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Among the study of black hole thermodynamics, topology offers a novel approach and perspective for
classifying black hole systems. In this work, we explore the thermodynamical topology of the quantum
Bañados-Teitelboim-Zanelli (BTZ) black hole by employing the concept of the generalized free energy. To
fully characterize the thermodynamics, we introduce two distinct topological numbers. The first one is
determined by an expression, denoted by z, derived from the free energy. Although it can provide us with
some local physical explanations, sufficient physical significance still lacks from a global perspective. On
the other hand, the second topological number is based on the entropy expression of the generalized free
energy, leading to a more meaningful interpretation of its physical implications. This result highlights the
natural choice of entropy as the domain variable for the generalized free energy. Regarding the second
topological number, our analysis reveals a topological transition that is associated with the thermody-
namical stability of the “cold” black hole state of the quantum BTZ black hole. And the thermodynamical
topology of the BTZ black hole and quantum BTZ black hole can be different, which implies a significant
impact of quantum effects on thermodynamics. Furthermore, our study suggests the existence of
topological numbers beyond the conventional values of �1, 0.
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I. INTRODUCTION

The black hole, as a distinctive spacetime structure,
continues to be a focus of numerous advanced studies in the
field of gravity. Significantly, recent observations showed
the evidence that black holes exist in our Universe [1–4].
When quantum theory is taken into account, one intriguing
aspect of black holes, the Hawking radiation [5], emerges.
Further treating the surface gravity and area of the black
hole horizon as the temperature and entropy, black hole
systems are regarded as thermodynamical systems [6–8].
Meanwhile, the entropy-area law implies the holographic
nature of the quantum gravity [9–12]. Consequently, the
thermodynamics of black holes serves as a manifestation of
certain quantum gravitational effects.
Similar to the general thermodynamical systems, it is

conceivable that black holes possess phases and can
undergo phase transitions. In particular, in anti–de Sitter
(AdS) space, there is the Hawking-Page phase transition
between the pure radiation phase and the stable large
Schwarzschild black hole phase [13]. Such phase transi-
tions can be used to interpret the transition between the
confinement and unconfinement in gauge theory [14].

For the charged or rotating AdS black holes, a first-order
phase transition between the small and large black hole
phases was observed, which is in analogy to the liquid-gas
system [15–18]. Moreover, black hole phase transitions can
also provide insight into their underlying microscopic
configuration [19].
To better understand and characterize distinct black hole

systems, the concept of thermodynamical topology has been
well introduced [20]. This approach relies on the asymptotic
behavior of the generalized free energy of black holes,
allowing for the classification of almost all black hole
systems into three distinct categories associated with topo-
logical numbers: þ1, 0, and −1. These numbers also
correspond to the difference between the numbers of stable
and unstable phases exhibited by the black holes. For
examples, the Schwarzschild black holes, charged black
holes, and charged AdS black holes are a assigned topo-
logical number of −1, 0, and 1, respectively. Furthermore,
the thermodynamical topology of various other black holes
have been studied [21–23]. The utilization of topological
numbers to classify the thermodynamics of black holes
showcases their remarkable capability, offering potential
insights into the nature of black hole systems. This approach
holds promise for advancing our understanding of black
holes. Moreover, topology can also serve as a valuable tool*Contact author: weishw@lzu.edu.cn
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for describing the critical points, Hawking-Page transition,
and first-order phase transitions in black hole systems
[24–31].
In recent developments, a three-dimensional quantized

black hole, known as the quantum Bañados-Teitelboim-
Zanelli (quBTZ) black hole, has been proposed [32–35].
This intriguing black hole arises from the introduction of an
AdS3 brane into an asymptotically AdS4 spacetime, as
described by the C metric [36]. The intersection of this
brane with the bulk event horizon leads to the formation of
a black hole on the AdS3 brane. Within the framework of
braneworld holography, the classical solution in the bulk is
thought to relate with the quantum gravity and conformal
field on the brane. Consequently, this black hole solution
on the brane can be naturally regarded as inherently
quantized [34]. Thus, this intriguing connection between
the classical bulk solution and quantum gravity on the
brane sheds new light on quantized black holes.
Similar to other black holes, the quBTZ black hole is

also considered as a thermodynamical system, inheriting
certain thermodynamical properties from its bulk counter-
parts. However, unlike the Hawking-Page phase transition
observed in the BTZ black hole [37], the quBTZ black holes
demonstrate a more interesting phase transition, the re-
entrant phase transition [38]. As the temperature increases
from zero, the system undergoes a transition from a thermal
AdS phase to a black hole phase and eventually returns back
to the thermal AdS phase. This fascinating behavior is a
distinctive feature of the quBTZ black holes compared to
their nonquantized counterparts. Furthermore, the origin
and specific heats of quBTZ black holes have also been
studied in the context of extended thermodynamics [39,40].
The criticality and thermodynamic geometry are also
considered [41]. These results shed light on the thermody-
namical properties and behavior of the quBTZ black hole
system.
Motivated by the referred distinctive properties, we, in

this work, aim to study the thermodynamical topology for
the quBTZ black holes. Our study reveals several remark-
able characteristics of the quBTZ black hole thermody-
namics that distinguishes it from the classical BTZ black
hole. Unlike its classical counterpart, the entropy of the
quBTZ black holes is finite and does not exhibit a
monotonic behavior with respect to the black hole param-
eter z. This intriguing observation has prompted us to
reexamine the thermodynamical topology, leading us to
identify a topological transition associated with the quBTZ
black holes. This differs from classical nonrotating BTZ
black holes with fixed topological number 1 [23].
Furthermore, through the study of quBTZ black holes,
we have gained a deeper understanding of the significance
of topology in the context of black hole thermodynamics.
This investigation allows us to explore the relationship
between the thermodynamical properties of black holes and
their underlying topological features, shedding light on the
implications of topology in this fascinating field.

The paper is organized as follows: In Sec. II, we provide
a brief introduction to the quantum BTZ black holes.
Section III is dedicated to the study of the quBTZ black
hole’s topology. We uncover that the critical boundary
obtained from ∂zS ¼ 0 holds crucial importance for its
physical interpretation. In Sec. IV, we reconstruct the vector
mapping and obtain a new topology. To further illustrate
our findings, in Sec. V, we present comparative examples
that analyze the thermodynamical topologies. Finally, we
summarize and discuss the results in Sec. VI.

