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Tidal heating in a binary black hole system is driven by the absorption of energy and angular momentum
by the black hole’s horizon. Previous works have shown that this phenomenon becomes particularly
significant during the late stages of an extreme mass ratio inspiral (EMRI) into a rapidly spinning massive
black hole, a key focus for future low-frequency gravitational-wave observations by (for instance) the Laser
Interferometer Space Antenna mission. Past analyses have largely focused on quasicircular inspiral
geometry, with some of the most detailed studies looking at equatorial cases. Though useful for illustrating
the physical principles, this limit is not very realistic astrophysically, since the population of EMRI events is
expected to arise from compact objects scattered onto relativistic orbits in galactic centers through many-
body events. In this work, we extend those results by studying the importance of tidal heating in equatorial
EMRIs with generic eccentricities. Our results suggest that accurate modeling of tidal heating is crucial to
prevent significant dephasing and systematic errors in EMRI parameter estimation. We examine a
phenomenological model for EMRIs around exotic compact objects by parametrizing deviations from the
black hole (BH) picture in terms of the fraction of radiation absorbed compared to the BH case. Based on a
mismatch calculation, we find that reflectivities as small as jRj2 ∼Oð10−5Þ are distinguishable from the
BH case, irrespective of the value of the eccentricity. We stress, however, that this finding should be
corroborated by future parameter estimation studies.

DOI: 10.1103/PhysRevD.110.024048

I. INTRODUCTION

Black holes (BHs) within the framework of general
relativity (GR) are characterized as perfect absorbers. This
is due to their distinctive feature, the event horizon, which
serves as a one-way, null hypersurface. Detecting any
degree of reflectivity in the vicinity of a dark compact
object would serve as compelling evidence for deviations
from the classical BH paradigm [1].
Though attempting to model the reflectivity of exotic

compact objects (ECOs)presents significant challenges [2,3],

the absence of a horizon or the presence of adjacent
structures would inevitably imply imperfect absorption.
Consequently, any examination of horizon absorption
offers a model-independent means of testing the nature
of compact objects and quantifying the extent to which a
dark compact object can be described as a conven-
tional BH.
A spinning BH absorbs radiation impinging from infinity

with frequency ω only when the latter surpasses a critical
value, ω > mΩH, where m is the azimuthal number of the
incident wave and ΩH ≡ a=2Mrþ represents the angular
velocity of the BH (a is the Kerr spin parameter and rþ the
coordinate radius of the event horizon). At frequencies
below this critical threshold, radiation is instead amplified
by the phenomenon of superradiance [4]. In a binary
system involving a pair of BHs, the radiation absorbed
by the BHs has a dual description as a tidal deformation to
the horizon’s geometry [5–7]. The tidal deformation then
backreacts on the system, changing the binary’s angular
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momentum and energy. The backreaction increases the area
of the holes’ horizons [8], increasing their entropy. The
dissipation of energy and generation of entropy leads to the
apt name “tidal heating” for this phenomenon [5,9,10]. This
effect is particularly significant in extreme mass ratio
inspirals (EMRIs) that are expected to be detected by
space-based observatories such as the Laser Interferometer
Space Antenna (LISA) [11,12], as it can contribute to
thousands of orbital cycles if the larger supermassive object
is a BH [13–19].
On the other hand, if one of the components in a binary

system is an ECO instead of a BH, the dissipation effect is
expected to be significantly reduced, possibly even to be
negligible. This change can have a substantial impact on the
inspiral, especially when both members of the binary are
spinning rapidly or if the largermember is spinning rapidly in
an extreme mass ratio system. Consequently, in scenarios
where the external geometry of the ECO closely resembles
that of a Kerr BH, tidal heating emerges as a potent model-
independent tool for discerning the presence of event
horizons and characterizing supermassive objects [17,18,20].
Extensive calculations are required to ascertain how tidal

