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We study spherically symmetric configurations of the quadratic fðRÞ gravity [fðRÞ ¼ R − R2=6μ2]. In
the case of a purely gravitational system, we have fully investigated the global qualitative behavior of all
static solutions satisfying the conditions of asymptotic flatness. These solutions are proved to be regular
everywhere except for a naked singularity at the center; they are uniquely determined by the total mass M
and the “scalar charge”Q characterizing the strength of the scalaron field at spatial infinity. The caseQ ¼ 0

yields the Schwarzschild solution, but an arbitrarily small Q ≠ 0 leads to the appearance of a central naked
singularity having a significant effect on the neighboring region, even when the space-time metric in the
outer region is practically insensitive to the scalaron field. Approximation procedures are developed to
derive asymptotic relations near the naked singularity and at spatial infinity, and the leading terms of the
solutions are presented. We have investigated the linear stability of the static solutions with respect to radial
perturbations satisfying the null Dirichlet boundary condition at the center and numerically estimate the
range of parameters corresponding to stable/unstable configurations. In particular, the configurations with
sufficiently small Q turn out to be linearly unstable.

DOI: 10.1103/PhysRevD.110.024056

I. INTRODUCTION

Modification of general relativity (GR) by a Lagrangian
in the form of a nonlinear function fðRÞ of the scalar
curvature R is, perhaps, the simplest one and has long been
the subject of numerous studies and applications (see [1–3]
for reviews). Compared to GR, such fðRÞ gravity theory
contains one extra scalar degree of freedom (the scalaron),
which can be used for modeling a wide variety of
phenomena, from the early inflationary regime [4–7],
consistent with current observations [8], to dark energy
and dark matter at later epoch [9–19].
Natural questions arise about the possible effects of

modified gravity in models of isolated systems that can
simulate real astrophysical objects. Isolated configurations
have received considerable attention in both GR and
modified theories of gravity (see, e.g., [20–36] and refer-
ences therein). A number of papers concern spherically

symmetric (SS) configurations with either asymptotically
flat or de Sitter asymptotics.
In this paper, we consider asymptotically flat spherically

symmetric configurations in the well-known quadratic
model1

fðRÞ ¼ R −
R2

6μ2
; ð1Þ

where μ is the scalaron mass. Correspondingly, we neglect
the small cosmological constant. This is one of the best
fðRÞ models in light of the present-day observational data;
it leads to a flattened scalaron potential realizing inflation in
the early Universe. On the other hand, this model can be
viewed as a first step to a wider class of theories (see,
e.g., [6]).
It is well known that the equations of fðRÞ gravity

(Jordan frame) can be rewritten in a scalar-tensor form
(Einstein frame) [1–3,23]. This is possible if fðRÞ satisfies
certain conditions2 that are fulfilled in the case of (1). We
emphasize that, in this paper, we consider the original
metric in the Jordan frame as a physical one, whereas the
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transition to the Einstein frame is a mathematical trick and
the metric in the Einstein frame serves as an auxiliary tool.
Transition to the Einstein frame raises a number of

questions inherent in scalar-tensor theories. One of them
concerns the no-hair theorems that prohibit static black
hole configurations with a nontrivial scalar field (SF)
[20–22,24,28,37]. A closely related direction deals with
the “no-go theorems,” which prohibit regular asymptoti-
cally flat configurations for SF [38,39]. These results
involve some conditions concerning the regularity of
solutions, the SF potentials, and the coupling between
SF and matter. Naturally, similar questions arise in the fðRÞ
gravity. Most attention has been paid to the existence of
black holes (see, e.g., [40–44] and references therein). The
no-hair theorems of [41,42] strongly restrict possible black
hole solutions in the fðRÞ gravity. In particular, in the case
of the quadratic fðRÞ model (1) with zero cosmological
constant, the only spherically symmetric black hole con-
figuration in vacuum is that described by the usual
Schwarzschild solution3 [23,42].
This does not mean that there are no SS configurations in

this concrete model different from the solutions to GR;
however, these are configurations with a naked singularity
(NS) [27] rather than a horizon. Systems with NS, if they
really exist in nature, could be extremely interesting.
Indeed, in the modern cosmological epoch, the effects of
the modified gravity are expected to be typically very, very
weak in astrophysical objects, but they can manifest
themselves in the extreme conditions near NS. On the
other hand, there is a widespread opinion that systems with
NS do not exist in the universe according to the Penrose
cosmic censorship hypothesis [45,46]. This hypothesis has
never been proven, and its discussion shifts to issues of
stability and fine-tuning of the input data [47–51].
Apparently, the existence and stability of NS depends on
the types of configurations involved and, perhaps, on the
specific parameter regions in concrete models [52–55].
Note that the analysis of static solutions in fðRÞ gravity

in [27], where the existence of NS at the center was pointed
out, is essentially based on numerical computations. Some
assumptions of [27] may be questioned or at least require
rigorous justification. First of all, one must be sure that
regular solutions with all possible configuration parameters
satisfying the assumption of asymptotic flatness do exist for
all positive values of the radial variable r. Here it is
necessary to pay attention to the exclusion of singularities
for finite values of the radial variable; indeed, there are
examples of static SS configurations where “spherical”
singularities arise at finite values of r > 0 [56,57]. Another
problem that requires proper justification concerns the
asymptotic properties of solutions, which is necessary to

study the linear stability considered in this work. The study
of these issues is the subject of this article.
Our paper is organized as follows. In Sec. II, we review

the general relations of fðRÞ gravity as regards the
transition to the Einstein frame. Section III concentrates
on the quadratic fðRÞ model. Field equations in the
Einstein frame are written in Sec. IV for the case of a
nonstationary SS metric. Section V deals with the purely
gravitational system; we prove that all SS solutions with
nonzero scalar field satisfying the asymptotic-flatness
conditions exist for all positive values of a radial variable
and may have singularity only at the center. In this section,
asymptotic formulas near NS are obtained. In Sec. VI we
write down equations for perturbations and discuss the
boundary conditions. In Sec. VII we use numerical calcu-
lations to illustrate the static solutions (see Figs. 1–3) and to
study their linear stability. In Sec. VIII, we discuss our
results. The details concerning the proof of the existence
and uniqueness and justification of approximation methods
are given in the Appendixes.

II. BASIC EQUATIONS AND NOTATION

In fðRÞ gravity, the standard Lagrangian of general
relativity in the gravitational action is replaced by a more
general function4 of the scalar curvature R,

Sg ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ;

where κ ¼ 8πG, and G is Newton’s gravitational constant.
The corresponding dynamical equations for the physical
metric gμν (Jordan frame) are [1–3]

f0ðRÞRμν −
1

2
gμνfðRÞ þ ðgμν□−∇μ∇νÞf0ðRÞ ¼ κTμν; ð2Þ

where Tμν ¼ Tνμ is the energy-momentum tensor of non-
gravitational fields satisfying the covariant conservation
law

∇νTμν ¼ 0: ð3Þ

There is a well-known procedure [1,2] to represent the
equations of the fðRÞ gravity, written for the physical
metric gμν (Jordan frame), in the form of the usual Einstein
equations for a conformally transformed metric ĝμν
(Einstein frame)

gμν ¼ e−2ξĝμν; e2ξ ¼ f0ðRÞ; ð4Þ

accompanied by equations for an additional canonically
normalized SF ϕ ¼ ffiffiffiffiffiffiffiffi

6=κ
p

ξ. In this paper, we will describe
3In case of a nonzero Λ this is replaced by the Schwarzschild–

de Sitter solution. 4We use the units in which c ¼ ℏ ¼ 1.
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this scalar field (the scalaron) by the dimensionless
variable ξ.
The self-interaction potential WðξÞ of the scalar field ξ

can be introduced parametrically as follows:

e2ξ ¼ f0ðuÞ; WðξÞ ¼ 1

2
e−4ξ½fðuÞ − f0ðuÞu�; ð5Þ

where the monotonicity of fðuÞ is assumed. The extrema of
this potential are located at ξ ¼ ξm corresponding to
u ¼ um, which satisfy the equation

umf0ðumÞ ¼ 2fðumÞ: ð6Þ

Denote

T̂μν ¼ e−2ξTμν: ð7Þ

To avoid confusion due to the presence of two metrics, we
emphasize that, from this point on, “hats” correspond to the
Einstein frame [1,2], in which covariant differentiation and
raising and lowering indexes are performed with the metric
tensor ĝμν. On the account of (4) and (5), Eq. (2) leads to the
following equations in the Einstein frame:

