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The present paper is devoted to a study of the equilibrium configurations of slowly rotating anisotropic
stars in the framework of general relativity. For that purpose, we provide the equations of structure where
the rotation is treated to second order in the angular velocity. These equations extend those first derived by
Hartle for slowly rotating isotropic stars. As an application of the new formalism, we study the rotational
properties of Bowers-Liang fluid spheres. A result of particular interest is that the ellipticity and mass
quadrupole moment are negative for certain highly anisotropic configurations; thus, such systems are
prolate rather than oblate. Furthermore, for configurations with high anisotropy and compactness close to
their critical value, quantities like the moment of inertia, change of mass, and mass quadrupole moment
approach to the corresponding Kerr black hole values, similar to other ultracompact systems like sub-
Buchdahl Schwarzschild stars and analytic rotating gravastars.
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I. INTRODUCTION

A fundamental result in general relativity (GR), due to
Buchdahl [1], establishes that the maximum size of a
spherically symmetric self-gravitating compact object of
total mass M and radius R, whose mass-energy density is
non-negative and decreases monotonically outward, is
given by R ¼ ð9=4ÞM. The existence of this limit in GR
is independent of the equation of state (EOS) describing the
star’s composition. Thus, in principle, Buchdahl’s bound
forbids the existence of ultracompact objects with a radius
extremely close to that of a nonrotating black hole (BH)
given by the Schwarzschild radius.
One of the assumptions in deriving Buchdahl’s limit is

that the fluid pressure is isotropic. However, it has been
known for some time now that various physical phenomena
can lead to local anisotropies. For instance, Ruderman [2]
proposed that nuclear matter may be anisotropic at least at
very high densities ρ > 1015 g=cm3, typical of the inner
core of a realistic neutron star (NS). Anisotropies can also
be produced due to the existence of an inner solid core in
the star [3], pion condensation [4], scalar fields minimally
coupled to gravity [5], and strong magnetic fields [6,7],
among others (see [8] for a review). Thus, anisotropic
configurations, rather than isotropic, seem to be a more

plausible scenario for the description of realistic astro-
physical compact objects.
A compact object can evade Buchdahl’s bound if it is

subjected to anisotropic stresses. Thus, one may expect to
have anisotropic configurations with a radius below
Buchdahl’s radius. The fact that anisotropic spheres can
support greater compactness has been known at least since
Ref. [9], and the idea was brought towider attention with the
exact solution found by Bowers and Liang [10] for an
anisotropic fluid sphere with uniform density. Further exact
anisotropic solutionswere foundbyRefs. [11–14]. The effect
of the anisotropy in the dynamical stability of compact
objects was studied by Refs. [15,16], and some general
properties of anisotropic stars have been studied by a number
of authors [17–23].
Despite the progress on the study of static anisotropic

stars, little has been explored about their rotational proper-
ties. Bayin [11] considered certain models of slowly rotating
anisotropic stars, at first order in the angular frequency Ω.
More recently, Silva et al. [24] considered slowly rotating
anisotropic NSs in GR and scalar-tensor theories, at first
order inΩ. There have been also previous approaches aiming
togeneralizeHartle’s secondorder inΩ framework [25,26] to
anisotropy [27,28]. However, Ref. [28] was predominantly
concerned with specific systems and would not be easily
applicable to the Bowers-Liang sphere. Although Ref. [27]
considered the Bowers-Liang model in slow rotation, they
did not carry out a thorough study of integral and surface
properties, as done by Refs. [29,30] for slowly rotating
isotropic constant density stars. Moreover, Ref. [27] was not
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concerned on looking at systems which approach the BH
compactness. Furthermore, Ref. [27] contained some typos
and other errors, which marred the results presented there.
Our aim in this work is to improve and extend the results

of Ref. [27] on several accounts. First of all, following
Hartle’s methods, we derive the equations of structure for
slowly rotating anisotropic relativistic masses, at second
order in the angular velocity Ω. As an application of the
new formalism, we study in detail the equilibrium con-
figurations of slowly rotating Bowers-Liang spheres, by
solving the extended structure equations for such configu-
rations. Thus, our analysis can be considered an extension
of those presented by Refs. [29,30] for isotropic homo-
geneous masses. Furthermore, our treatment completes the
results of Ref. [27] in various directions; for instance, we
determine all the metric and energy-momentum tensor
perturbation functions, including quantities like the
moment of inertia, ellipticity, and mass quadrupole moment
which were not addressed by Ref. [27]. We also paid
attention to highly anisotropic configurations, which can
remain nonsingular close to the Schwarzschild limit.
The structure of the paper is as follows. In Sec. II, we

derive the equations of structure of slowly rotating aniso-
tropic spheres, at the second order in Ω. The formalism
developed in this section is model independent apart from
very basic assumptions such as regularity. In Sec. III, we
briefly discuss the Bowers-Liang solution for anisotropic
stars with uniform density. The rotational perturbations, as
well as the surface and integral properties of slowly rotating
Bowers-Liang spheres, obtained from the numerical inte-
gration of the extended structure equations, are presented in
Sec. IV. In Sec. V, we summarize our main conclusions and
open questions for future work. In Appendix A, we give a
detailed derivation of a generalized formula to compute the
change of mass. In Appendix B, we depict a brief analysis
of the Bowers-Liang spheres in the gravastar limit. In
Appendix C, we provide a table with some of the numerical
results of surface and integral properties of slowly rotating
Bowers-Liang spheres in GR. Throughout the paper, we
employ geometrical units ðc ¼ G ¼ 1Þ, unless stated oth-
erwise, and signature ð−;þ;þ;þÞ.

II. HARTLE FORMALISM FOR RELATIVISTIC
MASSES WITH ANISOTROPIC PRESSURE

A. A nonrotating anisotropic stellar model is computed

The field equations, at the zeroth order in Ω, provide the
relation between the mass of the star and its central energy
density. The starting point is a nonrotating and spherically
symmetric configuration in the standard Schwarzschild form

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2ðdθ2 þ sin2dϕ2Þ; ð1Þ

whereν and λ are functions of the radial coordinate r, only.Let
us consider the most general static spherically symmetric

energy-momentum tensor (EMT), which may have aniso-
tropic stresses. Specifically, it has a radial pressurepr, as well
as a “transverse pressure” p⊥ corresponding to the stress
along the local plane perpendicular to pr. Thus, a locally
anisotropic EMT takes the general form

Tμ
ν ¼ diagð−ρ; pr; p⊥; p⊥Þ; ð2Þ

where ρ is the energy density and p⊥ ¼ pθ ¼ pϕ. Note that
the form (2) is completelygeneral, regardless of theEOS.This
configuration is Segre type [(11)1,1], where the EMThas two
degenerate eigenvalueswith spacelike eigenvectors, a distinct
eigenvalue with a spacelike eigenvector, and a distinct
eigenvalue with a timelike eigenvector [28]. The Einstein
equationsGμ

ν ¼ 8πTμ
ν for this spacetimegeometry andmatter

distribution give

e−2λ
�
2λ0

r
−

1

r2

�
þ 1

r2
¼ 8πρ; ð3aÞ

e−2λ
�
2ν0

r
þ 1

r2

�
−

1

r2
¼ 8πpr; ð3bÞ

e−2λ
�
ν00 þ ðν0Þ2 − ν0λ0 þ ðν0 − λ0Þ

r

�
¼ 8πp⊥; ð3cÞ

where a prime ≡d=dr. The system (3) consists of three
equations with five unknowns. Therefore, we are required to
provide two EOSs which connect the behavior of ρ, pr, and
p⊥. Equation (3a) can be integrated to give the standard
relation

e−2λ ¼ 1 −
2mðrÞ

r
; ð4Þ

where

dm
dr

¼ 4πρðrÞr2 ð5Þ

gives mðrÞ, the total mass enclosed in the radius r. The total
mass of the configuration isM ¼ mðRÞ, whereR denotes the
stellar radius. From the conservation of the EMT,∇μT

μ
ν ¼ 0,

we obtain the equation for hydrostatic equilibrium as

dpr

dr
¼ −ðρþ prÞν0 þ

2

r
ðp⊥ − prÞ; ð6Þ

which generalizes the Tolman-Oppenheimer-Volkoff (TOV)
equation to anisotropic configurations. In the isotropic case,
i.e., p⊥ ¼ pr, Eq. (6) reduces to the standard TOVequation.
In the exterior vacuum spacetime, ρ ¼ p ¼ 0; thus, the

spacetime geometry is described by Schwarzschild’s
exterior solution
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e2νðrÞ ¼ e−2λðrÞ ¼ 1 −
2M
r

; r > R: ð7Þ

Unless there is a junction layer at the surface, the interior
and exterior geometries are matched at the boundary
Σ ¼ R, such that

½ν� ¼ 0; ½ν0� ¼ 0; ½λ� ¼ 0; ð8Þ

where [f] indicates the difference between the value of f in
the vacuum exterior and its value in the interior, evaluated
at Σ, i.e., ½f� ¼ fþjΣ − f−jΣ.

B. The rotational perturbations of the metric
and the EMT are specified

The standard Hartle perturbative metric for slowly
rotating systems reads [25,26]

ds2¼−e2ν0ðrÞ½1þ2h0ðrÞþ2h2ðrÞP2ðcosθÞ�dt2

þe2λ0ðrÞ
�
1þ2e2λ0ðrÞ

r
½m0ðrÞþm2ðrÞP2ðcosθÞ�

�
dr2

þr2½1þ2k2ðrÞP2ðcosθÞ�½dθ2þsin2θðdϕ−ωðrÞdtÞ2�:
ð9Þ

Here, Plðcos θÞ is the Legendre polynomial of the order of
l, ν0ðrÞ and λ0ðrÞ are the metric functions of the nonrotating
solution, and hlðrÞ, klðrÞ, and mlðrÞ are the monopole
(l ¼ 0) and quadrupole (l ¼ 2) perturbations of the order of
Ω2 in rotation, respectively. The function ωðrÞ is the
contribution at the first order in Ω, which gives rise to
the inertial frame dragging. The condition k0ðrÞ ¼ 0
corresponds to Hartle’s choice of gauge [25].
Originally, Hartle’s metric was paired with a perfect fluid

EMT in the form

Tμν ¼ ðE þ PÞuμuν þ Pgμν; ð10Þ

where E and P are the energy density and radial pressure in
the comoving frame of the rotating fluid (which due to the
perfect fluid nature is degenerate with the transverse
pressure), respectively, and uμ is its four-velocity with
components

ut ¼ ð−gtt − 2Ωgtϕ − Ω2gϕϕÞ−1=2;
uϕ ¼ Ωut; ur ¼ uθ ¼ 0: ð11Þ

We can expand E and P, at the order ofΩ2, in the following
form:

E ¼ ρðrÞ þ E0ðrÞ þ E2ðrÞP2ðcos θÞ; ð12Þ

P ¼ pðrÞ þ P0ðrÞ þ P2ðrÞP2ðcos θÞ; ð13Þ

where E0ðrÞ, E2ðrÞ, P0ðrÞ, and P2ðrÞ are monopole and
quadrupole perturbation functions of the order ofΩ2, where
for normal systems the rotation parameter Ω is the fluid
angular velocity.1 In many cases, it is conventional to use
fractional changes [26]:

P ¼ pðrÞ þ ðρþ pÞ½p�
0ðrÞ þ p�

2ðrÞP2ðcos θÞ�; ð14Þ

E ¼ ρðrÞ þ dρ
dp

ðρþ pÞ½p�
0ðrÞ þ p�

2ðrÞP2ðcos θÞ�: ð15Þ

One convenient way to write the EMT for a rotating
anisotropic configuration is

Tμ
ν ¼ ðE þ T Þuμuν þ T δμν − ðT − PÞkμkν; ð16Þ

where T is the transverse pressure in the comoving frame
of the rotating fluid, u is a normalized four-velocity, and k
is a normalized vector along the distinct axis (spacelike
eigenvector with a distinct eigenvalue). The eigenvalues of
the EMT are E, P, and T twice, so this is still Segre type
[(11)1,1]. The reason for the choice is that our EOSs,
between the eigenvalues, are supposed to be the same
whether it is rotating or not, so the eigenvalue structure
should be the same (it would be, strictly speaking, possible
to have four distinct eigenvalues for a rotating axisym-
metric system). We can expand the eigenvalues in a similar
fashion to Hartle [25]:

