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In the present work we study the construction of different thermodynamic descriptions for the Kerr-anti–
de Sitter (KadS) black holes. The early versions of the KadS thermodynamics are briefly discussed,
highlighting some of its strong points and shortcomings. Isohomogeneous transformations, a procedure for
generating new thermodynamics, are presented and geometrically interpreted for KadS. This tool is used to
determine possible KadS thermodynamics that can be constructed to satisfy a Smarr formula, and the
validity of the first law in the generated thermodynamics. The connection between new thermodynamic
theories and early Hawking’s approach is considered. In this new framework, the usual KadS
thermodynamics is complemented with its geometric construction, and Hawking’s proposal, which does
not satisfy the first law, is improved to an alternative thermodynamic theory. With the quantum statistical
relation, Hawking’s and this alternative KadS thermodynamics are also generalized from four to higher
dimensions.
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I. INTRODUCTION

Anti–de Sitter/field theory correspondences [1–3] play
an important role in the investigation of fundamental
aspects of the quantum properties of gravity. It is also a
practical approach to gravity problems, providing computa-
tional tools in regimes that would be otherwise inaccessible
with more traditional methods. In particular, rotating black
holes have been studied in this context [4,5]. One area
where anti–de Sitter/field theory correspondences are being
used is in the study of thermodynamic properties of black
holes. From a theoretical point of view, black-hole thermo-
dynamics is very interesting because it connects different
branches of physics—general relativity, quantum mechan-
ics and thermodynamics. Since thermodynamics is an
effective theory of quantum statistics, it could serve as a
guide to a deeper understanding of the quantummechanical
properties of gravity.
When the black hole is not asymptotically flat, additional

difficulties are present. For instance, the Komar integral
used to define the notion of energy diverges, leading to a
generalized Komar mass. For Schwarzschild-anti–de Sitter,
several routes have been used to study the associated
thermodynamics [6–10]. The addition of rotation to this
picture, taking to the Kerr-anti–de Sitter (KadS) geometry,

represents a further complication and it has been proposed
in several works [11–18].
In contrast to what occurs in traditional black-hole

thermodynamics, several approaches to KadS can be found
in the literature [15,16,19]. On the other hand, the thermo-
dynamics presented in [11] is the most explored and it is
often regarded as the thermodynamic theory for this
spacetime. More recently, this field has gained interest
due to Dolan’s works [13,14,20,21]. For instance, this
author shows that this thermodynamics behaves similarly to
a van der Waals gas. However, despite the extensive
investigation of thermodynamic properties for this specific
thermodynamic description of KadS, a proper geometric
construction for this theory has not been sufficiently
developed.
Another proposal for the thermodynamics of KadS can

be extracted from [16]. Unlike the previous case, this is a
geometric-oriented work, where thermodynamic quantities
were defined via (renormalized) Komar integrals. However,
as noted in [15], Hawking’s proposal [16] does not satisfy a
first law, and therefore it fails as a proper thermodynamic
description. Alternatively, it was shown in [19] that a
generalization of the Iyer-Wald formalism [22], which
includes the cosmological constant, can lead to a different
thermodynamics for KadS black holes. The goal of the
present work is to discuss how these thermodynamic
theories, and infinitely many others, can be obtained.
A key feature of a thermodynamic theory is scale

invariance, which is implemented by requiring that all
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equations of state are given by homogeneous functions.
Despite the peculiarities in black-hole thermodynamics,
where extensive and intensive properties are lost, homo-
geneity still plays an important role [9,23,24]. In the present
work, explicit forms for transformations that preserve
homogeneity and the first law are given and multiple
thermodynamics can be obtained when they are applied
to a given thermodynamic description.
From a geometric point of view, although different Smarr

formulas can be obtained depending on a choice of a
Killing field, there is no guarantee that these thermody-
namic variables will satisfy a first law. Nevertheless, the
isohomogeneous transformations introduced here have a
geometric counterpart, which is implemented in the Killing
vector fields that define the Killing horizon. Thus, in this
framework, we have the convergence of thermodynamic
and geometric ideas. More precisely, the general thermo-
dynamic approach involving isohomogeneous transforma-
tions is used to create Smarr formulas whose quantities,
defined from Komar integrals, satisfy a first law.
With this toolkit, a geometric construction for the usual

KadS thermodynamics of [11] can be given. Of all the
possible KadS thermodynamics that can be generated
from our procedure, one of them can be interpreted as
the thermodynamic version of Hawking’s proposal.
Moreover, by combining this framework with the quantum
statistical relation, Hawking’s KadS thermodynamics is
generalized to arbitrary dimensions.
The structure of this paper is presented as follows. In

Sec. II, some main features of early treatments of the Kerr-
anti–de Sitter thermodynamics are reviewed, focusing on
Hawking’s and the usual proposals. In Secs. III and IV,
isohomogeneous transformations are presented and inter-
preted geometrically. These are the main tools developed in
this paper for the thermodynamic analysis of Kerr-anti–de
Sitter black holes. Applications of the isohomogeneous
transformations are presented in Sec. V. In particular,
Hawking’s and the usual models are discussed and an
alternative Kerr-anti–de Sitter thermodynamics is con-
structed. In Sec. VI, extensions of the presented results
to arbitrary dimensions are derived. Final comments are
presented in Sec. VII. In this paper, we use the geometric
unit system and signature ð−;þ;þ;þÞ.

II. OVERVIEW OF KADS THERMODYNAMICS

A. Four-dimensional Kerr-anti–de Sitter spacetime

Kerr-anti–de Sitter spacetime is a stationary and axisym-
metric spacetime which models an asymptotically anti–de
Sitter spinning black hole. A given KadS black hole is
specified by a choice of the mass parameter m, rotation
parameter a and (negative) cosmological constant Λ. The
set fðm; a;ΛÞg parametrizes all possible four-dimensional
KadS solutions. In Boyer-Lindquist-like coordinates, the
line element for this geometry is written as [25]

ds2 ¼−
Δr

ρ2

�
dt−

asin2 θdϕ
Ξ

�
2

þΔθsin2 θ
ρ2

�
adt−

ðr2þa2Þdϕ
Ξ

�
2

þ ρ2

Δr
dr2þ ρ2

Δθ
dθ2;

ð1Þ

with

Δr ≡ L2 þ r2

L2
ðr2 þ a2Þ − 2mr; Δθ ≡ 1 −

a2

L2
cos2 θ;

