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Searches for continuous gravitational waves from unknown neutron stars are limited in sensitivity
due to their high computational cost. For this reason, developing new methods or improving
existing ones can increase the probability of making a detection. In this paper we present a new
framework that uses Markov chain Monte Carlo (MCMC) or nested sampling methods to follow up
candidates of continuous gravitational-wave searches. This framework aims to go beyond the
capabilities of PYFSTAT (which is limited to the PTEMCEE sampler), by allowing a flexible choice of
sampling algorithm (using BILBY as a wrapper) and multidimensional correlated prior distributions. We
show that MCMC and nested sampling methods can recover the maximum posterior point for much
bigger parameter-space regions than previously thought (including for sources in binary systems), and
we present tests that examine the capabilities of the new framework: a comparison between the
DYNESTY, NESSAI, and PTEMCEE samplers, the usage of correlated priors, and its improved computa-
tional cost.
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I. INTRODUCTION

Many searches for continuous gravitational waves
(CWs) are routinely done, although there has been no
detection yet (for a recent review of searches and methods
see [1]). All-sky searches for unknown neutron stars (both
isolated and in binary systems) are the type of CW search
with the highest computational cost, since all of the
parameters describing the neutron star are unknown. For
this reason, the sensitivity of these searches is the lowest
since it is highly limited by the available computational
budget [2].
The main strategy followed by all-sky searches is to use a

semicoherent method (see [3] for a recent review). These
methods separate the entire dataset into different segments
between which phase continuity is not required, thus
reducing the coherent time. Semicoherent methods have
been shown to be more sensitive than fully coherent
methods at a limited computational budget [4]. After the
main search is done with the initial setup, candidates from
the analyzed parameter space are marked as interesting, and

several vetoes and a follow-up procedure are applied to
them. The follow-up procedure increases the coherent time
in a number of subsequent stages, checking at the end of
each one if the candidate is consistent with the behavior
expected from astrophysical CWs [5–9].
Most follow-up procedures work similarly to the main

search, by setting a fixed template bankwith a predetermined
maximum loss of signal power and calculating a detection
statistic for each of these templates (see for example [9]). An
alternative to this is to use a stochastic sampling algorithm,
such as Markov chain Monte Carlo (MCMC) or nested
sampling. This has already been applied to some CW
searches, such as [10–13]. The main advantage of these
stochastic methods is that fewer evaluations of the detection
statistic have to be carried out (if the parameter space is small
enough for these methods to be able to localize the signal),
thus lowering the computational cost of the follow-up. By
lowering this cost, more candidates can be analyzed, thus
increasing the sensitivity of a search. For this reason,
improving and testing new follow-up methods is of utmost
importance.
A stochastic sampling method applied to CWs searches

has existed for a long time [14,15] and has been used in
many targeted searches (such as [16]), where all the
parameters describing the phase evolution of the signal
are known. This method only allows for fully coherent
searches, thus not being feasible for the all-sky or directed
searches that use semicoherent detection statistics.
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Until now, only one stochastic sampling framework for
semicoherent searches existed,1 called PYFSTAT [18]. The
work presented in this paper improves and expands on
[8,18] in a number of ways. Firstly, we push the size of the
parameter space to be analyzed to much higher values than
previously reported [8] (including signals from neutron
stars in binary systems), showing that these algorithms can
find the mode of the posterior in a reasonable time.
Secondly, while previously a single MCMC sampler was
used (PTEMCEE [19]), now up to eight nested sampling and
five MCMC algorithms can be used and easily inter-
changed due to the flexibility of BILBY [20] (a PYTHON

package that we use as a link between the likelihood
function and the sampler packages). Related to this, we
introduce a new follow-up convergence criterion that can be
used to compare the efficiency of different samplers. Thirdly,
due to using BILBY, there is alsomore flexibility in choosing a
prior: PYFSTAT only allows priors set individually for each
parameter, while BILBY can use multidimensional correlated
priors that can reduce the number of likelihood evaluations
neededuntil convergence. Finally,wehave also improved the
computational efficiency of the underlying LALSUITE [21]
likelihood implementation, thus further decreasing the
amount of time needed for convergence.
Previous studies have focused on how to best set up a

chain of follow-up stages (from the initial stage to a fully
coherent stage) [8,22], where the coherent time is increased
at each stage. On the other hand, in this work we study the
optimization of a single stage of the follow-up procedure.
CW searches in a wide parameter space might generate a
very large number of candidates, and the computational
cost of the first stage of the follow-up procedure is usually
much larger than the subsequent stages, thus constraining
the sensitivity that can be achieved (by its dependence on
the allowed number of candidates).
For this reason, decreasing the computational cost of the

first stage is of critical importance. The computing cost of a
single stage can be decreased by (i) improving the choice of
stochastic sampler and its tuning parameters; (ii) reducing
the size of the parameter space that needs to be searched;
(iii) instead of obtaining a precise posterior distribution,
only finding a point close enough to the maximum
posterior point (the size of the follow-up region for the
next stage needs to be characterized with injections); and
(iv) reducing the computational cost needed to calculate the
likelihood function. In this paper we present tests that show
how our new semicoherent framework improves on these
aspects.
This paper is organized as follows. In Sec. II we

introduce the signal model, the detection statistic, and its
loss of signal power in searches with template banks. In

Sec. III we present our new framework to perform Bayesian
parameter estimation of semicoherent CW searches, a new
follow-up convergence criterion, and a model for its
computational cost. In Sec. IV we test our new framework
by comparing different samplers and different prior dis-
tributions and measuring the computational cost of each
configuration. In Sec. V we present a summary and some
ideas for future work.

II. BACKGROUND

A. Signal model

Rotating neutron stars with an asymmetry around their
rotating axis emit CWs, which can be parametrized with
four amplitude parameters A and several phase-evolution
parameters λ. The four amplitude parameters A consist of
the overall signal amplitude h0, the inclination angle ι
between the line of sight and the neutron star rotation axis,
the phase ϕ0 at a reference time τref , and a polarization
angle ψ . The phase-evolution parameters λ consist of the
frequency of the signal f (slowly changing over time as a
function of a number of spin-down parameters), the sky
position of the neutron star, and additional parameters
describing its Newtonian orbital movement around the
binary barycenter (three parameters for a circular orbit and
five for an elliptic orbit) if the neutron star is in a binary
system [23].
The CW signal depends nonlinearly on the physical

amplitude parameters A. In [24] a different set of four
amplitude parameters A that linearize the functional form
of the CW signal were found. This set of amplitude
parameters allows one to write a CW signal sXðtÞ in the
frame of detector X as

sXðt;A; λÞ ¼
X4
μ¼1

AμhXμ ðt; λÞ; ð1Þ

where hXμ are defined as

hX1 ≡ aXðt; λÞ cosϕXðt; λÞ; hX2 ≡ bXðt; λÞ cosϕXðt; λÞ;
hX3 ≡ aXðt; λÞ sinϕXðt; λÞ; hX4 ≡ bXðt; λÞ sinϕXðt; λÞ;