heating behaves within the context of particular ECO
models [20–24]. Nonetheless, the absence of an event
horizon implies a departure from the established horizon
boundary conditions, which is certain to induce changes in
the tidal coupling between the orbiting body and the object.
This suggests that a very useful null experiment is simply to
test whether the characteristics of inspiral are consistentwith
the expectations of tidal heating with a BH event horizon or
there is a significant departure. Previous works have shown
that precise measurements with a high signal-to-noise ratio
(SNR) should allow the quantification of this effect with
unparalleled accuracy, whether it involves EMRIs around
highly spinning supermassive objects [13,17,18] or high-
spin supermassive binary systems [20].
Following Ref. [17], we can quantify the impact of

partial absorption by establishing an upper limit on the
reflectivity coefficient R of the object. The latter can be
conveniently defined as being related to the fraction of
energy that is lost inside the object compared to the BH
case. Schematically,�

dE
dt

�
tot

¼
�
dE
dt

�
∞
þ ð1 − jRj2Þ

�
dE
dt

�
H
; ð1Þ

where ðdEdt Þ∞ is the energy flux at infinity whereas
ð1 − jRj2ÞðdEdt ÞH is the amount of energy dissipated within
the object per unit time. For a BH,R ¼ 0, and this quantity
reduces to the energy flux across the horizon, ðdEdtÞH,
associated to tidal heating. For a perfectly reflecting object,
jRj ¼ 1, and this contribution is absent. Note that the term
reflectivity is associated to the one-dimensional radial
description of the scattering, wherein zero reflectivity
means total absorption while perfect reflectivity means

that waves do not interact with the object; see Fig. 1 for a
pictorial view.1

To our knowledge, the impact of what we call tidal
heating was first carefully examined in Ref. [26]. Focusing
on circular and equatorial orbits of Schwarzschild black
holes, Poisson and Sasaki showed that the down-horizon
flux is a tiny fraction of the flux to infinity, scaling with
orbital speed ∝ v8 and with a very small coefficient. They
concluded that this term would make a negligible contrib-
ute to wave phasing for (then planned) gravitational-wave
observations. Later work [27] confirmed a result from
Gal’tsov [28] that the horizon term is significantly stronger
for orbits of Kerr black holes, changing the scaling from v8

to a form related to the horizon’s rotation frequency times
v5. Motivated by this form, Ref. [13] examined the impact
of these fluxes on quasicircular inspiral, finding that the
effect of tidal heating could change by many thousands the
number of orbits a secondary executes in the LISA band,
especially for inspiral into a rapidly spinning black hole.
This result was examined very carefully for equatorial,
quasicircular EMRIs in [18] (see also Refs. [29–32] for the
case of stellar-mass binaries). Later, the work was extended
including the impact of resonances [33–35] and of modi-
fied boundary conditions arising from the object interior.
In this paper, our primary objective is to extend the

results of Ref. [18] in order to study equatorial eccentric
orbits. Lifting the restriction to quasicircularity is particu-
larly important: Astrophysical EMRIs are expected to be
dominated by binaries created through multibody scattering
events, so substantial eccentricity is likely to be the norm
for these events. Understanding how eccentricity

FIG. 1. Pictorial view of the reflectivity coefficient R to
quantify the level of absorption of a compact object. The
reflectivity is defined near the surface of the object; see
Eq. (1). Left panel: Since a BH is a perfect absorber, gravitational
waves impinging from the right near the horizon are absent on the
left. From a one-dimensional radial perspective, there are no
reflected waves; hence, R ¼ 0. Right panel: An object whose
interaction with gravitational waves is negligible (e.g., a perfect-
fluid star) has zero absorption. Perhaps counterintuitively, from a
one-dimensional radial perspective, such an object reflects all
impinging radiation, so R ¼ 1. Middle panel: intermediate
situation in which the object is only partially absorbing.