ρ2 ≡ r2 þ a2cos2 θ; Ξ≡ 1 −
a2

L2
; L2 ≡ −

3

Λ
: ð2Þ

In this coordinate system, the coordinate t was chosen such
that stationarity is implemented by theKilling vector field ∂t,
and axial symmetry is expressed by the Killing vector field
∂ϕ. We are interested in the nonextreme regime, where the
spacetime has two Killing horizons with topology S2 ×R.
The external horizon is located at r ¼ rþ, where rþ is the
largest positive real root of the function Δr. This horizon is
considered as the boundary of the KadS black hole. To
enforce the Lorentzian character of the metric, a necessary
condition for the validity of the chart ðt; r; θ;ϕÞ is Ξ > 0.
The line element (1) can have its components rearranged

to the following useful form, from which the angular
velocity of the black hole can be easily extracted,

ds2 ¼ −N2 dt2 þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2 þ Σ2sin2 θ

ρ2Ξ2
ðdϕ − ωdtÞ2:

ð3Þ
The functions Σ, N, and ω are defined as

Σ2 ≡ ðr2 þ a2Þ2Δθ − a2Δrsin2 θ; N2 ≡ ρ2ΔrΔθ

Σ2
;

ω≡ aΞ
Σ2

½Δθðr2 þ a2Þ − Δr�: ð4Þ

The quantityω can be interpreted as the angular velocity for
the so-called zero-angular-momentum observer with
respect to the coordinate system ðt; r; θ;ϕÞ. Moreover, it
has the following limits:

lim
r→rþ

ω ¼ ΩH; lim
r→∞

ω ¼ −
a
L2

; ð5Þ

where

ΩH ≡ aΞ
a2 þ r2þ

ð6Þ

is interpreted as the angular velocity of the black hole and
− a

L2 is the angular velocity of the spacetime at infinity, with
respect to the chart ðt; r; θ;ϕÞ [11].
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The surface r ¼ rþ is a Killing horizon for a Killing field
of form

Kμ ≡ ξμ þ Ωφμ; ð7Þ

where ξμ and φμ express stationarity and axial symmetry,
respectively, and Ω is a scalar. The simplest case is

ξμ ¼ ∂t; φμ ¼ ∂ϕ; Ω ¼ ΩH: ð8Þ

With these choices, the surface gravity associated to this
horizon is given by

κþ ¼ ðL2 þ 3r2þÞr2þ − a2ðL2 − r2þÞ
2L2rþðr2þ þ a2Þ ; ð9Þ

and the area of its two-dimensional spatial sections is

A ¼ 4πðr2þ þ a2Þ
Ξ

: ð10Þ

Moreover, it is useful to express the mass parameter as

m ¼ ðr2þ þ a2ÞðL2 þ r2þÞ
2rþL2

: ð11Þ

B. Early KadS thermodynamics

One of the first works to consider the thermodynamics of
the KadS geometry is due to Hawking et al. [16]. In the
thermodynamic treatment of KadS black holes, a nonext-
reme KadS spacetime (for a given choice of the parameters
m, a, and Λ) is associated with a thermal-equilibrium state.
The set of possible (nonextreme) KadS spacetimes forms
the thermodynamic ensemble. It is assumed in [16] that the
mass (MH) and the angular momentum (J),

MH ≡m
Ξ
; J ≡ am

Ξ2
; ð12Þ

are given by generalized Komar integrals associated,
respectively, to the Killing vector fields in Eq. (8). In
the present work, the subscript H refers to Hawking’s
proposal.
One important characteristic of the treatment based on

the quantitiesMH and J is that there is an associated Smarr
formula:

MH ¼ 2TSþ 2ΩHJ − 2VHP; ð13Þ

where

T ≡ κþ
2π

¼ ðL2 þ 3r2þÞr2þ − a2ðL2 − r2þÞ
4πL2rþðr2þ þ a2Þ ;

P≡ −
Λ
8π

¼ 3

8πL2
; S≡ A

4
¼ π

r2þ þ a2

Ξ
;

VH ¼ 4π

3

rþðr2þ þ a2Þ
Ξ

: ð14Þ

The notions of temperature and entropy in Eq. (14)
coincide with the standard view of usual black-hole
thermodynamics [26]. The pressure term P can be under-
stood by interpreting the cosmological constant as a (dark-)
energy contribution in the Universe [27], with a constant
energy density ρ≡ Λ

8π and equation of state ρ ¼ −P. This is
a typical viewpoint in cosmology. The volume term is
better understood in the pseudo-Cartesian coordinates of
the Kerr-Schild form for the metric. Surfaces of constant r
(r ¼ rþ) are ellipsoids with Euclidean volume VH in
Eq. (14) [28].
Relation (13) is a version of the Smarr formula for

nonzero cosmological constant. Considering a Killing field
normal to the horizon expressed as Eq. (7), we propose
writing the generalized Smarr formula as

−
1

8π

Z
∇μξνdAμν þ Λ

4π

Z
gμνξμdΣν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

− 2Ω
1

16π

Z
∇μφνdAμν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2ΩJ

¼ −
1

8π

Z
∇μKνdAμν|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2TS

þ Λ
4π

Z
gμνξμdΣν|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
−2VP

; ð15Þ

where A is a spatial two-surface at the horizon, and the
vector volume is used to integrate over a hypersurface Σ
extending from the singularity to r ¼ rþ. The vector
volume is the integral over a hypersurface of a diver-
gence-free vector field ξμ.1 Adopting (8), Eq. (15) repro-
duces Hawking’s Smarr formula (13).
In Eq. (15), the quantity M is a (modified) Komar mass,

M ¼ −
1

8π

Z
∇μξνdAμν þ Λ

4π

Z
gμνξμdΣν: ð16Þ

The second term on the right-hand side of Eq. (16) can be
interpreted as a contribution of the cosmological constant to
M. If the integration were to be extended from the horizon
to spatial infinity, as is usually performed for asymptoti-
cally flat spacetimes [29], the quantity M would be the
usual Komar mass, which would diverge for Λ ≠ 0 [9,16].
In this case, a possible approach would be to renormalize

1This is an operational definition, which is formalized in [28].
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the Λ divergence, by subtracting an appropriately chosen
background. However, such a procedure is generally not
unique, since the choice of the reference background may
be ambiguous [11].
In the present work, a quasilocal approach was imple-

mented in (15) using the concept of vector volume. With
this method, the generalized Smarr formula emerges in a
straightforward way. More precisely, the traditional Smarr
formula is based on the fact that, for a Killing vectorKμ, the
term∇μ∇νKμ vanishes for vacuum solutions of the Einstein
gravitational field equation. This result is used to generate
conserved charges from Stokes’ theorem. However, in
general cases, the vanishing object is ∇μ∇νKμ − RνμKμ.
In the absence of a conventional energy-momentum tensor
but with a cosmological constant, Rμν ¼ Λgμν. This jus-
tifies the extra terms that appear in Eq. (15).2