ð2Þ

in terms of the detector-frame signal phase ϕXðtÞ at time t
and the antenna-pattern functions aXðtÞ and bXðtÞ given
in [24].
The phase ϕ of a CW signal in the source frame can be

expressed in terms of a Taylor expansion around a reference
time τref , namely,

ϕðτÞ ¼ ϕ0 þ 2π
Xs
k¼0

fk
ðkþ 1Þ! ðτ − τrefÞkþ1; ð3Þ

1Although a nested sampling algorithm has been used with a
semicoherent method for CWs [17], our method is sensitive to
much weaker signals.
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where τ denotes the time in the source frame and s is the
number of spin-down parameters fk needed to accurately
describe the intrinsic frequency evolution, which are
given by

fk ¼
dkþ1ϕðτÞ
dτkþ1

����
τ¼τref

: ð4Þ

The phase can be transformed from the source frame to the
detector frame by taking into account the movement of the
neutron star and the movement of the detector with respect
to the solar system barycenter (SSB). The barycentering
relation between the different frames is obtained by first
linking the wavefront-emission time τ in the source frame
to its arrival time tSSB in the SSB frame and then relating
the SSB time to the arrival time t at detector X using the
Rømer-delay expression [23]:

τðtXSSBÞ ¼ tXSSB − RðτÞ; ð5Þ

tXSSBðtÞ ¼ tþ r⃗XðtÞ · n̂; ð6Þ

where r⃗XðtÞ is the position vector (in light-travel time) of
detector X with respect to the SSB, n̂ is the sky-position
unit vector pointing from the SSB to the binary barycenter
(BB), given by the right ascension α and declination δ, and
RðτÞ is the radial distance (in light-travel time) from the
source to the BB [23], which depends on the five binary
parameters ap (projected semimajor axis), Porb (orbital
period), tasc (time of ascension) or tp (time of periapsis),
e (eccentricity), and ω (argument of periapsis).

B. F -statistic

In order to detect CWs we distinguish between two
hypotheses about the data xðtÞ: the data only consist of
Gaussian noise xðtÞ ¼ nðtÞ (HN); the data consist of an
astrophysical signal in addition to Gaussian noise xðtÞ ¼
nðtÞ þ sðt;A; λÞ (HS). The likelihood ratio Lr between
these two hypothesis is [25]

lnLrðx;A; λÞ≡Aμxμ −
1

2
AμMμνAν; ð7Þ

with implicit summation over μ; ν ¼ 1;…; 4, and we
defined

xμ ≡ ðxjhμÞ; Mμν ≡ ðhμjhνÞ; ð8Þ

in terms of the multidetector scalar product [25,26]
given by

ðxjyÞ≡ 2S−1
XNSFTs

Xα

ffiffiffiffiffiffiffiffi
wXα

p ZtXαþTSFT

tXα

xXαðtÞyXαðtÞdt; ð9Þ

where α is an index over the different short Fourier
transforms2 (SFTs) per detector X with duration TSFT.
SðfÞ is the power spectral density, which represents the
overall noise floor at frequency f (the noise floor is
assumed constant over the bandwidth occupied by the
signal), defined as

S−1 ≡ 1

NSFTs

X
Xα

S−1Xα; ð10Þ

and wXα is a per-SFT noise weight given by

wXα ≡ S−1Xα
S−1 : ð11Þ

The log-likelihood ratio depends quadratically on the
amplitude parameters Aμ and can thus be analytically
maximized to yield the F -statistic [25]:

2F ðx; λÞ≡ 2max
A

lnLrðx;A; λÞ ¼ xμMμνxν: ð12Þ

While theF -statistic has underlying nonphysical amplitude
priors (and is thus not the optimal detection statistic) [28],
the analytical maximization results in a detection statistic
with a lower computational cost compared to the physically
motivated Bayesian counterpart. The F -statistic has been
used in many different searches for CWs, such as [9,12].
As explained in the introduction, due to the high

computational cost of wide parameter-space CW searches
the data to be analyzed is separated in different segments
Nseg of duration Tseg, and phase continuity is only required
for the data within a segment. A semicoherent likelihood
can be obtained by taking the product between the like-
lihood in the different segments, assuming that they are
independent [5,29]. Thus, we define the semicoherent
F̂ -statistic as

2F̂ ≡XNseg

l¼1

2F l; ð13Þ

where F l is the coherent F -statistic computed on seg-
ment l.
The semicoherent F -statistic has a noncentral χ2 dis-

tribution, with 4Nseg degrees of freedom and a noncen-
trality parameter equal to the signal power ρ2, which can be
expressed as [30]

ρ2 ¼ NSFTsTSFT

D2
ðα1Aþ α2Bþ 2α3CÞ; ð14Þ

2Several CW searches use SFTs [27] as the format for the input
data. We assume stationary noise and constant antenna-pattern
coefficients over the duration of each SFT.
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where we defined the sensitivity depth:

D ¼
ffiffiffiffi
S

p

h0
; ð15Þ

the amplitude angle factors αiðι;ψÞ:

α1 ≡ 1

4
ð1þ cos2 ιÞ2 cos2 2ψ þ cos2 ι sin2 2ψ

α2 ≡ 1

4
ð1þ cos2 ιÞ2 sin2 2ψ þ cos2 ι cos2 2ψ

α3 ≡ 1

4
ð1 − cos2 ιÞ2 sin 2ψ cos 2ψ ; ð16Þ

and A, B, and C are the components of the antenna-pattern
matrix Mμν.
Another important quantity is the critical ratio CR of the

detection statistic (sometimes also called significance),
which we define as [31]

CR≡ 2F̂ − μN ½2F̂ �
σN ½2F̂ � ; ð17Þ

where μN and σN are the mean and standard deviation
values, respectively, of the distribution in the case of no
signal present. When there is a signal, the expected value of
the CR is

CR≡ μS½2F̂ � − μN ½2F̂ �
σN ½2F̂ �

¼ 4Nseg þ ρ2 − 4Nsegffiffiffiffiffiffiffiffiffiffiffi
8Nseg

p ¼ ρ2ffiffiffiffiffiffiffiffiffiffiffi
8Nseg

p ; ð18Þ

a quantity that can characterize the dependence of the
efficiency of a follow-up method on the signal power, in an
independent way of the number of segments of the
detection statistic. Another advantage of this quantity is
that it is usually readily available for the candidates of a
search [by using the estimated signal power defined in
Eq. (27)], while the sensitivity depth is not, because h0 is
not a directly available quantity from the search results.