E ¼ ρðrÞ þ E0ðrÞ þ E2ðrÞP2ðcos θÞ; ð17Þ

P ¼ prðrÞ þ P0ðrÞ þ P2ðrÞP2ðcos θÞ; ð18Þ

T ¼ p⊥ðrÞ þ T 0ðrÞ þ T 2ðrÞP2ðcos θÞ; ð19Þ

where we have zeroth-order terms and second-order
monopole and quadrupole terms in rotation. Systems like
this can have two EOSs, which may be written in the
general form

FðE;P; T Þ ¼ 0; GðE;P; T Þ ¼ 0: ð20Þ

Geometrically speaking, these two EOSs can be interpreted
as 2D surfaces in 3D space. Thus, allowed configurations,
satisfying both, will typically be space curves at the
intersection of the 2D surfaces. Suppose one of the
variables is one to one with a space curve parameter z.
Call that variable A, and call the others B and C. Taking
derivatives with respect to z, we obtain

1The angular velocity Ω loses such a simple interpretation for
vacuum energy-type solutions, such as the pure vacuum Hartle-
Thorne solution [25,26] and de Sitter–like solutions [31–34],
because the four-velocity drops out the EMT (10).
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∂F
∂A

þ ∂F
∂B

∂B=∂z
∂A=∂z

þ ∂F
∂C

∂C=∂z
∂A=∂z

¼ 0; ð21Þ

∂G
∂A

þ ∂G
∂B

∂B=∂z
∂A=∂z

þ ∂G
∂C

∂C=∂z
∂A=∂z

¼ 0: ð22Þ

Notice that ∂B=∂z
∂A=∂z ¼ ∂B

∂A and ∂C=∂z
∂A=∂z ¼ ∂C

∂A. We can effectively
replace z with A because they are one to one. We can then
solve to obtain

∂C
∂A

¼
�
∂F
∂B

∂G
∂A −

∂F
∂A

∂G
∂B

	
�
∂F
∂C

∂G
∂B − ∂F

∂B
∂G
∂C

	 ; ð23Þ

∂B
∂A

¼
�
∂F
∂C

∂G
∂A −

∂F
∂A

∂G
∂C

	
�
∂F
∂B

∂G
∂C − ∂F

∂C
∂G
∂B

	 : ð24Þ

Considering that Ex, Px, and T x are small perturbations, we
can write

Bx ¼
∂B
∂A

Ax; Cx ¼
∂C
∂A

Ax: ð25Þ

For the four-vectors in Eq. (16), we use the same four-
velocity as the standard Hartle formalism (11), and the
explicit form we choose for k is

kμ ¼
�
0;
1 −WΩ − XΩ2ffiffiffiffiffiffi

grr
p ; ZΩþ YΩ2; 0

�
; ð26Þ

in ðt; r; θ;ϕÞ coordinates. The components of k are chosen
to satisfy the following properties.
(1) The vector k is normalized:

kμkμ ¼ 1− 2WΩþ ðW2 − 2Xþ r2Z2ÞΩ2 þOðΩ3Þ;
¼ 1: ð27Þ

Canceling the first-order term requiresW ¼ 0, while
X ¼ r2Z2=2 cancels the second-order term.

(2) In the nonrotating limit, k points purely along r. In
anisotropic axisymmetric systems, it is possible for
there to be Tr

θ-type terms, but those must disappear
when the system degenerates to spherical symmetry
with this type of metric.

(3) The vector k has no t or ϕ components as those lead
to Tr

t- and Tr
ϕ-type components which are incom-

patible with this axisymmetric metric format.

1. Moment of inertia and dragging of the inertial frames

The tϕ, or ϕt, components of the Einstein equations are
first order in Ω. They can be cleaned up with the shorthand
functions

ϖ ≡Ω − ω ð28Þ

and

j≡ e−ðν0þλ0Þ ¼ e−ν0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
; ð29Þ

to derive the frame-dragging equation

1

r4
d
dr

�
r4j

dϖ
dr

�
þ 4j0ϖ

r
ρþ p⊥
ρþ pr

¼ 0: ð30Þ

In the isotropic case p⊥ ¼ pr, we recover the original
Hartle equation [see Eq. (46) in [25] ]. We note that Eq. (30)
is equivalent to Eq. (72) from Ref. [27].
In the region r > R, ϵ ¼ p ¼ 0 and jðrÞ ¼ 1. Thus,

Eq. (30) can be easily integrated to give

ϖðrÞþ ¼ Ω −
2J
r3

; ð31Þ

where J is an integration constant associated with the
angular momentum of the star [25]. For the interior
solution, Eq. (30) is integrated outward from the origin,
with the boundary conditions

ϖð0Þ ¼ ϖc ¼ const; ð32aÞ�
dϖ
dr

�
r¼0

¼ 0: ð32bÞ

Regularity of the solution at the surface demands that
½ϖ� ¼ ½ϖ0� ¼ 0. Thus, one integrates numerically Eq. (30)
and obtains the surface value ϖðRÞ. Then, and only then,
one can determine the angular momentum J and the
angular velocity Ω as

J ¼ 1

6
R4

�
dϖ
dr

�
r¼R

; Ω ¼ ϖðRÞ þ 2J
R3

: ð33Þ

Once the angular momentum and angular velocity are
determined, the relativistic moment of inertia can be
obtained from the relation I ¼ J=Ω.
We also find first-order terms in Ω by looking at the rθ

component of the Einstein equation (or, equivalently, θr),
which leads to the condition

8πr7=2ðZΩþ YΩ2Þðpr − p⊥Þ
ðr − 2mÞ1=2 ¼ 3Ω2 sin θ cos θ

�
r
d
dr

ðh2 þ k2Þ þ h2

�
r
dν0
dr

− 1

�
−

m2

r − 2m

�
r
dν0
dr

þ 1

��
: ð34Þ
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This requires Z ¼ 0 in order to balance the first-order
terms in Ω. Notice that, in the isotropic case, the left side
vanishes.2 Alternatively, if we have Y ¼ 0, the left side
must vanish as well. In either case, this gives a relation
between the quadrupole functions and leads to the natural
introduction of the auxiliary function v2 ¼ h2 þ k2.
In [27], it is assumed that Tr

θ ¼ Tθ
r ¼ 0. However,

while this must be true for spherically symmetric systems
or for perfect fluid stationary axisymmetric systems in this
type of coordinate system, we stress that this is not strictly
necessary for anisotropic axisymmetric systems.

2. Monopole perturbations: The l = 0 sector

The monopole sector of the second-order tt perturbation
in the Einstein equations results in the following differential
equation:

dm0

dr
¼ 4πr2E0 þ

j2r4

12

�
dϖ
dr

�
2

−
r3ϖ2

3

dj2

dr
ρþ p⊥
ρþ pr

: ð35Þ

In the isotropic case p⊥ ¼ pr, Eq. (35) reduces to Eq. (97)
in [25], Eq. (15a) in [26], and Eq. (18) in [29]. Theϖ0 term
already matches the isotropic case, and the ϖ term will
match when isotropy is applied because the fraction will go
to 1. The other difference is that we write E0 explicitly
rather than the fractional changes [see Eq. (15) for the
relation in the isotropic case]. We note that Eq. (35) is
equivalent to Eq. (61) from Ref. [27] using the definitions
from their Eqs. (48) and (55) to express the E0 term.
The rr perturbation equation gives a differential equation

for h0 in the form

dh0
dr

¼ 4πre2λP0 þ
ð1þ 8πr2prÞ
ðr − 2mÞ2 m0 −

e2λr3j2ϖ02

12
: ð36Þ

Equation (36) agrees with Eq. (19) from Ref. [29] and
Eq. (98) from Ref. [25], when the isotropic pressure
condition is applied. There does not seem to be a corre-
sponding differential equation for h0 in Ref. [27].
Finally, we use ð8πTθ

θ − Gθ
θÞ þ ð8πTϕ

ϕ −Gϕ
ϕÞ ¼ 0,

or the monopole perturbation to the r component of
∇μTμ

ν ¼ 0, to derive

P0
0 ¼−ðE0þP0Þν00þ

2ðT 0−P0Þ
r

þ ρþp⊥
3

d
dr

�
r3ϖ2j2

r− 2m

�

þðρþprÞ
r− 2m

�
1

12
r4j2ϖ02− 4πr2P0 −

ð1þ 8πr2prÞ
ðr− 2mÞ m0

�
:

ð37Þ

In the isotropic case, we can write p⊥ ¼ pr ¼ p, and
P0 ¼ ðρþ pÞp�

0; thus, P0
0 ¼ ðρþ pÞp�

0
0 þ p�

0ðρþ pÞ0.
The term with T 0 goes to 0 when isotropy is enforced. It
is possible to cancel the−ðE0 þ P0Þν00 term in Eq. (37) with
thep�

0ðρþ pÞ0 term using the zeroth-order isotropic Einstein
equations3 and then divide the entire equation by ρþ p to
recover Eq. (100) in [25] or Eq. (15b) in [26]. There seem to
be typos in the corresponding Eq. (62) of Ref. [27]; for
instance, 1 − 2m appears instead of r − 2m in the denom-
inator of the m0 term.
In principle, one can integrate Eq. (30) to find the frame

dragging, at least numerically. One can then numerically
integrate Eqs. (35)–(37), but whether it is more convenient
to solve them simultaneously will depend on the specific
EOS (20). In general, Eqs. (35) and (37) are integrated
outward with the conditions m0ð0Þ ¼ P0ð0Þ ¼ 0, at the
origin, respectively. We find it convenient to define the
auxiliary function

H0 ≡ h0 − hc; ð38Þ

where hc is an undetermined constant. We recognize that
H0 also follows the differential equation (36); thus, it can
be integrated with the boundary condition H0ð0Þ ¼ 0. We
then find the corresponding value of hc by continuity and
the values of H0ðr → R−Þ and the exterior h0ðr → RþÞ,
since the background gtt is nonzero in this case.
In the vacuum exterior where ρ ¼ p ¼ 0, Eqs. (35) and

(36) can be integrated explicitly, giving

mþ
0 ¼ δM −

J2

r3
; ð39Þ

hþ0 ¼ −
m0

r − 2M
; ð40Þ

where δM is a constant of integration associated with the
change of mass induced by the rotation. In his approach,
Hartle [25] assumed the continuity of m0 and h0, at the
surface, i.e., ½h0� ¼ ½m0� ¼ 0. This condition was employed
to determine the constant δM.
In [35], it was argued that, for systems where the density

at the surface is nonzero, a discontinuity appears in m0 and
a modified formula

2Also, in the case of isotropy the same vectors which
diagonalize the metric in the rθ block will diagonalize the
energy-momentum tensor, so there is no point in introducing Y.

3Specifically, the isotropic TOV equation can be rewritten as

ðρþ pÞν00 ¼ −
dp
dr

:

Using this expression and the relationship between E0, P0, and
p�
0, which applies in the isotropic case, we obtain

−ðE0 þ P0Þν00 ¼
dp
dr

�
dρ
dp

þ 1

�
p�
0 ¼ ðρ0 þ p0Þp�

0;

where we applied the chain rule in the last equality.
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δMmod ¼m0ðRÞþ
J2

R3
þ8πR3

�
R
2M

−1

�
ρðRÞp�

0ðRÞ ð41Þ

is presented. In the anisotropic case, it can be shown that
the modified change of mass takes the general form

δMmod ¼ m0ðRÞ þ
J2

R3
þ 4πρðRÞR2ξ0; ð42Þ

where ξ0 is the spherical deformation parameter

ξ0 ¼ −
P0

p0
rðr → R−Þ : ð43Þ

A derivation of Eq. (42) is presented in Appendix A.