It should be stressed that, in Hawking’s work [16], no
consideration about the first law was made. However, as
noted in [15], it can be verified that3

dMH ≠ T dSþΩH dJ: ð17Þ

From Eq. (17), we come to an important conclusion: in
Hawking’s proposal for a KadS thermodynamics, the
quantityMH can not be associated to a well-defined notion
of free energy.
In order to construct a thermodynamic theory based on

KadS spacetime which is consistent with the first law,
Caldarelli et al. [11] and Gibbons et al. [15] considered
modified definitions for energy and angular momentum,

MU ≡ m
Ξ2

; J ≡ am
Ξ2

; ð18Þ

connected to generalized Komar integrals associated to the
Killing fields

∂t

Ξ
and ∂ϕ; ð19Þ

respectively. In the present work, the subscript U refers to
usual thermodynamic theory, abbreviated UTT.
This approach attracted further attention with the con-

tribution of Dolan [13,14]. In those works, an association of
Λ with pressure is made and the first law is written as

dMU ¼ TdSþ ΩUdJ þ VUdP; ð20Þ

where

ΩU ≡ΩH þ a
L2

¼ a
a2 þ r2þ

�
1þ r2þ

L2

�
; ð21Þ

VU ≡ VH þ 4π

3
a2MU

¼ 2π

3

ðr2þ þ a2Þð2r2þL2 þ a2L2 − r2þa2Þ
L2Ξ2rþ

: ð22Þ

It can be checked that, with these choices for the thermo-
dynamic variables, Smarr formula is also satisfied.
However, a relevant point to be addressed in the present
work is that, with Ω ¼ ΩU, it is obtained from Eq. (7)

ξμ ≠
∂t

Ξ
; φμ ¼ ∂ϕ; ð23Þ

which is different from what one would expect. The correct
form for Kμ will be obtained from our formalism and
presented in Sec. V.

C. Homogeneity and Euler relation

Homogeneity of the equations of state is a crucial
feature in black-hole thermodynamics [9,24]. A function
MðX1; X2; X3;…Þ is said to be a homogeneous function of
degree r, on the variables Xi of degree αi, if

Mðλα1X1; λα2X2; λα3X3;…Þ ¼ λrM0ðX1; X2; X3;…Þ: ð24Þ

For such functions, Euler’s theorem for homogeneous
functions states that

rM ¼ α1X1

∂M
∂X1

þ α2X2

∂M
∂X2

þ α3X3

∂M
∂X3

þ…: ð25Þ

In the thermodynamic-oriented literature, Eq. (25) is known
as Euler relation. In early versions of KadS thermodynam-
ics (discussed in Sec. II B), the independent variables are
fS; J; Pg, function M denotes the black-hole mass, and we
have α1 ¼ α2 ¼ −α3 ¼ 2 and r ¼ 1. One can read from the
dimensions of these quantities:

½S� ∼ ½J� ∼ ½length�2; ½P� ∼ ½length�−2; ½M� ∼ ½length�:
ð26Þ

A scaling argument, based on the relationship between
dimension and homogeneity, is used in [9] to justify
the inclusion of P≡− Λ

8π as a pressure in the thermo-
dynamic description. This relation can be employed, by
directed comparison of Smarr and Euler relations, to
determine the equations of states of the thermodynamic
description [30,31].
However, this identification method should be applied

with caution. The connection between dimensional analysis
and homogeneity can lead to the conclusion that the Smarr

2It was also used the property that φμ does not contribute to the
vector volume (the integral vanishes for it) and, thus, the vector
volume for Kμ is the same as the one for ξμ.

3In [15], the authors do not treat the cosmological constant as a
thermodynamic variable. However, even if Λ is considered a
thermodynamic pressure, the inequality is not corrected. In this
case, one would still obtain dMH ≠ T dSþΩH dJ þ VH dP.
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relation is always the geometric counterpart of the Euler
relation. But not all Smarr relations can be identified as
Euler relations. A concrete example is given by Eq. (13).
Although it is a proper Smarr relation, it is not an Euler
relation because it does not provide a first law. This means
that this procedure is not always reliable to furnish proper
thermodynamic descriptions. Tools for a more careful
analysis will be developed in the next section.

III. ISOHOMOGENEOUS TRANSFORMATIONS

In the present work we study the construction of different
thermodynamic descriptions for the KadS black hole. Let
us motivate the main ideas used in this section. It is believed
that the Smarr relation represents the geometric side of the
Euler relation for homogeneous functions [9]. However, as
discussed in Sec. II B, Hawking’s proposal shows that this
is not true in general. Indeed, from Eq. (13),

MH ¼ 2TSþ 2ΩHJ − 2VHP ≠ 2
∂MH

∂S
Sþ 2

∂MH

∂J
J

− 2
∂MH

∂P
P: ð27Þ

In this section we analyze under which circumstances a
Smarr relation does not represent an Euler relation. We
develop tools that allow to transform this Smarr relation
into a valid Euler relation that gives a proper first law.
Furthermore, the geometrical significance of this thermo-
dynamic development is clarified in the next section.
Let us consider a thermodynamic potential M0 ¼

M0ðS; X2; X3;…Þ, that is, a homogeneous function of
degree r such that

M0ðλα1S; λα2X2; λα3X3;…Þ ¼ λrM0ðS; X2; X3;…Þ; ð28Þ

dM0 ¼ T0 dSþ
X
i

Yi
0 dXi; ð29Þ

where αi is the degree of ith independent variable. Since
M0 is a homogeneous function, it obeys Euler relation:

rM0 ¼ α1ST0 þ α2X2Y2
0 þ α3X3Y3

0 þ � � � : ð30Þ

Our goal is to analyze the transformations on thermo-
dynamic potential M0 ¼ M0ðS; X2; X3; � � �Þ that pre-
serve homogeneity. Consider a homogeneous function
g ¼ gðS; X2; X3; � � �Þ of degree zero,

α1S
∂g
∂S

þ α2X2

∂g
∂X2

þ α3X3

∂g
∂X3

þ � � � ¼ 0: ð31Þ

Let us also assume that g is positive definite. Multiplying
rM0 by g and using Eq. (30),

rgM0 ¼ α1gST0 þ α2gX2Y2
0 þ α3gX3Y3

0 þ � � � : ð32Þ

Adding expression (31) to Eq. (32),

rgM0 ¼ α1gST0 þ α2gX2Y2
0 þ � � �

þ h

�
α1S

∂g
∂S

þ α2X2

∂g
∂X2

þ � � �
�
; ð33Þ

for an arbitrary function h.
To preserve homogeneity, we impose that h is a general

homogeneous function with the same degree as M0. Thus,
from the original Euler relation (30), it follows that

rM1 ¼ α1ST1 þ α2X2Y2
1 þ α3X3Y3

1 þ � � � ; ð34Þ

where

M1 ≡ gM0; T1 ≡ gT0 þ h
∂g
∂S

; Yi
1 ≡ gYi

0 þ h
∂g
∂Xi

:

ð35Þ

Relation (34) is equivalent to Eq. (30).
For any positive definite homogeneous function g of

degree zero and for any homogeneous function h of degree
r, we call Eq. (35) an isohomogeneous transformation. The
next step is to determine when Eq. (34) is also an Euler
relation.
But while relation (34) enforces homogeneity, not all

functions M1 can be identified as a legitimate thermody-
namic potential. Specifically, from Eq. (35),

T1 dSþ
X
i

Yi
1 dXi ¼ g dM0 þ h dg ¼ dM1

þ
�
h −

M1

g

�
dg: ð36Þ

It follows from Eq. (36) that, for a nonconstant g, M1 will
be a thermodynamic potential only if h≡ M1

g ¼ M0. In this
case, the right-hand side is an exact differential,

h ¼ M0 ⇒ dM1 ¼ T1 dSþ
X
i

Yi
1 dXi; ð37Þ

and Eq. (34) is a valid Euler relation. However, as we will
see, the thermodynamic descriptions associated to M0 and
M1 are different.
When Eq. (34) is an Euler relation, satisfying a first law of

thermodynamics, we call this relation a thermodynamic
Smarr formula. An example of a thermodynamic Smarr
formula is the one from theUTT [11]. The other cases will be
classified as nonthermodynamic Smarr formulas. For in-
stance, Hawking’s proposal [16] (discussed in Sec. II B)
involves a nonthermodynamic Smarr formula. Given a
thermodynamic Smarr formulawith a thermodynamic poten-
tialM0, the transformation to another thermodynamic Smarr
formula, which follows from choosing a homogeneous
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function of degree zero g and fixing h ¼ M0, will be called a
exact isohomogeneous transformation.4

One remark is in order. A given thermodynamic descrip-
tion is characterized by a set of equations of state ðT; fYigÞ.
In principle more than one description can share some
specific equations of state. For instance, we can search for
all thermodynamics that share the same temperature. In this
example, given a legitimate thermodynamic potential M0

characterized by a temperature T0, other legitimate poten-
tials fM̃g are obtained setting h ¼ M0. In fact, imposing
that they are also characterized by the same T0,

T̃ ¼ T0 ⇒ ðg̃ − 1ÞT0 þM0

∂g̃
∂S

¼ 0: ð38Þ

To clarify, tilted versions are used to explicit the fact that
the temperature (T̃) and function (g̃) are not being fixed in
the development.
Multiple solutions of Eq. (38) can be derived. Indeed, for

any arbitrary function f (with degree r) that does not
depends on S, we obtain

g̃ ¼ 1 −
fðXiÞ
M0

: ð39Þ

The presented development can be extended for several
equations of state. That is, given a thermodynamics with N
variables, it is possible to construct another one preserving
(N − 1) equations of state. In particular, multiple thermo-
dynamic descriptions (for adS black holes) can have the
same definition of temperature that is used by Hawking
in [16].

IV. GEOMETRY OF ISOHOMOGENEOUS
TRANSFORMATIONS ON KADS

In the previous section, general ideas involving isoho-
mogeneous transformations in a thermodynamic context
were presented. In the present section, this development
will be discussed geometrically, considering the KadS
spacetime. Adapting the nomenclature of Sec. III to the
four-dimensional KadS black holes, we have

r ¼ 1; α1 ¼ 2; α2 ¼ 2; α3 ¼ −2;

X2 ¼ J; X3 ¼ P;

Y2
0 ¼ Ω0; Y3

0 ¼ V0; Y2
1 ¼ Ω1; Y3

1 ¼ V1: ð40Þ

The general expressions (34) and (35) imply that, for the
KadS case,

M1 ¼ 2ST1 þ 2JΩ1 − 2PV1; ð41Þ

where

M1 ¼ gM0; T1 ¼ gT0 þ h
∂g
∂S

;

Ω1 ¼ gΩ0 þ h
∂g
∂J

; V1 ¼ gV0 þ h
∂g
∂P

: ð42Þ

The geometric counterpart to the isohomogeneous trans-
formations is implemented on the Killing fields that define
the Killing horizon. The resulting transformed object must
also be a Killing field normal to the horizon, allowing its
use as a generator of a new Smarr formula. By adopting this
geometric perspective, the distinct thermodynamic theories
for KadS can be understood within the framework of
rotating reference frames.
In accordance with previous section, we introduce a

positive function g of the thermodynamic variables
fS; J; Pg. With g, other Smarr formulas can be obtained,
rescaling the Killing field in Eq. (7) as

Kμ ⟶ gKμ ¼ gξμ þ gΩ0φ
μ: ð43Þ

In stationary asymptotically flat spacetimes, there is a
choice of g which normalizes ξμ at infinity [26].
However, a different g can be used to normalize ξμ at a
finite distance. This gives the Tolman redshift factor for the
temperature [32]. Therefore, keeping g arbitrary is useful,
especially when dealing with a nonasymptotically flat
geometry.
On the other hand, this does not represent the entirety of

possible transformations in a spacetime with axial sym-
metry. We can also consider combinations between the
Killing fields themselves,

Kμ ⟶ gKμ ¼
�
gξμ − h

∂g
∂J

φμ

�
þ
�
gΩ0 þ h

∂g
∂J

�
φμ;

ð44Þ

where h is an arbitrary function of fS; J; Pg. Equation (44)
has been structured in a way that is consistent with our
developments in the previous section. Notably, the resultant
angular velocity is expressed in the format found in
Eq. (42). Moreover, although the quantities proportional
to h sum to zero on the right-hand side of Eq. (44), in this
form, h is associated with the change to a new frame that
rotates with angular velocity

dϕ1

dt
¼ dϕ

dt
þ h

g
∂g
∂J

; ð45Þ

where ðt; r; θ;ϕÞ is the original coordinate system.
Furthermore, g represents a choice of normalization for
the Killing vector normal to the horizon, which, as we will
see, rescales some thermodynamic quantities.