R̂μν −
1

2
ĝμνR̂ ¼ T̂ðξÞ

μν þ κT̂μν; ð8Þ

where

T̂ðξÞ
μν ¼ 6∂μξ∂νξ − ĝμν½3ξ;αξ;βĝαβ −WðξÞ�: ð9Þ

Equation (8) are supplemented by the equation for the
scalaron ξ,

∇̂α∇̂αξ ¼ −
1

6

∂W
∂ξ

þ 1

6
κT̂; T̂ ¼ ĝμνT̂μν: ð10Þ

The system of equations (8) and (10) is equivalent to the
fourth-order equations (2).
The quadratic part of WðξÞ around its minimum deter-

mines the scalaron mass μ,

1

6
W00ðξmÞ ¼ μ2 ¼ 1

3

�
um

f0ðumÞ
−

1

f00ðumÞ
�
; ð11Þ

where um is determined by (6). Nonobservation [58,59] of
the scalaron-induced Yukawa forces [60] between non-
relativistic masses leads to a lower bound on the scalaron
mass (see also [11,12,61]),

μ ≥ 2.7 meV at 95% CL: ð12Þ

This lower bound leads to a rather small length
scale lμ ¼ 1=μ.

The covariant conservation law (3) also must be rewrit-
ten in the Einstein frame. For the energy-momentum tensor,
we have

∇̂μT̂
μ
ν ¼ −T̂∂νξ; T̂ ¼ ĝαβT̂

αβ: ð13Þ

III. QUADRATIC f ðRÞ GRAVITY

In what follows, we deal with the simplest model (1). In
the original inflationary model due to Starobinsky [4],
described by this Lagrangian, the scalaron mass has
relatively large value μ ≈ 3 × 1013 GeV [8].
The scalaron potential (5) for model (1) is

WðξÞ ¼ 3

4
μ2ð1 − e−2ξÞ2: ð14Þ

It is monotonically increasing with ξ in the domain ξ ≥ 0
asymptotically rising to a plateau. In the case of an
asymptotically flat space-time in the initial (Jordan) frame,
we assume that the scalar curvature vanishes at spatial
infinity; correspondingly, ξ ¼ 1

2
ln½f0ðRÞ� → 0.

For most astrophysical systems with continuous distri-
butions of matter, we expect ξ to be very small. For jξj ≪ 1,
we have

WðξÞ ≈ 3μ2ξ2: ð15Þ

In a static case, we deal with metric gμν ≡ gμνðrÞ; g0i ≡ 0,
yielding

Δ̂ξ≡ −
1ffiffiffiffiffiffi
−ĝ

p ∂

∂xi

� ffiffiffiffiffiffi
−ĝ

p
ĝij

∂ξ

∂xi

�
¼ μ2ξ −

κ

6
T̂; ð16Þ

where i, j ¼ 1, 2, 3.
As noted above, the value of the scalaron mass μ is

bounded from below by (12) so as not to contradict the
existing observations. A somewhat stronger lower bound,
μ≳ 4.4 meV, arises in consideration of the scalaron as a
dark-matter candidate [18,19]. Such a mass corresponds to
the length scale lμ ¼ μ−1 ≲ 4.5 × 10−3 cm, which is a very
small value in the astrophysical realm. In the case of an
astrophysical object with mass M and gravitational radius
rg ¼ 2GM, we typically deal with a very large dimension-
less quantity μrg ≫ 1. This allows us to make a general
estimate for the value of ξ inside a sufficiently smooth
distribution of T̂. Indeed, Eq. (16) can be written in a form
that may be considered as a source of asymptotic approx-
imations,

ξ ¼ κ

6μ2
T̂ −

1

μ2
Δ̂ξ; ð17Þ

with the last term on the right-hand side regarded as a small
perturbation. This gives us a simple approximate formula
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ξ ≈
κ

6μ2

�
T̂ −

1

μ2
Δ̂ T̂

�
: ð18Þ

This formula is applicable if μ2T̂ ≫ Δ̂ T̂, which, however,
may fail to be satisfied at the boundary of the body, where
(18) must be replaced by a more exact relation.
Further in this paper we focus primarily on mathematical

properties of the model and allow for arbitrary values of μ
where possible.

IV. SPHERICALLY SYMMETRIC
CONFIGURATIONS

A. Field equations in the Einstein frame

The metric of a spherically symmetric space-time in the
Schwarzschild (curvature) coordinates can be written as

dŝ2 ¼ eαdt2 − eβdr2 − r2ðdθ2 þ sin2θdφ2Þ; ð19Þ

where r > 0, α≡ αðt; rÞ, β≡ βðt; rÞ. The nontrivial
Einstein equations (8) in this case are

∂

∂r
½rðe−β − 1Þ� ¼ −κr2T̂0

0 − r2
�
3e−α

�
∂ξ

∂t

�
2

þ 3e−β
�
∂ξ

∂r

�
2

þWðξÞ
�
; ð20Þ

re−β
∂α

∂r
þ e−β − 1 ¼ −κr2T̂1

1 þ r2
�
3e−α

�
∂ξ

∂t

�
2

þ 3e−β
�
∂ξ

∂r

�
2

−WðξÞ
�
; ð21Þ

∂β

∂t
¼ −κreβT̂1

0 þ 6r
∂ξ

∂t
∂ξ

∂r
; ð22Þ

where ξ≡ ξðt; rÞ, and the structure of T̂μν corresponds to
the spherically symmetric case.
Equation (10) yields

e−
αþβ
2

�
∂

∂t

�
e
β−α
2
∂ξ

∂t

�
−

1

r2
∂

∂r

�
r2e

α−β
2
∂ξ

∂r

��

¼ −
1

6
½W0ðξÞ − κT̂�: ð23Þ

Note that, for ξ≡ 0 and T̂ ¼ 0, we get the Schwarzschild
solution.

B. Static SS solutions

In the case of a static isolated regular configuration,
the quantities α, β, and ξ depend only on r. We assume
that, for r < R0, we have a continuous matter distribution
with nonzero regular T̂μν, whereas T̂μν ¼ 0 in an outer
region r > R0.

In what follows, we consider a purely gravitational case
with T̂ ¼ 0. For a static case, Eqs. (20) and (21) yield

d
dr

ðαþ βÞ ¼ 6r

�
dξ
dr

�
2

; ð24Þ

d
dr

ðα − βÞ ¼ −
2

r
þ 2eβ

r
½1 − r2WðξÞ�: ð25Þ

The system of equations with respect to α, β, and ξ is closed
by adding the equation for the SF,

d
dr

�
r2e

α−β
2
dξ
dr

�
¼ r2

6
e
αþβ
2 W0ðξÞ: ð26Þ

In the case of an asymptotically flat static space-time, we
assume

lim
r→∞

½rαðrÞ� ¼ −rg; lim
r→∞

½rβðrÞ� ¼ rg; ð27Þ

where rg ¼ 2GM, and M > 0 is the configuration mass.
In the asymptotically flat configuration, we assume