3. The quadrupole perturbations: The l = 2 sector

The quadrupole perturbations can be treated as follows.
Recall from Eq. (34) that Z must vanish. Thus, it is
convenient to introduce an auxiliary function ϒðrÞ related
to Y as

ðpr − p⊥ÞY ¼ ϒðrÞ sin θ cos θ; ð44Þ

such that

8πr3ϒðrÞ ¼ 3e−λ
�
r
d
dr

ðh2 þ k2Þ þ h2

�
r
dν0
dr

− 1

�

−
m2

r − 2m

�
r
dν0
dr

þ 1

��
: ð45Þ

The left-hand side goes to zero for isotropic systems; minor
algebra then produces Eq. (122) of Ref. [25] or Eq. (20) of
Ref. [29]. The analogous Eq. (21a) from Ref. [26] requires
more algebra such as substituting m2.
In terms of the auxiliary function ϒ, the θ component of

the EMT conservation equation becomes

3T 2þðρþp⊥Þð3h2þe−2ν0ϖ2r2Þ

¼ ðpr−p⊥Þ
�
3e2λ

r

�
m2þe−λ½rϒð4þ rν00Þþ r2ϒ0�: ð46Þ

In the isotropic case, everything on the right-hand side
goes to 0; thus, Eq. (46) reduces to Eq. (91) of Ref. [25] or
Eq. (15) of Ref. [29]. It is noteworthy that Ref. [27] uses the
isotropic formula, but even if we assume Tr

θ ¼ 0, or,
equivalently, ϒ ¼ 0, then there is an extra term with m2

compared to the isotropic case.
Using the difference between the θθ and ϕϕ components

ð8πTθ
θ −Gθ

θÞ − ð8πTϕ
ϕ −Gϕ

ϕÞ ¼ 0, we obtain a fairly
simple equation which could eliminate m2 or h2:

m2 ¼ ðr − 2mÞ
�
j2r4ϖ02

6
−
r3ϖ2

3

�
dj2

dr

�
ρþ p⊥
ρþ pr

− h2

�
:

ð47Þ

In the isotropic case, Eq. (47) reduces to Eq. (120) from
Ref. [25] or Eq. (23a) from Ref. [26].
Using Eq. (47) to replace m2, the rr component of the

Einstein field equations can be written as

j2r2

3

�
16πðρþ p⊥Þð1þ 2rν00Þϖ2 þ

�
3

2
þ 8πr2pr

��
dϖ
dr

�
2
�
¼ −8πP2 þ

2ðr − 2mÞ
r2

�
dh2
dr

þ ð1þ rν00Þ
dk2
dr

�

þ 4

r2
½h2ð4πr2pr − 1Þ − k2�: ð48Þ

Equation (48) reduces to Eq. (22) from Ref. [29] and Eq. (124) from Ref. [25] when Eq. (47) is used and isotropy is
enforced.
The quadrupole perturbation to the r component of ∇μTμ

ν ¼ 0 gives the following equation:

dP2

dr
¼ 2ðT 2 − P2Þ

r
− ðE2 þ P2Þν00 þ

2

3
rϖe−2ν0ðρþ p⊥Þ

�
2ϖð1þ 2rν00Þ − r

�
dϖ
dr

��
þ j2rð1þ rν00Þ

8π

�
dϖ
dr

�
2

−
�

3

4πr2

�
d
dr

ðh2 þ k2Þ − ðρþ prÞ
dh2
dr

þ 2ðp⊥ − prÞ
dk2
dr

−
�
3ν00
2πr2

�
h2: ð49Þ

Analogous equations to this one are not usually written in the literature, because they are unnecessary for isotropic
systems.

PHILIP BELTRACCHI and CAMILO POSADA PHYS. REV. D 110, 024052 (2024)

024052-6



When formulated in this manner, the quadrupole sector
is dependent on the three-metric perturbation functions h2,
k2, and m2, three EMT eigenvalue perturbation functions
E2, P2, and T 2, and an EMT eigenvector perturbation
function ϒ for a total of seven functions (in contrast to five
in the isotropic case). Thus, Eqs. (45)–(49) plus two EOSs
make this, in principle, a well-defined system.
In the vacuum exterior, the functions h2 and k2 are

specified by [25,26]

hþ2 ¼ J2

Mr3

�
1þM

r

�
þ KQ2

2ðζÞ; ð50Þ

vþ2 ¼ hþ2 þ kþ2 ¼ −
J2

r4
þ K

2M

½rðr − 2MÞ�1=2 Q
1
2ðζÞ; ð51Þ

respectively, where K is a constant of integration and Qm
n

are the associated Legendre functions of the second kind
with argument ζ ≡ ðr=MÞ − 1.
To match with the exterior solution, one treats the

interior equations by solving Eqs. (45)–(49) for both the
particular case with nonzero ϖ and the homogeneous case
with ϖ ¼ 0 and then choosing the true functions

true ¼ particular þ C � homogeneous; ð52Þ

where C is the same constant for all the functions. The
integration constants C and K can be determined by
matching h2 and k2 to the exterior solutions given by
Eqs. (50) and (51). Once the constant K has been
determined, one can compute the mass quadrupole moment
of the star, as measured at infinity, from the relation [26]

Q ¼ J2

M
þ 8

5
KM3: ð53Þ

Following the standard Hartle conventions [25], the EMT
eigenvalue perturbations E2, P2, and T 2 go to zero at the
origin. The function ϒ, which describes the eigenvector
perturbation, must go to zero at the origin for well-behaved
systems, because it is proportional to a factor of pr − p⊥
which is zero there.
In addition to the behavior in the exterior, some con-

straints can be derived for the behavior near r ¼ 0. For
well-behaved systems, the initial behavior of the relevant
zeroth- and first-order terms in Ω are as follows:

m ¼ 4πρc
3

r3; ð54Þ

ν0 ¼ νc þ
2π

3
ðρc þ 3pcÞr2; ð55Þ

pr ¼ p⊥ ¼ pc; ð56Þ

ρ ¼ ρc; ð57Þ

ϖ ¼ ϖc; ð58Þ

where the subscript “c” denotes the value of the quantity at
the center of the configuration. We can then find series
solutions near the origin for the particular Eqs. (45), (46),
(48), and (49), as follows:

kðPÞ2 ¼ ka2r
2 þ kb2r

4; ð59Þ

hðPÞ2 ¼ −ka2r2 þ hb2r
4; ð60Þ

ϒðPÞ ¼
�
3ðhb2 þ kb2Þ

2π
− e−2νcϖ2

cðpc þ ρcÞ

− ka2ð3pc þ ρcÞ
�
r; ð61Þ

PðPÞ
2 ¼ 1

6

�
3ðhb2 þ kb2Þ

π
þ 4ka2ρc

− 4e−2νcϖ2
cðpc þ ρcÞ

�
r2; ð62Þ

T ðPÞ
2 ¼

�
5ðhb2 þ kb2Þ

2π
− 2e−2νcϖ2

cðpc þ ρcÞ

−
2

3
ka2ð6pc þ ρcÞ

�
r2; ð63Þ

where hb2 , k
a
2 , and kb2 are arbitrary constants. The homo-

geneous equations initial behavior constraints can be found
by setting ϖc ¼ 0 in the previous equations. In the
isotropic case, we require P2 ¼ T 2, which implies that
ϒ ¼ 0 and we recover the established relations between the
coefficients for that case [see Eq. (56) in [36] ].
Besides the quadrupole moment, there are two other

shape parameters associated with the quadrupole sector,
namely, the perturbation function ξ2 defined as

ξ2 ¼ −
P2

p0
rðr → R−Þ ð64Þ

and the ellipticity of the isobaric surfaces [29]

ϵðrÞ ¼ −
3

2r
½ξ2ðrÞ þ rk2ðrÞ�: ð65Þ

III. BOWERS-LIANG ANISOTROPIC
FLUID SPHERE

The Bowers-Liang (BL) solution [10], for an anisotropic
mass with constant density ρ0, is described by the following
EOS:

p⊥ ¼ pr þ σfðpr; rÞðρ0 þ prÞr2; ð66Þ
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where σ is a constant that measures the “strength” of the
anisotropy and

fðpr; rÞ ¼
ρ0 þ 3pr

1 − 2mðrÞ=r : ð67Þ

By solving Eq. (6), the radial pressure for the BL model
gives

pr ¼ ρ0

� ð1 − 2Mr2=R3Þq − ð1 − 2M=RÞq
3ð1 − 2M=RÞq − ð1 − 2Mr2=R3Þq

�
; ð68Þ

where4

q ¼ 1

2
−
3σ

4π
¼ 1

2
ð1 − ξÞ; ξ≡ 3σ

2π
: ð69Þ

There is a divergence in the pressure at the origin

prð0Þ ¼ p⊥ð0Þ ¼ ρ0

�
1 − ð1 − 2M=RÞq
3ð1 − 2M=RÞq − 1

�
; ð70Þ

when we reach the critical radius

Rcr ¼
RS

1 − ð1=3Þ1=q ; ð71Þ

where RS ≡ 2M is the Schwarzschild radius. This critical
radius can be thought of as the smallest size for BL spheres,
of a given anisotropy, to remain nonsingular. In the limit of
weak anisotropy, jσj ≪ 1, Eq. (71) gives approximately

�
R
RS

�
cr
≃
9

8

�
1 −

logð3Þ
4

ξþOðξ2Þ
�
: ð72Þ

On the other hand, when ξ ¼ 1, corresponding to the limit
of very strong anisotropy, we reach the Schwarzschild limit
Rcr ¼ RS. In Fig. 1, we display the ratio ðR=RSÞcr as a
function of the anisotropy parameter ξ. Note that, for ξ < 0,
p⊥ ≤ pr, while, for ξ > 0, p⊥ ≥ pr. In the strict isotropic
case ξ ¼ 0, Eq. (71) or (72) reduces to Rcr ¼ ð9=8ÞRS (red
dot in Fig. 1), which corresponds to the well-known
Buchdahl limit [1].
The gtt metric component can be obtained from the

integration of Eq. (3b), which gives5

e2ν ¼ 1

21=q

�
3

�
1 −

2M
R

�
q
−
�
1 −

2Mr2

R3

�
q
�
1=q

: ð73Þ

Following Refs. [29,30], we introduce the variables

yðrÞ ¼ 1 −
2mðrÞ

r
; y1 ¼ 1 −

2M
R

; ð74Þ

together with the normalized radial coordinate x≡ r=R and
the parameter β≡ R=RS. In terms of x, y, and β, the BL
solution, Eqs. (66), (68), and (73), takes the form

pr ¼ ρ0

�
yq − yq1
3yq1 − yq

�
; ð75Þ

p⊥ ¼ ρ0

�
p̃r þ

3σð1þ 3p̃rÞð1þ p̃rÞx2
8πβð1 − x2=βÞ

�
; ð76Þ

e2ν ¼ 1

21=q
ð3yq1 − yqÞ1=q; ð77Þ

where y ¼ 1 − x2=β and p̃i ¼ pi=ρ0. In the isotropic case
ξ ¼ 0, we have q ¼ 1=2, and Eqs. (75) and (77) reduce to

pr ¼ ρ0

� ffiffiffi
y

p − ffiffiffiffiffi
y1

p
3

ffiffiffiffiffi
y1

p − ffiffiffi
y

p
�
; ð78Þ

e2ν ¼ 1

4
ð3 ffiffiffiffiffi

y1
p

−
ffiffiffi
y

p Þ2; ð79Þ

respectively, which corresponds to Schwarzschild’s interior
solution with uniform density [37]. In Fig. 2, we show the
radial profiles of the gtt metric component (77), for the BL
model, for various values of the anisotropy parameter ξ. We
consider a configuration with β ¼ 1.63. For a given radius
r < R, an increase in the anisotropy increases the function

FIG. 1. The critical ratio of the stellar radius R to the
Schwarzschild radius RS ≡ 2M, as a function of the parameter
ξ, for an anisotropic uniform density configuration. In the
isotropic case, when ξ ¼ 0, we recover the standard Buchdahl
limit R ¼ ð9=8ÞRS.

