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A key attribute of dark energy is the equation of state parameter w ¼ pressure=energy density, and this
has been recently measured observationally, giving values close to −1. In this paper we calculate the w
parameter characterizing the novel Weyl scaling invariant dark energy that we have analyzed in a series of
papers, and show that it is compatible with experiment. We also derive the atomic electron effective
potential induced by dark energy from the electron geodesic equation, which can be applied to the
evaluation of energy level shifts in Rydberg atoms.
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I. INTRODUTION

A. Weyl scaling invariant dark energy action

In papers over the past nine years (reviewed in [1]) we
have studied consequences of the postulate that “dark
energy” arises from an action constructed from nonderiva-
tive metric components so as to be invariant under the Weyl
scaling gμνðxÞ → λðxÞgμνðxÞ, where λðxÞ is a general scalar
function. This novel dark energy action is given by

Sdark energy ¼ −
Λ

8πG

Z
d4xðð4ÞgÞ1=2ðg00Þ−2; ð1Þ

where Λ is the cosmological constant, G is Newton’s
constant, and ð4Þg ¼ − detðgμνÞ. The action of Eq. (1) is
compatible with a 3þ 1 foliation of spacetime associated
with the cosmic microwave background rest frame, and is
three-space, although not four-space, generally covariant.
Equation (1) reduces to the usually assumed dark energy
action in homogeneous cosmological contexts with
g00ðxÞ≡ 1, as assumed in the usual ΛCDM cosmology.
So the successes of the standard ΛCDM cosmology are
fully consistent with the replacement of the usual dark
energy action by Eq. (1) The extra factor ðg00Þ−2 in Eq. (1)
gives rise to novel cosmological effects only when there are
cosmological inhomogeneities, and only in situations
where the very small cosmological constant Λ becomes
relevant.

B. Skeptical questions, motivations,
and calculational procedure

The unconventional nature of the action of Eq. (1) has
raised many questions, which are addressed in detail in the

review [1].1 We briefly address a number of them here, and
then make related procedural comments.

(i) Does Eq. (1) violate the principles of special and
general relativity? As originally formulated, the
relativity principle of special relativity states that an
absolute state of uniform motion is not observable.
But this is now empirically falsified by observation of
a dipole component in the cosmic microwave back-
ground (CMB) radiation, from which one can infer
our solar system’s state of uniform motion with
respect to the rest frame of the CMB, which can be
taken as a reference inertial frame.

A less restrictive form of the relativity principle
states that all physical laws should be formulated in a
manner not referring to an inertial frame, and this is
incorporated into the Einstein-Hilbert (E-H) gravita-
tional action, which is four-space general coordinate
invariant, and agreeswith all noncosmological tests of
general relativity. But why should one assume that the
very small additional “dark energy” action, which
describes the late-time accelerated expansion of the
universe, obeys the same symmetry principles as the
E-H action?

In the particle physics context, for years it was
assumed that since the strong and electromagnetic
interactions are governed by a principle of parity
invariance, theweak interactionsmust be also, but this
assumption was falsified by experiment. By analogy
in the gravitational context, there is no reason to
assume that thedark energy action, theorigin ofwhich
is quite mysterious, is governed by the same sym-
metry principles as the E-H action. It is possible in
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principle that although the E-H action is constructed
in accordance with the rules of four-space general
coordinate invariance, the very small dark energy
action may be constructed in a manner that violates
these rules, but is inspired instead by the 3þ 1
foliation of spacetime that is needed to calculate
time-dependent spacetime geometries. The calcula-
tions of [2] show that because Λ is very small, the
action of Eq. (1) predicts only unobservably small
corrections to the standard solar system general
relativity tests. And further calculations in [3] using
the theoryof cosmological perturbations show that the
residual three-space general coordinate invariance of
Eq. (1) suffice to prohibit propagating scalar gravi-
tational waves.