ξðrÞ → 0 as r → ∞, and Eq. (26) can be approximated
by the equation for a free massive scalar field on the
Schwarzschild background [62–64],

d
dr

�
rðr − rgÞ

dξ
dr

�
¼ r2μ2ξ: ð28Þ

We discard unbounded solutions of (28) as r → ∞ leaving
only those with exponentially decaying ξðrÞ. Taking into
account the results of [62–65] on the asymptotic behavior at
infinity, we assume

lim
r→∞

��
r
rg

�
1þMμ

eμrξðrÞ
�
¼ Q: ð29Þ

Here and below, M ¼ rg=2, and the constant Q measures
the strength of the scalaron field at spatial infinity and will
be dubbed as the scalar charge.
For given μ > 0, M > 0, and Q, we claim that there is

r0 > R0 such that solution αðrÞ∈C1, βðrÞ∈C1, ξðrÞ∈C2

of Eqs. (24)–(26) exists for r ≥ r0 and is uniquely defined
by conditions (27) and (29) regardless of the interior
solution and structure of the energy-momentum tensor.
This statement is physically quite understandable; however,
its rigorous proof requires some analytical work, which we
present in Appendix A.
Our next step is to show that, if T̂μν ≡ 0 for all r > 0,

then one can put r0 ¼ 0; in this case, the parametersM and
Q completely define the static SS configuration. This is the
subject of the next section, Sec. V.
The numerical investigations, which we perform below,

require more detailed information on the asymptotic
properties at large r. This is also considered in
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Appendix A, where we present a convergent approximation
method to justify asymptotics of decaying static solutions
ξðrÞ for μr ≫ 1, r ≫ rg. The leading terms of this
asymptotic for jξj ≪ 1 are

ξðrÞ ¼ Q

�
rg
r

�
1þMμ

�
1þ b1

r
þ b2

r2

�
e−μr; ð30Þ

where

b1 ¼
M
2
ð1þ 3MμÞ; ð31Þ

b2 ¼
M
8μ

ð2þ 5Mμþ 16M2μ2 þ 9M3μ3Þ: ð32Þ

Note that (30) differs by a power-law factor from the usual
Yukawa asymptotics in flat space. In view of the consid-
eration in Appendix A, an asymptotic relation for dξ=dr
can be obtained by formal differentiation of (30).

V. GLOBAL BEHAVIOR OF STATIC SOLUTIONS
AND ASYMPTOTIC PROPERTIES NEAR NS

Now we consider a purely gravitational SS system, that
is T̂μν ≡ 0. Transition to the Einstein frame enables us to
use the earlier results on the global properties of the SS
systems with a scalar field. In this section, we use the
method of [56] with minor modification.
According to the previous results, there exists an

asymptotically flat solution of Eqs. (24)–(26) on ½r0;∞Þ
for some 0 < r0 < ∞. The set of all such r0 has infimum
r�0 ¼ inf r0 < ∞, and the solution exists for r∈ ðr�0;∞Þ. We
prove that r�0 ¼ 0.
Suppose (on the contrary) that r�0 > 0 and consider the

solution on ðr�0;∞Þ.
The SF potential (14) has the property

ξW0ðξÞ > 0; ξ ≠ 0: ð33Þ

Using this equation, it is easy to see that

dΓ
dr

¼ r2e
α−β
2 ξ02 þ r2

6
e
αþβ
2 ξW0ðξÞ; ð34Þ

where ΓðrÞ≡ r2e
α−β
2 ξξ0, ξ0 ≡ dξ=dr.

The right-hand side of (34) is positive for any nontrivial
ξðrÞ, and the function ΓðrÞ is strictly increasing. For the
solutions satisfying (29), we have ΓðrÞ → 0 as r → ∞. In a
nontrivial case, this is possible if and only if ΓðrÞ < 0, so
that ∀ r > r�0 the functions ξðrÞ and ξ0ðrÞ are nonzero and
have opposite signs.
Now we will prove that, in the case of T̂μν ≡ 0, solutions

of (24)–(26) with asymptotic conditions (27) and (29) can
be regularly extended to the left of r�0.

Similar to [56], we introduce variables x ¼ ðαþ βÞ=2
and

X ¼ ex; Y ¼
�
r
rg

�
e
α−β
2 ; Z ¼ −rY

dξ
dr

: ð35Þ

Then, using (25) and (24), we obtain an equivalent first-
order system in terms of the dimensionless variables X, Y,
Z, and ξ,

dX
dr

¼ 3XZ2

rY2
; ð36aÞ

dY
dr

¼ X
rg
X½1 − r2WðξÞ�; ð36bÞ

dZ
dr

¼ −
r2

6rg
XW0ðξÞ; ð36cÞ

dξ
dr

¼ −
Z
rY

: ð36dÞ

It is sufficient to show that the right-hand sides of system
(36) are bounded as r → r�0. We shall use the monotonicity
properties of XðrÞ, ZðrÞ, and ξðrÞ following directly from
(36a), (36c), and (36d).
Consider first the case ξðrÞ > 0. In the domain ξ > 0,

where WðξÞ and W0ðξÞ are bounded, Eq. (36a) implies that
XðrÞ > 0 is monotonically increasing and bounded for
r → r�0. Therefore, the right-hand sides of (36b) and (36c)
are bounded and integrable as r → r�0 þ 0 and there exist
finite limits ZðrÞ → Z0 and YðrÞ → Y0.
Evidently, Z0 > 0 because ZðrÞ is a strictly decreasing

function as a consequence of (36c).
In order to estimate the value of Y0 from below, we

consider an interval ðr�0; r1� for some r1 < ∞. Taking into
account that XðrÞ is a monotonically increasing function,
we can choose it as an independent variable. After division
of (36b) by (36a), we have, for r�0 < r < r1,

−
d
dX

�
rg
Y

�
¼ r

3Z2ðrÞ ½1 − r2WðξðrÞÞ� < r1
3Z2ðr1Þ

;

where we have taken into account ZðrÞ > Zðr1Þ. After
integration from XðrÞ to Xðr1Þ, we obtain

1

YðrÞ <
1

Yðr1Þ
þ r1Xðr1Þ
3rgZ2ðr1Þ

: ð37Þ

This excludes the case Y0 ¼ 0 yielding Y0 > 0.
Now we see that the right-hand sides of (36a) and (36d)

are also bounded and integrable and there exist finite limits
XðrÞ and ξðrÞ for r → r�0 > 0.
Thus, the whole system (36) is regular for r → r�0 and,

according to the local existence and uniqueness theorems, it
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can be extended to the left neighborhood of this point. The
contrary assumption is false and we must put r�0 ¼ 0.
Now we can repeat considerations concerning YðrÞ, ZðrÞ

on ð0;∞Þ yielding

Z0 ¼ lim
r→0þ

ZðrÞ > 0 ð38Þ

and

Y0 ¼ lim
r→0þ

YðrÞ > 0: ð39Þ

This completes the consideration of the case ξðrÞ > 0.
The case of ξðrÞ < 0 differs from that considered above

due to the exponential behavior of WðξÞ, W0ðξÞ for ξ < 0.
However, here we also can show that the right-hand side of
(36c) is bounded by using the same reasoning as in [56]
(Lemma 4); see Appendix B. Further consideration is
similar to the case of positive ξðrÞ.
Finally, we summarize that solution αðrÞ∈C1,

βðrÞ∈C1, ξðrÞ∈C2 of Eqs. (24)–(26) satisfying (27)
and (29) exists for all r > 0 and is unique. Moreover,
there exist the limits from the right (38) and (39).
Using the estimates of Y0 and Z0, we infer a logarithmic

behavior of α, β, and ξ corresponding to a power-law
behavior of XðrÞ and YðrÞ as r → 0,

x ∼ η ln

�
r
rg

�
; ξðrÞ ∼ −ζ ln

�
r
rg

�
; ð40Þ

αðrÞ ∼ ðη − 1Þ ln
�
r
rg

�
; βðrÞ ∼ ðηþ 1Þ ln

�
r
rg

�
; ð41Þ

where ζ ¼ Z0=Y0 > 0 and η ¼ 3ζ2. These constants can be
related with asymptotic parameters M and Q at infinity by
means of numerical methods.
Relations (40) and (41) justify the choice of zero

approximation for the iteration procedure described in
Appendix C, which enables us to obtain more detailed
asymptotic relations for r → 0. Here we present the
resulting leading orders of the metric coefficients,