1Our reflectivity coefficient should not be confused with the
reflectivity defined at infinity in a scattering process [25]. In that
case, the BH reflectivity is associated to the scattering of waves
off the effective potential, namely, the BH graybody factor. The
reflectivity defined in this work is the same concept but applied
near the compact object, so that it accounts only for the possible
interaction of radiation with the interior of the object.
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complicates the picture is important for assessing how well
the null experiment which tests of tidal heating make
possible can be performed. Our specific aim is to examine
the importance of tidal heating for eccentricities that cover a
range consistent with what is expected for astrophysical
systems and to assess at least roughly how well the
reflectivity of a spinning supermassive object can be
constrained by measuring tidal heating with EMRI gravi-
tational waves (GWs).
We call particular attention to a parallel analysis by Zi,

Ye, and Li [36] which appeared as we were completing this
analysis. Their work covers much the same ground as the
scenarios that we study. Indeed, they go beyond our
analysis by examining orbit configurations that are both
eccentric and inclined. The most important point of differ-
ence is that their analysis uses analytic flux formulas and
waveforms based on an update of the “augmented analytic
kludge” (AAK) [37] implemented in the Fast EMRI
Waveform model [38]. This model produces waveforms
much more rapidly than the framework we have developed,
which it makes it possible for the authors of [36] to develop
Fisher-information-matrix-based estimates of parameter
measurement accuracy. However, it must be noted that
the AAK model is least accurate in the strong-field, fast-
motion domain in which the effects of tidal heating are
most important. Their work provides a very valuable
quantitative first study of how well the physics of tidal
heating may be probed with future observations; we expect
the fluxes and waveforms we have developed to be reliable
deep in the strong field but cannot yet be used for detailed
parameter studies of the sort studied in [36]. As the Fast
EMRI Waveform framework is expanded to cover
the Kerr parameter space using black-hole-perturbation-
theory-based waveforms, it should not be difficult to revisit
the analysis of [36] using strong-field waveforms.
Throughout this article, we use G ¼ 1 ¼ c units. The

mass and angular momentum of the primary object are
denoted byM and J ¼ aM ¼ χM2, respectively. The mass
of the small orbiting (nonspinning) body is denoted by μ,
and the mass ratio is denoted by η ¼ μ=M ≪ 1.

II. SETUP

In this section, we summarize how to compute an
adiabatic inspiral and its associated gravitational waveform.
Since comprehensive details are available in the references
(see Ref. [39], in particular), this brief overview aims to
concisely introduce critical quantities and concepts neces-
sary for this analysis.

A. Background metric and orbits

We take the primary object to be a Kerr BH [40], in
keeping with the idea that our goal is to formulate a test of
the hypothesis that these objects have an event horizon as
the Kerr metric requires [18,41–44]. If measurements were

to find some deviation from the Kerr hypothesis, what
drives this deviation would be an interesting question. For
instance, there could be some systematic error in the
measurement model or a neglected environmental effect.
Perhaps most interesting is the idea that the “massive
compact object” is something other than a GR BH. Given
the number of ways that one could imagine deviating from
this “standard” hypothesis, our view is that the most natural
starting point is to formulate a way of assessing this
hypothesis, and let data and nature determine whether
any modifications are necessary.
Consequently, our analysis starts by assuming that the

small object moves on an orbit of the Kerr metric. We
work in the adiabatic limit [39], imagining that these
orbits secularly evolve due to the backreaction of GW
emission. We begin with the Kerr metric in Boyer-
Lindquist coordinates [45]:

ds2¼−
�
1−

2Mr
Σ

�
dt2þΣ

Δ
dr2−

4Mr
Σ

asin2θdϕdt

þΣdθ2þ
�
ðr2þa2Þsin2θþ2Mr

Σ
a2sin4θ

�
dϕ2; ð2Þ

where Σ ¼ r2 þ a2 cos2 θ and Δ ¼ r2 − 2Mrþ a2 ¼
ðr − rþÞðr − r−Þ, with r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The angular

velocity at the event horizon is ΩH ¼ a=ð2MrþÞ. Note
that the Boyer-Lindquist coordinate t is the time param-
eter used by observers very far from the BH. As such, the
evolution of observables is very naturally parametrized
using t.
Our analysis is based on an adiabatic approximation to

