 is the dark energy-density parameter [51].
The quantity hdEs=dfsiGW;BBHs is the source-frame energy
radiated by a single source, which should be averaged over
the ensemble properties of the full BH binary population

hdEs=dfsiBH ¼
Z

dαpBHðαÞ
dEs

dfs
ðαÞ; ð17Þ

where pBHðαÞ is the probability distribution of intrinsic
parameters α (e.g., masses, spins, etc.) for the full BH
binary population. The merger rate RBHðzÞ can be obtained
by a convolution of the BH binary formation rate Rf

BHðzfÞ
with the distribution of the time delays PðtdÞ between BH
binary formation and merger [52,53]. Also, RBHðzÞ can be
obtained from a merger rate RBHðzquotedÞ at a quoted
redshift zquoted ¼ 0 [54] or zquoted ¼ 0.2 [7]. Here we turn
to the fiducial power law þ peak (PP) model [7,8], as
shown in Fig. 10 of [7], where RBHðzquoted ¼ 0.2Þ ¼
28.3 Gpc−3 yr−1 is obtained by integrating the primary
mass distribution dRBH

dm1
or the mass ratio distribution dRBH

dq .

After integrating over the contribution of spins, pBHðαÞ ≈
1

R2
BH

dRBH
dm1

dRBH
dq serves as a good approximation.

B. Numerical calculation

Given the waveform of every GWevent, we can calculate
the total SGWB energy-density spectrum numerically
according to Eq. (16). Here we will consider the deviations
from GR’s GW generation, namely, violating the no-hair
theorem. First, we turn to the PyCBC package [55] and the
pSEOBNRv4HM_PA model [45,46] to generate the IMR
time-domain waveforms for every possible BH binary with
different primary mass and mass ratio allowed by a given
fiducial PP model [7,8] individually. In the
pSEOBNRv4HM_PA model, the ad hoc hairs δωlmn and
δτlmn are introduced as

ωlmn ¼ ωGR
lmnð1þ δωlmnÞ;

τlmn ¼ τGRlmnð1þ δτlmnÞ; ð18Þ

where ωlmn and τlmn are the ringdown frequencies and
damping times, respectively.
Why can we fix the fiducial PP model for different values

of fδωlmn; δτlmng? The fiducial PP model, in our paper, just
provides a effective mass distribution when we summarize
the effects of fδωlmn; δτlmng on the inspiral and merger
regions with a set of effective intrinsic parameters. Given a
modified theory of gravity, the effective mass distribution
will vary with the values of fδωlmn; δτlmng to compensate
for the changes of the inspiral and merger regions.

Similarly, given the values of fδωlmn; δτlmng, the effective
mass distribution will also vary with the different modified
theory of gravity to compensate for the corresponding
changes of the inspiral and merger regions. Under different
situations of the extra hairs, however, the effective mass
distribution provided by the fiducial PP model can be
unchanged in certain cases. For example, we can fix the
effective mass distribution as the realistic one picked out by
the observations of GW transients during our calculations
for different values of fδωlmn; δτlmng through adjusting the
modified theory of gravity simultaneously. That is to say,
our model-independent parametrization of Eq. (18) is not
confined to a specific modified theory of gravity, but aims
to identify any deviation from GR.
We plot the IMR time-domain waveforms from a