II. QUANTUM BTZ BLACK HOLES

In the static asymptotically AdS4 spacetime described by
the C metric, it is possible to introduce an AdS3 brane. On
this brane, the quBTZ black holes can be derived, and the
corresponding metric reads [35]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dϕ2; ð1Þ

with

fðrÞ ¼ r2

l2
3

− 8G3M −
lF ðMÞ

r
; ð2Þ

wherein G3 ¼ G3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2=l2

3

p
is a renormalized gravita-

tional constant, and l is directly linked to the brane tension
and the strength of backreaction in the dual theory. As
l → 0, the brane approaches the AdS4 boundary, and the
brane tension diverges. In terms of the perspective on this
brane, the limit l → 0 also signifies the vanishing of the
backreaction from the conformal field theory, and the
quBTZ black hole will become a classical BTZ black hole.
In the presence of quantum corrections, the holographic

stress-energy function F ðMÞ is complicated, but we can
express it in terms of the parameter−κx21 (−1 < −κx21 < ∞),

M ¼ 1

2G3

−κx21
ð3 − κx21Þ2

; F ðMÞ ¼ 8
1 − κx21

ð3 − κx21Þ3
: ð3Þ

A more explicit relationship is depicted in Fig. 1, which
showcases three distinct branches. Branch 1 (composed of
branches 1a and 1b) and branch 2 correspond to the quBTZ
black holes, as described byEq. (3). However, branch 3 is for
the black string in bulk and represents the classical BTZ
black hole on the brane. For our purpose, we concentrate
solely on branches 1 and 2, which characterize the quBTZ
black holes.
In order to examine the black hole thermodynamics, two

real and non-negative parameters [35]

z ¼ l3

rþx1
; ν ¼ l

l3

ð4Þ
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are introduced, where rþ denotes the radius of the quBTZ
black hole horizon. The following relation

−κx21 ¼
1 − νz3

z2ð1þ νzÞ ð5Þ

shows a one-to-one and smooth mapping between
0 < z < ∞ and −1 < −κx21 < ∞ for ν > 0. Moreover,
the thermodynamical quantities of the black holes can be
expressed in terms of z and ν,

M ¼ 1

2G3

z2ð1 − νz3Þð1þ νzÞ
ð1þ 3z2 þ 2νz3Þ2 ; ð6Þ

T ¼ 1

2πl3

zð2þ 3νzþ νz3Þ
1þ 3z2 þ 2νz3

; ð7Þ

S ¼ πl3

G3

z
1þ 3z2 þ 2νz3

: ð8Þ

By differentiatingM and S with respect to z, one can easily
obtain the following first law of black hole thermodynamics:

dM ¼ TdS; ð9Þ

for fixed l3, ν, and G3. This indicates that, similar to these
black holes without quantum correction, the quBTZ black
hole can also be treated as a thermodynamical system.
In order to well describe the thermodynamics, we show

three characteristic values of z,

z1¼
1

ν1=3
; z2¼−

1

ν
þ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ν2

r
sin

�
1

3
αþπ

6

�
; ð10Þ

ẑ ¼ 1

4ν

�
−1þ

�
8ν2 − 1þ 4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ν2 − 1

p �
−1=3

þ
�
8ν2 − 1þ 4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ν2 − 1

p �
1=3

�
; ð11Þ

where α ¼ arccos ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p
Þ. It is noteworthy that z1 and

z2 are the solutions of ∂zT ¼ 0, and ẑ is the solution of
∂zS ¼ 0 or ∂zM ¼ 0.
Through a straightforward analysis, it is easy to conclude

that both z1 and z2 are greater than ẑ. Additionally, ν ≥ 1
(ν < 1) implies z2 ≥ z1 (z2 < z1). As discussed in
Ref. [38], the ranges of z for the “cold,” “intermediate,”
and “hot” black holes are listed in Table I.
Furthermore, in Fig. 2, we plot the thermodynamical

quantities, entropy, mass, and temperature as a function of
z. Note that z1, z2, and ẑ defined by Eqs. (10) and (11) are
clearly shown. Interestingly, two different quBTZ black
holes (with different values of z) can possess the same
entropy, which distinguishes them from these classical BTZ
black holes. Another distinction is that the mass of the
quBTZ black hole is constrained in −1 ≤ 8G3M ≤ 1=3.

III. THERMODYNAMICAL TOPOLOGY
OF QUANTUM BTZ BLACK HOLE

In recent studies, significant attention has been devoted
to explore the intriguing properties of the quBTZ black
holes. These findings significantly suggest that quBTZ
black holes possess a unique phase structure that deviates
from the classical BTZ black holes. Consequently, we aim
to investigate the potential distinctive features of quBTZ
black holes from the perspective of thermodynamical
topology.
Following Ref. [20], the generalized free energy of the

quBTZ black holes can be defined as

Fg ¼ M −
1

τ
S ¼ z2ð1þ νzÞð1 − νz3Þ

2G3ð2νz3 þ 3z2 þ 1Þ2

−
1

τ

πl3z
G3ð2νz3 þ 3z2 þ 1Þ : ð12Þ

The parameter τ has a dimension of time and can be
interpreted as the inverse of the temperature of the
surrounding black hole’s environment. Obviously, via this
definition, it can be found that, when τ−1 is equal to the
Hawking temperature (7), the generalized free energy will
be taken to its extreme value and correspond to the on-shell
free energy.
To construct the thermodynamical topology, the vector

field mapping

TABLE I. Thermodynamical states of quBTZ black holes with
different parameter ν.