(ii) What about the “hierarchy” and “fine-tuning” prob-
lems associated with the cosmological constant? IfΛ
is interpreted as a vacuum energy density,

ρΛvac ¼
Λ

8πG
≃ ð2 × 10−3 eVÞ4; ð2Þ

it is mysterious why this is so much smaller than
typical particle physics vacuum fluctuation energies
of order

ρQMvac ∼M4
Planck ≃ ð1028 eVÞ4;

ρΛvac=ρ
QM
vac ∼ 10−120: ð3Þ

This is yet another example of the “hierarchy
problem” of understanding the smallness of particle
masses (including the electron, up and down quark,
and neutrino masses) compared to the Planck mass.
This problem is still present with the assumed action
of Eq. (1), since the coefficient Λ there is given its
observational value. But if one assumes the conven-
tional dark energy action given by Eq. (1) with
g00 ≡ 1, then there is the additional fine-tuning
problem of understanding why vacuum fluctuation
energies of bosons and fermions cancel to 1 part in
10120, but do not cancel to zero. If one postulates that
so-called “dark energy” is not an energy at all, but
instead is governed by a principle of Weyl scaling
invariance (which requires vacuum fluctuation ener-
gies to cancel to exactly zero, since the conventional
dark energy action is not Weyl scaling invariant), one
is led to Eq. (1) as an alternative to the conventional
interpretation of the cosmological constant as a
residual uncanceled vacuum energy, and the fine-
tuning problem is eliminated.
Why postulate Weyl scaling invariance? It is

suggested by the idea that the underlying theory for
both general relativity and particle physics may be
scale, and likely also conformal invariant, which leads
as a natural postulate toWeyl scaling invariance of the

part of the induced gravitational action that involves
no metric derivatives. Moreover, as Weinberg [4] has
often stressed, it is useful in testing current model
theories to have alternative “foils” that conform to
current experiments, but give rise to testable new
predictions.We believe that Eq. (1) gives a natural foil
against which to test the conventional assumption that
the cosmological constant arises as an energy.

Finally in this category,we stress that the novel dark
energy action is a classical effective action for the
classical gravitational metric, as needed for astro-
physics and cosmology. Quantum and prequantum
degrees of freedom have been integrated out in its
derivation, and there are no residual issues of peculiar
quantum field theoretic effects, such as perturbation
theory anomalies.

(iii) The usual derivation of the conserved stress-energy
tensor that is the source term for the Einstein
equations makes an assumption of four-space gen-
eral coordinate invariance. So how does one calcu-
late the stress-energy tensor contribution from the
novel dark energy action of Eq. (1)? This issue is
addressed in the earlier papers reviewed in [1],
where a method of covariant completion is pro-
posed. First, one varies the novel dark energy action
with respect to the spatial components gij of the
metric, giving the spatial components TΛij of the
stress-energy tensor; then one imposes covariant
conservation to compute the spacetime components
(which vanish) and the time-time component TΛ00.
In the cosmological context, this procedure is carried
out explicitly in Eqs. (32)–(35) of [5], for a line
element

ds2 ¼ α2ðtÞdt2 − ψ2ðtÞdx⃗2; ð4Þ

with ψð0Þ ¼ 0. The results of this calculation can be
summarized as follows:

TΛij ¼
Λ

8πG
tij;

tijðtÞ ¼ −δij
ψ2ðtÞ
α4ðtÞ ;

t0i ¼ ti0 ¼ 0;

t00ðtÞ ¼ 3
α2ðtÞ
ψ3ðtÞ

Z
t

0

du
ψ̇ðuÞψ2ðuÞ

α4ðuÞ ; ð5Þ

with δij the Kronecker delta. Here we have assumed
that t00ð0Þ is bounded, which when ψð0Þ ¼ 0
requires taking the lower limit of integration in t00
as zero.

(iv) Just as we have assumed that the E-H gravitational
action has the usual form, in the calculations that
follow we assume that matter actions obey the
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equivalence principle, with the flat spacetime Min-
kowskimetric replacedby thegravitationalmetricgμν.
Then massive and massless particles follow geodesic
trajectories, since as shown byWeinberg [6] this is an
immediate consequence of the equivalence principle.
So our only nonstandard assumption is the choice of
theWeyl scaling invariant form of Eq. (1) for the dark
energy action.

(v) In two previous papers we have calculated the
implications of a scale invariant dark energy for
(i) the photon sphere and black hole shadow radii
[7], and (ii) light deflection by a central mass, solar
system relativity tests, and modifications of the
lensing equation [2]. In the subsequent sections of
this paper we calculate the dark energy equation of
state parameterw as a function of cosmic time, and the
dark energy–induced effective potential for an atomic
electron.