GW150914-like event for “þ” polarization in Fig. 2,
where the luminosity distance is 1 Mpc. By definition,
δωlmn affects the ringdown frequencies (green curves)
and δτlmn affects the ringdown damping times (cyan
curves). Then we make the Fourier transform of the IMR
time-domain waveforms to get the IMR frequency-
domain waveforms. We plot the IMR frequency-domain
waveforms from a GW150914-like event for þ polari-
zation in Fig. 3, where the black dashed curve is its GR
counterpart and plotted directly by the IMRPhenomD
model [56]. We find that the effects of δωlmn on the IMR
frequency-domain waveform is larger than that of δτlmn.
Next, according to Eq. (13), we can get the energy spec-
trum for every BH binary. We plot the energy spectrum
for a GW150914-like event in Fig. 4, where the black
dashed curve is the analytical energy spectrum [49,54].
Again we find that the effects of δωlmn on the energy
spectrum is larger than that of δτlmn. Finally, we plot the
total SGWB energy-density spectra at frequency 10≲
f ≲ 103 Hz in Fig. 5, where the ratio of the contribution
of BH binary mergers to the contribution of neutron star
(NS) binary and neutron star–black hole (NS-BH) merg-
ers is supposed to be 1∶0.3, which is consistent with the
forecast by [7]. Compared with Figs. 3 and 4, we confirm
that the effects of δωlmn on the total SGWB energy-
density spectrum is larger than that of δτlmn. However,
the frequency where their effects on the total SGWB
energy-density spectrum become obvious is dependent on
the values of them because SGWB results from the
superposition of many GWs. For example, the blue
dashed curve just deviates the black solid curve obvi-
ously at f > 103 Hz.
It is worth noting that the pSEOBNRv4HM_PA model is

for spin-aligned compact binaries moving in quasicircular
orbits. For a given fiducial PP model, this approximation
of the inspiral region will only affect the total SGWB
energy-density spectra at the lower frequency span 10≲
f ≲ 102 Hz, while the effects of fδωlmn; δτlmng dominate at
the higher frequency span 102 ≲ f ≲ 103 Hz. As shown in
Fig. 5, these two parts do not correlate with each other
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FIG. 3. The IMR frequency-domain waveforms from a GW150914-like event forþ polarization calculated by the Fourier transform of
Fig. 2. The GR version with fδτ220 ¼ 0; δω220 ¼ 0g is the black solid curve; the non-GR version with fδτ220 ¼ 0.5; δω220 ¼ 0.5g,
fδτ220 ¼ −0.5; δω220 ¼ −0.5g, fδτ220 ¼ −0.5; δω220 ¼ 0.5g, fδτ220 ¼ 0.5; δω220 ¼ −0.5g, fδτ220 ¼ 0; δω220 ¼ 0.5g,
fδτ220 ¼ 0; δω220 ¼ −0.5g, fδτ220 ¼ 0.5; δω220 ¼ 0g, or fδτ220 ¼ −0.5; δω220 ¼ 0g is plotted by the red dashed, red dotted, blue
dashed, blue dotted, green dashed, green dotted, cyan dashed, or cyan dotted curve, respectively; the black dashed curve is the GR IMR
frequency-domain waveform from a GW150914-like event for þ polarization and plotted directly by the IMRPhenomD model [56].

FIG. 2. The IMR time-domain waveforms from a GW150914-like event for þ polarization given by the pSEOBNRv4HM_PA model
[45,46], where the luminosity distance to the binary is set as 1 Mpc. The GR version with fδτ220 ¼ 0; δω220 ¼ 0g is the black solid
curve; the non-GR version with fδτ220 ¼ 0.5; δω220 ¼ 0.5g, fδτ220 ¼ −0.5; δω220 ¼ −0.5g, fδτ220 ¼ −0.5; δω220 ¼ 0.5g,
fδτ220 ¼ 0.5; δω220 ¼ −0.5g, fδτ220 ¼ 0; δω220 ¼ 0.5g, fδτ220 ¼ 0; δω220 ¼ −0.5g, fδτ220 ¼ 0.5; δω220 ¼ 0g, or fδτ220 ¼
−0.5; δω220 ¼ 0g is plotted by the red dashed, red dotted, blue dashed, blue dotted, green dashed, green dotted, cyan dashed, or
cyan dotted curve, respectively.
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FIG. 4. The energy spectrum for a GW150914-like event calculated numerically with the pSEOBNRv4HM_PA model’s [45,46]
waveforms. The GR version with fδτ220 ¼ 0; δω220 ¼ 0g is the black solid curve; the non-GR version with fδτ220 ¼ 0.5; δω220 ¼ 0.5g,
fδτ220 ¼ −0.5; δω220 ¼ −0.5g, fδτ220 ¼ −0.5; δω220 ¼ 0.5g, fδτ220 ¼ 0.5; δω220 ¼ −0.5g, fδτ220 ¼ 0; δω220 ¼ 0.5g, fδτ220 ¼ 0;
δω220 ¼ −0.5g, fδτ220 ¼ 0.5; δω220 ¼ 0g, or fδτ220 ¼ −0.5; δω220 ¼ 0g is plotted by the red dashed, red dotted, blue dashed, blue
dotted, green dashed, green dotted, cyan dashed, or cyan dotted curve, respectively; the black dashed curve is the analytical energy
spectrum [49,54].