C. Mismatch and number of templates

Due to the high computational cost of wide parameter-
space CW searches, a grid of templates with finite spacing
is used to cover the selected parameter-space region. For
this reason, the values of the searched parameters will not
be equal to the parameters of a possible astrophysical
signal. The mismatch μ describes the relative loss of signal
power ρ2 due to not computing the detection statistic at the
exact signal parameters λ:

μ ¼ 1 −
ρ2ðλ0Þ
ρ2ðλÞ ; ð19Þ

ranging from 0 (fully recovered signal power) to 1 (no
recovered signal power), where λ0 represents the mis-
matched parameters. The mismatch decreases the recovered
signal power, thus decreasing the sensitivity of a search.
The mismatch μ can be estimated with a Taylor expan-

sion of the signal power around the signal parameters
(where the mismatch attains a minimum of 0), keeping
terms only up to second order [32]:

μ ≈m≡ gijðt; λÞdλidλj þOðdλ3Þ; ð20Þ

where gij is a suitable parameter-space metric (i and j are
indices over the different phase-evolution parameters). This
equation represents a multidimensional ellipsoid with
maximum mismatch given by m. This approximated mis-
match can be bigger than 1, and it is known that it
overestimates the true mismatch for mismatches μ higher
than ∼0.3 [32,33].
The phase metric in segment l can be obtained by

numerically integrating over time the derivatives of the
phasemodel givenbyEq. (3) in the frameof thedetector [32]:

gij;lðt;λÞ¼
�
∂ϕðt;λÞ
∂λi

∂ϕðt;λÞ
∂λj

�
l

−
�
∂ϕðt;λÞ
∂λi

�
l

�
∂ϕðt;λÞ
∂λj

�
l

;

ð21Þ

where hfðtÞil ≡ 1=Tseg

R tlþTseg
tl fðtÞdt. The semicoherent

metric can then be obtained by averaging the metrics gij;l
over the different segments [31].
The number of templates N needed to cover a param-

eter-space region R of dimension n with a maximum
mismatch m0 can be estimated with the following equation
[8,34]:

N ðθ; m0Þ ¼ θm−n=2
0

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
dnλ; ð22Þ

where θ is the normalized thickness, a factor characterizing
the lattice geometry. This equation assumes that the
parameter-space region is much bigger than the spacing
between templates, so that boundary effects can be
neglected.
Further assuming that the metric components are con-

stant and that the maximum mismatch and normalized
thickness are m0 ¼ 1 and θ ¼ 1, Ref. [8] proposed an
approximated quantity N � to characterize the size of the
parameter space:

N � ≡ VolðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
; ð23Þ
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where VolðRÞ is the coordinate volume of the parameter-
space region.
In the next sections we will use N �

ellðmRÞ whenR is the
metric ellipsoid described by Eq. (20) with a maximum
mismatch of mR, and N �

box when R is a box. Notice that
two different quantities m0 and mR are used, where the
former characterizes the spacing between the different
templates, and the latter characterizes the size of a metric
ellipsoid.

III. BAYESIAN FRAMEWORK

As explained in the introduction, we use the BILBY

package as an interface between the F -statistic calculation
and the different packages that carry out the stochastic
sampling of the follow-up region. We choose BILBY due to
its ease of use and the large number of different samplers
that it supports.
The posterior distribution for parameters λ is given by

Bayes’ theorem:

Pðλjx;HSÞ ¼
Lðxjλ;HSÞPðλjHSÞ

PðxjHSÞ
; ð24Þ

where HS represents the signal hypothesis, PðλjHSÞ is the
prior of the phase-evolution parameters, Lðxjλ;HSÞ is
the likelihood function for the signal hypothesis (after the
amplitude parameters have been marginalized), and the
constant factor in the denominator is sometimes called
the evidence. We can divide this equation by the noise-only
likelihood to obtain

Pðλjx;HSÞ ∝
Lðxjλ;HSÞ
LðxjHGÞ

PðλjHSÞ: ð25Þ

It can be seen that the prior distribution and the likelihood
ratio function are the two inputs that are needed for a
parameter-estimation analysis, whose aim is the calculation
of the posterior distribution.

A. Likelihood

As explained before, when limited by a certain computa-
tional budget a semicoherent method can be more sensitive.
In this case, we use the semicoherent F̂ -statistic [given by
Eq. (13)] as our underlying marginalized likelihood ratio
function [8,29]:

LrðxjλÞ≡ Lðxjλ;HSÞ
LðxjHGÞ

∝ eF̂ ðx;λÞ: ð26Þ

Other detection statistics can also be used as the likelihood
function, such as one proposed to deal with non-Gaussian
noise [35], a weightedF -statistic [12], or the short-segment
dominant-response F -statistic [36].

The shape of the likelihood as a function of the phase-
evolution parameters is complicated by the presence of
multiple correlations between these parameters, both local
and global. While the local correlations are characterized
by the Taylor-expanded phase metric given by Eq. (20), the
global correlations are more difficult to characterize. An
example of a global correlation is the relation between the
frequency and the sky position, explored in detail in [37],
where it can be seen that the likelihood has many local
maxima in different regions of the parameter space, thus
complicating the stochastic sampling procedure. Global
correlations produced by the phase-evolution parameters
describing the binary orbit of the neutron star have not yet
been studied in detail but are also present. These correla-
tions make the sampling of the posterior distribution more
complicated, requiring the usage of samplers that are robust
to posteriors with multiple modes.
We have written new LALSUITE [21] code that can

efficiently calculate the semicoherent F̂ -statistic (and the
other detection statistics mentioned above). We call this
new semicoherent log-likelihood function from BILBY by
using the SWIG wrapper [38].

B. Prior

Explicit priors for the phase-evolution parameters λ are
needed. Since the parameter-estimation runs that we
characterize in this paper are aimed as a follow-up from
a previous stage of a search, we assume that we already
have some information about these parameters and some
account of their uncertainty, which defines the follow-up
region R. As discussed below, this region can be charac-
terized by a multidimensional box or an ellipsoid, and we
use two different distributions as our prior over R: a
uniform distribution or a Gaussian distribution.

1. Follow-up region: Box vs metric ellipse

In this section we compare the size of the follow-up
region R when a box or a metric ellipsoid is used to
describe it.
When carrying out a follow-up of candidates from a

search, the required size of the follow-up region can be
obtained with injections, characterizing how far away are
the candidates from these simulated signals. This can be
done in two different ways: calculating the distances
independently for each coordinate dimension λi or calcu-
lating the mismatch given by Eq. (20). After this, the first
method will set up a box, while the second method will
instead set up a metric ellipsoid with sizemR, both methods
containing a desired percentage of the injections.
As an example, we test whether a box or an ellipse fits

better (i.e., is smaller) a distribution of candidate offsets in
ff0; f2g. To do this, we inject 1000 signals with random
amplitude parameters at fixed ρ2 ¼ 400, random sky posi-
tions, and fixed f0, f1, and f2, in simulated Gaussian noise.
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These signals are searched with a fine template grid ofm0 ¼
5 × 10−5 for the ff0; f2g parameters, which have a strong
correlation (we assume τref ¼ tm, where tm is the midtime of
the observation span), and we obtain the grid point with the
highest detection statistic. Then, we calculate the distance
from this point to the signal, obtaining the required ellipsoid
and box to contain all of the injections.
The result of this test is shown in Fig. 1. This figure

indicates that using the ellipsoid results in a smaller number
of templates, since N �

ell=N
�
box ≃ 0.8. This result depends

on the parameters that are searched: for instance, we
observe that for the ff0; f1g parameters using the ellipsoid
results in a larger number of templates. The result might
also depend on the percentage of injections that we want to
cover with the follow-up region. We conclude that whether
it is better to use a metric ellipsoid or a box depends on the
search setup and the specific parameter space that needs to
be followed up.