inspiral, in which the smaller body’s motion is treated as a
geodesic orbit which slowly evolves due to the back-
reaction of GW emission. The detailed properties of Kerr
geodesic orbits are described in Refs. [46,47]. We focus on
orbits confined to the equatorial plane, meaning that their
inclinations are either I ¼ 0° (prograde) or I ¼ 180°
(retrograde). Equatorial orbits are parametrized up to initial
conditions by the integrals of motion E (energy per unit
mass) and Lz (axial angular momentum per unit mass) or
by the orbital geometry parameters p (semilatus rectum)
and e (eccentricity). (A third integral of the motion, the
Carter constant Q, is zero for equatorial orbits and so plays
no role in our present analysis.) These parameters specify
the orbit’s radial motion:

r ¼ p
1þ e cos χr

: ð3Þ

As the angle χr varies from 0 to π to 2π, the position of the
smaller body oscillates from periapsis p=ð1þ eÞ to apo-
apsis p=ð1 − eÞ and back. It is straightforward to recast the
radial geodesic equation as an evolution equation for χr; see
Ref. [47]. The parametrizations ðE;LzÞ and ðp; eÞ are
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entirely equivalent; formulas exist allowing one to switch
between these forms with ease [46–49].

B. Linear perturbations from the secondary

We describe the impact of the secondary on the binary
using the Teukolsky equation [50], which describes per-
turbations to the curvature of Kerr BHs. We focus on the
Newman-Penrose curvature scalar ψ4, which describes
radiative components of the Weyl curvature tensor [51].
The equation governing ψ4 has the form

D2ψ4 ¼ 4πΣT ; ð4Þ

where D2 is a second-order linear differential operator
whose precise form is not important for our purposes and T
is a source that is constructed from the stress-energy tensor
describing a pointlike body moving in the Kerr spacetime.
See, for example, Refs. [39,50] for detailed discussion of
D2 and T .
Far from the source, the scalar ψ4 is given by the

system’s GWs:

ψ4 ¼
1

2

d2

dt2
ðhþ − ih×Þ as r → ∞: ð5Þ

From this limiting form of ψ4, one can extract the rate at
which GWs carry energy E and axial angular momentum
Lz from the source. As r → rþ, ψ4 also encodes informa-
tion about radiation absorbed by the BH or, equivalently,
tidal interactions between the orbiting body and the event
horizon. From this, one can likewise extract the rate at
which energy and axial angular momentum are exchanged
between the secondary’s orbit and the primary BH. The
behavior of ψ4 as r → rþ is, thus, crucial for understanding
tidal heating in BH binary systems. Knowledge of ψ4 in the
limits r → ∞ and r → rþ provides the data we use for
constructing adiabatic inspirals.
To solve the Teukolsky equation, we first separate ψ4 by

introducing the Fourier and multipolar expansion

ψ4 ¼
1

ðr − ia cos θÞ4
Z

∞

−∞
dω

X∞
l¼2

Xl

m¼−l
Rlmðr;ωÞ

× Slmðθ; aωÞei½mϕ−ωðt−t0Þ�: ð6Þ

This expansion separates Eq. (4), with ordinary differ-
ential equations governing Rlmðr;ωÞ and Slmðθ; aωÞ [50].
Note that, following Ref. [39], we have introduced an initial
time t0 in anticipation of this formula’s later application to
inspirals.
The separated radial function has the following asymp-

totic behavior:

Rlmðr;ωÞ→
(
Z∞
lmωr

3eiωr
�
; as r→∞;

ZH
lmωΔe−iðω−mΩHÞr� ; as r→ rþ;

ð7Þ

where r� is the tortoise coordinate defined through the
relation dr�=dr ¼ ðr2 þ a2Þ=Δ. For equatorial orbits, the
coefficients Z∞;H

lmω can be further decomposed as

Z∞;H
lmω ¼

X∞
n¼−∞

Z∞;H
lmn δðω − ωmnÞ; ð8Þ

where we have introduced

ωmn ¼ mΩϕ þ nΩr: ð9Þ

The frequency Ωϕ ¼ 2π=Tϕ, where Tϕ is the Boyer-
Lindquist time interval for the orbiting body to move
through 2π rad of axial angle ϕ. The frequency
Ωr ¼ 2π=Tr, where Tr is the Boyer-Lindquist time interval
for the orbiting body to complete a full cycle of orbital
motion (e.g., for the body to move in its eccentric orbit from
apoapsis to periapsis and back). The coefficients Z∞;H

lmn are
found by integrating a Green’s function, constructed from
homogeneous solutions to the separated radial equation,
against the Teukolsky equation’s source term. For further
details, see Ref. [39].
For our purposes, the key thing to emphasize is that, once