FIG. 5. The total SGWB energy-density spectra at frequency 10≲ f ≲ 103 Hz, where the ratio of the contribution of BH binary
mergers to the contribution of NS binary and NS-BH mergers is about 1∶0.3 [7]. The GR version with fδτ220 ¼ 0; δω220 ¼ 0g is the
black solid curve; the non-GR version with fδτ220 ¼ 0.5; δω220 ¼ 0.5g, fδτ220 ¼ −0.5; δω220 ¼ −0.5g, fδτ220 ¼ −0.5; δω220 ¼ 0.5g,
fδτ220 ¼ 0.5; δω220 ¼ −0.5g, fδτ220 ¼ 0; δω220 ¼ 0.5g, fδτ220 ¼ 0; δω220 ¼ −0.5g, fδτ220 ¼ 0.5; δω220 ¼ 0g, or fδτ220 ¼−0.5;
δω220 ¼ 0g is plotted by the red dashed, red dotted, blue dashed, blue dotted, green dashed, green dotted, cyan dashed, or cyan
dotted curve, respectively; the black dashed curve is the expected sensitivity of LIGO’s anticipated Aþ configuration [57–59]; the black
dotted curve is the sensitivity of CE [60] by assuming one year’s worth of data, a frequency bin width of 0.25 Hz, and the same overlap
reduction function as LIGO’s.
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directly and our forecasting constraints on fδωlmn; δτlmng
will not be influenced by this approximation.

III. FORECASTING CONSTRAINTS
ON THE NO-HAIR THEOREM

A stationary, Gaussian, unpolarized, and isotropic
SGWB can be detected by a cross-correlation statistic
CðfÞ between two GW detectors [9–11]. The Gaussian
likelihood for the measured cross-correlations CðfÞ is

L ∝ exp

�
−
1

2

X
k

½CðfkÞ −ΩGWðfk; θÞ�2
σ2ðfkÞ

�
; ð19Þ

where the variance of CðfÞ is

σ2ðfÞ ≈ 1

2Tdf
P1ðfÞP2ðfÞ

γ2TðfÞ
�
10π2f3

3H2
0

�
2

: ð20Þ

Here we assume one year’s worth of data T ¼ 1 yr and a
frequency bin width of df ¼ 0.25 Hz. PðfÞ1;2 are the one-
sided noise power spectral densities of the two GW
detectors, which are chosen from CE [60]. Since the actual
locations and arm orientations for CE are yet to be
determined, we assume that CE shares the same overlap
reduction function γTðfÞ with LIGO. As shown in Fig. 5,
the expected sensitivity of LIGO’s anticipated “Aþ”
configuration [57–59] is not much lower than the total
SGWB energy-density spectrum. Although the sensitivity
of CE is much lower than the total SGWB energy-density
spectrum, there is no measured CðfÞ for CE now.
Therefore, we just turn to the Fisher information matrix
to obtain the forecasting constraints

F ij ¼
X
k

1

σ2ðfkÞ
∂ΩGWðfk; θÞ

∂θi

∂ΩGWðfk; θÞ
∂θj

; ð21Þ

where θ is a vector consisting of five free parameters

θ ¼ fδω220; δτ220; zR; zm1
; zqg;

and the derivative of the total SGWB energy-density
spectrum with respect to each parameter is defined as

∂ΩGW

∂θi
¼ ΩGWðθi þ dθiÞ − ΩGWðθi − dθiÞ

2dθi
ð22Þ

and is calculated numerically by choosing dθi ¼ 0.1.
Here we introduce three new parameters fzR; zm1