4We note that Ref. [10] missed the π factor in ξ. It is awkward
that we employ ξ here to indicate the anisotropy parameter, while
the same letter is used to denote the perturbation functions ξ0 in
Eq. (43) and ξ2 in Eq. (64). However, we are using the previously
established notation and the subindexes differentiate the various
expressions, so we hope the awkwardness is not a serious one.

5We note that Bowers and Liang [10] did not write explicitly
the metric element gtt.
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gtt. Observe how the various curves match smoothly, at the
boundary r ¼ R, with the exterior Schwarzschild solution.
Dev and Gleiser [16] suggested the metric element gtt, for

the BL model, in the following form [see Eq. (101) in [16] ]:

gDGtt ¼ 1

4

�
3y2q1 − y2q

�
1=q; ð80Þ

which has the wrong powers of q and the incorrect factor
(1=4). Let us recall that this factor is crucial to make the
correct matching, at the boundary, with the exterior
Schwarzschild solution. Note that the problem is not only
a choice of gauge. As we show in Fig. 3, the Dev-Gleiser
metric (80) does not match with the exterior Schwarzschild
solution.
In the left panel in Fig. 4, we plot the radial pressure profile

(75), for a configuration with β ¼ 1.63, for various values of
the anisotropy parameter ξ. Note that the radial pressure
decreases monotonically as we move outward from the
center up to the surface. We observe that as ξ increases
the pressure is suppressed. In the limit as ξ → 1, the radial
pressure approaches zero. In the right panel of the same
figure,weplot the radial pressure, but now for a fixedvalue of
the anisotropy parameter ξ, for varying β. Observe how as β
decreases, or the compactness increases, the interior pressure
is enhanced.
In the left panel in Fig. 5, we display the profiles of the

transverse pressure (76), for a configuration with β ¼ 1.63,
for various values of the anisotropy parameter ξ. Note that for
the nonpositive value ξ ¼ −0.33, the transverse pressure
becomes negative in a certain interior region. We also
observe that p⊥ does not vanish at the surface, except for
the isotropic case. In the right panel of the same figure, we
plot the transverse pressure p⊥, for a fixed value of ξ, for
varying β. We observe that, as β decreases, the interior
transverse pressure increases, and again it does not vanish at
the surface.

FIG. 2. Radial profiles of the metric element gtt (77), for the
Bowers-Liang model, for different values of the anisotropy
parameter ξ. We consider a configuration with R=RS ¼ 1.63.
Note the continuous matching at the surface r ¼ R with the
exterior Schwarzschild solution.

FIG. 3. Profiles of the metric element gtt for the Bowers-Liang
model, as suggested by Dev and Gleiser [16], for different values
of ξ. We consider a configuration with R=RS ¼ 1.63. Note that
the DG metric does not give the correct matching, at the
boundary, with the exterior Schwarzschild solution.

FIG. 4. Left panel: profiles of the radial pressure for the Bowers-Liang model, for a configuration with R=RS ¼ 1.63, for different
values of the anisotropy parameter ξ. Right panel: profiles of the radial pressure, for ξ ¼ 0.33, for various values of the parameter R=RS.
The pressure is measured in units of the energy density ρ0.
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A. Dominant energy condition Bowers-Liang sphere

One interesting case study of the Bowers-Liang model is
the smallest sphere for which the dominant energy con-
dition (DEC) is satisfied. The radial pressure, as given by
Eq. (70), is always greatest at the origin (see Fig. 4). The
transverse pressure at the surface of the star is

p⊥ðRÞ ¼
3σρ0

8πðβ − 1Þ ; ð81Þ

which is the other possibility for the global maximum of
one of the pressures for configurations near the DEC
bound. Ensuring that p⊥ðRÞ ≤ ρ and pð0Þ ≤ ρ gives the
following conditions for extremizing the compactness and
the anisotropy:

β ≥
�
1 −

�
1

2

�
1=q

�
−1
; β ≥

1

2

�
5

2
− q

�
: ð82Þ

The smallest β compatible with both of these conditions
is βDEC ¼ 1.1035 for qDEC ¼ 0.2929, or, equivalently,
σDEC ¼ 0.8674, ξDEC ¼ 0.4141. In Fig. 6, we display the
profiles of radial pressure pr and transverse pressure p⊥ for

the smallest Bowers-Liang sphere that satisfies the DEC.
Note that βDEC < βBuchdahl ¼ 9=8, so this particular test
case is below the Buchdahl limit. However, it is rather
mundane in the sense that it satisfies the DEC, the strong
energy condition, and is nonsingular; while many ultra-
compact systems, like the Schwarzschild star [38], may
violate one or more of these conditions.

IV. NUMERICAL RESULTS

In this section, we present our results for surface and
integral properties of slowly rotating anisotropic Bowers-
Liang spheroids, at second order in the angular velocity Ω.
We numerically integrated the extended Hartle structure
equations, derived in Sec. II, for various values of the
parameters ξ and R=RS. By doing so, we model the whole
sequence of slowly rotating BL spheroids in adiabatic and
quasistationary contraction. As a consistency check, we
include results for the isotropic case ξ ¼ 0, which are in
very good agreement with the ones reported by Refs. [29,30]
for slowly rotating isotropic homogeneous masses. We
employ dimensionless variables where the units in which
the dimensions are expressed are given in the corresponding
descriptions.
It will be convenient for the following to set the EOS for

the Bowers-Liang sphere [Eq. (20)] in the following form:

FðE;P; T Þ ¼ E − ρ0 ¼ 0; ð83Þ

GðE;P; T Þ ¼ T − gðPÞ ¼ 0; ð84Þ

where the first equation is the constant density condition
and the second is analogous to Eq. (66). Because pr is
monotonic in r, we can use r as our space curve parameter
and pr as the thermodynamic variable A in Eqs. (20)–(25).
Thus, using Eq. (22), we obtain

dg
dP

¼ dp⊥=dr
dpr=dr

¼ dp⊥
dpr

: ð85Þ

FIG. 5. Left panel: radial profiles of the transverse pressure p⊥ for the Bowers-Liang model, for a configuration with R=RS ¼ 1.63, for
different values of the anisotropy parameter ξ. Right panel: radial profiles of p⊥, for ξ ¼ 0.33, for various values of the parameter R=RS.

FIG. 6. Pressure profiles for the smallest anisotropic Bowers-
Liang sphere for which the DEC is satisfied.
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Using the fact that Px and T x are small perturbations,
together with Eqs. (25) and (85), we can use the substitution

T x ¼
∂p⊥
∂pr

Px; Ex ¼ 0; ð86Þ

where the second expression can be derived either by
employing Eq. (24) with pr ¼ A, p⊥ ¼ C, and ρ ¼ B or
directly from the uniform density condition.

A. Frame dragging for the Bowers-Liang sphere

To determine the dragging of the inertial frames, we
numerically integrated Eq. (30) with the boundary con-
dition (32b), starting from x0 (or rather from x0 þ ϵ, with a
cutoff value ϵ ∼ 10−7), up to the stellar surface x ¼ 1, for
various values of the parameter R=RS.
As a consistency check, we also set up and solved the

equations using units of r=RS, rather than x ¼ r=R, and
tested several values of the cutoff. We follow the same
conventions as Refs. [29,30], whereϖ is measured in units
of J=R3

S; thus, it will be convenient henceforth to introduce
the following quantities:

ϖ̃ ≡ ϖ

ðJ=R3
SÞ
; Ω̃≡ Ω

ðJ=R3
SÞ
: ð87Þ

In Fig. 7, we display the radial profiles of the function
ϖ=Ω, for various values of the parameter β ¼ R=RS. We
consider ξ ¼ f−0.33; 0.33; 0.66; 0.99g. We observe that
ϖ → 0, at the origin, when β approaches the critical value
βcr; thus, in this limit, the frame-dragging function ω
approaches the value of the angular velocity Ω. We see
that ϖ monotonically increases from the origin to the
surface, although as β → 1 it is rather flat.
In the left panel in Fig. 8, we present the surface value

ϖ̃1 ¼ ϖ̃ðx1Þ, as a function ofR=RS, for various values of the
anisotropy ξ.Wemeasure ϖ̃ in units of its central value ϖ̃c. In
the isotropic case ξ ¼ 0, we recover with very good agree-
ment the results reported by Refs. [29,30] for slowly rotating
Schwarzschild stars. We observe that, for highly anisotropic
configurations ξ → 1, ϖ̃1 → 0, similar to other ultracompact
objects likeKerr BHs and sub-Buchdahl Schwarzschild stars
[30]. In the right panel of the same figure, we display the
central value ϖ̃ð0Þ, in units of the angular frequency Ω, as a
function of the parameterR=RS, for the samevalues of ξ as in

FIG. 7. Radial profiles of the ϖ function, in the unit Ω, for various values of the parameter R=RS. We display the profiles for
ξ ¼ f−0.33; 0.33; 0.66; 0.99g. Observe that, for the critical compactness, ϖ → 0 at the origin; thus, ω ¼ Ω. For highly anisotropic
spheres near to their critical compactness (which approaches the Schwarzschild limit), ϖ ≈ 0 and Ω ≈ ω hold throughout the interior.
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the left panel. Observe thatϖð0Þ approaches zero whenever
the compactness approaches the critical value (where the
central pressure diverges). Thus, ωð0Þ approaches to the
angular velocity of the fluidΩ. This behavior was also found
for Schwarzschild stars at theBuchdahl limit [29]. In [30],we
concluded that the only boundary condition that allowed for
regular monopole perturbations on the infinite pressure
surface for sub-Buchdahl Schwarzschild stars was ϖ ¼ 0
there. Hartle [25] argued thatϖ > 0; however, this explicitly
involves the assumption eν > 0, which is violated in all these
particular situations. We also observe that the increase in
anisotropy enhances ϖð0Þ=Ω at a given radius R.
In Fig. 9, we show the normalized moment of inertia

I=MR2, as a function of the parameter R=RS, for varying ξ.
In the case ξ ¼ 0, we recover with very good agreement the

results reported by Refs. [29,30] for slowly rotating
isotropic homogeneous stars. We observe that, for a given
radius R, as the anisotropy parameter ξ increases, the
moment of inertia also increases. In the limit of maximum
anisotropy ξ → 1, it is possible for higher compactness to
be maintained with finite central pressure. Moreover, for
such stars, as R → Rcr, I → MR2 similar to other ultra-
compact objects like Kerr BHs, rotating sub-Buchdahl
Schwarzschild stars [30], or rotating gravastars [39].
Although for highly anisotropic stars the parameter
R=RS can get very close to 1, we point out that the strict
BH limit cannot be taken from these configurations, for any
value of the central energy density, because their critical
radii are always greater than the Schwarzschild radius [see
Eq. (71) and Table I].

B. Monopole perturbations
for the Bowers-Liang sphere

In order to study the spherical deformations of the stars
(l ¼ 0 sector), we numerically integrated Eqs. (35)–(37),
with the conditions mð0Þ ¼ P0ð0Þ ¼ 0, at the origin (or
rather from x0 þ ϵ, with a cutoff value ϵ ∼ 10−6). Following
the conventions of Refs. [29,30], it will be convenient to
introduce the quantities

FIG. 8. Left panel: surface value of the ϖ̃ function, against the parameter β, for various values of the anisotropy parameter ξ. For
configurations with high anisotropy, in the limit as R → RS, ϖ̃ðRÞ → 0. Right panel: central value ofϖ, in the unitΩ, as a function of β.
Observe the approach of ϖð0Þ to zero, as the compactness approaches the critical value where the central pressure diverges.

FIG. 9. Normalized moment of inertia I=MR2, as a function of
R=RS, for various values of the anisotropy parameter ξ. At any
given radius, increasing ξ increases the moment of inertia. For
stars with high anisotropy, we see that as R=Rs → 1 the
normalized moment of inertia also goes to 1. The ξ ¼ 0 curve
corresponds to the Schwarzschild star (above the Buchdahl limit
where all pressures are finite).