C. Samplers

In this work we test three different samplers: PTEMCEE

[19], DYNESTY [39], and NESSAI [40]. A general introduc-
tion to MCMC sampling algorithms can be found in [41],
and a general introduction to nested sampling algorithms
can be found in [42]. Although BILBY enables the usage of
more samplers, here we focus on a direct comparison of
these three samplers and on the optimization of their tuning
parameters, leaving for future work the exploration of other
stochastic samplers.
For all these samplers it is important to notice the

difference between the termination criterion (the condition

that determines when a parameter-estimation run is fin-
ished) and the convergence criterion (the condition that
determines whether a parameter-estimation run has suc-
cessfully characterized the posterior distribution). In this
paper we propose a new follow-up convergence criterion
(explained in Sec. III D) that only takes into account the
maximum posterior point (MP), instead of using a con-
vergence criterion related to the posterior distribution.
An advantage of MCMC over nested sampling is that it

is more straightforward to resume a run if the number of
likelihood evaluations was not enough to reach conver-
gence, since the walker chains can just be continued from
their last positions in parameter space. For nested sampling,
if the run has finished and the MP has been missed (e.g., the
number of live points was too small), the run needs to be
restarted, thus making the characterization of these meth-
ods more time consuming.

1. Ptemcee

We use the PTEMCEE PYTHON package [19], an MCMC
sampler that has been used in previous CW follow-up
searches [10–13] (it is the only sampler available in
PYFSTAT). We study the performance of PTEMCEE by chang-
ing the number of walkersNW and temperaturesNT , and for
each of these configurationswe find the total number of steps
NMCMC that is required so that all injections have reached our
follow-up convergence criterion (defined in Sec. III D). We
have modified the PTEMCEE code in BILBY so that no
estimation of the autocorrelation length is done, in order
to decrease the number of likelihood evaluations, thus
imitating the behaviour of the PYFSTAT package. The termi-
nation criterion for a single run is the number of steps
NMCMC.

2. Dynesty

We use the DYNESTY PYTHON package [39], a nested
sampler that has been used for CW targeted searches and
which is broadly used within the gravitational-wave com-
munity. We study the performance of DYNESTY by chang-
ing the number of live points and the point-finding
algorithm (called sample method in the BILBY documen-
tation): we use the rslice point finder, the act-walk point
finder, and a custom point finder that only proposes new
points until a point with a likelihood higher than the current
threshold is found. For each of these point-finding algo-
rithms we change some of their tuning parameters such as
the number of slices or the number of autocorrelation
lengths. We use the default value for the termination
criterion, which is that the estimated remaining log-evi-
dence Δ lnPðxjHSÞ is 0.1, and we find the number of live
points that is required so that all injections have reached our
follow-up convergence criterion (defined in Sec. III D). We
have modified the DYNESTY code so that no resampling is
done at the end of the run, since we are indifferent to the

FIG. 1. Plot showing the metric ellipsoid and the box required
to contain 1000 injected signals, whose maximum likelihood
point is shown with red markers (the injection is located at the
center of the plot). The small gray circles show the rectangular
grid of templates where we have calculated the detection statistic,
with a maximum mismatch of m0 ¼ 5 × 10−5. This search has
assumed τref ¼ tm.
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statistical independence of the obtained samples but do not
want to lose the sample with the highest likelihood.

3. Nessai

We use the NESSAI PYTHON package [40], a nested
sampler that makes use of normalizing flows and has
shown more efficiency than DYNESTY for some problems.
We study the performance of NESSAI by changing the
number of live points. We use the default value for the
termination criterion, which is that the estimated remaining
log-evidence Δ lnPðxjHSÞ is 0.1, and we find the number
of live points that is required so that all injections have
reached our follow-up convergence criterion (defined in
Sec. III D). We have modified the NESSAI code so that no
resampling is done at the end of the run, since we are
indifferent to the statistical independence of the obtained
samples but do not want to lose the sample with the highest
likelihood.

D. Follow-up convergence criterion

Although these samplers can be used to obtain precise
posterior distributions, we simply aim to find a point close
enough to the maximum posterior point (MP). This is
because at the first follow-up stage we are not interested in
describing the posterior distribution of the phase-evolution
parameters with high precision, but only that the MP can be
used to check whether the candidate behaves as an
astrophysical signal and if so, to be used as an input to
the subsequent follow-up stage. A disadvantage of this
strategy is that since the posterior has not necessarily
converged, it cannot be used as the prior for the subsequent
stage of the follow-up. For this reason, injections are
required to characterize the uncertainty of the MP if more
than one follow-up stages are needed.
In a previous CW follow-up study [8] a convergence

criterion (related to the Gelman-Rubin statistic) for the
posterior was used. In this work, instead, we propose a
convergence criterion not related to the posterior, but
only to the MP. Follow-up convergence is considered
to be achieved when the estimated signal power of the
candidate ρ̂2cand is close enough to the estimated signal
power of the MP ρ̂2MP. The estimated signal power ρ̂2 is
defined as

ρ̂2 ≡ 2F̂ − μN ½2F̂ � ¼ 2F̂ − 4Nseg: ð27Þ

In practice it can be difficult to find the MP even for an
injection because of noise shifting the signal peak. We
approximate ρ̂2MP for each injection by calculating the 2F̂
value at the signal parameters, i.e., ρ̂2MP ∼ ρ̂2inj, which turns
out to be a good approximation.

The convergence criterion is defined as

c≡ 2
ρ̂2cand − ρ̂2MP

ρ̂2cand þ ρ̂2MP
> c0: ð28Þ

An advantage of this follow-up convergence criterion is
that it makes a comparison of efficiency between different
samplers straightforward. This criterion can be used in a
real search by first characterizing the tuning parameters of
the samplers that are required so that a certain fraction of
injections are converged. This is the procedure we follow in
the tests done in Secs. IVA–IV C, requiring that all
injections have converged.
Figure 2 shows a plot comparing the Gelman-Rubin

statistic Q [given by Eq. (28) of [8], which compares the
between-walker variance and the within-walker variance]
and our convergence criterion for the PTEMCEE sampler, for
the tests explained in Sec. IVA. We can clearly see when a
run has not found the MP, as happens with N �

box ¼ 107,
indicating that the number of likelihood evaluations was
not enough. We can also see a parameter-space size with
N �

box ¼ 106 that the Q criterion would classify as non-
converged (i.e., much higher than 1) but our follow-up
criterion classifies as converged. We remark again that
these criteria refer to different aspects: Q is a posterior
convergence criterion, while we have defined a follow-up
convergence criterion that only checks for the MP. The
advantage of our criterion comes from the fact that fewer
likelihood evaluations are required to find the MP than to
properly characterize the posterior.

