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We report the feasibility of detecting the gravity-induced entanglement (GIE) with optomechanical
systems, which is the first investigation that clarifies the feasible experimental parameters to achieve a
signal-to-noise ratio of S=N ¼ 1. Our proposal focuses on GIE generation between optomechanical
mirrors, coupled via gravitational interactions, under continuous measurement, feedback control, and
Kalman filtering process, which matured in connection with the field of gravitational wave observations.
We solved the Riccati equation to evaluate the time evolution of the conditional covariance matrix for
optomechanical mirrors that estimated the minimum variance of the motions. The results demonstrate that
GIE is generated faster than a well-known time scale without optomechanical coupling. The fast generation
of entanglement is associated with quantum-state squeezing by the Kalman filtering process, which is an
advantage of using optomechanical systems to experimentally detect GIE.
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The verification of gravity-induced entanglement (GIE)
is one of the most important milestones in quantum gravity
[1–4].1 Studies by Bose et al. and Vedral and Marletto have
stimulated research on this topic [1,2], which is regarded as
the present day feasibility study of thought experiments by
Feynman (Ref. [8] and references therein). The authors of
Refs. [1,2] proposed an experiment that assumed two
particles, each in a spatially localized superposition state,
coupled via gravitational interactions. Such superpositions
of massive particles can be generated through the Stern-
Gelrach experiment; however, the feasibility of GIE detec-
tion using this approach is challenging. (e.g., [9]).
Another possible experimental approach for verifying

GIE is the use of optomechanical systems in which two
mirrors under quantum control are coupled to each other
via gravitational interaction [10,11]. Optomechanics is a
promising field for exploring macroscopic quantum sys-
tems [12–14]. Recent experiments have demonstrated that
quantum control can realize massive mirrors in the quan-
tum state [15–17]. In the previous study [18], we discussed
the conditions for generating GIE using optomechanical
systems in the steady-state limit. We also demonstrated that
interactions, except for gravity, were negligible in opto-
mechanical systems. However, it has not been clarified
what kind of experiment is optimal to detect the generation
of the GIE. In the current study, we consider this to

determine the optimized setup of an experiment by inves-
tigating the signal-to-noise ratio. The time evolution of the
GIE, which is important for evaluating the feasibility of the
experiment, has not been clarified. For the first time, we
investigate the time evolution of GIE in optomechanical
systems under continuous measurements and feedback
control as well as with a quantum filtering process.
Under the quantum Kalman filtering process, the time
evolution of the entanglement is computed from the
solution of the Riccati equation for conditional covariance.
We show that GIE can be generated by reducing thermal
noise and realizing a quantum state through the Kalman
filtering process [19,20]. The results demonstrated that the
generation time was significantly shorter than the well-
known time required to generate a GIE without optome-
chanical coupling [21].
We consider optomechanical systems with two gravita-

tional mechanical mirrors (Fig. 1) whose Hamiltonian is

H¼ℏΩ
4
ðq2Aþp2

AÞþ
ℏΩ
4
ðq2Bþp2

BÞþℏωca
†
AaAþℏωca

†
BaB

þℏgqAa
†
AaA−ℏgqBa

†
BaB−

Gm2

L3
ðqA−qBÞ2; ð1Þ

where qj and pj are the mechanical position and momen-

tum operators satisfying ½qj; pk� ¼ 2iδjk, aj and a†j are the

annihilation and creation operator satisfying ½aj; a†k� ¼ δjk,
for j; k ¼ A, B, Ω is the mechanical frequency, ωc is
the optical resonance frequency in cavities of length l,
g ¼ ðωc=lÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩ

p
is the optomechanical coupling,G is

the gravitational constant, m is the mass of the mechanical
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1GIE can be called quantum gravity-induced entanglement of

masses [5–7].
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mirrors, and L is the separation between the two mirrors.
Here, we consider the mechanical common mode (þ) and
differential mode (−) based on the measurement results and
introduce each mode as q� ¼ ðqA � qBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω�=ð2ΩÞ

p
;

p� ¼ ðpA � pBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω=ð2Ω�Þ

p
, and a� ¼ ðaA ∓ aBÞ=

ffiffiffi
2

p
,

where Ω� is the mechanical frequency of the common
and differential modes Ωþ ¼ Ω and Ω− ¼ Ω