TABLE I. List of the critical ratio ðR=RSÞcr, where the central
pressure diverges, for some selective values of the anisotropy
parameter ξ.

ξ j1 − ðR=RSÞcrj
−0.33 2.371 × 10−1

0.0 1.25 × 10−1

0.33 3.912 × 10−2

0.66 1.56 × 10−3

0.99 3.76 × 10−96
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eh0 ≡ h0
ðJ2=R4

SÞ
; fm0 ≡ m0

ðJ2=R3
SÞ
; ð88aÞ

fT 0 ≡ T 0

ðJ2=R6
SÞ
; fP0 ≡ P0

ðJ2=R6
SÞ
; fp�

0 ≡ p�
0

ðJ2=R4
SÞ
:

ð88bÞ

In Fig. 10, we display the surface value fm0ðRÞ, as a
function of R=RS, for various values of the anisotropy
parameter ξ. The ξ ¼ 0 curve corresponds to the isotropic
case, which is in very good agreement with the one reported
by us in [30] for Schwarzschild stars. Observe that, for a
given radius R, as the anisotropy parameter ξ increases, the
function fm0ðRÞ decreases. Furthermore, in the limit of high
anisotropy ξ → 1, fm0ðRÞ → 0, similar to what we found for
slowly rotating sub-Buchdahl Schwarzschild stars in the
gravastar limit [30].

The left panel in Fig. 11 shows the surface value fP0ðRÞ,
as a function of the parameter R=RS, for various values of
the anisotropy ξ. Observe that the various curves show a
local maximum and then decrease as R → Rcr. A different
behavior is shown by the higher anisotropy curve ξ ¼ 0.99,
which gets flattened to nearly zero for every radius R. In the
right panel of the same figure, we display the same data as
the left panel, but now in terms of the associated perturba-
tion function p�

0 ¼ P0=ðρþ prÞ. In the isotropic case,
ξ ¼ 0, we recover with very good agreement the results
reported by Refs. [30,40] for Schwarzschild stars above the
Buchdahl limit, where the radial pressure is finite.
In Fig. 12, we plot the surface value of the deformation

function ξ0=R, as a function of the parameter R=RS, for
different values of the anisotropy ξ. The function ξ0=R is
measured in units of J2=R4

S. At large radii, ξ0 tends to be
positive, but it typically becomes negative at some smaller
radius. For the positive anisotropy cases, we observe that

FIG. 10. Surface value fm0ðRÞ, against R=RS, for various values
of the anisotropy parameter ξ. Many of the curves have a local
maximum (except for the one with negative ξ). Observe the
approach of fm0ðRÞ to 0, as we approach the Schwarzschild limit.
Increasing the anisotropy, at any plotted radius, decreases fm0ðRÞ.

FIG. 11. Left panel: surface value of the perturbation function fP0ðRÞ, against R=RS, for different values of the anisotropy parameter ξ.
Observe that in the limit of maximum anisotropy ξ → 1, the function fP0ðRÞ gets flattened. Right panel: the same data as the left panel,
but now in terms of the associated perturbation function fp�

0ðRÞ.

FIG. 12. Surface value of the deformation function ξ0=R (in
units of J2=R4

S), as a function of R=RS, for various values of the
anisotropy parameter ξ. Note that ξ0 → 0 for high compactness.
The various curves switch sign between R=RS ¼ 1 and
R=RS ¼ 1.4. The ones with positive anisotropy have a local
minimum somewhere below the Buchdahl limit.
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ξ0=R shows a local minimum near the critical compactness.
Moreover, in the limit as R → Rcr, the function ξ0=R
approaches zero. The ξ ¼ 0 curve corresponds to the
isotropic case, which is in very good agreement with
the results we reported for Schwarzschild stars above the
Buchdahl limit [30]. It is interesting that, for this particular
case, a local minimum appears beyond the Buchdahl limit
(see Fig. 11 in [30]). It is possible that there would also be a
local minimum in ξ0=R for ξ ¼ −0.33 below its critical
radius.
In Fig. 13, the surface value of the transverse pressure

perturbations T̃ 0 are plotted, against R=RS, for various
values of the anisotropy parameter ξ. Let us recall that, in
the isotropic case ξ ¼ 0, T 0 ¼ P0. Observe that, for some
of the curves with positive anisotropy, there is a local
minimum. For the highly anisotropic configurations, the
function T̃ 0ðRÞ grows rapidly as β → βcr.
We can use Eq. (42) to compute the change in mass δM.

We plot the results in Fig. 14, where we measure δM=M in
units of J2=R4

S. In the isotropic case ξ ¼ 0, we recover with
very good agreement the results reported by Refs. [30,40]
for uniform density stars. Note that δM=M seems to
increase as R=RS increases. For highly anisotropic con-
figurations, in the limit as R → Rcr, δM=M → 2J2=R4

S, the
same value as a Kerr BH and sub-Buchdahl Schwarzschild
stars in the gravastar limit [30].6 This allows regularity of h0
in the exterior, because the numerator of Eq. (40) will go to
0 with the denominator.

Recall that finding the true h0 function requires a few
steps. First, find H0 as a solution to Eq. (36) with an
assumed integration constant. Then, compute the necessary
integration constant to make it match with the exterior
solution

h0 ¼
1

r − 2M

�
J2

r3
− δM

�
; r > R; ð89Þ

so the value from the exterior is given. We will not have a
mismatch with the h functions here, because the back-
ground gtt is nonzero and finite. The values of H0ðRÞ, in
units of J2=R4

S, are plotted in the left panel in Fig. 15, as a
function of R=RS. We consider various values of the
anisotropy parameter ξ. Observe that, for the various
curves, as the compactness increases the surface value
H0ðRÞ grows monotonically, approaching the value of
about 3J2=R4

S, with minor variations for different anisot-
ropies. In the right panel of the same figure, we plot the
surface values eh0ðRÞ, as a function of the parameter R=RS,
for the same values of anisotropy as in the left panel. We
observe that the various curves have a local minimum;
moreover, as they approach their critical radii Rcr, eh0 → −3
with minor variations for different anisotropies again. Note
that, for highly anisotropic configurations, their critical
radii are very close to the Schwarzschild radius, and H0ðRÞ
and eh0ðRÞ take values of almost exactly �3. It is note-
worthy that we found the same behavior for sub-Buchdahl
Schwarzschild stars when their compactness approaches
the BH limit [30].
Finally, from Eq. (38), we can determine the necessary

constant hc to match the functions h0 andH0. In Fig. 16, we
display the value of the constant hc, in units of J2=R4

S, as a
function of R=RS, for various values of ξ. One interesting
observation is that, as we approach the critical radius
R → Rcr, we have

FIG. 14. Change in mass δM=M (in units of J2=R4
S), as a

function of the parameter R=RS, for various values of the
anisotropy parameter ξ. For highly anisotropic configurations,
we observe that δM=M → 2 as R → RS.

FIG. 13. Surface values of the transverse pressure perturbations
T̃ 0, as a function of R=RS, for different anisotropic parameters.
For the isotropic case ξ ¼ 0, we have T̃ 0 ¼ P̃0. For some of the
cases with positive anisotropy, there is a local minimum. For the
highly anisotropic compact cases, T̃ 0 does not fit on the scale of
this plot. For instance, when ξ ¼ 0.99 and R=RS ¼ 1.001, we
have T̃ 0 ¼ 315.42.

6We stress again that the strict BH limit cannot be taken from
any of these configurations; all of them are limited by their critical
radii.
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H0ðRÞ¼
3J2

R4
S
; h0ðRÞ¼−

3J2

R4
S
; hc ¼−

6J2

R4
S
; ð90Þ

which matches the behavior of the sub-Buchdahl
Schwarzschild stars in the gravastar limit [30].

C. Quadrupole perturbations
for the Bowers-Liang sphere

The quadrupole perturbations of the slowly rotating BL
spheres are determined by Eqs. (45), (46), (48), and (49).
As we discussed in Sec. II B 3, the standard approach to
integrate this system of equations is to separate the general
solution into a homogeneous part (ϖ ¼ 0) and a particular
solution (ϖ ≠ 0) as given by Eq. (52). Thus, approximating
the quadrupole functions as regular series solutions, for the

homogeneous part we obtain the following expressions for
the series coefficients near the origin:

hðHÞ2 ¼−r2þ4

7

ðy1−1Þ½3ðqþ2Þyq1 −2ð1þ6qÞ�
ð1þ6qÞð3yq1 −1Þ

r4

R2
; ð91Þ

kðHÞ2 ¼ r2−
3

14

ðy1−1Þ½ð9þ22qÞyq1 −3ð1þ6qÞ�
ð1þ6qÞð3yq1 −1Þ

r4

R2
; ð92Þ

ϒðHÞ ¼ −
9

4π

ðy1 − 1Þð2q − 1Þyq1
ð1þ 6qÞð3yq1 − 1Þ

r
R2

; ð93Þ

PðHÞ
2 ¼ 6

π

qðy1 − 1Þyq1
ð1þ 6qÞð3yq1 − 1Þ

r2

R2
þOðr4Þ; ð94Þ

T ðHÞ
2 ¼ 3ð1 − 4qÞðy1 − 1Þyq1

πð1þ 6qÞð3yq1 − 1Þ
r2

R2
; ð95Þ

where we have set ka2 ¼ 1. These solutions are compatible
with the general expressions (59)–(63). For the particular
solutions, we set wc ¼ 1 and ka2 ¼ 0 to obtain the following
behaviors near the origin:

kðPÞ2 ¼ −
21=qð46qþ 5Þðy1 − 1Þyq1
7ð6qþ 1Þð3yq1 − 1Þq̃

r4

R2
; ð96Þ

hðPÞ2 ¼ 2q̃ð16q − 1Þðy1 − 1Þyq1
7ð6qþ 1Þð3yq1 − 1Þq̃

r4

R2
; ð97Þ

ϒðPÞ ¼ 3

π

2
1
q−2ð2q − 1Þðy1 − 1Þyq1
ð6qþ 1Þð3yq1 − 1Þq̃

r
R2

; ð98Þ

PðPÞ
2 ¼ 2q̃ðy1 − 1Þqyq1

πð6qþ 1Þð3yq1 − 1Þq̃
r2

R2
; ð99Þ

FIG. 15. Left panel: surface value H0ðRÞ (in units of J2=R4
S), as a function of R=RS, for various values of the anisotropic parameter ξ.

As R approaches the critical value Rcr,H0ðRÞ increases. At a given radius, increasing anisotropy tends to decreaseH0ðRÞ. Observe that,
in the R → RS limit, H0ðRÞ → 3J2=R4

S. Right panel: surface value eh0ðRÞ, as a function of R=RS, for the same values of ξ as in the left
panel. Observe that all of the curves have a local minimum. For the highly anisotropic configurations, as R → RS, eh0ðRÞ → −3, while
the others approach approximately −3 as we approach their critical radii.

FIG. 16. Profiles of hc, as a function of R=RS, for various
values of the anisotropic parameter ξ. The constant hc is measured
in units of J2=R4

S. Note that the various curves have a local
minimum. For configurations with high anisotropy, as R → RS,
hc → −6J2=R4

S.