; zqg to
summarize the original eight parameters of the fiducial PP
model as

dRBH

dm1

→ A
dðð1þ zRÞRBHÞ

d
�
m1ð m1

27.9½M⊙�Þ
zm1

� ;

dRBH

dq
→ B

dðð1þ zRÞRBHÞ
dðqðq

1
ÞzqÞ ;

A ¼
Z

dRBH

dm1

dm1

2
64
Z

dRBH

d
�
m1ð m1

27.9½M⊙�Þ
zm1

� dm1

3
75
−1

;

B ¼
Z

dRBH

dq
dq

�Z
dRBH

dðqðq
1
ÞzqÞ dq

	
−1
; ð23Þ

where zR scales the merger rate RBHðzquoted ¼ 0.2Þ directly,
zm1

scales the primary mass distribution around the pivot
mass m1 ¼ 27.9½M⊙�, zq scales the mass ratio distri-
bution around the pivot ratio q ¼ 1, and A (or B) is
introduced to guarantee that zm1

(or zq) does not modify
RBHðzquoted ¼ 0.2Þ. That is to say, these three new param-
eters are independent of each other by construction.
Therefore, we can obtain the nonflat priors of them from
the constraints on the fiducial PP model as fzR ¼ 0�
0.6672; zm1

¼ 0� 0.1062; zq ¼ 0� 0.1965g (90% CL),
where we have ignored the correlations between them.
In Fig. 6, we show that the effects of fzR; zm1

; zqg are
similar to ones of the original fiducial PP model.
We plot the absolute value of these derivatives in Fig. 7.

While both j ∂ΩGW
∂δτ220

j and j ∂ΩGW
∂δω220

j are suppressed with f
becoming lower, which is consistent with the colored
curves in Fig. 5, j ∂ΩGW

∂zR
j, j ∂ΩGW

∂zm1

j, and j ∂ΩGW
∂zq

j are not very

sensitive to f. The root-mean-square errors of these
parameters are given by

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
: ð24Þ

Since the observations of GW transients and the direct
observation of SGWB are independent of each other, the
constraints on RBH from them should be independent of
each other too. Here we rewrite the former constraints on
RBH [7] as a set of nonflat priors which can be added to F ij

in the form of
0
BBBBBBBB@

σ−2δω220
¼0 0 0 0 0

0 σ−2δτ220 ¼0 0 0 0

0 0 σ−2zR ¼6.1 0 0

0 0 0 σ−2zm1
¼239.9 0

0 0 0 0 σ−2zq ¼70.1

1
CCCCCCCCA
:

ð25Þ

In Fig. 8, we show the forecasting constraints on
fδω220; δτ220; zR; zm1

; zqg with the FISHER.PY [61] package,
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where δω220 ¼ 0� 0.1296, δτ220 ¼ 0� 0.0678, zR ¼ 0�
0.1219, zm1

¼ 0� 0.0597, and zq ¼ 0� 0.5155 at 68%
confidence range (inner black contour) when only the
(2, 2) mode and its hairs are considered and the flat priors
of fzR; zm1

; zqg are added; δω220 ¼ 0� 0.0903, δτ220 ¼
0� 0.0608, zR ¼ 0� 0.0283, zm1

¼ 0� 0.0434, and zq ¼
0� 0.1161 at 68% confidence range (inner blue contour)
when only the (2, 2) mode and its hairs are considered and
the nonflat priors of fzR; zm1

; zqg are added; δω220 ¼ 0�
0.0907, δτ220 ¼ 0� 0.0610, zR ¼ 0� 0.0284, zm1

¼ 0�
0.0435, and zq ¼ 0� 0.1167 at 68% confidence range
(inner green contour) when the higher modes are also
considered according to Eq. (14) and the nonflat priors
of fzR; zm1

; zqg are added; and δω220 ¼ 0� 0.0908,
δτ220 ¼ 0� 0.0611, zR ¼ 0� 0.0284, zm1

¼ 0� 0.0435,
and zq ¼ 0� 0.1167 at 68% confidence range (inner red
contour) when the higher modes and their corresponding
hairs are considered simultaneously and the nonflat priors
of fzR; zm1

; zqg are added.
We can find that the green contours almost com-

pletely overlap the blue contours because the higher modes

without hairs just shift the values of ΩGWðfÞ but do not
affect their derivative with respect to each hair ∂ΩGW

∂θi
ðfÞ.