eαðrÞ ≈ X0Y0

�
r
rg

�
η−1

�
1 − σ

η − 1

ðηþ 1Þ2
�
r
rg

�
ηþ1

�
; ð42Þ

eβðrÞ ≈ σ

�
r
rg

�
ηþ1

�
1 − σ

3ηþ 1

ðηþ 1Þ2
�
r
rg

�
ηþ1

�
; ð43Þ

and of the scalaron field,

ξðrÞ ≈ −ζ ln
�
r
rg

�
þ ξ0 þ

ζσ

ðηþ 1Þ2
�
r
rg

�
ηþ1

; ð44Þ

where ζ ¼ Z0=Y0, σ ¼ X0=Y0, η ¼ 3ζ2, and X0 > 0 is the
constant arising in (C7). In case of asymptotically flat

configurations, these constants are related to the parameters
Q and Mμ. These dependencies can be obtained numeri-
cally; the example for η ¼ ηðMμÞ is presented in Fig. 3.
Obviously, our conclusion about thequalitative behavior of

the asymptotically flat solutions on the radial interval ð0;∞Þ
is valid in the Jordan frame as well. Some caution is needed
about the singularity at the origin. Similar to [56], using the
asymptotic relations (42) and (43), we infer that there is a
naked singularity at r ¼ 0 in the Einstein frame. However,
due to the singular conformal factor (4), we must check the
appearance of NS directly in the Jordan frame (cf. [66]). For
the original metric in the Jordan frame, we have

ds2 ¼ AðrÞdt2 − BðrÞdr2 − ρ2ðrÞðdθ2 þ sin2θdφ2Þ; ð45Þ

where according to (4),

AðrÞ ¼ eα−2ξ; BðrÞ ¼ eβ−2ξ; ρðrÞ ¼ re−ξ: ð46Þ

The Kretschmann scalar behaves as

K ¼ RαβγδRαβγδ ∼
�
rg
r

�
6ð1þζ2Þþ4ζ

: ð47Þ

Using (46), it is easy to verify that radial null geodesics
emanating from the origin can reach an external observer in a
finite time. Thus, for arbitrarily small SF ξ ≠ 0,Q ≠ 0, there
is a naked singularity at the center.5

Transition from (45) to the curvature coordinates
t; ρ; θ;φ yields

ds2 ¼ Ãdt2 − B̃dρ2 − ρ2ðdθ2 þ sin2θdφ2Þ; ð48Þ

where the leading terms as ρ → 0 are

ÃðρÞ ¼ X0Y0e3ξ0ðζ−1Þ
�
ρ

rg

�
t
�
1þO

�
ρ

rg

�
s
�
;

B̃ðρÞ ¼ σ

ðζ þ 1Þ2 e
sξ0

�
ρ

rg

�
s
�
1þO

�
ρ

rg

�
s
�
;

t ¼ 3ζ − 1; s ¼ 3ζ2 þ 1

ζ þ 1
; ζ ≠ −1:

The integer values of s, t found in [27] can be obtained in
part with ζ ¼ −2=3;�1=3, 1, 3. The cases ðt; sÞ ¼
ð0; 0Þ; ð1;−1Þ indicated in [27] turn out to be impossible
in our analysis of asymptotically flat configurations with
ζ ≠ 0. Note that taking into account the next order terms
from (42)–(44) shows that metric coefficients in the general
case cannot be represented in the form of the Frobenius
expansion, as assumed in [27] (cf. also [67]); this is true
only for special values of ζ.

5Here, the center of the spherically symmetric system is
defined as the origin of the curvature coordinates for metric (19).
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VI. SPHERICAL PERTURBATIONS

Our aim is to find a region of parameters μ, Q for which
static SS configurations described by Eqs. (20)–(23) with
T̂μ;ν ≡ 0 are unstable against small perturbations. To check
for stability/instability issues, we consider linear perturba-
tions, which can be expressed as superposition of functions
with the time dependence6 ∼ expð−iΩtÞ, Ω ≠ 0. The
boundary conditions for the spatial dependence of the
perturbations will be given below.
There is extensive literature on the linear perturbations

against spherically symmetric background (see, e.g.,
[68,69]). The perturbations can be separated into axial
and polar modes [68,69], which can be treated independ-
ently. However, in order to show that the system is unstable,
it is sufficient to show that there exists at least one unstable
mode. Correspondingly, we will restrict ourselves to the
case of radial perturbations. In this case, the treatment of
our problem follows the same scheme as in [52].
Based on the exact equations (20)–(23) in vacuum

(T̂μν ≡ 0), we perturb the static SS background αðrÞ, βðrÞ,
ξðrÞ by considering αðrÞ þ α1ðt; rÞ, βðrÞ þ β1ðt; rÞ, ξðrÞ þ
ξ1ðt; rÞ, where α1, β1, ξ1 represent small perturbations.
After linearization, Eq. (22) yields

β̇1 ¼ 6rξ̇1ξ0:

Neglecting the static additive, we have

β1 ¼ 6rξ1ξ0: ð49Þ

The linearized sum of Eqs. (20)–(21) yields

α01 − β01
2

¼ ξ1eβf6ξ0½1 − r2WðξÞ� − rW0ðξÞg: ð50Þ

Equations (49) and (50) allow us to express all perturba-
tions through ξ1. Then we perform linearization of (23)
taking into account this equation for the background values
and substitute ξ1 ¼ r−1Φ to obtain the master equation in
the form

∂
2Φ
∂t2

− e
α−β
2
∂

∂r

�
e
α−β
2
∂Φ
∂r

�
þ UeffΦ ¼ 0; ð51Þ

UeffðrÞ ¼
eα−β

r
α0 − β0

2
þ 1

6
eαW00ðξÞ

− eαξ0½6ξ0ð1 − r2WðξÞÞ − 2rW0ðξÞ�: ð52Þ

Here α≡ αðrÞ, β≡ βðrÞ, and ξ≡ ξðrÞ.

Using (25) and (36d), we get

UeffðrÞ ¼ −
eα−β

r2
þ eα

r2
½1 − r2WðξÞ�

�
1 − 6

Z2

Y2

�

− 2eα
�
Z
Y
W0ðξÞ − 1

12
W00ðξÞ

�
: ð53Þ

Typical examples of Ueff are shown in Fig. 4.
The initial value problem related to Eq. (51) would

be incomplete without a boundary condition at the
center and at the infinity. While behavior at infinity is
treated in a standard way, we have no physical idea of
what happens near a naked singularity. On the other hand,
the problem must be mathematically correct in order to
provide a unique solution to the linearized equations
[52,53,55,70–72]. Our analysis below is analogous to
that of [52], which takes into account that we deal with
small perturbations.
For a single mode Φ ∼ expð−iΩtÞ, we have from (51)

e
α−β
2
∂

∂r

�
e
α−β
2
∂Φ
∂r

�
þ ½Ω2 − Ueff �Φ ¼ 0: ð54Þ

The asymptotic behavior of UeffðrÞ as r → 0 is domi-
nated by the term

eα−β

r2
≈
K0

r4

�
1þ 2σ

ηþ 1

�
r
rg

�
ηþ1

�
; ð55Þ

whereK0 ¼ Y2
0r

2
g is not contained in the general asymptotic

solution of (54),

ΦðrÞ ¼ C1rþ C2r lnðr=rgÞ; r → 0: ð56Þ

In order that this solution and its derivatives be regular at
the origin, we must put C2 ¼ 0; otherwise, the perturbation
cannot be considered small. Moreover, if C2 ≠ 0, then the
perturbed Kretschmann scalar turns out to be much larger
than (47) as r → 0 (cf. considerations in [53]).
Therefore, we consider solutions of (54) with regular

first derivative at r ¼ 0 corresponding to

ΦðrÞ ¼ C1r; C2 ¼ 0; r → 0: ð57Þ

The boundary condition at spatial infinity is

ΦðrÞ → 0; r → ∞: ð58Þ

In terms of the “tortoise” radial variable r� defined as

dr�
dr

¼ eðβ−αÞ=2; r�ð0Þ ¼ 0; ð59Þ

Eq. (54) can be written in the familiar form

6Strictly speaking, we consider a class of time-dependent
perturbations that satisfy certain boundary conditions as func-
tions of r (see below) and can be expressed in the form of a
Laplace/Fourier transform as functions of t.
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∂
2Φ
∂r2�

−Ueff ½rðr�Þ�Φ ¼ −Ω2Φ: ð60Þ

Thus, we have the problem of finding an eigenpair
ðΩ2;Φ∈C2Þ for the symmetric operator on the left-hand
side of (60) with the null Dirichlet boundary condition at
the center and condition (58) at infinity.7 To be precise, we
work in the space of C2 functions, which are square
integrable on ð0;∞Þ. Obviously, the eigenvalues Ω2 of
this problem are real; for brevity, we call solutions
“unstable” if Ω2 < 0 and “stable” otherwise.
For large values of the radial variable, taking into

account (30) and (15), we have

UeffðrÞ ≈
�
1 −

rg
r

�
μ2; r → ∞: ð61Þ

The corresponding asymptotic for large r is

ΦðrÞ ∼D1ðΩÞekr þD2ðΩÞe−kr; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Ω2

q
:

Therefore, a necessary condition for (58) to be satisfied is
μ2 > Ω2. The equation for the eigenvalues is

D1ðΩÞ ¼ 0; ð62Þ

and it ensures condition (58).