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
,

respectively. Gravitational coupling is described as param-
eter ϵ ¼ 4Gm=ðL3Ω2Þ.
Here, we introduce the optical amplitude quadrature

x�¼aþa† and optical phase quadrature y� ¼ ða� a†Þ=i
satisfying ½x�; y�� ¼ 2i. The amplitude and phase quad-
ratures are given by

ffiffiffi
κ

p
x� ¼ −xin� and

ffiffiffi
κ

p
y¼−yin�−4g�mq�

for the bad cavity regime κ ≫ Ω, where κ is the optical
decay rate, and xin� and yin� are the vacuum noise input
[12–14]. The position of the mirrors can be estimated based
on phase quadrature measurements, which leads to the
squeezing of mechanical modes. Using the vector of
canonical operators r� ¼ ðq�; p�ÞT, we derive the
Langevin equation in matrix form,

ṙ� ¼ A�r� þ ð0; w�ÞT: ð2Þ

In the first term, A� denote 2 × 2matrices with components
ðA�Þ11 ¼ 0, ðA�Þ12 ¼ Ω� ¼ −ðA�Þ21 and ðA�Þ22 ¼ −γm,
where γm denotes the effective mechanical decay rate under
feedback. The second term with w� ¼ ffiffiffiffiffiffiffiffi

2γm
p

p�
in −

ð4g�=
ffiffiffi
κ

p Þx�in describes the force noise, where p�
in is the

mechanical noise input and g� ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4PinΩ=ðℏωcκΩ�Þ

p
is

the effective optomechanical coupling. This coupling
depends on the optical decay rate κ and input laser power
Pin. For evaluating g�, each optical cavity mode is assumed
to have the same average amplitude. Optical output quad-
rature, Y�, is derived from the optical input-output relation
[12–14]; Y� ¼ C�r� − yin�, where C� ¼ ð4g�=

ffiffiffi
κ

p
; 0Þ.

To reduce thermal noise, we employ a quantum filter for
the optimal estimation of mechanical motion. The quantum

Kalman filter minimizes the mean squared error between
the canonical operators r� and the estimated values
r̃� ¼ ðq̃�; p̃�ÞT based on the measurements. Thus, each
component of the covariance matrix conditioned on the
measurement results V� ¼ hfr� − r̃�; ðr� − r̃�ÞTgi is
minimized [19,20]. In the absence of a quantum filter,
we only have the average behavior of r�, and entanglement
does not occur because of thermal noise. Quantum filters
are essential for reducing thermal fluctuations and generate
entanglement. Using quantum Kalman filtering, the condi-
tional covariance matrix follows the Riccati equation,

V̇� ¼ A�V� þ V�AT
� þ N� − V�CT

�C�V�; ð3Þ

where N� ¼ diag½0; n��, where the noise term n̄� ¼
2γmð2n�th þ 1Þ þ 16g2�=κ, n�th ¼ kBTΓ=ðγmℏΩ�Þ is the
effective thermal phonon number under the feedback
control, where kB is the Boltzmann constant, T is the
environmental temperature, and Γ is the bare mechanical
dissipation rate. Here, we assume that the thermal photon
noise is negligible. The last term describes the effects of the
Kalman filtering process, which minimizes all the compo-
nents of the covariance matrix. The time required to reach a
static solution is approximately proportional to κ=g2�.
We solved the Riccati equation using a numerical

method, assuming that the two mirrors were initially in
a separable thermal state: Vð0Þ ¼ ðn̄þ=2γmÞ14 [see

Laser

Differential modeCommon mode

Mirror A Mirror B

FIG. 1. Configuration of the system. We consider two mirrors
close to each other to be gravitationally interacting, which are
also coupled to cavity lights. The system is constructed with the
half mirrors and the reflectors.
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FIG. 2. Time evolution of the components of the conditional
covariance matrix elements, Vþ

qqðtÞ (black solid curve), Vþ
qpðtÞ

(orange dashed curve), and Vþ
ppðtÞ (purple dashed-dotted curve).