4Exact because the left-hand side of Eq. (36) is an exact
differential.
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The transformation on the Killing field (44) propagates
to the Komar formulas, allowing a reinterpretation of the
thermodynamic quantities:

−
g
8π

Z
∇μξνdAμνþ gΛ

4π

Z
gμνξμdΣν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M1

þh
∂g
∂J

1

8π

Z
∇μφνdAμν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2h∂g
∂JJ

− 2

�
gΩ0þh

∂g
∂J

�
1

16π

Z
∇μφνdAμν

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2Ω1J

¼−
g
8π

Z
∇μKνdAμν|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2gT0S

þ gΛ
4π

Z
gμνξμdΣν|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

−2gV0P

; ð46Þ

where M1 and Ω1 are presented in Eq. (42).
To identify Eq. (46) as a Smarr relation, the term 2h ∂g

∂J J
must be eliminated. This can be done by imposing that g is
a homogeneous function of degree zero. Therefore, using
Eq. (31),

J
∂g
∂J

¼ P
∂g
∂P

− S
∂g
∂S

; ð47Þ

and Eq. (46) furnishes

M1þ 2h

�
P
∂g
∂P

−S
∂g
∂S

�
− 2Ω1J¼ 2gT0S− 2gV0P: ð48Þ

Factorizing S and P, we see that the temperature and
volume change according to Eq. (42) and Smarr relation
(41) is recovered. From a geometrical point of view,
expression (47) links surface and hypersurface integrals:Z

∇μφνdAμν;
Z

∇μKνdAμν;
Z

gμνξμdΣν: ð49Þ

The terms multiplying h have a zero net contribution to
the change of the Killing field in Eq. (44), but, from
Eq. (42), it is observed that this rotating frame changes
how the energy is distributed into heat (TdS) and mechani-
cal work (ΩdJ þ VdP). In the geometric language, the
change in the angular velocity could be interpreted as a
rotation between frames adapted to different thermody-
namic descriptions.
It is worth emphasizing that what defines distinct

thermodynamics are not different choices of coordinates,
but rather different Killing fields and their contribution to
the Komar integrals. Nevertheless, adapted coordinates
facilitate geometric and physical interpretations behind
each theory and also how they relate to each other. For
instance, transformation (44) implies that, for a coordinate
system ðt; r;ϕ; θÞ, where ξμ and φμ are vectors from the

coordinate basis (∂t and ∂ϕ), other coordinates t1 and ϕ1 can
be chosen so that

∂t1 ¼ g∂t − h
∂g
∂J

∂ϕ; ∂ϕ1
¼ ∂ϕ: ð50Þ

The respective coordinate change is

t ¼ gt1; ϕ ¼ ϕ1 − h
∂g
∂J

t1: ð51Þ

In the adapted coordinates, the Killing field becomes

gK ¼ ∂t1 þ Ω1∂ϕ1
; ð52Þ

and Eq. (45) is immediately recovered.
The discussion involving thermodynamic and nonther-

modynamic Smarr formulas, in the context of the isoho-
mogeneous transformations, reappears with the geometric
formalism. Indeed, although the transformations in the
Killing field (44) transforms a Smarr formula into an
equally valid one, it may destroy the thermodynamic
description of the system, generating thermodynamic
variables that do not satisfy the first law. More precisely,
even if the description with the Killing field (7) is related to
a legitimate thermodynamic theory,

dM0 ¼ T0dSþ Ω0dJ þ V0dP; ð53Þ

it is not always true that its transformed version also
satisfies the first law. That is, it may be the case that the
thermodynamic description is invalidated:

dM1 ≠ T1dSþΩ1dJ þ V1dP: ð54Þ

Nonetheless, from Sec. III, we know that the first law is
preserved if the transformed Smarr formula is obtained
by an exact isohomogeous transformation, i.e., taking
h ¼ M0.

V. APPLYING THE ISOHOMOGENEOUS
TRANSFORMATIONS

A. Generating thermodynamic theories
from Hawking’s proposal

In Hawking’s proposal, discussed in Sec. II B, the
internal energy MH is given by

M1 ¼ MH ¼ m
Ξ
: ð55Þ

It is an example of a nonthermodynamic theory, in the sense
that it does not have a well-defined first law:

dMH ≠ TdSþ ΩHdJ þ VHdP: ð56Þ

GENERATING KERR–ANTI–DE SITTER THERMODYNAMICS PHYS. REV. D 110, 024049 (2024)

024049-7



It is possible to turn the inequality (56) into an equality
by adding an extra term on the left side of Eq. (56):

TdSþΩHdJ þ VHdP ¼ dMH −
MH

2Ξ
dΞ: ð57Þ

Comparing Eq. (57) with Eq. (36), we have

MH

2Ξ
¼
�
MH

g
− h

�
dg
dΞ

; ð58Þ

where g is written as a function of Ξ. The development (31)
only required that g be a function of S, J, and P, so the
representation g ¼ gðΞÞ is a constraint on the functional
form of g.
We emphasize that there are an infinite number of

possible proper thermodynamic theories related to
Hawking’s proposal. In fact, consider the following choice
for g and the associated function h:

g ¼ Ξn ⇒ h ¼ MH

Ξn

�
1 −

1

2n

�
; ð59Þ

with n ≠ 0. The (multiple) proper thermodynamics gen-
erated (with subindex 0 following the notation of Sec. III),
related to Hawking’s thermodynamics, are

T ¼ ξT0; ΩH ¼ ξΩ0 − ðξ − ΞnÞMH

JΞn ;

VH ¼ ξV0 − ðξ − ΞnÞ MH

2PΞn ; ð60Þ

where

ξ¼ Ξn

1− ð2n− 1Þð1−ΞÞ ;

ΞðJ;S;PÞ ¼ 1þ 3

8PSþ 3
−

3ð4π2J2þS2Þ
12π2J2þS2ð8PSþ 3Þ : ð61Þ

Note from Eq. (42) that the temperature for a theory will
be proportional to its surface gravity only when h ¼ 0. This
corresponds to ξ ¼ g ¼ ffiffiffiffi

Ξ
p

in Eq. (61). Given a proper
thermodynamic description where the temperature coin-
cides with its surface gravity, characterized by energy M0,
all other cases are obtained by taking h ¼ M0. Thus, with a
suitable normalization, there is a unique thermodynamic
theory for which the temperature coincides with its surface
gravity.
Of all the possible KadS thermodynamics that can be

generated with the formalism in this work, two will receive
special attention in the remainder of this section. The first is
the UTT, which has been extensively studied in the
literature. The second is the one that minimally modifies
Hawking’s proposal, which will be analyzed on a deeper
level. The latter is, in a sense, the natural extension of
Hawking’s proposal to a KadS thermodynamics.