Range Cold black hole Intermediate black hole Hot black hole

ν > 1 0 < z < z1 z1 < z < z2 z2 < z < ∞
ν ¼ 1 0 < z < z1 Vanish (z1 ¼ z2) z1 < z < ∞
ν < 1 0 < z < z2 z2 < z < z1 z1 < z < ∞

Branch1a
Branch1b

Branch2

Branch3

1
2

3

1

3
0

1

3

2

3

0.1

0.0

0.1

0.2

0.3

0.4

FIG. 1. The holographic stress-energy function F ðMÞ. There
are three branches of black holes. Branches 1 (1a, 1b) and 2
represent the quBTZ black hole solutions, and branch 3 repre-
sents the classical BTZ black hole.
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ϕ∶ X ¼ fðz; θÞj0 < z < ∞; 0 < θ < πg → R2 ð13Þ

can be defined as

ϕðz;θÞ¼
�
∂zFg

∂zS
;−cotθcscθ

�

¼
�

zðνz3þ3νzþ2Þ
2πl3ð2νz3þ3z2þ1Þ−

1

τ
;−cotθcscθ

�
: ð14Þ

As the parameter z characterizes the quBTZ black holes, it
becomes the first parameter for the domain of mapping ϕ.
The other parameter θ in the domain serves as an auxiliary
function and is utilized to construct the second component
of the mapping, ϕθ ¼ − cot θ csc θ. By examining Eq. (14),
it becomes evident that the zero point of ϕ corresponds to
the black hole with a temperature of T ¼ τ−1 (with θ taking
the value of π=2). Thus, the zero point of the mapping ϕ can
characterize the black hole solution with a fixed τ.
Furthermore, utilizing the ϕ-mapping topological current

theory of Duan and Ge [42,43], the zero points of the
mapping ϕ can be linked to the topological number.
Specifically, the topological number can be obtained by
calculating the weighted sum of the zero points. The weight
assigned to each zero point is determined by its nature. For
example, a saddle point has a weight of −1 and an
extremum point has a weight of 1. Additionally, this weight
can also be evaluated by using the winding number

wðz;θÞ ¼
1

2π

Z
Cδðz;θÞ

dΩ; ð15Þ

where Cδðz; θÞ represents a sufficiently small closed
loop that encircles the point ðz; θÞ, and dΩ denotes the
change in the direction of the vector field ϕðz; θÞ along the
curve Cδðz; θÞ. Eventually, this topological number can
also be determined by analyzing the boundary behavior,
namely,

W ≡ X
ðz;θÞ∈X∧ϕðz;θÞ¼0

wðz;θÞ

¼ 1

2π

X
ðz;θÞ∈X∧ϕðz;θÞ¼0

Z
Cδðz;θÞ

dΩ ¼ 1

2π

Z
∂X

dΩ; ð16Þ

where dΩ measures the change in the direction of the
vector field along the boundary ∂X. This implies that
certain characteristics of the zero points can be obtained
via the total topological number without requiring detailed
information.
In order to obtain the total topological number of the

quBTZ black holes, we sketch these boundaries repre-
sented by Cz¼0, Cz¼∞, C0, and Cπ in Fig. 3(a). Next, we
shall analyze the behavior of the vector at the boundary of
domain X.
First, for the boundaries C0 and Cπ , we have

ϕθjθ→0¼−
1

θ2
þOð1Þ; ϕθjθ→π ¼

1

ðθ−πÞ2þOð1Þ: ð17Þ

FIG. 2. Thermodynamical quantities as a function of parameter z. Here z1, z2, and ẑ are given by Eqs. (10) and (11). We set ν ¼ 2 in
Figs. 2(a) and 2(b), ν ¼ 10 in Fig. 2(c), and ν ¼ 0.25 in Fig. 2(d).
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Thus, along the curves C0 and Cπ , the vector is always
down- and upward, respectively. Second, for the bounda-
ries Ch and C∞, we have

ϕzjz→0¼−
1

τ
þOðzÞ; ϕzjz→∞¼ 1

4πl3

zþOð1Þ; ð18Þ

which indicates that, along the curves Cz¼0 and Cz¼∞,
the vector is always left- and rightward, respectively.
Therefore, based on the behaviors along four segments
of the boundary, we can conclude that the topological
number

W ¼ 1; ð19Þ

which indicates that the difference between the numbers of
extremum points and saddle points is equal to 1.
Let us now turn to the physical interpretation of saddle

points and extremum points. From the expression
ϕθ ¼ − cot θ csc θ, one can see that ∂θϕθjθ¼π=2 ¼ 1. It is
important to note that the Jacobian determinant of ϕ is
given by ∂zϕ

z
∂θϕ

θ. Consequently, extremum points and
saddle points correspond to the locations where ∂zϕ

z > 0
and ∂zϕ

z < 0, respectively. Moreover, there exists a rela-
tionship between the heat capacity C and ∂zϕ

z,

C ¼ T
∂zϕ

z ∂zS: ð20Þ

Consequently, positive and negative values of the heat
capacity C can be associated with the extremum points and
saddle points, respectively, or with the winding number.

After a simple analysis, we show the relation between the
thermodynamical stability and winding number in Table II.
Remarkably, the relation relies on the sign of ∂zS, which
differs from the discussion given in Ref. [20]. On the other
hand, when ∂zS < 0, the correspondence between the
winding number and the stability of the state appears to
be anomalous.
Hence, to obtain a physical interpretation from the

winding number or topological number, the behavior of
the vector field on the boundary at z ¼ ẑ becomes crucial.
This observation motivates us to partition the domain X
into two distinct regions, namely,

XL ¼ fðz; θÞj0 < z < ẑ; 0 < θ < πg; ð21Þ

XR ¼ fðz; θÞjẑ < z < ∞; 0 < θ < πg; ð22Þ

which is shown in Fig. 3(b). The domains XR and XL
correspond exactly to branch 1 and branch 2. At the
boundary z ¼ ẑ, the vector field reduces to

ϕzjz→ẑ ¼ ϕ̂þ 1 − 3ẑ2

4πl3ẑ2
ðz − ẑÞ þO

�ðz − ẑÞ2�; ð23Þ

wherein

ϕ̂ ¼ 1

τ̂
−
1

τ
; τ̂ ¼ 2πl3ð2νẑ3 þ 3ẑ2 þ 1Þ

ẑðνẑ3 þ 3νẑþ 2Þ ; ð24Þ

and ẑ is given by Eq. (11). The leading term in Eq. (23) is ϕ̂
unless it vanishes. Therefore, the positive, negative, and
zero values of ϕ̂ hold significance for the local topological

FIG. 3. Sketch of the boundary for given domain. (a) The boundary of domain X ¼ fðz; θÞj0 < z < ∞; 0 < θ < πg. (b) The
boundaries of regions XL ¼ fðz; θÞj0 < z < ẑ; 0 < θ < πg and XR ¼ fðz; θÞjẑ < z < ∞; 0 < θ < πg.