FIG. 2. Follow-up convergence criterion c given by Eq. (28)
and correspondent Gelman-Rubin statisticQ given by Eq. (28) in
[8]. Each point is the result of a PTEMCEE run over the ff0; f1g
parameters, with 100 walkers, three temperatures, and 4000 steps.
The different markers show different sizes of the parameter space.
The vertical dashed line shows the threshold at c0 ¼ −0.01, while
the horizontal dashed line shows the threshold atQ ¼ 1 from [8].
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E. Computational model

In this section we present a model for the computational
cost of a single follow-up stage. We divide the cost per
likelihood evaluation τi into two contributions, following
the description of [8]: the time to compute the detection
statistic τF and the remaining overhead time τO (due to
various factors such as proposing a new point in parameter
space and other sampler-specific computations):

τi ¼ τF þ τO: ð29Þ

The overhead time τO depends on the sampling method
and on the prior distributions. If the detection statistic is
2F̂ , the timing model is given by3 [44]

τF ¼ τC þ τB; ð30Þ

τB ¼ τAntenna þ τSky þ τBinary; ð31Þ

where τC is the time to compute the core F -statistic
quantities and τB is the buffer time needed to compute
auxiliary quantities such as the antenna-pattern coefficients
τAntenna and the source-to-SSB τBinary and SSB-to-detector
τSky barycentering transformations. Both τF and τB depend
linearly on the number of SFTs NSFTs.
The total time to complete a follow-up stage for a single

candidate is

τ ¼
XNL

i¼1

τi ¼ NLτ̄; ð32Þ

where τ̄ ¼ hτii is the average over the different likelihood
calculations andNL is the number of likelihood evaluations,
which depends on the size of the parameter space, the critical
ratio CR, and the efficiency of the sampling algorithm. With
this model we are assuming that other contributions to the
total timing (such as I=O) are negligible. In Sec. IVDwewill
test and evaluate this timing model.

IV. TESTING THE NEW FRAMEWORK

In this section we present several tests that illustrate the
performance and capabilities of the new framework. The
follow-up regions R of these tests are given by bounding
boxes of metric ellipsoids with different mR values. This is
done so that all injections have the sameN �

box and to ensure
that all parameters are fully resolved.

A. Maximum size of follow-up region

In this section we show that stochastic sampling methods
are able to find the MP for much larger parameter spaces
than previously demonstrated. In [8] it was discussed that

the maximum parameter-space size for proper posterior
convergence was around N �

box ∼ 103 (for the sampler
configurations that were investigated), showing a specific
example with N �

box ¼ 107 where the Gelman-Rubin cri-
terion indicated nonconvergence.
In order to illustrate that the MP can be recovered in

much larger parameter-space regions, we use again the
PTEMCEE sampler with 100 walkers and three temperatures,
a configuration that was used in [8]. We simulate a single
CW signal with 100 different noise realizations and run the
algorithm 5 times for each of these noise realizations with a
different sampler random seed, to take into account the
intrinsic randomness of the stochastic sampler. We do this
for different sizes of the follow-up region (from N �

box ¼
102 to N �

box ¼ 108), searching a box in the ff0; f1g
parameters. We use the new convergence criterion proposed
in Sec. III D, requiring that all the 500 runs have a follow-
up convergence value c higher than c0 ¼ −0.01 (i.e., we
take as many steps as necessary to reach convergence). We
simulate Gaussian noise with a duration of 10 days from a
single detector.
The results are shown in Fig. 3, where the required

number of likelihood evaluations can be seen as a function
of N �

box, for two different signal strengths. It can be seen
that the weaker signal required more likelihood evaluations.
We also observe that as N �

box increases, the ratio of NL
between the two different signal strengths increases as well.
This figure shows that stochastic samplers can deal with
parameter-space regions much bigger than previously
found in [8], mainly due to the usage of a different

FIG. 3. Number of likelihood evaluations NL as a function of
the number of unit-mismatch templates N �

box given by Eq. (23)
for the PTEMCEE sampler with 100 walkers and three temper-
atures, for a search over the ff0; f1g parameters. Each color
shows a different value of the sensitivity depth D. We have used
the convergence criterion c > −0.01. Each box extends from the
25 to the 75 quartiles, while the vertical lines go to the minimum
and maximum of each distribution.3We use the Demod implementation of the F -statistic [26,43].
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convergence criterion (requiring convergence of the MP and
not of the posterior) and to a higher number of likelihood
evaluations (in [8], the number of likelihood evaluations was
limited to NL ¼ 180000, while here we have taken as many
steps as necessary to reach convergence).
These results allow us to reconsider the optimal pro-

cedure when designing a follow-up with multiple stages
and a limited computational budget. Recent works have
built a ladder of coherent times [8,22], where the number of
follow-up stages is minimized by using the maximum
possible increase in coherent time while constraining the
size of the follow-up region to be less than the maximum
allowed by some posterior convergence criterion. As we
have observed, however, there is no hard limit on the size of
the follow-up region, and the required number of likelihood
evaluations also depends on the strength of the signal
compared to noise (characterized by CR, which will
increase in subsequent stages of the follow-up). Because
of this, the optimal construction of the ladder of coherent
times given a limited computational budget will likely
follow a different procedure than the one proposed by these
previous studies. We leave a more detailed investigation of
this issue for future work.

B. Comparing samplers

In this section we compare the performance of the
PTEMCEE, DYNESTY, and NESSAI samplers as a function
of some of their tuning parameters. Both nested and
MCMC samplers have many tuning parameters that govern
the behavior of the algorithm, such as the number of live
points or the number of parallel walkers. Our tests inves-
tigate the configuration that results in the best compromise
between run-time and recovery of injections. The best
algorithm will be the one for which all injections reach our
follow-up convergence criterion with the lowest number of
likelihood evaluations (assuming that the time spent outside
of the likelihood function is negligible with respect to the
total time, which as shown in Sec. IV D is the case for a
realistic amount of data).

1. Setup

We perform four different tests with parameters shown in
Table I. The number of unit-mismatch templates N �

box for
each test is given in the leftmost column of that table. We
use a uniform prior for each parameter. T1 and T2
exemplify a smaller parameter-space region but with more
complicated correlations due to the α and δ coordinates,
while T3 and T4 have smaller correlations between their
parameters. T2 uses signals with smaller amplitude, while
T4 has a higher number of unit-mismatch templates. In
these tests we have used 100 different signals and run the
algorithm 5 times for each of these signals with a different
sampler random seed, to take into account the intrinsic
randomness of the stochastic sampler. We have used a
single segment of coherent time Tseg ¼ 864000 s, but the

results shown here are independent of the number of
segments (if the expected critical ratio CR of the signals
is scaled accordingly). For the tests in this section, we use a
convergence threshold of c0 ¼ 0.
For PTEMCEE, we test nine different combinations of

tuning parameters: NW ¼ 20, 100, 1000 and NT ¼ 1, 3, 6,
for which the temperatures are logarithmically spaced
between 1 and 10 for the first two temperature values
and between 1 and 100 for the last one. For DYNESTY, we
test different numbers of live points: we search for the
injections, and if they all converge, we divide the number of
live points by 1.5; otherwise, we multiply the number of
live points by 1.5. In this way, we try to find the optimal
number of live points within a factor of 1.5. For NESSAI, we
use the default tuning parameters and use the same strategy
as with DYNESTY to find an approximately optimal number
of live points.