B. From Hawking’s proposal to the usual
thermodynamic theory

Using result (59), consider the following configuration:

n ¼ 1 ⇒ g ¼ Ξ; h ¼ MH

2Ξ
; ξ ¼ 1: ð62Þ

In this case, a valid thermodynamic theory connected to
Hawking’s proposal is the one with energy

M0 ¼
M1

g
¼ MH

Ξ
¼ m

Ξ2
¼ MU; ð63Þ

which is the UTT (discussed in Sec. II B).
Note that Eq. (62) is not an exact isohomogeneous

transformation because it links nonthermodynamic and
thermodynamic Smarr formulas. For the remaining thermo-
dynamic variables, from Eq. (42),

TH ¼ ΞTU þMH

2Ξ
∂Ξ
∂S

⇒ TU ¼ TH ¼ T; ð64Þ

ΩH ¼ ΞΩU þMH

2Ξ
∂Ξ
∂J

⇒ ΩU ¼ ΩH þ a
L2

; ð65Þ

VH ¼ ΞVU þMH

2Ξ
∂Ξ
∂P

⇒ VU ¼ VH þ 4π

3
a2MU: ð66Þ

Since

TH ¼ ΞTU þMH

2Ξ
∂Ξ
∂S

; ð67Þ

it is significant that the temperature from the UTT coincides
with the temperature from Hawking’s proposal, that is,
TU ¼ TH ¼ T. Moreover, new thermodynamic descrip-
tions (with the same temperature) can be constructed using
the exact isohomogeneous transformation in Eq. (39),
showing that the UTT is not the only one that shares the
same definition of temperature with Hawking’s proposal.
It is also a feature of the UTT that the volume term

deviates from the geometric volume, VH, by the addition of
an extra term [as it is in Eq. (66)]. The origin of this term
has been revealed by the isohomogeneous transformations
developed in the present work.
Another point of interest is that the Killing field that

generates the UTT can be determined by the functions g
and h from Eq. (44),

1

Ξ
K ¼

�
1

Ξ
∂t−

ar2þ
L2ða2þ r2þÞ

∂ϕ

�
þ
�
ΩH

Ξ
þ ar2þ
L2ða2þ r2þÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΩU

∂ϕ:

ð68Þ
This Killing field is null and normal to the horizon, as it
should be. Result (68) emphasizes the geometric interpre-
tation of the UTT.
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Still on the geometric approach to the UTT, an obser-
vation is in order. It is commonly stated that the temperature
from the UTT coincides with the black-hole surface gravity.
However, this is not an accurate statement. In the geometric
construction of a thermodynamic theory, the surface gravity
is specified by the normalization of the Killing field normal
to the horizon. While it is true to state the equality of the
temperature from the UTT with the surface gravity from
Hawking’s proposal, notice that the Killing field associated
with the UTT is normalized by a factor of 1

Ξ. Therefore, its
surface gravity is multiplied by the same factor when
compared to the surface gravity of Hawking’s proposal. In
other words, the temperature T does not match the surface
gravity of the UTT. This should be the case, since this
thermodynamics is obtained from Hawking’s proposal by
setting h ≠ 0.

C. From Hawking’s proposal to an alternative
thermodynamic theory

We can look for a theory that minimally modifies
Hawking’s proposal. From Eq. (60), this can be done by
setting h ¼ 0. In this case, all thermodynamic quantities
differ only by one (and the same) factor g ¼ Ξn,

h¼ 0⇒ T ¼ ΞnT0; ΩH ¼ ΞnΩ0; VH ¼ ΞnV0: ð69Þ

Moreover, from Eq. (59), it is straightforward to check that
this case comes from

n ¼ 1

2
⇒ g ¼

ffiffiffiffi
Ξ

p
; h ¼ 0; ξ ¼

ffiffiffiffi
Ξ

p
: ð70Þ

In this configuration, the proper thermodynamic theory
associated with Hawking’s is the one with energy

MA ≡M0 ¼
M1

g
¼ MHffiffiffiffi

Ξ
p ¼ m

Ξ3
2

: ð71Þ

The subindex A stands for alternative thermodynamic
theory, abbreviated ATT.
The remaining thermodynamic variables are

TA ¼ Tffiffiffiffi
Ξ

p ; ΩA ¼ ΩHffiffiffiffi
Ξ

p ; VA ¼ VHffiffiffiffi
Ξ

p : ð72Þ

This thermodynamic version of Hawking’s proposal is the
one where the temperature coincides with the surface
gravity. In this case, we have κþffiffiffi

Ξ
p , where κþ is given by

Eq. (9). Since this property is not shared by any other
construction, this theory is the closest one to the usual
thermodynamics of asymptotically flat black holes.
The formalism from the previous section guarantees that

the first law is satisfied:

dMA ¼ TAdSþ ΩAdJ þ VAdP: ð73Þ

Furthermore, any thermodynamics for Kerr-anti–de Sitter
black holes is connected to the ATT by

h ¼ MA; g ¼ gðJ; P;NÞ: ð74Þ

Therefore, the ATT is the only theory which corrects
Hawking’s proposal by only a multiplicative factor.
The Killing field related to the ATT is

K ¼ ∂tffiffiffiffi
Ξ

p þ ΩHffiffiffiffi
Ξ

p ∂ϕ; ð75Þ

which is null and normal to the horizon, as expected.
Working with adapted coordinates ðt0; r; θ;ϕÞ, where

t0 ¼
ffiffiffiffi
Ξ

p
t; ð76Þ

the Killing vector field K is written as

K ¼ ∂t0 þΩA∂ϕ: ð77Þ

With the chart ðt0; r; θ;ϕÞ, KadS metric in Eq. (3)
assumes the form

ds2 ¼−
N2

Ξ
dt02þ ρ2

Δr
dr2þ ρ2

Δθ
dθ2þΣ2sin2 θ

ρ2Ξ2
ðdϕ−ω0dt0Þ2;

ð78Þ

with

ω0 ¼ ωffiffiffiffi
Ξ

p : ð79Þ

These considerations show that the angular velocity of the
black hole and of the asymptotic limit are, measured with
the new time coordinate t0,

lim
r→rþ

ω0 ¼ ΩHffiffiffiffi
Ξ

p ¼ ΩA; lim
r→∞

ω0 ¼ −
a

L2
ffiffiffiffi
Ξ

p : ð80Þ

Thus, Hawking’s proposal is improved (i.e., it satisfies the
first law) by using the coordinate time t0. As can be seen
from Eq. (77), the thermodynamics is now constructed
from the Killing vectors written with a coordinate basis, a
convenient tool that is used extensively in the analysis of
black-hole thermodynamics.