TABLE II. The relation between thermodynamical stability and winding number.

Case Range Branch Thermodynamical stability Winding number

∂zS > 0 0 < z < ẑ Branch 2 Stable/unstable w ¼ 1=w ¼ −1
∂zS < 0 ẑ < z < ∞ Branch 1a or 1b Stable/unstable w ¼ −1=w ¼ 1
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number of XL and XR. It is evident that the sign of ϕ̂
depends on τ=ðπl3Þ and ν. This correlation is illustrated in
Fig. 4, where the black curve represents τ ¼ τ̂.
The vector behavior at other boundaries XL and XR can

inherit previous analysis, and the sign of their crucial
component remains invariant for any z > 0 and τ > 0.
Consequently, the value of ϕ̂ determines the local topo-
logical number WL for the left region XL and WR for the
right region XR. In other words, when ϕ̂ > 0, the topo-
logical number is

WL ¼ 1; WR¼ 0; ð25Þ

and for ϕ̂ < 0, the topological number reads

WL ¼ 0; WR¼ 1: ð26Þ

As indicated by Eqs. (16) and (19), the total topological
number WR þWL is equal to W as expected in both the
cases: ϕ̂ > 0 and ϕ̂ < 0. However, it is important to note
that the physical interpretations of Eq. (25) (ϕ̂ > 0) and
Eq. (26) (ϕ̂ < 0) are distinct, as demonstrated in Table II.
For ϕ̂ ¼ 0, we observe that ϕzðẑÞ ¼ 0, indicating that the

zero point resides at the boundary z ¼ ẑ. In such cases
where the boundary behavior leads to a zero point, the local
topological number becomes invalid. However, if we
consider the boundary z ¼ ẑ to be very close to z ¼ ẑ,
the topological number can still be effectively determined.
In Fig. 3(b), Cz;L and Cz;R should be slightly to the left and
right of the boundary z ¼ ẑ, respectively. Within this
framework, for ϕ̂ ¼ 0, the first-order term in Eq. (23)
vanishes, and the second-order term becomes significant.
As 1 − 3ẑ2 is always greater than 0, the topological number
can still be read from the vector field on the boundary

WL ¼ 0; WR ¼ 0: ð27Þ

In this scenario, the sum ofWL andWR is equal to 0, which
does not match the total topological number. This

discrepancy arises because when ϕ̂ ¼ 0, z ¼ ẑ also repre-
sents a zero point that is not included in the regions XL and
XR. Furthermore, we observe that the zero point ðẑ; π=2Þ
corresponds to a minimum point, contributing a value of 1
to the topological number. Thus, despite WL þWR ¼ 0,
the total topological number remains 1. Note that the case
z ¼ ẑ represents a black hole solution with τ ¼ τ̂, charac-
terized by a vanishing heat capacity (C ¼ 0). Further
discussion regarding the black hole state at z ¼ ẑ is
provided in Appendix B.
In summary, considering Table II and the previous

discussion, we can obtain the physical interpretation of
the local topological number for the quBTZ black holes.
There are three cases that require further examination,
excluding the state z ¼ ẑ. These cases are as follows:

(i) The case of ϕ̂ > 0. The result WL ¼ 1 implies that
there is one more stable black hole state than the
unstable states for branch 2. WR ¼ 0 indicates that
the numbers of the stable and unstable states are
equal for branch 1. Consequently, in total, we have
one more stable black hole state.

(ii) The case of ϕ̂ < 0. The result WL ¼ 0 implies that
the numbers of the stable and unstable black hole
states are equal for branch 2. Meanwhile, WR ¼ 1
indicates that there is one more unstable state than
the stable states for branch 1. Therefore, in total, we
have one more unstable black hole state.

(iii) The case of ϕ̂ ¼ 0. The result WL ¼ 0 and WR ¼ 0
indicates that the numbers of the stable and unstable
black hole states are equal for either branch 2 or
branch 1.

Note that the total topological number always remains 1;
however, it no longer reflects the difference in number
between the stable and unstable phase states. This suggests
that the topological number defined by ϕ in Eq. (13) does
not adequately describe the thermodynamical properties of
the quBTZ black holes. On the other hand, when we
consider the boundary z ¼ ẑ or the point where ∂zS ¼ 0,
the local topological number can accurately correspond to
the physical behavior according to Table II. This sheds light
on the underlying physics associated with the mapping of
ϕ. In Sec. V, we will provide several illustrative examples to
further confirm the aforementioned discussion.

IV. REVISIT THERMODYNAMICAL TOPOLOGY
OF QUANTUM BTZ BLACK HOLE

Based on the preceding discussion, it becomes apparent
that there are certain issues associated with the topological
number defined by ϕ in Eq. (13). While the zero points of ϕ
can indeed represent the black hole solutions, the main
concern is that the topological number does not directly
relate to the stability of black holes. To address this
problem, it is necessary to introduce a local topological
number for a more meaningful physical interpretation by
taking into account anomalous corresponding regions

FIG. 4. Schematic diagram of critical value of ϕ̂. The blue and
orange areas represent the parameter region for ϕ̂ < 0 and ϕ̂ > 0,
respectively. The black curve is for ϕ̂ ¼ 0.
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indicated by ∂zS < 0. In this section, we will reexamine the
topological aspects of the black hole thermodynamics and
propose an alternative variable, denoted as Φ, to character-
ize it.
From Fig. 2(a), one can see that the function between z

and S is smooth but not injective, which leads to the
existence of regions of ∂zS > 0 and ∂zS < 0. Looking back
at the physical meanings of z and S, we can see:

(i) The parameter z serves as a characterization of the
quBTZ black holes. In light of this, we previously
constructed ϕ in Eq. (13) with the domain X.

(ii) The parameter S represents the thermodynamical
entropy and is a natural quantity in thermodynamics.
Meanwhile, the heat capacity can be expressed
as T∂S=∂T.