VII. NUMERICAL SOLUTIONS

A. Static SS solutions

We performed backward numerical integration of (25)
and (26) with respect to α, β, and ξ starting from some
sufficiently large value of the radial variable rinit ≫ rg and
μrinit ≫ 1, where ξ can be assumed sufficiently small and
one can use the asymptotic relations (30) to specify the
initial conditions.8 We typically opted rinit ∼ 100rg for
moderate μ. Note that, in this case, the backward integra-
tion is more convenient than using the shooting method,
which involves several shooting parameters.
Numerical investigations show that eαðrÞ is monotonically

increasing, while there is amaximumof eβðrÞ at some rmax so
that this function is monotonically increasing in the interval
ð0; rmaxÞ and decreasing for r > rmax. Near the origin,
eαðrÞ > eβðrÞ, but, at some r ¼ rc, the sign of the inequality
changes and we have eαðrÞ < 1 < eβðrÞ for r > rc.
For fixed M, Q, as μ increases, the maximum of eβðrÞ

grows and becomes very sharp, whereas, to the left of this
maximum, the graphs of eαðrÞ, eβðrÞ are pressed to the

abscissa axis. The same situation is observed with fixed μ
as Q decreases and becomes small. To the right of the
maximum, we have eαðrÞ < eβðrÞ; as r → ∞, these func-
tions tend to the asymptotic value equal to unity. The larger
is μ, the faster the asymptotic values are reached.
There are different modes of behavior of YðrÞ. For

fixed M and μ, and for a sufficiently small Q, we have
r2WðξðrÞÞ ≤ 1 for all r, and YðrÞ is monotonically increas-
ingwith the asymptoticsYðrÞ ≈ r for large r. For sufficiently
large jQj, we have an interval with negative right-hand side
of (36b), whereYðrÞ is a decreasing function. This interval is
bounded because ξðrÞ is an exponentially decreasing func-
tion and, for sufficiently large r, again r2WðξðrÞÞ < 1, and
YðrÞ is monotonically increasing. This behavior is typical in
case of large Mμ; in this case, we have a plateau of almost
constant YðrÞ, ZðrÞ near the center. Far from the center, SF
tends to zero exponentially according to Eqs. (30) and (D2)
leading to eα ≈ 1 − rg=r ≈ e−β.
For Mμ ≫ 1 we used the approximation (D2) of

Appendix D, which enables us to get the initial conditions
for the backward numerical integration with, e.g., rinit ∼
ð5 ÷ 10Þrg and ξðrinitÞ ∼ 0.01. Here we practically have the
Schwarzschild metric for r > r0. Note that the case
Mμ ≫ 1 is quite difficult to process on a laptop due to
the rapid change of solutions near the region where the
condition of smallness of ξ begins to be violated.
Figures 1 and 2 show the resulting metric coefficients

ÃðRÞ and B̃ðRÞ recalculated to the curvature coordinates of
the Jordan frame (48). Their behavior is qualitatively
similar to the case of the Einstein frame. The values
ðY0; Z0Þ are derived numerically according to (39) and
(38); this enables us to obtain the asymptotic parameters ζ
and η ¼ 3ζ2. Figure 3 shows the dependence ηðMμÞ.

B. (In)stability against radial perturbations

Here we present the results of numerical analysis on
linear stability/instability. We imposed null Dirichlet con-
ditions in the center, because otherwise perturbations
cannot be considered small. The algorithm of calculations
involved two main stages.

(i) We chose the initial conditions for static SS (back-
ground) solutions according to the asymptotic for-
mula (30) at sufficiently large r and performed
backward integration to get these solutions accord-
ing to Sec. VII A.

(ii) In order to check stability of the static SS solution
described by α, β, ξ, we considered numerical
solutions of the initial value problem for (54) with
initial data according to the asymptotic formula (57)
for sufficiently small r. We used the shooting
method with the single shooting parameter Ω2 to
check condition (62), yielding the correct asymptotic
behavior (58) at infinity. This procedure was carried
out for a set of different parameters ðMμ; QÞ.

7For numerical investigations, it is more convenient to deal
directly with initial equation (54).

8Asymptotic formulas for dξ=dr are obtained by formal
differentiation of (30).
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In particular, we found that the static SS configurations
considered above are linearly unstable at least in some
region of parameters, which includes, for fixed Mμ,
sufficiently small values of Q. This is enough to state that
corresponding configurations are unstable; at the same
time, regions which are linearly stable with respect to radial
perturbations may be unstable with respect to another types
of perturbations.
Figure 5 demonstrates typical dependencies of the

eigenvalues Ω as functions of Q. The domains of
ðMμ; QÞ, which correspond to linearly stable and unstable
SS solutions against radial perturbations are shown in
Fig. 6. Transition to the Jordan frame preserves the time
dependence ∼e−iΩt and, therefore, the stability/instability
domains in Fig. 6.

FIG. 2. Typical behavior of B̃ðρÞ in (48) for different values of
Mμ and for Q ¼ 10.

FIG. 1. Typical behavior of ÃðρÞ in (48) for different values of
Mμ and for Q ¼ 10.

FIG. 3. Behavior of η ¼ 3ζ2 as a function of Mμ for different
values of Q.

FIG. 4. Typical examples of the effective potential Ueff ½rðr�Þ�
for radial perturbations in the case of Mμ ¼ 1. The upper/lower
panel shows the case of positive/negative Q. In both cases,
Ueff → μ2 as r� → ∞.
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VIII. DISCUSSION

We studied static asymptotically flat spherically sym-
metric configurations of the quadratic fðRÞ gravity
described by Eq. (1). In this case, it is possible to introduce
the scalaron field according to (4) and to apply the method
of Sec. V. In should be noted that this method uses
inequality (33) that is rather restrictive; it does not hold
if, for example, fðRÞ contains terms ∝ Rm, m > 2, leading
to decreasing WðξÞ for large ξ > 0 (see, e.g., [6]).
Nevertheless, our method and results can be generalized
to some class of fðRÞ theories broader than (1) (see
Appendix E for examples).
Transition to the Einstein frame made possible purely

analytical treatment of static global solutions using the

method of [56]. However, it is the metric gμν of the
Jordan frame that we consider to be the physical metric,
responsible for all geometric measurements, whereas
the conformally transformed ĝμν and the scalaron field
are auxiliary objects. Indeed, we deal with different
Riemannian spaces in Einstein and Jordan frames that
may affect, e.g., the nature of singularities (see examples
in [66]). In this regard, we emphasize that the main results
of our work concern the original Jordan metric.
As follows from our findings, static asymptotically flat