VI. EXTENSION TO ARBITRARY DIMENSIONS

A. D-dimensional KadS spacetime
and the quantum statistical relation

The formalism developed in the context of the four-
dimensional KadS geometry can be generalized to higher-
dimensional black holes. According to the results of Sec. VA,
a large set of KadS thermodynamics can be obtained by
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applying a (nonexact) isohomogeneous transformation to the
nonthermodynamic Smarr relation proposed by Hawking. To
construct a D-dimensional version for the ATT, presented in
Sec. V C, we extend Hawking’s nonthermodynamic Smarr
relation to higher dimensions and apply a nonexact isoho-
mogeneous transformation to it. For this purpose, we will use
the generalization to higher dimensions of the thermodynamic
relations obtained in [15]. In this extended scenario, the
D-dimensional Kerr-anti–de Sitter spacetime models a spin-
ning black hole characterized by N independent rotation
parameters faig with respect to the azimuthal angles fφig,
where

N ≡
� ðD − 1Þ=2; oddD

ðD − 2Þ=2; evenD
; ð81Þ

and D ≥ 4. The latitudinal angular coordinates μi satisfy the
constraint

XD−N−1

i¼1

μ2i ¼ 1: ð82Þ

The D-dimensional KadS metric is [15,33]

ds2 ¼ −W
�
1þ r2

L2

�
dτ2 þ 2m

U

�
Wdτ −

XN
i¼1

aiμ2i dφi

Ξi

�2

þ
XN
i¼1

r2 þ a2i
Ξi

μ2i dφ
2
i þ

U
X − 2m

dr2

þ
XD−N−1

i¼1

r2 þ a2i
Ξi

dμ2i −
1

WðL2 þ r2Þ

×

� XD−N−1

i¼1

r2 þ a2i
Ξi

μidμi

�2

: ð83Þ

To maintain consistency with the four-dimensional notation,
the mass parameter and the (negative) cosmological constant
are denoted by m and Λ, respectively. The parameters fΞig
and the functions W, U, and X are given by

Ξi ≡ 1 −
a2i
L2

; W ≡ XD−N−1

i¼1

μ2i
Ξi

;

U ≡ rD−2N−1
XD−N−1

i¼1

μ2i
r2 þ a2i

YN
j¼1

ðr2 þ a2jÞ;

X ≡ rD−2N−3
�
1þ r2

L2

�YN
i¼1

ðr2 þ a2i Þ: ð84Þ

The N independent rotational parameters are associated
with N angular momentum variables fJig [11]. Thus,
considering also entropy and pressure, there are a total
of (N þ 2) independent variables for the thermodynamic
description. Isohomogeneous transformations can be

applied to the D-dimensional KadS scenario. In this case,
the quantities defined in Sec. III are

r¼D− 3; αi ¼D− 2; αNþ2 ¼ −2; i¼ 1;…;Nþ 1;

Xk ¼ Jk; XNþ2 ¼ P; k¼ 2;…;N þ 1;

Yk
0 ¼ Ωk

0; YNþ2
0 ¼ V0; Yk

1 ¼Ωk
1; YNþ2

1 ¼ V1: ð85Þ

From the Euclidean action formalism [34], the thermo-
dynamic quantities obey the so-called quantum statistical
relation [15],

EðDÞ
0 − T0S −

X
i

Ωi
0Ji ¼ T0ID; ð86Þ

where ID is the Euclidean action that, for the KadS
geometry, takes the form

ID ¼ 1

T0

AD−2

8π
Q

N
j¼1 Ξj

�
m −

ðrþÞc
L2

YN
i¼1

ðr2þ þ a2i Þ
�
: ð87Þ

In Eq. (87), AD−2 is the volume of the unit (D − 2)-sphere
used to construct the area A of the event horizon,

AD−2 ¼
2πðD−1Þ=2

ΓðD−1
2
Þ ; A ¼ AD−2

ðrþÞc
YN
i¼1

r2þ þ a2i
Ξi

: ð88Þ

The symbol Γ denotes the usual gamma function, and the
constant c is defined as

c≡
�
0; oddD

1; evenD
: ð89Þ

The thermodynamic quantities are given by

S≡ A
4
; Ωi

0 ≡ ai
ð1þ r2þL−2Þ
r2þ þ a2i

¼ Ωi
H þ ai

L2
;

Ωi
H ≡ aiΞi

r2þ þ a2i
; EðDÞ

0 ≡ mAD−2

4πΠjΞj

 XN
i¼1

1

Ξi
−
1 − c
2

!
;

Ji ≡ maiAD−2

4πΞiΠjΞj
: ð90Þ

These quantities satisfy the relation

dEðDÞ
0 ¼ T0dSþ

X
i

Ωi
0dJi; ð91Þ

from where the temperature T0 can be computed.
It should be noticed that, since L is not considered a

thermodynamic variable in [15], the pressure and volume
terms are missing in this construction and quantities in
Eq. (86) do not obey the Smarr relation. The addition of
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these quantities to a proper KadS thermodynamics is our
goal in the next subsection.

B. Thermodynamic volume and the Smarr relation

To derive a Smarr relation from Eq. (86), it is convenient

to rewrite the energy EðDÞ
0 as

EðDÞ
0 ¼ ðD − 2Þ mAD−2

8πΠjΞj
þ L−2

XN
i¼1

Jiai: ð92Þ

We recognize Eq. (92) as a thermodynamic Smarr relation
by introducing

P≡ −
Λ
8π

¼ ðD − 2ÞðD − 1Þ
16πL2

ð93Þ

as a thermodynamic variable and defining a geometric
volume [35]

V ¼ rþ
D − 1

A ¼ ðrþÞcAD−2

D − 1

Y
i

r2þ þ a2i
Ξi

: ð94Þ

Using theses quantities, Eq. (87) is written as

ID ¼ 1

T0

�
mAD−2

8πΠjΞj
−

2

D − 2
PV

�
: ð95Þ

From Eqs. (86) and (92), it is straightforward to
verify that the theory now obeys the Smarr relation and
the first law:

ðD− 3ÞEðDÞ
0 ¼ ðD− 2ÞT0SþðD− 2ÞΩi

0Ji − 2V0P; ð96Þ

dEðDÞ
0 ¼ T0dSþ Ωi

0dJi þ V0dP; ð97Þ

with

V0 ¼ V þ 8π

ðD − 2ÞðD − 1Þ
XN
i¼1

Jiai: ð98Þ

The thermodynamic volume V0 in Eq. (98), obtained here
using the quantum statistical relation (86), agrees with that
obtained in [35] using a different approach.