II. DARK ENERGY EQUATION OF STATE
PARAMETER w

From the relativistic perfect fluid form of the stress-
energy tensor (with uμ the fluid four-velocity, u0 ¼ 1),

TΛμν ¼ ðpþ ρÞuμuν − pgμν; ð6Þ

compared with Eq. (5), we can read off the dark energy
pressure pðtÞ and energy density ρðtÞ, as

pðtÞ ¼ −
1

α4ðtÞ ;

ρðtÞ ¼ 3

ψ3ðtÞ
Z

t

0

du
ψ̇ðuÞψ2ðuÞ

α4ðuÞ ; ð7Þ

with ψ̇ðuÞ ¼ dψðuÞ
du . We define the equation of state param-

eter wðtÞ by pðtÞ ¼ wðtÞρðtÞ, and write αðtÞ ¼ 1þΦðtÞ,
withΦðtÞ the first order scalar perturbation calculated in [5]
and [8] from the modified perturbation equation implied by
the dark energy action of Eq. (1). Working to first order in
the small quantity ΦðtÞ, we get

w−1ðtÞ ¼ ρðtÞ
pðtÞ ¼ −

3

ψ3ðtÞ
Z

t

0

duψ̇ðuÞψ2ðuÞ

× ½1þ 4ðΦðtÞ −ΦðuÞÞ�
¼ −1þDðtÞ; ð8Þ

with DðtÞ given by

DðtÞ ¼ −
12

ψ3ðtÞ
Z

t

0

duψ̇ðuÞψ2ðuÞ½ΦðtÞ −ΦðuÞ�: ð9Þ

Inverting to find wðtÞ, we get the result

wðtÞ ¼ −1 −DðtÞ: ð10Þ

Since ΦðtÞ is first order small, we see that the zeroth order
approximation to wðtÞ is just −1, with a first order
correction given by −DðtÞ.
It is now convenient to change to the dimensionless time

variable x used in [5] and [8],

x ¼ 3

2

p
ΩΛHPl

0 t; ð11Þ

in terms of which Eq. (9) becomes

DðxÞ ¼ −
12

ψ3ðxÞ
Z

x

0

du
dψðuÞ
du

ψ2ðuÞ½ΦðxÞ −ΦðuÞ�: ð12Þ

Here HPl
0 ≃ 67 km s−1Mpc−1 is the Hubble constant mea-

sured by Planck, and the present era t ¼ t0 is defined by
ψðt0Þ ¼ 1. Using the dark energy fraction ΩΛ ¼ 0.679 and
the matter fraction Ωm ¼ 1 −ΩΛ ¼ 0.321 of the closure
density, the dimensionless time variable takes the value x ¼
x0 ¼ 1.169 at the present era. In evaluating Eq. (12)
numerically it suffices to use the zeroth order expression
for ψðxÞ and the expansion of the first order perturbation
ΦðxÞ in powers of x given in [5] and [8],

ψðxÞ ¼
�
Ωm

ΩΛ

�
1=3

ðsinhðxÞÞ2=3;

ΦðxÞ ¼ Φð0Þ½1þ Ĉx2 þ D̂x4 þOðx6Þ�;

Ĉ ¼ 2

11
; D̂ ¼ −

2

561
: ð13Þ

The initial value Φð0Þ ≃ −0.115 is obtained in [5] and [8]
by using the scale invariant cosmological constant action to
fit the observed extra late time acceleration in the expansion
of the universe known as the “Hubble tension.” The result
of a numerical calculation ofDðxÞ, using Eqs. (12) and (13)
as inputs is given in Fig. 1. The redshift z corresponding to
x can be calculated from the equation z ¼ ψ−1ðxÞ − 1, and

FIG. 1. Plot of DðxÞ versus x=1.169.
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is plotted in Fig. 2. The w parameter shown in Fig. 1 gives
wðt0Þ ≃ −1.05 at the current epoch and agrees, to better than
2 standard deviations, with the small-z value w ¼ −0.80�
0.18 obtained recently by the DES experiment [9], and the
small-z value w ¼ −1.12� 0.12 found by eROSITA [10].

III. ELECTRON EFFECTIVE POTENTIAL FROM
THE GEODESIC EQUATION

In a paper on Rydberg atom bounds on the cosmological
constant [11], Kundu, Pradhan, and Rosenzweig use an
effective potential for the electron inferred from an expo-
nentially expanding de Sitter universe. Our aim in this
paper is to show that the same potential can be obtained in a
more general way from the geodesic equation for motion of
the electron, which gives added insight into how bounds
obtained from this potential vary between different models
for the cosmological constant action.
Weinberg in his text Gravitation and Cosmology [12]

gives the geodesic equation for a general spherical metric.
For the line element

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2dΩ; ð14Þ

Eq. (8.4.19) of [12] gives

AðrÞ
B2ðrÞ

�
dr
dt

�
2

þ J2

r2
−

1

BðrÞ ¼ −E; ð15Þ

where Enr ¼ ð1 − EÞ=2 plays the role of the nonrelativistic
energy per unit mass and J is the angular momentum per
unit mass. Comparing this with the nonrelativistic energy
formula