2. Results

In this section we present the results of our tests. For
PTEMCEE, these indicate that the best configuration for all
the test sets is the one with NT ¼ 1 and NW ¼ 100. For
DYNESTY, the tests indicate that the best configuration is the
act-walk point-finder method, after reducing the tuning
parameter nact to 1 and the maximum number of walks
maxmcmc to 100. The number of required live points so
that all injections reached our follow-up convergence
criterion was for T1, 150; for T2, 200; for T3, 100; and
for T4, 150. For NESSAI, the number of required live points
was for T1, 150; for T2, 300; for T3, 300; and for T4, 900.
For PTEMCEE, Fig. 4 shows the results for all the

injections, instead of only the highest NL (which is used
to compare the efficiency to DYNESTY and NESSAI). Using
the highest number of likelihood evaluations as the

TABLE I. Parameters of the different tests performed in
Secs. IV B and IV C. All sets generate fake Gaussian noise for
NSFTs ¼ 480 with one detector, with a single segment of duration
10 days. The injections have random amplitude parameters, with
an amplitude h0 given so that their signal power is equal to ρ2,
and are isotropically distributed over the sky, with fixed
f0 ¼ 100 Hz, f1 ¼ −10−11 Hz=s, f2 ¼ 10−23 Hz=s2, ap ¼ 10

l-s, Porb ¼ 10 days, e ¼ 0.3, ω ¼ 2, tasc ¼ tm − 275019, and
τref ¼ tm, where tm is the midtime of the observation span.
N �

box is the number of unit-mismatch templates contained in the
follow-up regions R used in Sec. IV B, while hN �

elli is the
(averaged over the different injections) number of unit-mismatch
templates contained in the follow-up regions used in Sec. IV C.

N �
box hN �

elli Parameters ρ2

T1 106 4 ff0; f1; α; δg 85
T2 106 4 ff0; f1; α; δg 57
T3 106 1 ff0; f1; ap; Porb; tasc; e;ωg 85
T4 109 143 ff0; f1; ap; Porb; tasc; e;ωg 85
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termination criterion for PTEMCEE is required to recover all
injections, and that is why only the highest NL is shown
in Fig. 6.

DYNESTY can also use a certain number of likelihood
evaluations as its termination criterion (and then the highest
NL across all injections would need to be used), but we
notice that this reduces the efficiency, as shown with the

comparison between the leftmost and rightmost distribu-
tions in Fig. 5, which presents a comparison between
different DYNESTY termination criteria. This figure also
shows that using a remaining log-evidence of 1 instead of
0.1 almost does not modify the number of likelihood
evaluations. Using a number higher than 1 results in some
injections not reaching follow-up convergence, thus requir-
ing a higher number of live points, which decreases the
efficiency.
The number of likelihood evaluations NL obtained with

the best configurations of the PTEMCEE, DYNESTY, andNESSAI

samplers at the four test sets is shown in the upper plot of
Fig. 6. For PTEMCEE, these are the number of likelihood
evaluations required to reach our follow-up convergence
criterion for all injections (i.e., we run PTEMCEE until
convergence), while for DYNESTY and NESSAI these are the
number of likelihood evaluations obtained after the default
termination criterion is met (where all injections have
reached the follow-up convergence criterion).
The results presented in Fig. 6 show some interesting

features: for T1 and T2 NESSAI performed better, while for
T4 it performed much worse than the other samplers. This
indicates that NESSAI has a worse performance when the
signal occupies a small fraction of the follow-up region,
since training the normalizing flows is not effective due to
most live points sampling regions of parameter space where
only noise is present. For T4 DYNESTY required fewer
likelihood evaluations than the other samplers, which

FIG. 4. Number of likelihood evaluations required to reach
follow-up convergence as a function of the test set for the best
PTEMCEE configuration. Each box extends from the 25 to the 75
quartiles, while the vertical lines go to the minimum and
maximum of each distribution.

FIG. 5. Number of likelihood evaluations required to reach the
termination criterion for T3 as a function of different DYNESTY

termination criteria, with an equal number of live points. Method
A uses the default Δ lnPðxjHSÞ ¼ 0.1, method B uses
Δ lnPðxjHSÞ ¼ 1.0, and method C uses the number of likelihood
evaluations needed to reach c > 0.0 for each injection, as with
PTEMCEE. Each box extends from the 25 to the 75 quartiles, while
the vertical lines go to the minimum and maximum of each
distribution.

FIG. 6. The upper plot shows the number of likelihood
evaluations as a function of the sampler and test set, for the
best sampler configurations. The labels on the x axis refer to the
tests of table I and the different samplers, where PT is PTEMCEE,
NE is NESSAI, and DN is DYNESTY. The lower plot shows the same
quantity but divided by N 0

box ≡N ðA�
n; m0 ¼ 0.1Þ, which is the

number of templates required by a deterministic template bank
with a maximum mismatch m0 ¼ 0.1 and an A�

n lattice. Each box
extends from the 25 to the 75 quartiles, while the vertical lines go
to the minimum and maximum of each distribution.
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indicates that DYNESTY is more robust than the other
samplers to the decrease of the fraction of follow-up region
occupied by the signal.
The results clearly show that when the amplitude of the

signals is smaller (from T1 to T2), more likelihood
evaluations are needed for all samplers, as already shown
in the results of Sec. IVA. The results indicate that
PTEMCEE is less affected than DYNESTY and NESSAI when
the signal strength is reduced. When the size of the
parameter space is increased (from T3 to T4), the results
also show an increase in the number of likelihood evalu-
ations, as expected. On the other hand, when the size of the
parameter space is increased but the coordinates have
different correlations (from T1 to T4), the DYNESTY results
do not clearly show an increase in the number of likelihood
evaluations. These results show again that the size of the
parameter space is not the only property that characterizes
the required number of likelihood evaluations, but also the
searched parameters (due to their influence on the shape of
the likelihood function) and the critical ratio CR of the
signal.
We remark that if not all the injections are required to

reach follow-up convergence (as in many searches where a
small false dismissal is allowed), the number of likelihood
evaluations that is needed would be lower for all samplers.
For PTEMCEE, this is because we use the highest NL, which
would be lower if a fraction of the injections are allowed to
not reach convergence. For DYNESTY and NESSAI, this is
because a smaller number of live points could be used, and
thus the average NL would decrease.
We have repeated the tests but shifting the center of the

prior from the signal parameters, in order to test the
safeness of the previous signal-centered tests. We have
seen that the results are comparable, thus indicating that
centering the priors on the signal parameters does not
introduce any noticeable bias.
In the lower plot of Fig. 6 we show a comparison

between the required number of likelihood evaluations for
the stochastic samplers and the number of templates that
would be needed in a search with a template bank with a
maximum mismatch m0 ¼ 0.1 and an A�

n lattice. It can be
seen that for the two first test sets the decrease in the
number of required likelihood evaluations by using sto-
chastic samplers instead of a deterministic template bank is
around one order of magnitude or less. When more
dimensions are included (as shown by T3 and T4) this
ratio is around 3 orders of magnitude for T3 and 5 orders of
magnitude for T4, showcasing the vast advantage of
stochastic samplers compared to deterministic lattices for
a high number of dimensions.