The parameters are listed in Table I. The behavior of the
differential mode is nearly the same.
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Eq. (A1) for V]. Figure 2 shows the components of the
conditional covariance matrix Vþ as functions of time. The
parameters used in the plot are shown in Table I. Λ is
defined as m ¼ ρL3Λ, where ρ is the mass density of each
mirror. Figure 2 demonstrates that the system converges to
the steady-state solution for t > 700 ½s�, which is described
by the static solution of the Riccati equation in [17],

V̄�
qq ¼

γ� − γm
λ�

; V̄�
qp ¼ ðγ� − γmÞ2

2λ�Ω�
;

V̄�
pp ¼ ðγ� − γmÞð2Ω2

� þ γ2� − γmγ�Þ
2λ�Ω2

�
: ð4Þ

Here γ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2m − 2Ω2

� þ 2Ω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

� þ n̄�λ�
pq

and λ� ¼
16g2�=κ. This solutionwas first obtained by using theWiener
filter described in Ref. [22]. The early phase solution
for t < 10 ½s� is approximately described by V�

qqðtÞ ¼
κ=ð16tg2�Þ; V�

qpðtÞ ¼ Ω�ðn�th þ 1=2Þt: V�
ppðtÞ ¼ 2n�th þ 1,

where V�
ppðtÞ and V�

qpðtÞ are determined using the
initial values of V�

ppð0Þ. However, V�
qqðtÞ is an attractor

solution that does not depend on the initial conditions,
V�
qqð0Þ. Subsequently, the solution for 30½s� < t < 300½s�

can be approximated as V�
qqðtÞ ¼ κ=ð4tg2�Þ; V�

qpðtÞ ¼
3κ=ð8t2g2�Ω�Þ; V�

ppðtÞ ¼ 3κ=ð8t3g2�Ω2
�Þ, where all compo-

nents are attractor solutions, which did not depend on initial
conditions. The components Vþ

qqðtÞ and Vþ
ppðtÞ are signifi-

cantly reduced from the initial values determined using the
thermal phonon number. Hence, the mechanical modes
become quantum-squeezed states through the Kalman filter
process.
We focused on the GIE between individual mirrors A

and B. Using the operation of the half-beam splitter, the
conditional covariance matrix V of the individual mirrors
were obtained. The entanglement between the mirrors is
quantified by the logarithmic negativity EN, which is given
by the mirror covariance matrix. Appendix A presents a
method to obtain V and EN from V� via the beam splitter

operation. Figure 3 shows the behavior of EN as a function
of time, and we observe the generation of EN , that is, the
generation of entanglement. From solution (4), we evalu-
ated the logarithmic negativity in the steady state as

EN ≃ −
1

2
log2

�
1 −

κγm
16g2þ

�
Ωffiffiffi
2

p
γm

ϵ − 4nþth

��
; ð5Þ

where the approximations n̄þλþ ≫ Ω2þ ≫ γ2m and
4g2þ=κγm ≫ nþth ≥ 1 were used. The entanglement criterion
is Ωϵ > 4

ffiffiffi
2

p
γmn

þ
th, which is nearly the same as the

entanglement criterion between the output lights [10,11].
Entanglement appears after the purity of the mirror state
increases, and the asymmetry of squeezed states between
the common and differential modes is necessary for
entanglement generation. Appendix B presents the time
evolution of the squeezing properties.
Entanglement does not occur without quantum

control or optimal filtering for the initial thermal state
with n�th ≲ 10 (see Ref. [21]). The numerical solutions
shown in Fig. 3 converge to the analytical formula (5).
The timescale to achieve an entangled steady state does
not depend on the initial state but changes roughly in
proportion to κ=g2þ. Reference [21] showed the time scale
for generating GIE between two harmonic oscillators
without the input light of optomechanical coupling,
ten ¼ π=ðΩϵÞ ¼ 1.8 × 103ð Ω=2π