Therefore, to accurately describe the thermodynamical
topology of the quBTZ black holes, a new approach would
be introduced via employing a vector mapping with the
domain defined by the entropy S. However, it should be
noted that one entropy S can correspond to two different
parameters z, resulting in a “one to two” relationship
between S and z, as depicted in Fig. 2(a). This gives rise
to two distinct foliations,

z ¼ f1ðSÞ; for ẑ < z < ∞; ð28Þ

z ¼ f2ðSÞ; for 0 < z < ẑ; ð29Þ

with domain 0 < S < Ŝ. The explicit expressions of f1ðSÞ
and f2ðSÞ are given by (A1) and (A2). It is worth noting
that foliation 1 given by Eq. (28) corresponds precisely to
branch 1, while foliation 2 described by Eq. (29) corre-
sponds to branch 2. As a result, the generalized free energy
given by Eq. (12) can be divided into two distinct parts,

Fg1ðSÞ¼Fgjz¼f1ðSÞ; Fg2ðSÞ¼Fgjz¼f2ðSÞ: ð30Þ

Correspondingly, there are two vector mappings

Φ1∶Y ¼ 	ðS; θÞ

0 < S < Ŝ; 0 < θ < π
�
→ R2; ð31Þ

Φ2∶Y ¼ 	ðS; θÞ

0 < S < Ŝ; 0 < θ < π
�
→ R2; ð32Þ

which are given by

Φ1ðS; θÞ ¼ ð∂SFg1;− cot θ csc θÞ ¼ ϕ
�
f1ðSÞ; θ

�
; ð33Þ

Φ2ðS; θÞ ¼ ð∂SFg2;− cot θ csc θÞ ¼ ϕ
�
f2ðSÞ; θ

�
: ð34Þ

For a fixed value of τ, the zero points of the mappings Φ1

and Φ2 represent black hole states with a Hawking temper-
ature of 1=τ. Furthermore, due to the domain 0 < S < Ŝ,
the functions f1ðSÞ and f2ðSÞ cover the regions
ð0; ẑÞ ∪ ðẑ;∞Þ. Hence, the combination of the zero points
for Φ1 and Φ2 corresponds to the black hole states with a
temperature of 1=τ individually, except for the state with

z ¼ ẑ. The reason for this “exception” is that the Jacobian
determinant of the function SðzÞ becomes degenerate at
z ¼ ẑ. Consequently, the black hole state z ¼ ẑ needs to be
further considered, and its discussion can be found in
Appendix B.
Moreover, by Eqs. (33) and (34), the heat capacity can be

given by

C ¼ T
∂SΦS

1

; C ¼ T
∂SΦS

2

: ð35Þ

Therefore, through a similar analysis, we can establish the
relationship between the thermodynamical stability and the
winding number. Specifically, the term “stable” (“unsta-
ble”) corresponds to a winding number of w ¼ 1 (w ¼ −1),
which is consistent with the findings of Ref. [20]. This
property is completely different from the vector field
defined by Eqs. (13) and (14), as demonstrated in
Table II. Furthermore, Eq. (35) indicates that Φ (Φ1 and
Φ2) is more natural to characterize the thermodynamical
topology of quBTZ black holes.
Based on the previous discussion, there are two folia-

tions that require further investigation. The outline of the
boundary has been depicted in Fig. 5. Additionally, the
values of the vector fields Φ1ðS; θÞ and Φ2ðS; θÞ at two
crucial boundaries of Y are as follows:

Foliation 1: For the boundaries S ¼ 0 and S ¼ Ŝ, we have

ΦS
1jS→0 ¼

1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πlG3S

p þOð1Þ; ð36Þ

ΦS
1jS→Ŝ ¼

1

τ̂
−
1

τ
þ 1−3ẑ2

4πl3ẑ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ẑðẑ2þ1Þ2
2ð1− ẑ2Þ

G3

πl3

ðŜ−SÞ
s

þO
�ðS− ŜÞ� ð37Þ

¼ ϕ̂þ 1 − 3ẑ2

4πl3ẑ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ẑðẑ2 þ 1Þ2
2ð1 − ẑ2Þ

G3

πl3

ðŜ − SÞ
s

þO
�ðS − ŜÞ�: ð38Þ

FIG. 5. Sketch of boundary of region Y ¼	ðS;θÞ

0<S< Ŝ;
0< θ< π

�
.
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Foliation 2: For the boundaries S ¼ 0 and S ¼ Ŝ, we
have

ΦS
2jS→0 ¼ −

1

τ
þOðSÞ; ð39Þ

ΦS
2jS→Ŝ ¼

1

τ̂
−
1

τ
−
1−3ẑ2

4πl3ẑ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ẑðẑ2þ1Þ2
2ð1− ẑ2Þ

G3

πl3

ðŜ−SÞ
s

þO
�ðS− ŜÞ� ð40Þ

¼ ϕ̂ −
1 − 3ẑ2

4πl3ẑ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ẑðẑ2 þ 1Þ2
2ð1 − ẑ2Þ

G3

πl3

ðŜ − SÞ
s

þO
�ðS − ŜÞ�: ð41Þ

On the other hand, the boundaries θ ¼ 0 and θ ¼ π are also
given by Eq. (17). As a result, it is not difficult to get the
topological number, which depends on the sign of ϕ̂. For
ϕ̂ > 0, the topological number

W1¼ 0; W2¼ 1; W¼W1þW2¼ 1; ð42Þ

and for ϕ̂ < 0, the topological number

W1¼−1; W2¼ 0; W¼W1þW2¼−1: ð43Þ

For ϕ̂ ¼ 0, when setting the boundary as the line S ¼ Ŝ, the
topological number becomes invalid since ΦS

1ðŜÞ ¼ 0 and
ΦS

2ðŜÞ ¼ 0. Similar to the discussion given in Sec. III, it is
necessary to define the boundary as a line very close to
S ¼ Ŝ. Moreover, due to ϕ̂ ¼ 0, the second-order term in
Eq. (38) or Eq. (41) becomes the leading term, resulting in
the topological number

W1 ¼ 0; W2 ¼ 0; W ¼ W1 þW2 ¼ 0: ð44Þ

It is important to note that S ¼ Ŝ corresponds to z ¼ ẑ,
which falls outside the domain Y covered by the mappings
f1 and f2. As a result, this topological number is applicable
only to the region ð0; ẑÞ ∪ ðẑ;∞Þ.
Another noteworthy point is the presence of a phase

transition in the topological number determined by Φ,
which differs from the topological number determined by
ϕ. Specifically, when ϕ̂ > 0 is satisfied, Eq. (42) yields
W ¼ 1, while Eq. (25) also yields W ¼ 1. On the other
hand, when ϕ̂ < 0 holds, Eq. (43) gives W ¼ −1, while
Eq. (26) still gives W ¼ 1. As discussed in Sec. III, the
topological number determined by ϕ lacks a direct physical
interpretation, requiring that the vector field on the boun-
dary z ¼ ẑ provides a meaningful explanation. In contrast,
the topological number determined by Φ is physically
meaningful, representing the difference between the num-
ber of stable and unstable black hole states. Moreover, this

topological transition can be linked to the interpretations
provided by the local topological numbers WL and WR
(determined by ϕ). We will further explore this through
examples given in Sec. V.