3. Additional tests

In this section we present two additional tests.
We have searched for the injections of all tests with a

random template bank [45] covering the follow-up region,

with the number of likelihood evaluations (number of
templates) twice as large as the value shown for PTEMCEE

in Fig. 6 for each test. We find that only a very small
percentage of injections have converged (less than 5%),
which means that the usage of MCMC or nested sampling
methods is more efficient than a random template bank.
As a final safety check, we compare the fraction of

detected injections after setting five different thresholds on
the 2F̂ cand value of the candidate with the expected
theoretical value. This expected value is calculated by
using the survival function of the noncentral χ2 distribution
for the given thresholds, with the ρ2 values of Table I as the
noncentrality parameter. Figure 7 shows the result, both for
the different tests and for the expected values. It can be seen
that our results agree well with the theoretical expectation,
indicating that the usage of the convergence criterion
presented in Sec. III D is safe.

C. Box vs ellipse

The computational cost of a follow-up stage depends on
the regionR occupied by the prior distribution, as shown in
the two previous sections. The region used in the previous
tests andby the follow-up procedures of [10–12] is given by a
multidimensional box,where an independent distribution for
each of the searched parameters is used as the prior.
In order to reduce the size of the follow-up region, we

can instead use a multidimensional ellipsoid that takes into
account the correlations between the different parameters
given by the metric, as discussed in Sec. III B 1.
In the following testswewill use a uniform and aGaussian

distribution as our priors. For the Gaussian, the covariance
Cij depends on the normalized mismatch metric ḡij (defined

FIG. 7. Detection probability as a function of the threshold on
the F̂ -statistic for the four different tests. The black lines show
the theoretical expectation for the two different ρ2 values of
Table I. The markers show the results from the injections, with the
vertical bars showing the 1σ standard deviation.
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below) and on the desired coverage fraction x (fraction of
probability that is contained within the ellipsoid):

Cij ¼
ḡij

cf
¼ ḡij

2Γ−1ðn=2; xÞ ; ð33Þ

ḡij ≡ gij
mR

; ð34Þ

where ḡij is the inverse of the normalized metric and cf is
related to the coverage fraction x, given by the inverse of the
cumulative distribution of the χ2 distribution with degrees of
freedom equal to the number of searched parameters,4 which
is equal to the inverse of the regularized lower incomplete
gamma function Γ−1. Figure 8 shows an example of samples
generated from the uniform and Gaussian distributions and
the corresponding ellipsoid with its bounding box.
In order to test the efficiency and safety of the uniform

and Gaussian priors on the ellipsoid follow-up region, we
perform the same sets of tests as in the previous section
using the best PTEMCEE sampler configuration. The average

number of unit-mismatch templates of the ellipsoid follow-
up region is given in the second column of Table I (as
previously explained, the number is different for each
injection, because each used a different mR in order to
have a constantN �

box). For these tests we shift the center of
the prior from the signal parameters, so that the center of
the of the Gaussian distribution is not artificially favored.
To obtain the shifted center we draw a random sample
within this ellipsoid using a uniform distribution.5 This
sample is the new center, while we keep the same ellipsoid
size and shape.
The results are shown in Fig. 9. It can be seen that using a

correlated prior with a smaller number of unit-mismatch
templates reduces the required number of likelihood
evaluations, in some cases up to 3 orders of magnitude.
It can also be seen that using the Gaussian prior requires a
similar number of likelihood evaluations than the uniform
distribution.

FIG. 8. The blue region shows the ellipse with a maximum
mismatch mR ¼ 2 for 180 days of data and Tseg ¼ 3600 s,
centered on f0 ¼ 100 Hz and δ ¼ 1 rad. The orange crosses
show 1000 samples from the Gaussian distribution, with a
coverage fraction of x ¼ 0.99 (six out of 1000 samples are
outside of the ellipsoid, with a maximum mismatch of 2.5). The
green circles show 1000 samples from the uniform distribution,
all contained inside the ellipsoid (with a maximum mismatch of
1.9998). The black lines mark the bounding box that encloses the
ellipse. The number of unit-mismatch templates in the bounding
box is N �

box ¼ 17 and N �
ell ¼ 6 for the ellipse. For a maximum

mismatch between templates of m0 ¼ 0.1 and an A�
n lattice the

number of templates is N box ¼ 63 and N ell ¼ 24.

FIG. 9. The upper plot shows the number of likelihood
evaluations as a function of the test set and prior distribution
(uniform ellipsoid and Gaussian with coverage fraction
x ¼ 0.99), for the best PTEMCEE sampler configuration. The
center of the prior has been displaced from the signal parameters.
The labels on the x axis refer to the different tests of Table I and
the different distributions, where UE refers to the uniform in the
ellipsoid and GA to the Gaussian. The lower plot shows the same
quantity but divided by N 0

box ≡N ðA�
n; m0 ¼ 0.1Þ, which is the

number of templates required by a deterministic template bank
with a maximum mismatch m0 ¼ 0.1 and an A�

n lattice. Each box
extends from the 25 to the 75 quartiles, while the vertical lines go
to the minimum and maximum of each distribution.

4For a Gaussian variable x, the contours of constant density are
given by ðx − μÞTCijðx − μÞ ¼ m, which is a variable with a χ2

distribution.

5For the Gaussian distribution, this uniform drawing is not
consistent with the usage of the Gaussian distribution itself, since
a Gaussian would need to be used to draw the new center within
the initial ellipsoid. We remark that the results obtained this way
represent a more conservative assessment of the efficiency of the
Gaussian distribution.
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D. Computational efficiency

In this section we test the computational model explained
in Sec. III E and present the improvements in the computa-
tional efficiency of our framework.
In a search with a lot of frequency or spin-down or -up

values, where the buffering quantities whose timings are
given by Eq. (31) can be reused multiple times, the main
timing factor is usually the core time τC. In our follow-up
case, where the next template is generated in a stochastic
way, only one frequency and spin-down or -up value is
calculated at a time and the main timing factor is the buffer
time τB. The left bars in Fig. 10 show that the sum of the
three buffering times that appear in Eq. (31) amounts to a
fraction between 0.6 and 0.7 of the total time. The most
computationally expensive timing quantity is the source-to-
BB calculation τBinary.
We have made several improvements to the code that

calculates the semicoherent detection statistic, mainly
related to the computational efficiency of the barycentering
calculations. The right bars in Fig. 10 show the comparison
to the previous code, where it can be seen that the
improvement is almost a factor of 2.
We also characterize the overhead time of each sampler,

which is the time spent outside of the likelihood function.
The results can be seen in Fig. 11 (for NSFTs ¼ 17280),
which shows that the overhead fraction for the PTEMCEE

and DYNESTY samplers is between 0.03 and 0.1, while for
the NESSAI sampler it is between 0.07 and 0.3. As explained

in Sec. III E, the cost of computing the likelihood depends
linearly on the number of SFTs (for the F -statistic method
used in this paper). For this reason, the overhead fraction
can vary greatly depending on the number of SFTs that are
used, since for a higher number the τF factor will increase
while the overhead factor τO will be constant. For example,
for a duration of 10 days with 1800 s SFTs (NSFTs ¼ 480),
we observe instead that the overhead fraction increases up
to ∼0.7 from the previous ∼0.1 value.
In Fig. 12 we show the total runtime given by Eq. (32) as

a function of the number of likelihood evaluations for the
four different test sets and DYNESTY, with a linear fit to
these results. We can see that a linear relationship between
these two quantities is followed, with a mean timing per
likelihood evaluation of τ̄ ¼ 3.27 × 10−7 h. The vertical
spread can be explained by three different factors: the
different times τF that are needed to calculate the like-
lihood, depending on the region of parameter space;
the different overhead of the sampler, which depends on
the number of dimensions; the intrinsic spread due to the
varying activity in the supercomputer that was used to carry
out the runs.
Although the samplers that we have used allow for

multicore parallelization, we have not tested this feature. In
typical follow-up scenarios we may have to analyze on the
order of millions of candidates, so parallelizing each
individual parameter-estimation run might not be a useful
strategy.