10−3 HzÞð ρ
20g=cm3Þ−1ðΛ2Þ−1 s. This

should be compared with the time required to generate
an entanglement negativity in Fig. 3, which was shorter
than ten, particularly for small κ. Therefore, the use of the
quantum Kalman filter is advantageous to generate entan-
glement and preserve the quantum coherence of the
system.
Finally, we discuss the error in the measurement of EN ,

which can be estimated by

TABLE I. Parameters of the numerical solution in Fig. 2.
Reference [23] discussed the experimental situation to achieve
low mechanical dissipation.

Γ=2π 10−18 Hz
Ω=2π 10−3 Hz
γm=2π 10−6 Hz
κ=2π 108 Hz
ωc=2π 2.8 × 1014 Hz
Pin 0.1 mW
l 1 m
T 1 K
ρ 20 g=cm3

m 10−1 kg
Λ 2

FIG. 3. Behavior of the logarithmic negativity between
mechanical mirrors under the Kalman filtering. Each curve
assumes κ=2π ¼ 108 Hz (blue solid curve), 107 Hz (red dashed
curve), and 106 Hz (green dashed-dotted curve), respectively.
The others are the same as those in Table I.
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ΔENðVÞ¼
X
j¼�

�
∂EN

∂V̄j
qq
ΔVj

qqþ ∂EN

∂V̄j
qp
ΔVj

qpþ ∂EN

∂V̄j
pp

ΔVj
pp

�
: ð6Þ

Assuming that the errors q� and p� follow a Gaussian distribution around the estimated values, we may write
hΔV2

qqi¼2V̄2
qq, hΔV2

qpi¼ V̄qqV̄ppþ V̄2
qp, hΔV2

ppi¼2V̄pp, hΔVqqΔVqpi ¼ 2V̄qqV̄qp, hΔVqqΔVppi ¼ 2V̄2
qp. Then, the

variance in the error of ΔENðVÞ is given by

hΔE2
NðVÞi ¼ 2

�
∂EN

∂V̄þ
qq

�
2

V̄þ2
qq þ

�
∂EN

∂V̄þ
qp

�
2

ðV̄þ2
qp þ V̄þ

qqV̄þ
ppÞ þ 2

�
∂EN

∂V̄þ
pp

�
2

V̄þ2
pp þ 4

�
∂EN

∂V̄þ
qq

��
∂EN

∂V̄þ
pp

�
V̄þ2
qp

þ 4

�
∂EN

∂V̄þ
qq

��
∂EN

∂V̄þ
qp

�
V̄þ
qqV̄þ

qp þ 4

�
∂EN

∂V̄þ
pp

��
∂EN

∂V̄þ
qp

�
V̄þ
ppV̄þ

qp þ 2

�
∂EN

∂V̄−
qq

�
2

V̄−2
qq þ

�
∂EN

∂V̄−
qp

�
2

ðV̄−2
qp þ V̄−

qqV̄−
ppÞ

þ 2

�
∂EN

∂V̄−
pp

�
2

V̄−2
pp þ 4

�
∂EN

∂V̄−
qq

��
∂EN

∂V̄−
pp

�
V̄−2
qp þ 4

�
∂EN

∂V̄−
qq

��
∂EN

∂V̄−
qp

�
V̄−
qqV̄−

qp þ 4

�
∂EN

∂V̄−
pp

��
∂EN

∂V̄−
qp

�
V̄−
ppV̄−

qp: ð7Þ

Assuming that we performN measurements of the GIE, we
estimated the signal-to-noise ratio as S=N ¼ ffiffiffiffiffi