SS solutions with zero Tμν are regular outside the center for
any scalaron mass and for the global constants M > 0,
Q ≠ 0; they do not have spherical singularities, which can
arise, e.g., in configurations with highly nonlinear scalar
field potentials [57].
In the case of an isolated regular SS structure with a

continuous mass-energy distribution in the central region,
taking into account the experimental and theoretical bounds
on the scalaron mass, the contribution of the scalaron field
to the observable effects is expected to be very small. In this
case, the gravitational field is determined by the energy-
momentum tensor inside the body. Outside the SS body, the
field is completely determined by two parameters: the mass
M and the scalar charge Q.
Returning to the case of a purely gravitational configu-

ration without ordinary matter (Tμν ≡ 0), we state that the
parameters M and Q act as the only characteristics of the
static spherically symmetric system, and there is neces-
sarily a naked singularity at the center if Q ≠ 0. In this
regard, we confirm the statement of [27] concerning the
occurrence of NS at the center (although some provisions
of this work need adjustment). The only exception is the
Schwarzschild black hole solution that corresponds to zero
scalaron field ξ≡ 0 (Q ¼ 0); in this case, there is no
difference between the Jordan and Einstein frames:
ĝμν ≡ gμν. It is important to note that, whatever small
nonzero scalar charge could be, it strongly affects the
solution of the quadratic fðRÞ gravity [4,23] in the interior
region (r≲ rg) that is visible to an external observer and
permeable to external signals moving toward the singu-
larity. Apparently, this situation is typical for many isolated
systems with a scalar field, ranging from the linear massless
scalar field [73,74] to configurations with more compli-
cated potentials [56]. No matter how small the scalar field
is, it has a strong impact on the properties of space-time in
this region. At the same time, for large values of Q, the
deviations from the Schwarzschild metric can be noticeable
at distances as large as, say, r ∼ 5–10rg. In any case, it is
reasonable to defer detailed discussion of the correspond-
ing observational effects until stability issues are resolved.
In this paper, we were not able to propose a completely

analytic treatment of stability, and we used numerical
methods. We derived equations for linear perturbations
and studied the asymptotic properties of their solutions near
the center and for large r. As it is pointed out in Sec. VI, the

FIG. 5. Typical dependencies of Ω2ðQÞ. Black curves, Q > 0;
blue curves, Q < 0.

FIG. 6. The gray region corresponds to linear instability against
radial perturbations of the static SS configurations defined by the
parameters Mμ and Q. The boundary line corresponds to zero
eigenvalues satisfying (62).
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physical conditions near the naked singularity are
unknown; for example, the singularity may be radiating,
absorbing, or something else. However, we are limited to
the assumption of small perturbations, which leads us to the
to the restriction (58) and corresponds to the null Dirichlet
condition at the center. With this condition we found
exponentially growing modes of perturbations (satisfying
boundary conditions at the center and at infinity) for some
Mμ; Q shown in the gray region of Fig. 6. The static
configurations with μ, Q from this region are unstable with
respect to linear perturbations. Although our numerical
simulations involve moderate values of Q and Mμ, they
suggest that the domain of instability becomes larger for
largeMμ so as to include astrophysically interesting values.
On the other hand, there exists the region of parameters,

where linear perturbations are bounded (the white region in
Fig. 6). This could indicate the existence of stable con-
figurations, if not for the following circumstances: (i) in
case of a nonlinear system, the existence of bounded linear
perturbations does not always mean stability, and nonlinear
corrections must be studied (cf., e.g., [53]); (ii) other types
of linear perturbations (polar and axial ones) are also
possible. In fact, there are general results on the linear
stability against axial perturbations leading to a
Schrödinger-type equation [75]. One can show that the
wave potential in this equation appears to be positive
definite in case of our problem; this can be used to prove
stability with respect to axial linear perturbations. However,
investigation of polar perturbations is mandatory.
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APPENDIX A: ASYMPTOTIC PROPERTIES AS
r → ∞

Here we prove the existence of the unique solutions of
(24)–(26) with conditions (27) and (29); at the same time,
our aim is to justify formula (30). The proof uses the
standard techniques of the theory of differential equations
used in considerations of the conditional stability [76]. We
will isolate the linear part of the equations using specific
properties of the system, separate the nonlinear terms, and
reduce the problem to application of the contraction
mapping principle. The specific feature of our treatment
is that we reduce the problem to integral equations so that to
have expressions like (30) at the first iteration.

Further, we use a new field variable ψ ¼ rξ; also it is
natural to rewrite (24) and (25) using the variables

x ¼ αþ β

2
; y ¼ β − α

2
þ ln ð1 − rg=rÞ: ðA1Þ

This gives

dx
dr

¼ F2ðr;ψ ; dψ=drÞ; ðA2Þ

dy
dr

þ xþ y
r − rg

¼ F3ðr; x; y;ψ ; dψ=drÞ; ðA3Þ

where the nonlinear terms (starting from the second order in
x, y, ψ , and dψ=dr) are collected into F2 and F3. Because
of (27), we have

xð∞Þ ¼ yð∞Þ ¼ 0: ðA4Þ

Using (25), we write Eq. (26) for static SF in the
form

d2ψ
dr2

þ
�
dψ
dr

−
ψ

r

��
1

r
ð1 − eβÞ þ reβWðξÞ

�
¼ r

6
eβW0ðξÞ:

ðA5Þ

Here, in the first order, we have eβ ¼ 1 − rg=r and
W0ðξÞ ¼ 6μ2ξ. After some rearrangement, we collect the
linear part of (A5) into the left-hand side,

d2ψ
dr2

−
�
dψ
dr

−
ψ

r

�
rg

rðr − rgÞ
−

μ2ψ

1 − rg=r

¼ F1ðr; α; β;ψ ; dψ=drÞ; ðA6Þ

where F1 contains the nonlinear terms in x, y, ψ ,
and dψ=dr.
For arbitrary n ¼ 1; 2;…, one can find an asymptotic

solution9 of (A6) in the form

vðr; μÞ ¼ e−μr
�
rg
r

�
m
�
1þ

Xn
k¼1

bkðμÞ
rk

�
; ðA7Þ

m≡mðμÞ ¼ Mμ, which satisfies the exact relation

d2v
dr2

−
�
dv
dr

−
v
r

�
rg

rðr − rgÞ
−

μ2v
1 − rg=r

¼ pnðr; μÞv
rnþ2

; ðA8Þ

9In fact, we look for an asymptotic solution of the linear
homogeneous part of (A6) defined by the left-hand side. The
nonlinear corrections due to the right-hand side of (A6), which
are exponentially smaller than the terms of (A7) as r → ∞, are
“automatically” taken into account in the iteration process below.
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where pnðr; μÞ is a rational function of r, bounded as
r → ∞; the coefficients bk are determined recursively. In
particular, in the case of formula (30), we have n ¼ 2; the
validity of (A8) can be checked by direct substitution.
Denote

ψ1ðrÞ ¼ vðr;μÞ; ψ2ðrÞ ¼ vðr;−μÞ∼ eμr
�
r
rg

�
m
: ðA9Þ

The equation for ψ2 is obtained from (A8) by the change
μ → −μ leading also to m → −m. Now we have the
exponentially decaying approximate solution of (A6) and
exponentially growing one. The Wronskian of ψ1, ψ2 is
calculated directly to be w12 ¼ 2μ½1þOðr−1Þ�.
We use the method of variation of constants by setting

ψðrÞ ¼ K1ðrÞψ1ðrÞ þ K2ðrÞψ2ðrÞ; ðA10aÞ

dψ
dr

¼ K1ðrÞ
dψ1

dr
þ K2ðrÞ

dψ2

dr
; ðA10bÞ

where the “variable constants” are K1 and K2. Unlike the
usual method of variation of constants, functions ψ1, ψ2 are
not exact solutions of the linear part of (A6), but satisfy
(A8) with different signs of μ.
Let Q� ¼ Qrg. In order to have the asymptotics ψ ∼