Since the contributions of the higher modes’ hairs should
be smaller than the contributions of the higher modes
themselves, the red contours also almost completely over-
lap the blue contours. Interestingly, there is a slight
correlation between the (2, 2) mode’s two hairs. It means
that certain deviations from GR probably affect the ring-
down frequencies and damping times simultaneously.
There is an obvious positive correlation between zR
and zq. Although ð1þ zRÞ serves as a factor of RBH (or
ΩGW;BH) according to Eq. (23) [or Eq. (16)], zq does
not affect RBH directly according to the definition of B
in Eq. (23). Therefore, zq must affect ΩGW;BH via
hdEs=dfsiBH according to Eq. (17). For example, zq ¼
0.1965 widens the mass ratio distribution to 0.1≲ q ≤ 1 as
shown in the right subplot of Fig. 6 then suppresses the
probability of 0.3≲ q ≤ 1 overall due to B, hence a smaller
hdEs=dfsiBH due to the suppression of dEs=dfs by the
smaller mass ratio 0.1≲ q≲ 0.3. For zq ¼ −0.1965, the
reverse applies. There are correlations between fzR; zqg
and fδω220; δτ220g in the black contours when the flat
priors of fzR; zqg are added but these correlations almost
disappear in the blue contours when the nonflat priors of
fzR; zqg are added. The reason for this disappearance is that
both zR and zq can serve as a factor of ΩGW;BH and make
an almost frequency-independent contribution to ΩGW;BH.
That is to say, the absolute contribution of fzR ¼ 0�
0.0283; zq ¼ 0� 0.1161g is much larger at lower fre-
quency but much smaller at higher frequency than that
of fδω220 ¼ 0� 0.0903; δτ220 ¼ 0� 0.0608g, as hinted in
Fig. 7. These totally different behaviors of them lead to the
negligible correlations between them. There are obvious
correlations between zm1

and fδω220; δτ220g in the black
and blue contours. It means that ΩGW;BH at higher fre-
quency is sensitive to zm1

which results from the dramatic
influence of zm1

on the primary mass distribution around

FIG. 7. The absolute value of the derivatives of the total SGWB
energy-density spectrum with respect to δτ220 (black curve),
δω220 (blue curve), zR (red curve), zm1

(green curve), and zq (cyan
curve), respectively.

FIG. 6. The primary mass (left) and mass ratio (right) distributions of the astrophysical BH binaries for the fiducial PP model
at zquoted ¼ 0.2. The original constraints from the fiducial PP model [7] are the black curves. They are well mimicked by the blue
ones, which are obtained from the approximate median curves (red) by enlarging with parameters fzR ¼ 0� 0.6672; zm1

¼ 0� 0.1062;
zq ¼ 0� 0.1965g (90% CL).
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m1 ≲ 10M⊙, hence indirect correlations between zm1
and

fδω220; δτ220g at higher frequency. Finally, the nonflat prior
of zm1

from the present observations of GW transients
is similar to the forecasting constraint from the future
observation of SGWB only, which leads to two similar
constraints in the zm1

− δω220 plane and zm1
− δτ220 plane,

respectively.

IV. SUMMARY AND DISCUSSION

In this paper, we assume that the effects of the extra
hairs on the inspiral and merger regions can be summarized
by a set of effective intrinsic parameters under the no-
hair theorem and then the residual effects of these extra
hairs will just appear during an effective ringdown
region. Then we turn to the PyCBC package [55] and the