Z∞;H
lmn are known, the function ψ4 is completely known in

the limits r → ∞ and r → rþ. For example,

ψ4ðr → ∞Þ ¼ 1

r

X
lmn

Z∞
lmnSlmðθ; aωmnÞei½mϕ−ωmnðt−t0Þ�: ð10Þ

Formally, the sum over l goes from 2 to∞; them sum from
−l to l; and the n sum from −∞ to ∞. In practice, these
sums are truncated after certain convergence criteria,
discussed in Sec. II C, are met. The corresponding form
for ψ4ðr → rþÞ is significantly more complicated; we refer
the reader to Ref. [7] for detailed discussion of how this
solution is constructed and used to compute tidal coupling
and the down-horizon fluxes. Once the set of coefficients
Z∞;H
lmn has been computed, we have all the information we

need to compute adiabatic backreaction and its associated
gravitational waveform.

C. Gravitational waveform
for an adiabatic inspiral

Combining Eqs. (5) and (10) yields the following
expression for the gravitational waveform from an extreme
mass ratio system:
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hþ − ih× ≡ 1

r

X
lmn

hlmn

¼ 1

r

X
lmn

AlmnSlmðθ; aωmnÞei½mϕ−ωmnðt−t0Þ�; ð11Þ

where

Almn ¼ −2Z∞
lmn=ω

2
mn: ð12Þ

To describe the gravitational waveform associated with an
inspiral, we need to promote various terms in Eq. (11) to
quantities which evolve during inspiral. Before doing so,
we first describe how we compute this inspiral.

1. Adiabatic backreaction

We model adiabatic inspiral by allowing orbits to evolve
in response to the backreaction of GWs. At the adiabatic
level, backreaction is equivalent to computing the action of
the orbit-averaged dissipative part of the gravitational self-
force. Its impact can be expressed using the amplitudes
Z∞;H
lmn that we find by solving the separated Teukolsky

equation to describe the rate of change of the orbit integrals
(see, e.g., Ref. [39] for summary discussion):�

dE
dt

�
∞
¼

X
lmn

jZ∞
lmnj2

4πω2
mn

; ð13Þ
�
dE
dt

�
H
¼

X
lmn

αlmn
jZH

lmnj2
4πω2

mn
; ð14Þ

�
dLz

dt

�
∞
¼

X
lmn

mjZ∞
lmnj2

4πω3
mn

; ð15Þ
�
dLz

dt

�
H
¼

X
lmn

αlmn
mjZH

lmnj2
4πω3

mn
; ð16Þ

where the superscripted∞ andH represent contributions to
the evolution of these orbit integrals from radiation to
infinity and from the interaction with the larger BH’s event
horizon, respectively. The detailed form of the coefficient
αlmn can be read out of Eqs. (3.30)–(3.32) in Ref. [39].
Adiabatic inspiral is then enacted by enforcing global
conservation: Letting C stand for either E or Lz,�

dC
dt

�
orbit

¼ −
�
dC
dt

�
∞
−
�
dC
dt

�
H
: ð17Þ

These balance laws assume that the EMRI system adapts
to changes in the orbital integrals while maintaining a
geodesic trajectory by adjusting the orbit’s geometry
accordingly. This allows us to relate the fluxes to the rate
of change of the orbit parameters p and e discussed in
Sec. II A. We follow the method of Ref. [39] to extract the
changes in orbital parameters from the fluxes.