C. Extension of Hawking’s KadS thermodynamics
to D dimensions

Based on the four-dimensional case, we can reinterpret
Hawking’s proposal as the theory for which the Smarr
relation involves the same temperature T0 presented
in Eq. (96), but with the angular velocity of the black
hole Ωi

H and the geometric volume V. Considering now the
D-dimensional expression of Eq. (96), and rearranging the
terms, we can write

ðD − 3ÞEðDÞ
H ¼ ðD − 2ÞT0Sþ ðD − 2ÞΩi

HJi − 2PV; ð99Þ

where

EðDÞ
H ≡ ðD − 2Þ mAD−2

8πΠjΞj
: ð100Þ

We define the quantity EH as the D-dimensional version
of Hawking’s energy. This energy gives a nonthermody-
namic Smarr relation. Explicitly,

T0dSþΩi
HdJiþVdP¼ dEðDÞ

H −
EðDÞ
H

D− 2

XN
i¼1

1

Ξi
dΞi: ð101Þ

Following the strategy used in the four-dimensional case, it
is straightforward to obtain other thermodynamic descrip-
tions comparing Eqs. (101) and (36).
The extension to higher dimensions of Hawking’s pro-

posal presented here differs from the five-dimensional case
in [16]. This is because, in the present work, the angular
momentum is given by a Komar integral in the frame in
which the black hole spins with an angular velocity Ωi

H.
Moreover, ourgeneration satisfies a first lawand the quantum
statistical relation, while the one in [16] does not.

D. The alternative thermodynamic theory
in D dimensions

The ATT, presented in Sec. V C, can be reinterpreted as
the theory obtained from Hawking’s thermodynamics with
an isohomogeneous transformation characterized by h ¼ 0.
Extending this idea to D dimensions,

g ¼ exp

�XN
i¼1

lnΞi

D − 2

�
¼
YN
i¼1

Ξ
1

D−2
i : ð102Þ

The function g in Eq. (102) transforms the D-dimensional
version of Hawking’s proposal into a D-dimensional
generalization for the ATT.
The energy associated to the D-dimensional ATT is

given by

EðDÞ
A ≡ EðDÞ

H

g
¼ D − 2

8π
mAD−2

YN
i¼1

Ξ−D−1
D−2

i : ð103Þ

The above construction gives a theory valid for arbitrary
dimensions, but different from the one presented in [15]. In
addition to providing a proper Smarr relation, our con-
struction can be seen as the thermodynamic version for a
generalization of Hawking’s proposal. Also, while [15]
states the failure of the Smarr-Gibbs-Duhem relation for
KadS, we have shown that this relation holds if the
cosmological constant is interpreted as a pressure term
alongside with a thermodynamic volume. Nevertheless, to
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our knowledge, the expression for the energy in Eq. (103) is
the first one to satisfy the first law of thermodynamics and
the Smarr relation by construction, valid for D ≥ 4.

VII. FINAL REMARKS

In this work, we propose a procedure for constructing
thermodynamic descriptions for Kerr-anti–de Sitter black
holes that are compatible with a Smarr formula. In order to
consider asymptotically anti–de Sitter spacetimes, the
Smarr formula is generalized from its standard version.
For this, a vector volume is naturally related to geometries
with a nonzero Λ. The derivation of the Smarr formula
requires a Killing field K normal to the horizon. However,
this Killing field is not unique, since it can be multiplied by
any function g of the parameters m, a, and Λ [or,
equivalently by a function g ¼ gðS; J; PÞ]. Furthermore,
there are infinitely many ways to write K as a combination
of a timelike and a rotating Killing field. As a result,
different choices for the Killing fields can alter the Komar
integrals and thus the thermodynamic variables. While a
Smarr formula gives the geometric side for the black-hole
thermodynamics, the first law relates variations in the
Komar integrals. Contrary to what might be expected,
these integrals may not carry any information about the
scale invariance of the system.
Our method follows from finding out which transforma-

tions can be performed in these thermodynamic variables
that preserve homogeneity. We show that these isohomo-
geneous transformations have a geometric counterpart
as a corresponding transformation in the Killing vectors.
Specifically, it reduces g to a homogeneous function of
degree zero and restricts the viable combination between
the timelike and angular Killing vectors. With these
isohomogeneous transformations, and given a thermody-
namics associated with a physical system, other descrip-
tions can be obtained. Among all the possible KadS
thermodynamics that can be generated with our formalism,
two receive a special attention: the UTT and Hawking’s
proposal. The explicit construction of a thermodynamic
version of Hawking’s approach in four dimensions and its
generalization to arbitrary dimensions are also highlighted.
Although the usual thermodynamics is widely explored

in the literature, a proper geometric construction for the
theory is still undeveloped. One of our contributions in this
article is to fill this gap, presenting the Killing vector
associated with this theory. Moreover, our formalism

clarifies why the thermodynamic and geometric volumes
in the UTT do not coincide. In contrast, Hawking’s
proposal is not a proper thermodynamics, despite having
an associated Smarr formula. Within our formalism, there is
a wide set of isohomogeneous transformations that relate
Hawking’s proposal to proper thermodynamic theories,
where the first law is satisfied.
In addition, there is a specific theory that can be

considered, in a precise sense, as the thermodynamic
version of Hawking’s proposal. This ATT for KadS is
the closest to the standard asymptotically flat black-hole
thermodynamic, since it is the one in which the temperature
coincides with its own surface gravity. That is, considering
a coherent normalization for the Killing fields. This claim
can only be made because the present work provides a
geometric construction for the theories. We show that,
contrary to what has been previously asserted, the UTT has
a surface gravity that does not agrees with its temperature.
With the isohomogeneous transformations, new propos-

als for the thermodynamic description of KadS black holes
can now be made, furnishing different KadS thermody-
namics. In anticipation of applications of the KadS thermo-
dynamics in the context of the adS/CFT correspondence,
the ATT is generalized from four to arbitrary dimensions. In
the process, the extension of Hawking’s proposal is also
explicitly constructed. Our generalization differs from the
five-dimensional case presented in Hawking’s work, sat-
isfying a first law and the quantum statistical relation.
The results of this work allow for further investigations.

We anticipate a connection between the thermodynamic
results presented in this study and the Hamiltonian dynam-
ics of KadS black holes. In [36], the expression for the
energy of the ATT also appears in this different context.
Furthermore, we speculate that an analysis of our results
from the perspective of concrete observers may provide a
deeper understanding of the variety of thermodynamic
descriptions for the black hole. Semiclassical treatments
could also provide new insights in this area. Research along
these lines is ongoing.
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