Q�ψ1ðrÞ as r → ∞, corresponding to (30), we require

K1ð∞Þ ¼ Q�; K2ð∞Þ ¼ 0: ðA11Þ

A consequence of (A10) is

dK1

dr
ψ1ðrÞ þ

dK2

dr
ψ2ðrÞ ¼ 0: ðA12Þ

Now we differentiate (A10b) and substitute the result into
(A6) using (A8) and (A10). We obtain

dK1

dr
dψ1

dr
þ dK2

dr
dψ2

dr
¼ −Gðr; K1; K2Þ þ F1; ðA13Þ

where

Gðr; K1; K2Þ ¼
pnðr; μÞK1ψ1 þ pnðr;−μÞK2ψ2

rnþ2
: ðA14Þ

Combination of (A12) and (A13) yields separate equations
for dK1=dr and dK1=dr and then, by virtue of (A11), leads
to integral equations

K1ðrÞ ¼ Q� −
Z∞

r

GðtÞ − F1ðtÞ
w12ðtÞ

ψ2ðtÞdt; ðA15Þ

K2ðrÞ ¼
Z∞

r

GðtÞ − F1ðtÞ
w12ðtÞ

ψ1ðtÞdt: ðA16Þ

Equations (A2) and (A3) with conditions (A4) lead to the
integral equations

xðrÞ ¼ −
Z∞

r

F2ðtÞdt; ðA17Þ

yðrÞ ¼ −
Z∞

r

�ðt − rÞF2ðtÞ þ ðt − rgÞF3ðtÞ
r − rg

�
dt: ðA18Þ

The integral equations (A15)–(A18) can be presented in
terms of new variables u≡ fujg, j ¼ 1;…; 4, by means of
the following substitutions:

K1ðrÞ ¼ u1ðrÞ; K2ðrÞ ¼ u2ðrÞ
ψ1ðrÞ
ψ2ðrÞ

; ðA19Þ

and

xðrÞ ¼ u3ðrÞψ1ðrÞ; yðrÞ ¼ u4ðrÞψ1ðrÞ: ðA20Þ

Accordingly, we have

ψðrÞ ¼ ðu1 þ u2Þψ1ðrÞ;

G̃ðr; uÞ≡Gðr; K1; K2Þ ¼
pnðr; μÞu1 þ pnðr;−μÞu2

rnþ2
ψ1;

and the functions

F̃jðr; uÞ≡ Fj

�
r; x; y;ψ ;

dψ
dr

�
; j ¼ 1; 2; 3;

should also be expressed in terms of u by means of (A19)
and (A20).
Introduce the operator A ¼ fA1;A2;A3;A4g, where

A1ðr; uÞ ¼ Q� −
Z∞

r

G̃ðt; uÞ − F̃1ðt; uÞ
w12ðtÞ

ψ2ðtÞdt; ðA21Þ

A2ðr; uÞ ¼
ψ2ðrÞ
ψ1ðrÞ

Z∞

r

G̃ðt; uÞ − F̃1ðt; uÞ
w12ðtÞ

ψ1ðtÞdt; ðA22Þ

A3ðr; uÞ ¼ −
1

ψ1ðrÞ
Z∞

r

F̃2ðr; uÞdt; ðA23Þ

ZHDANOV, STASHKO, and SHTANOV PHYS. REV. D 110, 024056 (2024)

024056-12



A4ðr; uÞ ¼ −
Z∞

r

ðt − rÞF̃2ðt; uÞ þ ðt − rgÞF̃3ðt; uÞ
ψ1ðrÞðr − rgÞ

dt:

ðA24Þ

With this definition, the operator equation

uðrÞ ¼ Aðr; uÞ; ðA25Þ

is equivalent to system (A6), (A2), and (A3) with con-
ditions (29) and (A4) and, therefore, to the system of
equations (24)–(26) with conditions (27) and (29).
Equation (A25) will be considered on interval ½r0;∞Þ,
where r0 > rg will be taken sufficiently large.
Note that

jψðrÞj ¼ jðu1 þ u2Þψ j ≤ juðrÞj4ψ1ðrÞ; ðA26Þ
���� dψdr

���� ≤ μ½1þOðr−1Þ�juðrÞj4ψ1ðrÞ; ðA27Þ

jG̃ðr; uÞj ≤ C1

rnþ2
ψ1ðrÞjuj4; C1 ¼ Oð1Þ; ðA28Þ

juj4 ¼
P

4
i¼1 juij, where we used the explicit expressions

(A7) and (A9) and representations (A10). Further, we use
that, for sufficiently large r,

ψ1ðrÞψ2ðrÞ ¼ 1þOðr−1Þ;
Z∞

r

ψ2
1ðtÞdt ¼

ψ2
1ðrÞ
2μ

½1þOðr−1Þ�:

After lengthy calculations, we obtain that the functions
F̃j are Lipschitz continuous:

jF̃jðr; uÞ − F̃jðr; u0Þj ≤ Hðu; u0Þju − u0j4; ðA29Þ

where j ¼ 1, 2, 3,

Hðu; u0Þ ≤ C2 maxfjuj4; ju0j4gψ2
1ðrÞ; C2 ¼ Oð1Þ:

Note that we have two small parameters: ψ1ðrÞ and
ðrg=rÞnþ1; the contribution of the first one to estimates
(arising due to the nonlinear terms Fj) is exponentially
smaller for r ≥ r0. Then, for sufficiently large r0, we have

εðr0Þ ¼ maxfðrg=r0Þnþ1;ψ1ðr0Þg ¼ ðrg=r0Þnþ1:

Denote kfkba ≡ supffðtÞ; t∈ ½a; b�g. Consider the
Banach space B of bounded continuous functions on
½r0;∞Þ with the norm kfk∞r0 and a domain D ⊂ B∶

∀ u∈D, juj ≤ 2jQ�j. The operator A is well defined
onD; all integrals are convergent: in (A21), the integrand is
estimated as ∼r−ðnþ2Þ due to (A28) and (A29); in (A22)–
(A24), we have exponentially decaying expressions in the
integrands.
By virtue of the above estimates, we have, for u∈D,

jAðr; uÞj ≤ Q� þ C3εðr0Þkuk∞r ; ðA30Þ

jAðr; uÞ −Aðr; vÞj ≤ C1εðr0Þku − vk∞r0 ; ðA31Þ

where constants C1; C3 ¼ Oð1Þ. Then from (A30) we have
that (for sufficiently large r0) AðBÞ ⊂ B and, from (A31),
we infer the contraction property. Therefore, Eq. (A25) has
a unique solution.
This means that there exists a unique solution αðrÞ∈C1,

βðrÞ∈C1, ξðrÞ∈C2 of Eqs. (24)–(26) with conditions (27)
and (29).
From (A21) and (A22) we infer

jψðrÞ −Q�ψ1ðrÞj ¼ ju1ðrÞ −Q� þ u2ðrÞjψ1ðrÞ
≤ Oðr−ðnþ1ÞÞψ1ðrÞ:

This confirms formula (30). Also, using (A23) and (A24),
we have

ju3ðrÞj þ ju4ðrÞj ≲ ψ1ðrÞ;

whence, on the account of (A1),

����αðrÞ − ln

�
1 −

rg
r

�����þ
����βðrÞ þ ln

�
1 −

rg
r

�����≲O½ψ2
1ðrÞ�:

ðA32Þ

Formula (30) is the result of the first iteration of (A25). The
next iterations add higher-order corrections in powers of
1=rnþ1 and expð−μrÞ, although the latter are useful only if
very accurate results are required. In our study, the first
iteration yielding (30) and (A32) was quite sufficient to
impose the initial conditions for backward numerical
integration described in Sec. VII A.