V. SOME REPRESENTATIVE EXAMPLES FOR
THERMODYNAMICAL TOPOLOGY

In Secs. III and IV, we have explored the thermody-
namical topology characterized by ϕ and Φ, respectively.
Notably, we have observed a remarkable distinction
between the topological numbers defined by Φ and ϕ.
While the topological number defined by Φ exhibits a
topological phase transition, the one defined by ϕ does not.
This reason arises from the fact that the topological number
defined by ϕ lacks certain physical significance. In order to
provide a physical interpretation, it becomes necessary to
introduce the local topological numbers, denoted as WL
and WR, for the regions on the left and right sides of the
boundary z ¼ ẑ, respectively. Importantly, the physical
explanations for WL and WR differ from each other. On
the contrary, the topology determined by Φ is physical
meaningful. This comes from the involvement of two
vector fields, Φ1 and Φ2, with the topological number
being the sum of W1 and W2.
In this section, we will illustrate the physical implica-

tions underlying in ϕ and Φ via two representative
examples. To simplify the analysis, we rescale S and τ
by setting l3 ¼ 1=π and G3 ¼ 1. Furthermore, we consider
ν ¼ 10 as a specific case. In this scenario, the critical

FIG. 6. The diagram of vector field constructed by ϕ with
l3 ¼ 1=π, G3 ¼ 1, ν ¼ 10, and τ ¼ 1.24. The zero points (ZPs)
marked with black dots are approximately at ðz; θÞ ¼
ð0.25; π=2Þ; ð1.46; π=2Þ, and ð1.77; π=2Þ for ZP1, ZP2, and
ZP3, respectively. This light gray thin line represents the
boundary z ¼ ẑ ≈ 0.27. The blue contours Ci are closed loops
enclosing the zero points ZPi, and the contours C enclose all zero
points. Moreover, the heat capacity for each zero point is
CZP1

≈ 0.021; CZP2
≈ 0.47, and CZP3

≈ −0.32, respectively.
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condition ϕ̂ ¼ 0 corresponds to τ ¼ τ̂ ≈ 1.162. Referring to
Fig. 4, we observe that τ > τ̂ and τ < τ̂ correspond to ϕ̂> 0

and ϕ̂ < 0, respectively. Based on this observation, we
examine the cases τ ¼ 1.24 and τ ¼ 1 for further discussion.
Considering ν ¼ 10 and τ ¼ 1.24, we observe that ϕ̂ is

greater than zero, which implies the following:
(i) From the mapping of ϕ, we observe that the

topological number is 1, whereas the local topo-
logical numbers yield WL ¼ 1 and WR ¼ 0. This
implies that at least one stable black hole state exists
within the range of 0 < z < ẑ, while the stable and
unstable black hole states appear in pairs within the
range of ẑ < z < ∞.

(ii) From the mapping of Φ, we find that the topological
number is 1, which is contributed by W2 ¼ 1 from
foliation 2 andW1 ¼ 0 from foliation 1. This implies
the existence of at least one stable black hole state.

FIG. 7. The curve integral of vector along the different
contours, and the winding number can be given by Eq. (15).
These contour integrals correspond to the curve in Fig. 6. Here, λ
is the angle parameter of the curve with respect to the corre-
sponding black point in Fig. 6, and ΔΩ is the angle change of the
vector field ϕ along this curve. Obviously, the winding number of
each zero point is given by wZP1

¼ 1; wZP2
¼ −1, and wZP3

¼ 1.

FIG. 8. The diagram of vector field constructed by Φ with l3 ¼ 1=π, G3 ¼ 1, ν ¼ 10, and τ ¼ 1.24. (b), (d) Enlarged views of (a)
and (c), respectively. The zero points marked with black dots are approximately at ðS; θÞ ¼ ð0.1667; π=2Þ, ð0.0210; π=2Þ, and
ð0.0146; π=2Þ for ZP1, ZP2, and ZP3, respectively. These points correspond to the points in Fig. 6.
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Using the specified parameter values, we show the vector
field pattern described by Eq. (14) in Fig. 6. To focus on the
relevant points with nonzero winding numbers, we only
present the range of z as 0 < z < 2. Notably, we observe
three key points: ZP1, an extreme point with a winding
number of w ¼ 1; ZP2, a saddle point with w ¼ −1; and
ZP3, another extreme point with w ¼ 1. These points
signify the relation between the saddle points or extreme
points and their corresponding winding numbers.
Moreover, by performing the contour integral, we illus-
trated the results in Fig. 7.
The zero point ZP1 belongs to branch 2, whereas ZP2

and ZP3 are zero points in branch 1. Referring to Table II,
we observe that ZP1 and ZP2 are stable, while ZP3 is
unstable. It may initially appear peculiar that black hole
solutions with adjacent z parameters, such as ZP1 and ZP2,
are both stable. However, this discrepancy can be attributed
to the fact that ZP1 and ZP2 reside in different branches,
where the physical interpretations of zero points (saddle
point or extreme point) differ. This observation confirms
the significant dependence of the physical interpretation of
the topological number provided by ϕ on the specific
region we considered.
On the contrary, when considering Φ instead of ϕ, we

observe the same physical interpretations of the zero points
(saddle point or extreme point) for both branches 1 and 2,
as discussed in Sec. IV. The quantity Φ is described by two
foliations, namely, Φ1 and Φ2. Consequently, we need to
consider two vector fields, as illustrated in Fig. 8. In the
figure, ZP1, ZP2, and ZP3 correspond to the zero points.
Obviously, from the topology constructed by Φ, the wind-
ing numbers of ZP1, ZP2, and ZP3 are 1, 1, and −1,
respectively, with the corresponding stability being stable,
stable, and unstable. Therefore, the topology given by Φ
consistently provides the same physical interpretation, with
the correspondence between the winding number and
stability being independent of the branch.