1

2

�
dr
dt

�
2

þ Veff

me
− Enr ¼ 0; ð16Þ

and doing algebraic rearrangement to eliminate ðdr=dtÞ2,
we get a formula for Veff,

Veff

me
¼ B2ðrÞ

2AðrÞ
J2

r2
þ BðrÞ
2AðrÞ ½BðrÞ − 1� − Enr

�
B2ðrÞ
AðrÞ − 1

�
:

ð17Þ

Since BðrÞ and AðrÞ are unity up to small corrections (of
order the electrostatic and gravitational potentials relative
to me), and the dimensionless energy parameter Enr is also
very small, the leading cosmological constant contribution
to the effective potential is given by

Veff ≃
me

2
½ðBðrÞ − 1Þcosm�; ð18Þ

with ðBðrÞ − 1Þcosm the cosmological constant contribution
to BðrÞ − 1. As summarized in [2], one can write for a
central mass M in geometrized units

AðrÞ ¼ 1þ 2M=r − CAΛr2 þDAΛMrþ � � � ;
BðrÞ ¼ 1 − 2M=r − CBΛr2 þDBΛMrþ � � � ; ð19Þ

identifying ðBðrÞ − 1Þcosm ¼ −CBΛr2, where the parame-
ters CA;B and DA;B are given in Table I for a standard dark
energy action and for a Weyl scaling invariant [1] dark
energy action. So the general formula for the cosmological
constant contribution to Veff is

Veff ¼ −
meCB

2
Λr2; ð20Þ

which for the standard dark energy action gives
Veff ¼ −ð1=6ÞmeΛr2, in agreement with Eq. (7) of [11].
For a Weyl scaling invariant dark energy action, one instead
gets Veff ¼ −ð1=2ÞmeΛr2 according to Table I. Thus,
qualitatively, there is no distinction between the potentials
arising in the two cases, as well as for other models of dark
energy that take the form of a gravitational action, which
will each have a characteristic value of CB.
One might ask what happens if the center for measuring

r⃗ is not taken as the center of the atom, but a displacement
R⃗ from the atomic center. Then r2 in Eq. (20) is replaced by
R⃗2 þ 2R⃗ · r⃗þ r2. The term R⃗2 is a constant and does not
contribute to energy level differences in Rydberg atoms,
and the term 2R⃗ · r⃗ will average to zero over any inversion
invariant squared atomic wave function. So the calculation
of energy differences is invariant with respect to the choice
of R⃗.

FIG. 2. Plot of zðxÞ versus x=1.169.

TABLE I. Parameters CA, CB, DA, DB for the spherically
symmetric line element arising from the conventional and the
Weyl scaling invariant dark energy actions [2].

Dark energy type CA CB DA DB

Conventional −1=3 1=3 4=3 0
Weyl scaling invariant 1 1 −10 −14
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IV. PERTURBATION THEORY
OF RYDBERG ATOMS

Given Veff , the change in the energy level of a Rydberg
atom can be calculated from first order perturbation theory,

ΔEcosm¼hΨjVeff jΨi¼−
meCB

2
ΛhΨjr2jΨi≃−

meCB

2
ΛR2;

ð21Þ

where R is the radius of the Rydberg atom orbit. Thus, from
an upper bound jΔEcosmj < U we get a bound on the
cosmological constant

Λ <
2U

meCBR2
: ð22Þ

IfU is a bound on an energy level difference, R2 in Eq. (22)
will be an orbit radius-squared difference. In analogy with
the formulas of Eqs. (12)–(15) of [11] this can be turned
into a quantitative bound on Λ.

As Kundu et al. have noted, the energy scale of their
bound is much smaller than the energy scale of the standard
model, already implying very substantial cancellations if
the cosmological constant is interpreted as a vacuum
energy. As shown above using a geodesic equation deri-
vation, a very similar bound is obtained in a dark energy
model [1] in which the cosmological constant does not arise
as a vacuum energy. Therefore, as long as CB is of order
unity, any dark energy action coupled to the gravitational
metric gives a bound similar in magnitude to that given by
the conventional cosmological constant action.

Data sharing is not applicable to this article as no
experimental datasets were generated or analyzed during
the current study.
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