APPENDIX B: THE CASE OF ξ < 0

Here we use the method of [56]. The key question is to
prove that the right-hand sides of (36b) and (36c) are
bounded as r → 0.
Analogously to Sec. V, consider r < r1 for some

r1 < ∞. If ξ < 0 for r ≤ r1, then 0 < WðξÞ <
ð3=4Þμ2 expð4jξjÞ, jW0ðξÞj < 3μ2 expð4jξjÞ, and jξðrÞj is
monotonically decreasing due to (36d). For both right-hand
sides (36b) and (36c), it suffices to estimate

PðrÞ≡ r2XðrÞe4jξj ¼ r21X1e4jξ1je−2Lþ4d−ðx1−xÞ; ðB1Þ
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where x ≡ xðrÞ ≡ ln½XðrÞ�, r < r1, and we denoted x1¼
xðr1Þ, X1¼Xðr1Þ¼ expðx1Þ, ξ1¼ ξðr1Þ, dðrÞ ¼ jξðrÞj−
jξ1j > 0, and L≡ LðrÞ ¼ − lnðr=r1Þ > 0.
We use the inequality

½ξðrÞ − ξðr1Þ�2
ln ðr1=rÞ

≤
Zr1
r

t

�
dξ
dt

�
2

dt; r < r1;

which is valid for any continuously differentiable function
ξ [see Eq. (31) of [56] ]. By virtue of (24),

x1 − x ¼ 3

Zr1
r

t

�
dξ
dt

�
2

dt ≥
3

L
d2:

Then in (B1),

− 2Lþ 4d − ðx1 − xÞ ≤ −2Lþ 4d −
3

L
d2

¼ −
3

L

�
d −

2

3
L

�
2

−
2

3
L < 0;

whence

PðrÞ ≤ r21X1ðr=r1Þ2=3e4jξ1j:

Therefore, the exponent e4jξj is suppressed by XðrÞ; the
right-hand sides of (36b) and (36c) are bounded. This is
sufficient to infer the existence of the finite limits Z0 and Y0

for r → 0. The considerations leading to the lower bounds
jZ0j > 0 and Y0 > 0 are similar to the corresponding
arguments in Sec. V for positive ξðrÞ.

APPENDIX C: ASYMPTOTIC BEHAVIOR
NEAR NS

Here we formulate an iteration procedure to find the
asymptotic expansion near NS in curvature coordinates.
Taking into account (38) and (39), we have from (36b)
and (36c),

YðrÞ ¼ Y0 þ Y1ðrÞ; ZðrÞ ¼ Z0 þ Z1ðrÞ; ðC1Þ

where

Y1ðrÞ ¼
Zr

0

XðtÞ½1 − t2WðξðtÞÞ� dt
rg

¼ O½ðr=rgÞηþ1�; ðC2Þ

Z1ðrÞ ¼ −
1

6

Zr

0

t2XðtÞW0ðξðtÞÞ dt
rg

¼ O½ðrμÞ2ðr=rgÞηþ2ζþ1�:

ðC3Þ

Now we can separate the logarithmic terms in x, ξ by
setting

xðrÞ ¼ η ln

�
r
rg

�
þ x�1ðrÞ; ðC4aÞ

ξðrÞ ¼ −ζ ln
�
r
rg

�
þ ξ�1ðrÞ; ðC4bÞ

obtaining equations with smooth right-hand sides,

dx�1
dr

¼ 3

r
D1ðrÞ; D1ðrÞ ¼

Z2

Y2
−
Z2
0

Y2
0

; ðC5Þ

dξ�1
dr

¼ D2ðrÞ
r

; D2ðrÞ ¼
Z0

Y0

−
Z
Y
: ðC6Þ

On account of (C2) and (C3), we have D1ðrÞ ¼ Oðrηþ1Þ
and D2ðrÞ ¼ Oðrηþ1Þ.
Then

x�1ðrÞ ¼ lnX0 þ 3

Zr

0

dt
t
D1ðtÞ; ðC7Þ

ξ�1ðrÞ ¼ ξ0 þ
Zr

0

dt
t
D2ðtÞ; ðC8Þ

with X0 > 0 and ξ0 being free constants.
Equations (C2), (C3), (C7), and (C8) with notation (C1),

(C4a), and (C4b) form a system of integral equations for the
functions Y1, Z1, χ1, and ξ1. This system is ready for
successive approximations dealing with well-defined con-
tinuous expressions at each step of the iterative procedure
that may be used to obtain the asymptotic solution of four
equations (20)–(23) with four constants Y0, Z0, X0, and ξ0.
The results of the first iterations can be written as

follows:

YðrÞ ¼ Y0 þ
X0

ηþ 1

�
r
rg

�
ηþ1

½1þOðμ2r2Þ�; ðC9Þ

xðrÞ ¼ η ln

�
r
rg

�
þ lnX0

−
2η

ðηþ 1Þ2
X0

Y0

�
r
rg

�
ηþ1

½1þOðμ2r2Þ�; ðC10Þ
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ξðrÞ ¼ −ζ ln
�
r
rg

�
þ ξ0

þ ζ

ðηþ 1Þ2
X0

Y0

�
r
rg

�
ηþ1

½1þOðμ2r2Þ�; ðC11Þ

where ζ ¼ Z0=Y0, η ¼ 3ζ2.
In case of a spatially flat configuration, the constants Y0,

Z0, X0, and ξ0 are functions of the pair M, Q that uniquely
defines the configuration. Having the numerical solutions
of Sec. VII, we get Z0 of (38), Y0 of (39). We note a good
numerical convergence to these limits.
Returning to the initial variables eα, eβ, we obtain the

asymptotic formulas (42)–(44).

APPENDIX D: APPROXIMATE SF FOR LARGE
Mμ AND SMALL ξ

For r > rg, as r increases, we have ξ → 0 and the metric
reaches the Schwarzschild asymptotics. Moreover, as it was
pointed out in Sec. III, the realistic values of Mμ must be
very large, so the asymptotic behavior occurs very quickly.
Then we can use the WKB method in case of small ξ ≪ 1,
using (15) and (28). Substituting ξ ¼ eS into (28) gives

d2S
dr2

þ
�
dS
dr

�
2

þ dS
dr

2r − rg
rðr − rgÞ

¼ rμ2

r − rg
: ðD1Þ

Then we set S ¼ S0 þ S1 þ � � �, where the first two orders
jS0j ∼OðμÞ ≫ jS1j ∼Oð1Þ of the WKB method applied to
(D1) yield

ξðrÞ ¼ Q1 exp ð−μr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=r

p Þ
ð1 − rg=rÞ1=4ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=r

p Þμrg
�
rg
r

�
1þMμ

; ðD2Þ

where we must put Q1 ¼ Qð4=eÞMμ so as to have corre-
spondence with (30) for r ≫ rg. Approximation (D2) is
effective for ξðrÞ ≪ 1, μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − rgÞ

p
≫ lnðr=rgÞ. Note that

formula (30), unlike (D2), cannot be used for r comparable
with rg.

APPENDIX E: SOME GENERALIZATIONS

Our results on the global properties of static SS solutions
can be generalized to a broader class of fðRÞ gravity
models if certain conditions are met. First of all, for unique
determination of the dependence uðξÞ we need the monot-
onicity of f0ðRÞ. Another assumption is requirement (33),
which is needed to apply the method of Sec. V. Without this
assumption, a different asymptotic behavior at the center is
possible.
From Eq. (5), we have

W0ðξÞ ¼ 1

½f0ðuÞ�2 ½uf
0ðuÞ − 2fðuÞ�; ðE1Þ

with the relation between u and ξ given by (5). At the point
of minimum (6), this yields (11).
Taking into account that sgnξ ¼ sgnðf0 − 1Þ, we have

that (33) is satisfied if

�
df
du

− 1

��
u
df
du

− 2f

�
> 0: ðE2Þ

This inequality holds for the well-knownmodels of [77,78],
at least in some ranges of parameter values.
Consider another example,

fðuÞ ¼ u −
u2

6μ2
1þ au2n

1þ u2n
; 0 < a < 1; ðE3Þ

with the same scalaron mass μ as in the case of (1).
In this case, there exists u0 such that, for u∈ ð−∞; u0Þ,

we have df=du > 0 and uðξÞ is uniquely defined; here,
u → u0 corresponds to ξ → −∞, and u → −∞ to ξ → ∞.
For n ¼ 1, the requirements f00ðuÞ ≠ 0 and (E2) are
fulfilled if 1=5 < a ≤ 1; for n ¼ 2, the restriction is
0.558 < a ≤ 1. It is important to note that, in the case
of (E3), we have an infinite “shell” WðξÞ → const provid-
ing suitable conditions for cosmological inflation [6]. As
ξ → −∞, the behavior of solutions is also analogous to the
case of (1).
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