SLOWLY ROTATING ANISOTROPIC RELATIVISTIC STARS PHYS. REV. D 110, 024052 (2024)

024052-15



T ðPÞ
2 ¼ 21=qð4q − 1Þðy1 − 1Þyq1

πð6qþ 1Þð3yq1 − 1Þq̃
r2

R2
; ð100Þ

where q̃≡ 1þ 1=q. Equations (96)–(100) are also com-
patible with the general expressions (59)–(63).
We numerically integrated the quadrupole perturbation

equations from the origin (or rather some cutoff value
x0 ¼ 10−7). It is worthwhile to mention that, when we
approached too close to the critical radius Rcr, we found
numerical instabilities in the respective codes; thus, we
stopped the integration at the value Rstop ¼ Rcr þ δ,
with δ ¼ 10−4.
Following the conventions used in [30], we introduce the

quantities

eh2 ≡ h2
ðJ2=R4

SÞ
; ek2 ≡ k2

ðJ2=R4
SÞ
; ð101aÞ

fm2 ≡ m2

ðJ2=R3
SÞ
; fp�

2 ≡ p�
2

ðJ2=R4
SÞ
; ð101bÞ

fT 2 ≡ T 2

ðJ2=R6
SÞ
; fP2 ≡ P2

ðJ2=R6
SÞ
: ð101cÞ

In Fig. 17, we plot the surface value eh2ðRÞ, as a function
of R=RS, for different values of the anisotropy parameter ξ.
In the isotropic case ξ ¼ 0, we recover with very good
agreement the results presented by us for Schwarzschild
stars above the Buchdahl limit [30]. Observe how the curve
ξ ¼ 0.66 grows rapidly as we approach the critical radius,
while the extremely anisotropic curve ξ ¼ 0.99 takes
negative values and decreases rapidly as R → Rcr.
In Fig. 18, we display the surface value ek2ðRÞ, as a

function of R=RS, for various values of the anisotropy ξ. In

the isotropic case ξ ¼ 0, we recover with very good
agreement the results presented by us for Schwarzschild
stars above the Buchdahl limit (see Fig. 14 in [30]). Note
that the function ek2ðRÞ takes negative values, except for the
highly anisotropic case ξ ¼ 0.99, which is positive and
seems to approach zero as R → Rcr.
In Fig. 19, we display the value at the boundary of the

perturbation function fm2ðRÞ, as a function of R=RS, for
various values of the parameter ξ. First of all, in the isotropic
case ξ ¼ 0, we recover with very good agreement the results
presented by us for Schwarzschild stars above the Buchdahl
bound (see Fig. 13 in [30]). Note that, for the case ξ ¼ 0.66,fm2ðRÞ takes negative values. For highly anisotropic con-
figurations, fm2ðRÞ → 0, as R → Rcr. It is interesting that we
found the same behavior for Schwarzschild stars in the
gravastar limit [30].
In the left panel in Fig. 20, we show the profiles of the

perturbation function fP2ðRÞ, evaluated at the boundary, as

FIG. 17. Surface value eh2ðRÞ, as a function of R=RS, for
various values of the anisotropy parameter ξ. The inset enlarges
the curves ξ ¼ f−0.33; 0; 0.33g. Observe the rapid increase
(decrease) in the curves for ξ ¼ 0.66ð0.99Þ, which do not fit
on the scale of this plot.

FIG. 18. Surface value ek2ðRÞ, as a function of R=RS, for various
values of the anisotropy parameter ξ. The inset enlarges the
curves ξ ¼ f−0.33; 0; 0.33g.

FIG. 19. Surface value fm2ðRÞ, as a function of R=RS, for
various values of the anisotropy parameter ξ. The inset enlarges
the curves ξ ¼ f−0.33; 0; 0.33g. For highly anisotropic configu-
rations, as R → Rcr, m2ðRÞ → 0.
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a function of the parameter R=RS. The various curves
correspond to different values of the anisotropy parameter
ξ. The inset enhances the cases ξ ¼ f−0; 33; 0; 0.33g.
Observe that the various profiles take negative values,
except for the ultra-anisotropic case ξ ¼ 0.99, which is
positive. In the right panel of the same figure, we plot the
same data as in the left panel, but now in terms of the
auxiliary perturbation functionfp�

2. Note that, for the highly

anisotropic configurations ξ ¼ 0.66ð0.99Þ, the function fp�
2

decreases (grows) rapidly as the corresponding stellar radii
approaches their critical value.
In Fig. 21, we display the surface perturbation functionfT 2ðRÞ, as a function of R=RS, for different anisotropies ξ.

In the isotropic case, fT 2ðRÞ ¼ fP2ðRÞ; thus, the ξ ¼ 0
curve agrees with the one in Fig. 20. Observe that, for the

highly anisotropic configurations, the function fT 2ðRÞ
grows rapidly (out of the plot y scale) as R → Rcr.
Figure 22 shows the function −ξ2ðRÞ=R (measured in

units of J2=R4
S), which determines the l ¼ 2 deformation of

the boundary, as a function of the parameter R=RS. The
various curves correspond to different values of the
anisotropy parameter ξ. In the isotropic case ξ ¼ 0, we
recover with excellent agreement the results reported by
Refs. [29,30], for isotropic uniform density configurations.
Observe that, for the ultra-anisotropic case ξ ¼ 0.99, the
function −ξ2ðRÞ=R takes negative values.
The ellipticity of the bounding surface ϵ, as defined in

(65), is plotted in Fig. 23 against R=RS, for various values
of the parameter ξ. We measure ε in units of J2=R4

S. In the
isotropic case ξ ¼ 0, we corroborate the results reported by
Refs. [29,30] for Schwarzschild stars above the Buchdahl
limit. It is interesting that the highly anisotropic configu-
ration ξ ¼ 0.99 shows a negative ellipticity. Thus, such a

FIG. 20. Left panel: surface value of the perturbation function fP2ðRÞ, as a function of R=RS, for various values of the anisotropy
parameter ξ. Right panel: the same data as in the left panel, but now in terms of the associated perturbation function p�

2 ¼ P2=ðρþ prÞ,
as a function of R=RS. The insets enlarge the curves ξ ¼ f−0.33; 0; 0.33g.

FIG. 21. Surface value fT 2ðRÞ, as a function of R=RS, for
various values of the anisotropy parameter ξ. The inset enlarges
the curves ξ ¼ f−0.33; 0; 0.33g. As we approach the critical
radius for ξ ¼ 0.66, 0.99, the values for T 2 get extremely large;

for instance, fT 2ðξ ¼ 0.99; R=RS ¼ 1.001Þ > 100000.

FIG. 22. The quadrupole deformation function −ξ2ðRÞ=R, as a
function of R=RS, for various values of the anisotropy parameter
ξ. We measure −ξ2ðRÞ=R in units of J2=R4

S. The inset enlarges
the curves ξ ¼ f−0.33; 0; 0.33g.
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configuration, when it is set into slow rotation, becomes
prolate rather than oblate. For static spherically symmetric
systems, Eq. (6) can be interpreted as having terms
corresponding to a pressure gradient force dpr=dr, gravi-
tational force ðρþ prÞν0, and a contribution due to the
anisotropy 2ðp⊥ − prÞ=r. Physically, we also expect cen-
trifugal-type forces to be present in the rotating configu-
ration, as well as corrections to the pressure gradient,
gravitational, and anisotropy forces. Some of the terms in
Eqs. (37) and (49) have the corresponding forms to be
corrections to one of those forces; others might correspond
to the centrifugal forces, and, for some, it is not immedi-
ately clear which force they should be interpreted as. In any
case, it seems likely that the prolate deformation stems
mostly from a contribution of the anisotropy forces,
although as we show in the next subsubsection we see
that the interplay between the forces is rather complicated
and there are certain configurations in which perturbation
theory seems to fail.
In Fig. 24, we show the surface value of the auxiliary

function ϒðRÞ [see Eq. (45)], as a function of R=RS, for
different values of the anisotropy parameter ξ. We measure
ϒðRÞ in units of J2=R7

S. Observe that, in the isotropic case
ξ ¼ 0, ϒ vanishes identically; however, for nonzero values
of the anisotropy, ϒ is different from zero.
The “Kerr factor” Q̃≡QM=J2 is plotted in Fig. 25, as a

function of R=RS, for various values of the anisotropy
parameter ξ. This Kerr factor is relevant because it tells
howmuch it deviates the exterior Hartle-Thornemetric away
from the Kerr metric. In the isotropic case ξ ¼ 0, we have a
very good agreement with the results reported by
Refs. [29,30] for Schwarzschild stars above the Buchdahl
bound. Observe that, as the various configurations approach
their critical radii, Q̃ → 1, with slight variations depending
on the anisotropy. However, we stress that the strict BH limit
cannot be taken from these configurations, because their radii
are limited by their corresponding critical radii, which are

always less than the Schwarzschild radius. It is noteworthy
that for ξ ¼ 0.99 we are approaching the Kerr value from
below, and for radii R=RS > 1.18 we have a negative
quadrupole moment, again indicating that we have highly
anisotropic configurations which are prolate rather than
oblate.
It should be noted that the highly anisotropic cases ξ ¼

0.66 and ξ ¼ 0.99 have large, and in some cases possibly
diverging, surface values for the h2, P2, T 2, and ϒ
perturbation functions, when we approach the correspond-
ing critical radius. This indicates that perturbation theory
may be unreliable for high anisotropy spheres near to their
critical radius or that the allowable amount of rotation Ω,
before the Hartle method no longer gives satisfactory
results, is extremely small. We observe that the m2 and

FIG. 23. Surface value of the ellipticity ϵðRÞ, as a function of
R=RS, for various values of the anisotropy parameter ξ. The
ellipticity is measured in units of J2=R4

S. The inset enlarges the
curves ξ ¼ f−0.33; 0; 0.33g.

FIG. 24. Profiles of the auxiliary function ϒ, evaluated at the
surface, as a function of R=RS, for various values of the
anisotropy parameter ξ. We measure ϒðRÞ in units of J2=R7

S.
The inset enlarges the curves ξ ¼ f−0.33; 0; 0.33g. Notice that in
the isotropic ξ ¼ 0 case ϒ is identically zero, but for nonzero
anisotropies it takes nonzero values.

FIG. 25. Kerr factor Q̃≡QM=J2, as a function of R=RS, for
various values of the anisotropy parameter ξ. The inset enlarges
the region R=RS ¼ ð1; 1.2�. Observe how, in the limit as R → Rcr,
the Kerr factor for the various curves approaches the BH value
Q̃ → 1, with only minor variation between anisotropies.
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k2 functions remain finite; for m2, this likely is due to the
r − 2m factor, which is very small near the critical radius.
For k2, it seems that the integration constant K is approach-
ing zero at the same rate as the Legendre function [see
Eqs. (50) and (51)] is diverging to end up with a finite
residue (if K ¼ 0, then we take the limit ek2 → −4, but we
are approaching a different constant). However, the ξ ¼
0.33 case remains well behaved with finite surface values,
for all the perturbation functions, as we are approaching the
critical radius, which is below the Buchdahl radius.
Finally, in Table II, we present the main surface and

integral properties for the BL sphere that satisfies the DEC,
which was discussed in Sec. III A. Note that, while the
spherically symmetric version of this BL sphere satisfies
the DEC, the rotating version fails to do so, because both
T 0 and T 2 are positive at the surface of the configuration;
thus, T ¼ p⊥ þ T 0 þ T 2P2ðcos θÞ will be larger than
E ¼ ρ, since ρ ¼ p⊥ on the surface for the DEC sphere.

1. The onset of negative quadrupole
moment and ellipticity

From Figs. 22, 23, and 25, we found that for ξ ¼ 0.99we
have the opposite behavior to what we would expect,

corresponding to prolate rather than oblate deformation.
We consider that this point deserves further analysis.
One possible explanation behind this behavior would be

the breakdown of either the perturbative formalism or the
numerics. However, there are several prolate configurations,
for instance, ξ ¼ 0.99, R ¼ 1.5, where the interior pertur-
bation functions are small (so perturbation theory works
well) and monotonic (so numeric problems with oscillatory
or rapidly varying functions should not be an issue). Even in
cases quite close to divergences, there is little sensitivity to
the ϵ integration parameters over a wide range, and con-
sistency check codes written with a variety of schemes [four
first-order ordinary differential equations (ODEs), two sec-
ond-order ODEs, using units of r=RS and r=R, etc.] all give
very similar results (within 1% error). This stability and good
behavior strongly disfavor numerical instabilities or formal-
ism breakdown being the cause of the prolate behavior.
In any event, information about exactly when and how

prolate configurations appear in the results is worth inves-
tigating. For that purpose, we carried out a thorough study
of the onset of negative mass quadrupole moment and
ellipticity. Let us first discuss the former.
In the left panel in Fig. 26, we plot the Kerr factor

Q̃≡QM=J2, as a function of R=RS, for various values of
the anisotropy parameter ξ in the range [0.72, 0.84]. We
observe that the curves for ξ ¼ 0.72, 0.74 are continuous
and well behaved, and they seem to approach to 1 as the
compactness approaches its corresponding critical value.
For ξ ¼ 0.76, we observe that the curve is also continuous,
but it shows a kink when we approach the critical radius.
For configurations with ξ > 0.76, we observe that Q̃
becomes large as we approach the critical compactness.
Furthermore, we also observe the appearance of regions of

TABLE II. Surface and integral properties for the limiting BL
sphere that satisfies the DEC. The various quantities are given in
the same units as Table IV.