FIG. 10. Fraction (respective to the maximum shown on the
leftmost bar) and absolute time to compute the different compo-
nents of τF, given by Eq. (30). For each of the four different
segment times, the left bar shows the timings with the previous
LALSUITE code, while the right bar shows the timings with our
optimized code. The four different colors in each bar show the
different contributions in Eqs. (30) and (31), which from top to
bottom are τC, τBinary, τSky, and τAntenna. The total amount of SFTs
is NSFTs ¼ 20000 with TSFT ¼ 1800 s. These timings were
obtained using an AMD EPYC 7351P 16-core processor.

FIG. 11. Histogram showing the fraction of time spent outside
of the likelihood function in a given parameter-estimation run.
The orange bars with circles show the results when using the
DYNESTY sampler, the blue bars with stars show the results using
the NESSAI sampler, and the pink bars with lines show the results
when using the PTEMCEE sampler (all using the results from the
best configurations of Sec. IV B). The total amount of SFTs for
this test is NSFTs ¼ 17280. These timings were obtained using an
AMD EPYC 7351P 16-core processor.
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V. CONCLUSIONS

In this paperwe have presented a new framework to follow
up candidates from CW searches. This framework expands
the capabilities of PYFSTAT in a number of ways: more
flexibility in the choice of sampler and prior distribution, and
a new convergence criterion. We have shown that for a large
number of dimensions we are able to perform searches of
CWs with a greatly reduced computational cost as compared
to a search that would use a template bank. Furthermore, we
have shown that it is possible to find the maximum posterior
point for parameter-space regions much larger than previ-
ously thought. We have focused on finding a good configu-
ration of the PTEMCEE, DYNESTY, and NESSAI samplers in
order to reduce the computational cost of a single follow-up
stage, showing that they can produce similar results with
comparable computational efficiency. We have also charac-
terized the computational cost of a parameter-estimation run
and shown the improved computational efficiency of our
framework.
The main drawback of using stochastic samplers, as

compared to a follow-up with a deterministic template
bank, is that the samplers need to be characterized (for
example the number of live points or the number of
walkers) since the number of required likelihood evalua-
tions depends on the size of parameter space and the
strength of the signals.
There are many ways in which this work could be

expanded. We have tested a limited number of samplers and

sampler configurations, so other options could be more
efficient than the ones we have tried. Furthermore, usage of
proposals (to find the next sampled point) specific to the
CW problem (in a similar way to the compact binary
merger proposals explained in [46]) could increase the
efficiency of the samplers. Another option would be to use
block-updating proposals, where only a subset of param-
eters are updated at each step. This could help in decreasing
the computational cost, for example by keeping the sky
position and binary parameters fixed and not recomputing
the barycentering transformations and the antenna-pattern
coefficients for a fixed number of steps. Moreover, a
different set of coordinates could improve the sampling
efficiency, such as using the sky coordinates proposed in
[31] instead of the equatorial coordinates α and δ. Finally,
these stochastic sampling algorithms could be ported to
GPUs to further improve their computational efficiency.
The main goal of MCMC and nested sampling algo-

rithms is not to find the maximum posterior point. It would
be interesting to compare the efficiency of these algorithms
against other tools specifically designed to locate maxima
and minima, such as NOMAD [7].
Besides classicalMCMCand nested sampling algorithms,

machine learning is becoming widely used for gravitational-
wave searches and parameter estimation, showing large
decreases in the computational cost. This could also be tried
with CWs, by using an algorithm similar to DINGO [47].
Lastly, this framework could be used to search for spin

wandering of sources in binary systems. A reversible jump
MCMC [48] that traverses over different models with
different numbers of parameters could be proposed to
measure this effect, or in combination with a Kalman filter,
as recently done in [49].
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APPENDIX: ILLUSTRATION OF FINAL-STAGE
PARAMETER ESTIMATION

In this appendix we illustrate that our framework is also
capable of obtaining precise posterior distributions with
real data, a procedure that might be used at the last stage of
a follow-up. To achieve this, we show the results of a
parameter-estimation run in a region around one of the
hardware injections with binary parameters in Advanced
LIGO O3 data [50], using both the DYNESTY and PTEMCEE

samplers with the default tuning parameters in BILBY2.0.3.

The parameter-space region that we analyze is the bound-
ing box (centered on the hardware injection parameters) of
the mismatch ellipse [given by Eq. (20)] withmR ¼ 3, with

FIG. 12. Total runtime given by Eq. (32) as a function of the
number of likelihood evaluations for the DYNESTY sampler. The
different markers represent the different test sets from Sec. IV B,
while the black line shows the results of a linear fit, with a slope
of τ̄ ¼ 3.27 × 10−7 h. For each test set, we have created ten
different NL bins (each marker shows the bin midpoint), and we
have calculated the mean run-time for the injections belonging to
each bin. The vertical bars show the 2σ standard deviation of
each bin. These timings were obtained using an AMD EPYC
7452 32-core processor.

P. B. COVAS, R. PRIX, and J. MARTINS PHYS. REV. D 110, 024053 (2024)

024053-14



uniform priors for each of the six searched parameters.
Here we use the default termination criteria for each
sampler: for DYNESTY, the estimated remaining log-
evidence needs to be smaller than 0.1; for PTEMCEE,
5000 independent posterior samples are required.
The results can be seen in Fig. 13, where it is shown that

the two samplers produce comparable results and are able

to recover the posterior of the signal. We show the results
from two runs with different coherent times, Tseg ¼
86400 s and Tseg ¼ 432000 s, respectively. It can be seen
that when the coherent time is increased, the uncertainty is
reduced in some of the parameters, following the expected
behaviour derived from the parameter-space metric given
by Eq. (21) [23].

FIG. 13. Corner plot for the hardware injection [51] number 16 with binary parameters using Advanced LIGO O3 data with SFTs of
TSFT ¼ 200 s. We have used the DYNESTYand PTEMCEE samplers with their default parameters in BILBY2.0.3. The black lines and points
show the parameters of the signal. The other four different colors show the posterior distributions for the two samplers, for two coherent
times of 86 400 and 432 000 s.
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