For ν ¼ 10 and τ ¼ 1, we show the vector field ϕ and Φ
in Figs. 11 and 13 in Appendix C. Similar discussions can
be carried out based on these figures, allowing us to verify
the conclusions presented in Secs. III and IV.
One crucial point that deserves emphasis is the transition

in the topological number provided by Φ when ϕ̂ > 0

changes to ϕ̂ < 0. In the case of ν ¼ 10, this transition
occurs at the critical point τ ¼ τ̂ ≈ 1.16. Specifically,
changing τ ¼ 1.24 to τ ¼ 1, the topological number
changes from 1 to −1. In contrast, the topological number
given by ϕ remains unchanged. To provide a more physical
explanation of this phenomenon, we can plot the curve
ϕz ¼ 0 with variables τ and z in Fig. 9(a) and the curves
ΦS

1ðSÞ ¼ 0 and ΦS
2ðSÞ ¼ 0 with variables τ and S in

Fig. 9(b). Notably, an interesting observation can be found:
for branch 1, the slopes of the respective curves at
corresponding points have opposite signs, whereas for
branch 2, the slopes have the same sign. Since the
thermodynamical stability is determined by the relationship
between entropy and temperature, Fig. 9(b) directly rep-
resents thermodynamical properties. Thus, this anomalous
behavior of the topological number in branch 1 can be
understood in this context. Furthermore, it can be observed
that, with τ ¼ 1.24 transitioning to τ ¼ 1, the zero point
ZP1 moves from branch 2 to branch 1 via the point ðẑ; τ̂Þ or
ðŜ; τ̂Þ, indicating a transition in the topological number.

VI. DISCUSSION AND CONCLUSION

In this paper, we studied the thermodynamical topology
of the quBTZ black holes. Two topologies, defined by ϕ
[Eq. (13)] and Φ [Eqs. (31) and (32)] were considered. The
former represents a global topological number, but its
physical interpretation is region dependent, as demon-
strated in Table II. On the other hand, the latter provides
a more physical and natural global topological number,
which captures the difference in the number of stable and

FIG. 9. (a) z vs τ. (b) S vs τ. The parameters take values of l3 ¼ 1=π, G3 ¼ 1, and ν ¼ 10. The curve is divided into two colored parts:
the red part is for branch 2; the blue part is for branch 1. For τ ¼ 1.24 (τ ¼ 1), ZP1, ZP2, and ZP3 are the corresponding zero points
shown in Fig. 6 (Fig. 11). Moreover, comparing Table I and Fig. 2, ZP1, ZP2, and ZP3 are for the cold, intermediate, and hot black
holes, respectively.
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unstable black hole phase states, excluding the black hole
state z ¼ ẑ. This topological number plays a similar role to
the one in Ref. [20]. In fact, the discrepancy between the
former and the latter arises from the nonmonotonic rela-
tionship between the black hole parameter z and entropy S.
Furthermore, due to the degeneracy in the Jacobian
determinant for the mapping from z to S at z ¼ ẑ, the
stability of the phase state z ¼ ẑ depends on the branches,
as shown in Appendix. B.
As discussed in Ref. [38], the quBTZ black holes exhibit

three phase states: the cold, intermediate, and hot black
holes. The intermediate black hole is always stable, while
the hot black hole is always unstable. However, the cold
black hole can exist in both branch 1 and branch 2, with the
corresponding stability being unstable and stable, respec-
tively. Consequently, when τ > τ̂, there is one more stable
black hole state than the unstable state, whereas when
τ < τ̂, there is one less stable black hole state. This
phenomenon corresponds to the transition of the topologi-
cal number given by Φ from 1 to −1, as discussed in
Secs. IVand V. On the other hand, as previously mentioned,
the topological number given by ϕ remains unchanged.
Although this topological number is not easily understood,
we can still obtain the appropriate physical interpretation
from the local topological number and its correspondence
given in Table II. In fact, the local topological number given
by ϕ and the global topological number given by Φ share
the same meaning, focusing on the behavior of the vector
field at the boundary defined by ∂zS ¼ 0. However, the
physical interpretation of the latter is more evident and
unified.
On the other hand, the topological number of quBTZ

black holes can be 1 and−1, whereas BTZ black holes have
a fixed topological number of 1 [23]. When τ=ðπl3Þ is
small, the topological numbers of both are different, and
they shall be divided into the different topological classes
[20]. The topological difference implies that the quantum
effects to thermodynamics is significant. On the contrary,
when τ=ðπl3Þ is large, the topological numbers of two black
holes are the same. And, in this case, the thermodynamic
relation T ∼ G3S=ðπl3Þ2 for quBTZ black holes is nearly
identical to those of BTZ black holes. These suggest that, at
lower temperatures, the influence of quantum correction on
thermodynamics is small. Thus, roughly speaking, the
variation of strength for quantum effects can correspond
to the transition of thermodynamical topological number.
Our results strongly support the fact that, when defining

topological numbers via the generalized free energy,
entropy serves as the most natural choice for the domain
variable, establishing a robust physical correspondence.
Alternatively, we can select other variables that are mono-
tonically related to S as the domain variable. However, in
the cases where there is no one-to-one function between the
parameter characterizing black holes and entropy, it
becomes necessary to construct foliations for different

parameter ranges. This allows for the construction of a
one-to-one smooth function between the parameter and
entropy within each foliation. The topological number then
becomes the sum of contributions from each foliation, with
each foliation potentially contributing the numbers�1 or 0.
This suggests that the thermodynamical topological num-
ber may extend beyond the values of �1 and 0.
In summary, our study provides a powerful method for

understanding the thermodynamics of quBTZ black holes
from a topological perspective and successfully obtains
their thermodynamical topological properties. More
detailed properties and features are wished to be disclosed
in further study.
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APPENDIX A: THE INVERSE
OF FUNCTION S= SðzÞ

For the vector mapping Φ: Y → R2, the inverse relation
between S and z is given by Eq. (8) and can be expressed as
the following two parts:

f1ðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ν2
þ 2

3νx

r
sin

�
1

3
β þ π

6

�
−

1

2ν
; ðA1Þ

f2ðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ν2
þ 2

3νx

r
cos

�
1

3
β þ π

3

�
−

1

2ν
; ðA2Þ

where

β¼ cos−1
�
3

ffiffiffiffiffi
3x

p ð2xν2þxþνÞ
ð3xþ2νÞ3=2

�
; x¼G3S

πl3

: ðA3Þ

In Fig. 2(a), f1ðSÞ and f2ðSÞ represent branch 1 and branch
2, respectively. This explicit expression is useful for the
discussions presented in our paper.