Surface properties of the limiting DEC BL sphere

R=RS ξ I=MR2 δM=M Q̃ ϖðRÞ ε

1.1035 0.4141 0.8388 2.3753 1.0666 0.4696 9.3969

FIG. 26. Left panel: Kerr factor Q̃≡QM=J2, as a function of R=RS, for various values of the anisotropic parameter ξ in the range
ξ ¼ ½0.76; 0.84�. The inset enhances the curves ξ ¼ f0.72; 0.74; 0.76g. Right panel: Kerr factor Q̃, as a function of R=RS, for ξ in the
range ξ∈ ½0.757; 0.761�. Observe the emergence of regions with a negative mass quadrupole moment for ξ > 0.757. In the limit as
R → Rcr, Q̃ → 1 corresponding to the Kerr BH value.
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negative quadrupole moment together with divergences at
certain locations; the latter may indicate the failure of the
extended Hartle’s slow rotation framework in such a
regime.
In the right panel in Fig. 26, we plot the Kerr factor again,

but now enhancing in the region where ξ∈ ½0.757; 0.761�.
We observe that, while the quadrupole moment remains
positive for ξ ¼ 0.757, there is a “peak” close to β ≃ 1.0018,
where Q̃ ≃ 6. At ξ ¼ 0.758, there is a region of negative
quadrupole moment centered around β ¼ 1.002, which is
bounded by two divergences at β ¼ 1.0012 and β ¼ 1.0025,
which we call DA and DB, respectively. These divergences
move away from β ¼ 1.002 as ξ increases. At ξ ¼ 0.761, the
peak between the two divergences, located at β ¼ 1.0006
and β ¼ 1.0051, respectively, breaks into the positive region.
Thus, we have an upward and downward x-axis crossing,
between the divergences, at β ≃ 1.0009 and β ≃ 1.002,
which we call ZA and ZB, respectively (see the right panel
in Fig. 26 for an illustration of this process). As we continue
to increase ξ, the divergences and zero crossings move
farther apart.

Before we reach ξ ¼ 0.77, we lose track of DA and ZA
because they get too close to the critical radius and the
numerical solutions are unreliable. This occurs at
ξ ¼ 0.768, when DA is at β ¼ 1.0002 and ZA is at
β ¼ 1.00025. Beyond this point, it is possible that DA
and ZA go below the critical radius, collide with each other
and annihilate, or stay above the critical radius in the region
we cannot probe. In Table III, we list the results of the
various divergences and x-axis crossings of the quadrupole
moment, for different values of the anisotropy parameter ξ
in the range ξ∈ ½0.758; 0.99�.
The next interesting feature is the “acceleration” in

outward movement ofDB as ξ increases and the subsequent
disappearance of DB close to ξ ¼ 0.89. Beyond this point,
we find no instances of a positive quadrupole moment at
higher radii and no divergence, because it appears to have
moved off to β ¼ ∞. The ZB zero crossing stays in the
range of β where it is easy to track. It can still be seen
clearly in Fig. 25 for ξ ¼ 0.99.
It is noteworthy that, despite this peculiar behavior of the

mass quadrupole moment showing divergences, zero cross-
ings, and negative values, as we approach the critical radius
for the different values of ξ, we observe that Q̃ → 1, or very
nearly, thus approaching the Kerr BH value. One possible
caveat to this is the influence of the inner divergence, or
upward zero crossing, after they cross into the region which
we cannot probe.
We discuss now the case for the ellipticity. In the left

panel in Fig. 27, we plot the ellipticity, in units of J2=R4
S, as

a function of R=RS, for various anisotropy parameters in
the range ξ∈ ½0.72; 0.84�. Observe that the curve with ξ ¼
0.72 is well behaved, even up to its critical radius. For
configurations with ξ ¼ 0.74, we observe that the curve is
continuous and well behaved, but it shows a kink near to
the critical radius. For greater values of the anisotropy
parameter ξ, we observe that the ellipticity becomes large
near the critical radius, showing a divergence there.
In the right panel in Fig. 27, we plot the ellipticity again,

but now enhancing in the range ξ∈ ½0.757; 0.761�.
Similarly to the mass quadrupole moment Q̃, we observe
that the ellipticity spikes near β ¼ 1.0018, at ξ ¼ 0.758,
and divergences bounding a negative ellipticity region
appear. Furthermore, the region with negative Q̃ expands
as ξ increases. It is interesting that the divergences in the
ellipticity occur at the same locations as the divergences in
Q̃, namely, DA and DB. This can be explained by the fact
that divergences in the quadrupole moment are caused by
divergences of the integration constant K, which, in turn,
lead to divergences of the k2 term in the expression for the
ellipticity (65). However, unlike Q̃, the ellipticity does not
have any intersections with 0, so there are no Z points. This
means that there are configurations where the ellipticity of
the boundary is negative but the mass quadrupole moment
is positive. For instance, for ξ > 0.768, ellipticity
approaches a negative value as we approach our cutoff

TABLE III. Table of the various locations of features in Q̃. ✗
indicates the points that are not observed. We point out that some
of our alternative codes which we constructed in different ways to
our main code, for consistency checks, give slightly different
answers for some of these, at and above the last decimal place
shown. Note that the ellipticity also shows divergences at DA and
DB but nothing special happens to ellipticity at ZA and ZB.

ξ DA ZA ZB DB

0.758 1.0012 ✗ ✗ 1.0025
0.759 1.00086 ✗ ✗ 1.0036
0.760 1.0006 ✗ ✗ 1.0043
0.761 1.00054 1.00095 1.002 1.0050
0.763 1.00043 1.00054 1.00332 1.00657
0.767 1.00023 1.00028 1.0054 1.0097
0.768 1.0002 1.00025 1.006 1.0106
0.770 ✗ ✗ 1.00705 1.0123
0.780 ✗ ✗ 1.0129 1.0239
0.790 ✗ ✗ 1.0197 1.0386
0.800 ✗ ✗ 1.0274 1.0602
0.810 ✗ ✗ 1.0357 1.0903
0.820 ✗ ✗ 1.0443 1.133
0.830 ✗ ✗ 1.0532 1.1958
0.840 ✗ ✗ 1.0618 1.289
0.850 ✗ ✗ 1.0711 1.4412
0.860 ✗ ✗ 1.080 1.708
0.870 ✗ ✗ 1.0885 2.276
0.880 ✗ ✗ 1.097 4.170
0.885 ✗ ✗ 1.099 8.760
0.886 ✗ ✗ 1.102 11.66
0.887 ✗ ✗ 1.103 17.55
0.888 ✗ ✗ 1.104 36.64
0.890 ✗ ✗ 1.1050 ✗
0.990 ✗ ✗ 1.174 ✗
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above the critical radius, but the quadrupole moment
approaches ≈1.
Despite the divergences and the regions with negative

values, some of the curves in Fig. 27 show recognizable
features in ellipticity behavior. For instance, in isotropic
Schwarzschild stars, there is a local maximum in ellipticity
at β ≈ 2.32 [29,30]; this local maximum moves inward as
the anisotropy increases and can still be seen in the
cases ξ ¼ f0.72; 074; 0.76; 0.78g.

V. CONCLUSIONS

In this work, we have extended the Hartle formalism
[25], for slowly rotating relativistic stars, to anisotropic
systems. Our objective was twofold: First, we wanted to
complete, and improve, previous attempts to generalize
Hartle’s formalism which contained typos and other errors
[27], casting doubts on the results presented there, or were
limited to specific examples and not widely applicable [28].
Thus, here we provide the extended Hartle equations of
structure and present their derivation. As a second objec-
tive, using this new formalism, we studied the rotational
properties of anisotropic configurations with constant
density, as described by the Bowers-Liang solution.
While some of the structure equations we derive, such as

Eqs. (30) and (35), agree with those presented in [27], a
critical difference relies in our treatment of the off-diagonal
terms in the rθ block. While the Tr

θ and Tθ
r terms must be

identically 0 for stationary axisymmetric perfect fluid
systems, or for static spherically symmetric anisotropic
systems, this is not a priori necessary for axisymmetric
anisotropic systems. In order to treat this, we introduced the

function ϒ which can be thought of, mathematically, as a
second order in Ω deviation of the vector which diago-
nalizes the rθ block of the EMT vs the rθ block of the
metric. The addition of ϒ leads to additional modifications
of the quadrupole sector. We also found that ϒ vanishes in
the isotropic case, which is expected, but for general
anisotropic cases, it is nonzero.
We then applied the new extended Hartle formalism to

compute the rotational perturbations, as well as the integral
and surface properties of slowly rotating Bowers-Liang
fluid spheres. The Bowers-Liang solution provides a simple
closed-form anisotropic analytic model which can be more
compact than the Buchdahl limit, thus allowing us to
explore the behavior of systems below this bound, espe-
cially those that approach the Schwarzschild limit. For this
particular BL model, we found that quantities like Q̃ and
δM both approach the values associated with the sub-
Buchdahl Schwarzschild star [30], the analytic rotating
gravastar [28], and the Hartle-Thorne approximation of the
Kerr BH. However, as we approach the Schwarzschild
limit, the regularity of the exterior perturbation functions h2
and k2 requires that Q ¼ J2=M, and the regularity of the
exterior function h0 requires that δM ¼ J2=R3. Thus, in
some sense, any solution for which those perturbations
remain small for highly compact configurations, and is
matched to the vacuum Hartle-Thorne exterior, would need
to have similar features.
For highly anisotropic, and compact, Bowers-Liang

spheres, we also found that, in the limit when the
compactness approaches its critical value, the auxiliary
frame dragging function ϖ → 0, and the moment of
inertia approaches MR2, which corresponds to the same

FIG. 27. Left panel: ellipticity (in units of J2R4
S), as a function of R=RS, for various values of the anisotropy parameter ξ in the range

ξ∈ ½0.72; 0.84�. For highly anisotropic configurations, we observe that the ellipticity becomes large, for compactness near the critical
value. Furthermore, for configurations with ξ > 0.76 we observe the emergence of a region with negative ellipticity. Right panel:
ellipticity (in units of J2R4

S), as a function of R=RS, enlarged for values of ξ∈ ½0.757; 0.761�. Note that the divergences occur at the same
values of compactness as the divergences of Q̃ (see Fig. 26).
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values as the Hartle-Thorne approximation of the Kerr
BH, analytic rotating gravastar, and ultracompact
Schwarzschild stars. This ultimately stems from the fact
that for all of these systems R ¼ 2M and ωðRÞ ¼
2J=R3 ¼ Ω, at least to a close approximation.
Interestingly, the constant hc turned out to go to the same
limiting value as the sub-Buchdahl Schwarzschild star, but
the analytic rotating gravastar and Hartle-Thorne approxi-
mation of the Kerr BH do not address the value of hc, and
we do not see an argument that requires hc to behave in a
certain way in the Schwarzschild limit. Thus, tests on
other systems may be required to elucidate whether this is
coincidental or not.
One caveat to these results, regarding highly anisotropic

and compact configurations, is that T 0, h2, P2, T 2, and ϒ
become large for configurations sufficiently close to their
critical radii; thus, perturbation theory may be unreliable in
this limit. In principle, a highly anisotropic compact non-
rotating BL spherewill, very closely, mimic a Schwarzschild
BH. While according to this approximation, the exterior
spacetimeof a slowly rotatingBLspherewill approach aKerr
BH, the perturbative framework itself may be unreliable for
the extremely compact configurations.
Another situation where perturbation theory may be

unreliable is when we have particular pairs of radius R and
anisotropy parameter ξ near to the DA, DB boundaries of
the negative quadrupole moment configurations where
there are divergences in Q. These, in turn, imply regions
where the integration constant K, and, hence, the surface
values for h2 or k2, will be large. However, there are many
values of ðR; ξÞ for which all perturbation quantities remain
small and the numerics appear to be well behaved, but the
configuration is still predicted to be prolate.
We used the assumption that the four-velocity corre-

sponded with a uniform angular velocity to be similar to the
formalism in the isotropic case. Ultimately, this assumption
of a uniform angular velocity comes from Ref. [41], which
showed that uniform rotation was the equilibrium configu-
ration for rotating isotropic fluid made of baryons.
However, it may be possible that other types of rotation
are relevant for anisotropic systems; thus, it may be
worthwhile to examine this point in future work.
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APPENDIX A: GENERALIZED
CHANGE OF MASS