The fluxes at the horizon directly encode the tidal
heating that is the focus of this study. In order to study
the importance of these terms and to formulate the test we
propose, we consider a phenomenological model2 in which
we modify this balance equation to�

dC
dt

�
orbit

¼ −
�
dC
dt

�
∞
− ð1 − jRj2Þ

�
dC
dt

�
H
; ð18Þ

whereR is a reflectivity coefficient [see Fig. 1 and Eq. (1)].
When R ¼ 0, we recover the standard GR adiabatic
inspiral; otherwise, the horizon flux is modified, changing
the inspiral. Our goal in the analysis that follows is to study
and understand this modification.

2. Adiabatic inspiral along a sequence of geodesics

Turn now to how we build the waveform for a source that
is slowly inspiraling according to the balance law (18).
Using this law, it is straightforward to integrate from some
initial time t0 until the moment the small body reaches the
last stable orbit (LSO) and stable geodesics no longer exist,
thereby constructing the orbit integrals EðtiÞ and LzðtiÞ as
functions of a “bookkeeper” inspiral time ti. Combining the
functions with the constraint that the orbit must evolve from
geodesic to geodesic allows us to reparametrize [49] and
obtain the parameters that describe the orbit’s geometry at
every moment, the semilatus rectum p and orbital eccen-
tricity e. Finally, with pðtiÞ and eðtiÞ in hand, we can
compute the orbit’s frequencies Ωr;ϕðtiÞ and the Teukolsky
function amplitude Z∞

lmnðtiÞ at each moment of inspiral. We
then “upgrade” the curvature scalar (10) to the form

ψ4ðtiÞ ¼
1

r

X
lmn

Z∞
lmnðtiÞSlm½θ;aωmnðtiÞ�ei½mϕ−ΦmnðtiÞ�: ð19Þ

This expression is similar to Eq. (10), but the amplitude
Z∞
lmn and frequency ωmn are now functions of ti, and the

term ωmnðt − t0Þ in the exponential has been replaced by
the accumulated phase

ΦmnðtiÞ ¼
Z

ti

t0

ωmnðt0Þdt0: ð20Þ

This phase reduces to ωmnðti − t0Þ for a nonevolving
system, reproducing Eq. (10) in that limit. Substituting
(19) into the left-hand side of the Teukolsky equation (4),
one finds that it solves this equation up to errors OðηÞ.

2Note that an imperfect absorption would give rise to modified
boundary conditions affecting one of the solutions to the
homogeneous Teukolsky equation which, in turn, would affect
both losses at infinity and at the horizon which would modify
the balance law [34]. In the spirit of a model-independent test,
we opted here for the minimal change in Eq. (18), where R is a
constant. More accurate models would provide explicit fre-
quency-dependent expressions RðωÞ and would modify Eq. (18)
consistently.
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These errors are, in turn, due to the fact that time derivatives
have “fast-time” contributions from terms that vary on
orbital timescales (i.e., on timescales ∼Tr or ∼Tϕ, both of
which are ∼M) as well as “slow-time” contributions from
terms that vary on the inspiral timescale (∼M=η). The
adiabatic approximation neglects the slow-time contribu-
tion to various time derivatives, incurring this error.
Postadiabatic waveforms which are currently under devel-
opment will ultimately be needed to correct these leading
waveform errors [52].
Our primary interest is in the waveform hðtiÞ, which is

given by

hðtiÞ≡
X
lmn

hlmnðtiÞ ¼
1

r

X
lmn

HlmnðtiÞei½mϕ−ΦmnðtiÞ�; ð21Þ

where

HlmnðtiÞ ¼ AlmnðtiÞSlm½θ; aωmnðtiÞ� ð22Þ

and

AlmnðtiÞ ¼ −
2Z∞

lmnðtiÞ
ωmnðtiÞ2

: ð23Þ

We use numerical data describing waveforms computed in
this manner to study the impact of modifications to tidal
heating on these systems.