N
p

EN=ΔEN .
To achieve S=N ¼ 1, the required number of measurements
is N ¼ hΔE2

NðVÞi=E2
N . Provided that the condition

Ωϵ ≫ 4
ffiffiffi
2

p
γmn

þ
th is satisfied, EN is approximately esti-

mated as EN ≃ κGρ=ð8 ffiffiffi
2

p
g2þΩÞ. However, perturbation

analysis around the steady state provides the generation
time of the entanglement with Kalman filtering in propor-
tion to κ=g2þ. Subsequently, the total time τ required
to achieve S=N ¼ 1 is proportional to κ=ðgþENÞ2 ∝
ωcPinΩ=ðml2κ2Þ, where we assume that ΔEN is a constant
of Oð1Þ. For the parameters in Table I, τ ≃ 2 × 106 ½s�.
We investigated the feasibility of detecting GIE using

optomechanical systems. For the first time, we determined
a feasible set of experimental parameters for achieving a
signal-to-noise ratio S=N ¼ 1. This is achieved by solving
the Riccati equation to determine the time evolution of the
conditional state of macroscopic mechanical mirrors in
optomechanical systems under quantum control using the
Kalman fingering process. When the two mirrors are
coupled via gravitational interaction, the quantum-
squeezed states for the common and differential modes
are slightly different, which gives rise to the GIE. This
timescale, associated with the quantum state squeezing
using the Kalman filtering process, is faster than the well-
known timescale ten. The parameters in Table I can be an
optimal set. The feasibility of experiments for detecting the
GIE should be investigated in more detail in the future. The
rapid development of GIE is an advantage of optomechan-
ical systems.
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the topic of the present paper. This work was supported by
JSPS KAKENHI, Grants No. JP22J21267 (D. M.),
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No. JP23H01175 (K. Y.).

APPENDIX A: COVARIANCE MATRIX OF
INDIVIDUAL MIRRORS

Formula for covariance matrix V for the individual
mirrors is expressed as follows:

V≡
�

VA VAB

VAB VB

�
¼ S

�
Vþ 0

0 V−

�
ST;

S¼ 1ffiffiffi
2

p

0
BBBBB@

1 0 1=ð1− ϵÞ1=4 0

0 1 0 ð1− ϵÞ1=4
1 0 −1=ð1− ϵÞ1=4 0

0 1 0 −ð1− ϵÞ1=4

1
CCCCCA
; ðA1Þ

where ϵ ¼ 4Gm=ðL3Ω2Þ, S denotes the operation of the
half-beam splitter and V� are the covariance matrices of
common and differential modes, respectively. The covari-
ance matrices are given as solutions to the Riccati equa-
tion (3). Here, VA and VB are the covariance matrices of
mirrors A and B normalized by the frequency Ω, respec-
tively. VAB represents the gravity-induced correlation
matrix between individual mirrors. We then introduce
the logarithmic negativity EN to investigate the entangle-
ment as EN ¼ − 1

2
log2 ½ðΣ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 − 4 detV

p
Þ=2�, where

Σ ¼ detVA þ detVB − 2 detVAB. According to the sepa-
rability condition for two-mode Gaussian states, the sys-
tems are entangled if and only if EN > 0 [24].

APPENDIX B: PURITY AND SQUEEZING

Here, we demonstrate the time evolution of the condi-
tional state realized using the Kalman filtering process. The
solid blue curves in the panels in Fig. 4 show the evolution
of the common mode state, whereas the red dashed curve
shows the difference between the common and differential
modes. The left panel of Fig. 4 shows purity as a function of
time. The center and right panels show squeezing angle and
degree of squeezing, respectively, as a function of time.
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