Here, we generalize the result (41) to systems where
anisotropy is present. Using Eqs. (83) and (85) from
Ref. [35] and moving the results into our conventions,
we can deduce that

½h00� ¼
½2ν000�
½2λ0�

�
m0

r − 2m

�
; ðA1Þ

where ½f� ¼ fðRþÞ − fðR−Þ denotes a discontinuity across
the surface r ¼ R. From the zeroth-order Einstein equa-
tions (3), we can obtain

½2λ0� ¼ 8π½ρ� R2

R − 2M
; ðA2Þ

½2ν000� ¼
16πR
R − 2M

½p⊥� þ
R −M

RðR − 2MÞ ½2λ
0�; ðA3Þ

where we used the fact that pr, λ, m, and ν0 are continuous
at the boundary r ¼ R and take the values 0,
−ð1=2Þ lnð1 − 2M=RÞ, M, and M=RðR − 2MÞ, respec-
tively. This implies that

½2ν000�
½2λ0� ¼

2

R
½p⊥�
½ρ� þ R −M

RðR − 2MÞ ; ðA4Þ

and using Eqs. (36) and (40), as well as Eq. (31) and the fact
that ϖ0 is continuous across r ¼ R, we deduce

½h00� ¼
½m0�

ðR − 2MÞ2 −
4πR2P0

R − 2M
: ðA5Þ

Using Eqs. (A1) and (A5), we get

�
1

R − 2M
−
½ν000�
½λ0�

�
½m0� ¼ 4πR2P0: ðA6Þ

Employing Eq. (A4), we can solve for ½m0� as

½m0� ¼
4πR2P0

M
RðR−2MÞ −

2½p⊥�
R½ρ�

: ðA7Þ

This equation is certainly useful, but it is possible to make a
substitution which allows for an intuitive picture of the
mass correction term. Including possible discontinuities in
the generalization of the TOV equation (6), we can obtain
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½p⊥� ¼
1

2
R½p0

r� þ
M

2ðR − 2MÞ ½ρ�; ðA8Þ

such that

½m0� ¼ −
4πr2P0½ρ�

½p0
r�

¼ −4πR2ρðR−Þ P0

p0
rðR−Þ ¼ 4πR2ρðR−Þξ0; ðA9Þ

where the second equality holds, because p0
r ¼ 0 and ρ ¼ 0

everywhere in the exterior on the grounds that it is empty
space, and the third equality uses the appropriate definition
for the spherical deformation parameter ξ0. In the isotropic
case, authors sometimes substitute dp=dr with ðρþ pÞν00,
such that ξ0 ¼ −P0=ðρþ pÞν00 ¼ δp0=ν00, because in iso-
tropic systems the TOV reduces to p0 ¼ −ðρþ pÞν00. We
cannot make a corresponding replacement here, because
the TOV equation for anisotropic systems [Eq. (6)] has an
additional term.
The form of Eq. (A9) can be understood as including the

mass of a thin spherical shell with thickness ξ0, radius R,
and density ρðR−Þ. Notice that this formula is correct
regardless of whether ½p⊥� ¼ 0, which must be true for
isotropic systems.

APPENDIX B: BOWERS-LIANG SPHERE IN THE
GRAVASTAR LIMIT

The behavior of Bowers-Liang spheres, below their
critical radius, has some features in common with the
sub-Buchdahl Schwarzschild star [30,38]. The motivation
to consider such configurations stems from the analysis
already existing for the isotropic constant density configu-
ration [38] or Schwarzschild star. As shown by Mazur and
Mottola (MM-15) [38], the Schwarzschild star allows
compactness beyond the Buchdahl limit once anisotropic
stresses are introduced. Moreover, in the limit as R → RS,
the Schwarzschild star becomes essentially the gravastar
[42,43]. The gravastar of Ref. [38] could be considered as
the “universal” limit of the gravastar proposed in [42,43]
which is endowed with a thin-shell of ultrarelativistic fluid
p ¼ ρ near the would-be horizon, surrounding the interior
de Sitter region p ¼ −ρ; thus, one is able to match the
solution with the exterior Schwarzschild spacetime.
The “universality” of the solution can be understood in
the sense that, when the thickness of the surrounding shell
goes to zero, the resulting solution is independent of any
EOS that one may introduce in the shell. Thus, in the MM-
15 model, the matching of the interior de Sitter with the
exterior Schwarzschild spacetime occurs exactly at the
surface R ¼ RS ¼ 2M (up to possible Planckian correc-
tions). This surface is endowed with anisotropic stresses,
which produce a surface tension.

A crucial element in the MM-15 model construction is
that the pole in the radial pressure, for the Schwarzschild
star, occurs exactly at the same point R0 where the gtt
metric component vanishes. Moreover, as the compactness
of the Schwarzschild star increases, this pole moves out-
ward from the origin. In the limit as R → RS (from above),
the pole moves up to the surface (from below) where one
finally obtains R ¼ R0 ¼ RS, producing a gravastar in the
interior. Motivated by these results, here we examine the
behavior of the nonrotating Bowers-Liang spheres when
their compactness goes beyond the critical value.
A first glance at Eqs. (75) and (77) reveals some

interesting features. We observe that the pressures are
regular everywhere in the interior, except at some radius
x0 where the term

D≡ 3yq1 − yq ðB1Þ

vanishes in the range x∈ ½0; 1�. Note that this term appears
in the denominator of pr as well as in the numerator of gtt.
Thus, in strict analogy with the MM-15 model, the pressure
diverges at the same value where gtt ¼ 0. The location of
the root x0 of the equation D ¼ 0, in x∈ ½0; 1�, is found
to be

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β − 31=qðβ − 1Þ

q
: ðB2Þ

In the isotropic case ξ ¼ 0, Eq. (B2) reduces to
x0 ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þβp

, which corresponds to the pole in
the isotropic case [see Eq. (2.22) in [38] ]. In Fig. 28,
we show the various locations of the roots x0, as a function
of R=RS, for different values of the anisotropy ξ. It can be
seen how the various poles appear first at the origin and
then move toward 1. For the isotropic case ξ ¼ 0, the pole
appears first at the Buchdahl radius R=RS ¼ 9=8. As the

FIG. 28. Zeros of the function D (B2), as a function of R=RS,
for various values of the anisotropy parameter ξ. Note that the
pole appears first at the origin and then moves toward 1. As the
anisotropy increases, the pole moves to the left, approaching
the Schwarzschild radius.
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anisotropy increases, the pole moves to the left, approach-
ing the Schwarzschild radius. Thus, highly anisotropic
configurations can support greater compactness, with
respect to the isotropic case. It is worthwhile to mention
that finding the pole for the configuration ξ ¼ 0.99 is rather
awkward, because in such case we are in a regime beyond
computational tolerances. Thus, the value shown in Table I
comes from a series expansion of Eq. (B2) in the quan-
tity β − 1.
Figure 29 shows the radial pressure profiles of non-

rotating BL spheres, for various anisotropies, for different
values of the compactness below their critical value.
We observe that, in strict analogy with the MM-15 model,
there emerges a region with negative pressure in the
interval 0 < x < x0, where x0 is the pole in the pressure.
Meanwhile, the region x0 < x < 1 remains with positive
pressure. As the compactness increases, the pole x0 moves
to the right, approaching the surface x ¼ 1. Interestingly,
when the compactness approaches the Schwarzschild limit,
the interior of the subcritical Bowers-Liang sphere
approaches pr ¼ p⊥ ¼ −ρ throughout the interior and
the pressure divergence moves to the star surface. Thus,
in this limit, anisotropic configurations become a constant

negative pressure fluid, similar to the gravastar proposed
in [38].
One result of particular interest to Ref. [38] was the 1=4

time scaling factor for the sub-Buchdahl Schwarzschild star
in the gravastar limit. This factor results in equal and
opposite surface gravity parameters on either side of the
gravastar surface, and it allows the entire manifold to be
covered with a Rindler-like coordinate system. However,
there is a difficulty in applying the same analysis to
Bowers-Liang spheres: gtt, at least when written in the
form (73), will be complex inside the negative pressure
region for certain values of the anisotropy parameter.
Above the critical radius, there is no negative pressure
region and e2ν in the form of Eq. (73) is real and positive
everywhere; therefore, it is perfectly sufficient for the
calculations in the main body of the paper.
We can specifically look at e2ν for r ¼ 0, R ¼ 2M as an

example, which using the form of Eq. (73) becomes

e2ν0ðr ¼ 0; R ¼ 2MÞ ¼
�
−
1

2

�
1=q

: ðB3Þ

FIG. 29. Profiles of the radial pressure for the BL model, for various configurations, for different values of the parameter ξ. Note the
emergence of a negative pressure region, when the compactness goes beyond the corresponding finite pressure limit. In the limit as the
compactness approaches the Schwarzschild limit β ¼ 1=2, we observe that p → −ρ, as in the gravastar of Ref. [38].
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This is fully real only if q ¼ 1=N and is real and positive
(which allows for the conventional statement of t being a
timelike coordinate) only if q ¼ 1=ð2NÞ, with N ∈Z.
Notice that the isotropic case corresponds to q ¼ 1=2,
which is one of the values for which e2ν is positive and real
(specifically being 1=4). However, it is not the only such
value of q. For systems with negative pressure regions, it
may be possible to redefine gtt in such a way as to remove
an inappropriate complex phase factor inside the negative
pressure region. This question is left open for future
investigation.
It is noteworthy that, for highly anisotropic BL spheres,

as they approach their critical radius, but stay formally
above it, the configuration shows some of the features of a
“quasi-black hole” as defined in [44]. In particular, the
metric function gtt is very close to 0 throughout the interior
of a high anisotropy BL sphere approaching the critical
radius from above (see the left panel in Fig. 30). However,
the surface gravity

1

2
e−ν−λ

∂e2ν

∂r
ðB4Þ

[given in terms of the metric functions in (1)], as we
approach the outside, is nonzero (see the middle panel in
Fig. 30). Thus, the quasihorizon is nonextremal, which is
because the transverse pressure approximates a delta-
function surface layer [see right panel in Fig. 30 and case
(2) from Sec. IV in [44]).

APPENDIX C: INTEGRAL AND SURFACE
PROPERTIES OF SLOWLY ROTATING

ANISOTROPIC HOMOGENEOUS
CONFIGURATIONS IN GENERAL RELATIVITY

FIG. 30. Left panel: radial profile of the interior metric function −gtt (blue curve), and the exterior Schwarzschild metric (orange
curve), for a highly anisotropic Bowers-Liang sphere, with ξ ¼ 0.99 and R=RS ¼ 1.0001. Observe how gtt is nearly zero throughout the
interior of the configuration, similar to the quasi-black hole depicted in [44]. Middle panel: interior surface gravity parameter (B4) (blue
curve), and exterior surface gravity (orange curve), for a Bowers-Liang sphere, with the same ðξ; R=RSÞ parameters as the left panel.
Right panel: radial profile of the transverse pressure, in units of the central energy density, for the same values of the parameters
(ξ; R=RS) as in the left and middle panels. Note the approximate delta-function behavior of p⊥ near the surface for BL spheres with these
parameters.
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