APPENDIX B: THE BLACK HOLE
SOLUTION OF z = ẑ

As mentioned earlier, it is necessary to separately
analyze the stability of the quBTZ black hole phase given
by z ¼ ẑ. The main reason is that this black hole exhibits a
zero heat capacity when l3, ν, and G3 remain constant. To
address this stability issue, we expand the generalized free
energy around S ¼ Ŝ,
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Fg1 ¼ F̂ þ
�
1

τ̂
−
1

τ

�
ðS − ŜÞ

−
1 − 3ẑ2

4πl3ẑ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẑðẑ2 þ 1Þ2
3ð1 − ẑ2Þ

G3

πl3

s
ðŜ − SÞ32

þO
�ðS − ŜÞ2�; ðB1Þ

Fg2 ¼ F̂ þ
�
1

τ̂
−
1

τ

�
ðS − ŜÞ

þ 1 − 3ẑ2

4πl3ẑ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẑðẑ2 þ 1Þ2
3ð1 − ẑ2Þ

G3

πl3

s
ðŜ − SÞ32

þO
�ðS − ŜÞ2�; ðB2Þ

where F̂ ¼ FgðẑÞ is given in Eq. (12). It is important to note
that S has an upper bound, denoted as Ŝ, and the asymptotic
behavior of Fg1 and Fg2 on this boundary is described by
Eqs. (B1) and (B2). For the case of τ > τ̂, S ¼ Ŝ represents
a local maximum point for both branches. Conversely, for
the case of τ < τ̂, S ¼ Ŝ corresponds to a local minimum
point for both branches. In the scenario of τ ¼ τ̂, S ¼ Ŝ
serves as a local minimum point for branch 2 and a local
maximum point for branch 1. The corresponding curves are
illustrated in Fig. 10. If we consider the extreme points of
the generalized free energy as black hole solutions, it seems
that black hole solutions at z ¼ ẑ (corresponding to S ¼ Ŝ)
can exist for any temperature. However, from the perspec-
tive of the spacetime geometry near the event horizon, only
τ ¼ τ̂ can correspond to some Euclidean spacetime which
can avoid conical singularities, while τ > τ̂ or τ < τ̂ will
correspond to the spacetime with conical singularities.
Therefore, we believe that the z ¼ ẑ state can exist only
for τ ¼ τ̂, and its stability depends on the branch. The state

z ¼ ẑ of branch 2 is stable, while the phase state z ¼ ẑ of
branch 1 is unstable.

APPENDIX C: THE CASE OF ν = 10 AND τ = 1

In this appendix, we present a figure illustrating the
vector field pattern (14) in Fig. 11 with the parameters
l3 ¼ 1=π, G3 ¼ 1, ν ¼ 10, and τ ¼ 1. Furthermore, the
vector field is shown in Fig. 12. By examining these
figures, we can readily identify three zero points associated
with the saddle points, winding numbers, and stability, as

FIG. 10. The generalized free energy as a function of entropy
for different τ with l3 ¼ 1=π, G3 ¼ 1, and ν ¼ 10. There are
three curves for branch 1 (blue) and branch 2 (red). The cases
τ ¼ τ̂ ≈ 1.162, τ ¼ 2, and τ ¼ 0.8 are described by solid curves,
dot-dashed curves, and dashed curves, respectively.

FIG. 11. The vector field constructed by ϕ with l3 ¼ 1=π,
G3 ¼ 1, ν ¼ 10, and τ ¼ 1. The zero points marked with black
dots are approximately at ðz; θÞ ¼ ð0.34; π=2Þ; ð0.68; π=2Þ, and
ð3.25; π=2Þ for ZP1, ZP2, and ZP3, respectively. This light gray
thin line represents the boundary z ¼ ẑ ≈ 0.27. The blue contours
Ci are closed loops enclosing the zero points ZPi, and the
contours C enclose all the zero points. Moreover, the heat
capacity for each zero point is CZP1

≈ −0.137; CZP2
≈ 0.356,

and CZP3
≈ −0.015.

FIG. 12. The curve integral of vector along the different
contours, and the winding number can be given by Eq. (15).
These contours integrals correspond to the curve in Fig. 11. Here, λ
is the angle parameter of the curve with respect to the correspond-
ing black point in Fig. 11, andΔΩ is the angle change of the vector
field ϕ along this curve. Obviously, the winding number of each
zero point is given by wZP1

¼ 1; wZP2
¼ −1, and wZP3

¼ 1.
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follows: ZP1 corresponds to an extreme point with w ¼ 1
and is unstable; ZP2 represents a saddle point with w ¼ −1
and is stable; ZP3 corresponds to another extreme point
with w ¼ 1 and is unstable. The relationship between the
winding number and stability is listed in Table II. However,
these findings deviate from those presented in Ref. [20],
indicating an anomalous behavior.
The vector field pattern described by Eqs. (33) and (34) is

plotted in Fig. 13. This plot reveals three zero points, namely

ZP1, ZP2, and ZP3, which correspond to the three points
shown in Fig. 11. Notably, these zero points correspond to
the characteristics of saddle points or extreme points,
winding numbers, and stability. Specifically, ZP1 corre-
sponds to a saddle point with w ¼ −1 and is unstable. ZP2

represents an extreme point with w ¼ 1 and is stable.
Finally, ZP3 corresponds to another saddle point with
w ¼ −1 and is unstable. Therefore, the winding numbers
provided by Φ offer a meaningful physical explanation.
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