FIG. 8. Error ellipses for fδω220; δτ220; zR; zm1
; zqg, where δω220 ¼ 0� 0.1296, δτ220 ¼ 0� 0.0678, zR ¼ 0� 0.1219,

zm1
¼ 0� 0.0597, and zq ¼ 0� 0.5155 at 68% confidence range (inner black contour) when only the (2, 2) mode and its hairs

are considered and the flat priors of fzR; zm1
; zqg are added; δω220 ¼ 0� 0.0903, δτ220 ¼ 0� 0.0608, zR ¼ 0� 0.0283,

zm1
¼ 0� 0.0434, and zq ¼ 0� 0.1161 at 68% confidence range (inner blue contour) when only the (2, 2) mode and its hairs are

considered and the nonflat priors of fzR; zm1
; zqg are added; δω220 ¼ 0� 0.0907, δτ220 ¼ 0� 0.0610, zR ¼ 0� 0.0284,

zm1
¼ 0� 0.0435, and zq ¼ 0� 0.1167 at 68% confidence range (inner green contour) when the higher modes are also considered

and the nonflat priors of fzR; zm1
; zqg are added; δω220 ¼ 0� 0.0908, δτ220 ¼ 0� 0.0611, zR ¼ 0� 0.0284, zm1

¼ 0� 0.0435, and
zq ¼ 0� 0.1167 at 68% confidence range (inner red contour) when the higher modes and their corresponding hairs are considered
simultaneously and the nonflat priors of fzR; zm1

; zqg are added, and these outer lines are their corresponding 95% confidence range. It is
worth noting that the red, green, and blue contours almost completely overlap each other.
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pSEOBNRv4HM_PA model [45,46] to obtain the effective
complete IMR time-domain waveform with hairs, as shown
in Fig. 2. After the Fourier transform (as shown in Fig. 3),
we calculate the energy spectrum for every possible BH
binary with different primary mass and mass ratio indi-
vidually, as shown in Fig. 4. Combining these energy
spectra under a fixed fiducial PP model [7,8], we obtain the
modified total SGWB energy-density spectrum at fre-
quency 10≲ f ≲ 103 Hz for given hairs, as shown in
Fig. 5. Here we suppose that the ratio of the contribution
of BH binary mergers to the contribution of NS binary and
NS–BH mergers is about 1∶0.3 [7]. To further take the
uncertainties of the fiducial PP model [7,8] into consid-
eration, the Fisher information matrix should also include
the parameters of the fiducial PP model. For simplicity, we
reduce the original eight parameters of the fiducial PP
model to fzR; zm1

; zqg and change the uncertainties of the
original eight ones to the nonflat priors of the latter three
ones. By choosing the all free parameters as ∼0.1, we
calculate numerically the derivative of the total SGWB
energy-density spectrum with respect to each one respec-
tively, as shown in Fig. 7. To obtain the variance of SGWB,
we assume that CE shares the same overlap reduction
function with LIGO. Finally, the forecasting constraints on
hairs at 68% confidence range are δω220 ¼ 0� 0.1296 and
δτ220 ¼ 0� 0.0678 when the flat priors of fzR; zm1

; zqg are
added, but δω220 ¼ 0� 0.0903 and δτ220 ¼ 0� 0.0608
when the nonflat priors of fzzR ; zm1

; zqg are added, as
shown in Fig. 8. As for the higher modes, we find that they

hardly affect the forecasting constraints on fδω220; δτ220g,
while they do contribute to and shift the total SGWB
energy-density spectrum, and so do their correspond-
ing hairs.
There are three caveats. The first one is that we turn to

the pSEOBNRv4HM_PA model [45,46] where the extra
hairs appear only during the ringdown region. In fact, we
have mimicked the effects of the extra hairs on the inspiral
and merger regions with an effective GR IMR waveform
and then left the residual effects on the ringdown region
alone. Therefore, the chosen fiducial PP model [7,8] for the
mass distribution is also an effective one which has
included the effects of the extra hairs on the inspiral and
merger regions. The second one is that we assume the ratio
of the contribution of BH binary mergers to the contribu-
tion of NS binary and NS–BH mergers is about 1∶0.3
according to Fig. 23 of [7]. It is just a temporary assumption
and will be improved according to the newest GW
observations. The third one is that CE shares the same
overlap reduction function γTðfÞ with LIGO. It is also a
temporary assumption, because γTðfÞ is determined by the
relative positions and orientations of a pair of detectors and
the actual locations and arm orientations for CE are yet to
be determined.
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