III. NUMERICAL IMPLEMENTATION

Here, we briefly summarize important details about our
numerical implementation of adiabatic inspiral and EMRI
waveform computation. We begin by computing Z∞;H

lmn on a
grid that covers a large section of the ðp; eÞ plane. The grid
we use is closely related to the one that was developed for
the “Fast EMRI Waveform” project [38,53]. For each spin
value that we examine, our grid has 40 points in e over the
domain 0 ≤ e ≤ 0.8, evenly spaced in e2 to yield denser
coverage at small eccentricity. We use 36 points in the p
direction, spaced according to the formula

pj ¼ pmin þ 4MðejΔu − 1Þ; 0 ≤ j ≤ 35: ð24Þ

We use Δu ¼ 0.035 and set pmin ¼ pLSO þ 0.05M; the
LSO can be computed very accurately as a function
of BH spin a and eccentricity e using Ref. [54]. We
offset the inner edge of our grid slightly from the LSO,
because certain fields vary quite rapidly over the domain
pLSO ≲ p≲ pLSO þ 0.05M. At the mass ratios relevant to
EMRI systems, backreaction becomes so strong that the
adiabatic description of inspiral begins to break down
somewhere near the inner edge of our grid. Truncating
our grids with an offset of 0.05M from the LSO allows us to
focus our analysis on the domain where the adiabatic
description is most likely to be highly reliable. Very little

inspiral remains by the time the small body reaches pmin, so
any errors incurred by truncating at pmin rather than closer
to pLSO are negligible. We take the large member of the
EMRI to have mass M ¼ 106M⊙ and fix the secondary’s
mass such that M=μ ¼ 3 × 104. Many of the critical
quantities we compute in this analysis scale with these
masses in a simple way, so it is not difficult to rescale to
other configurations.
At each point on the grid, we compute a large set of

modes Z∞;H
lmn , including enough modes to ensure the fluxes

(13)–(16) have reached numerical convergence: We stop
computing modes when additional modes change these
fluxes by less than 10−5. See Ref. [39] for a detailed
discussion of our convergence criterion. In this analysis, we
use the fact that, during an adiabatic inspiral, the system
evolves from geodesic to geodesic to deduce how an orbit’s
geometry evolves due to changes in an equatorial orbit’s E
and Lz. The “geodesic evolves to geodesic” constraint
allows us to write down a Jacobian which relates the rates
of change of E and Lz to the rates of change of p and e:�

dp
dt

�
∞;H

¼ JpE

�
dE
dt

�
∞;H

þ JpLz

�
dLz

dt

�
∞;H

;�
de
dt

�
∞;H

¼ JeE

�
dE
dt

�
∞;H

þ JeLz

�
dLz

dt

�
∞;H

: ð25Þ

The Jacobian entries JpE–JeLz
can be read out of

Appendix B in Ref. [39].
To construct an adiabatic inspiral, we construct a

sequence of geodesics beginning at some initial point
½pðtiÞ; eðtiÞ] and then integrate the fields ðdp=dt; de=dtÞ
until we reach the edge of our data grid near the LSO. Off-
grid data are found using two-dimensional cubic spline
interpolation in the p and e directions. Such interpolation is
also used to assemble data for the waveform amplitude
along the inspiral. Additional data required for waveform
construction, such as the geodesic frequencies Ωr and Ωϕ

and their associated phases, are constructed at each
geodesic orbit in this inspiral sequence. We note that recent
work [49] has shown that numerical errors can be reduced
by integrating in ðdE=dt; dLz=dtÞ and then using analytic
mappings from ðE;LzÞ to ðp; eÞ to characterize each orbit.
It may be interesting to revisit our analysis (which was
largely completed before the analysis of Ref. [49] was
done) taking this into account, but we are confident that the
numerical errors introduced by integrating ðdp=dt; de=dtÞ
do not have an important impact on our conclusions: The
impact of tidal heating (our present focus) is independent of
the systematic numerical errors examined in Ref. [49].

IV. RESULTS

We turn now to a discussion of our results, in
particular, how inspirals and their associated gravitational
waveforms are changed when tidal heating is modified.

DATTA, BRITO, HUGHES, KLINGER, and PANI PHYS. REV. D 110, 024048 (2024)

024048-6



It is worth emphasizing that eccentric inspiral is changed
by modified tidal heating in a way that is qualitatively
different from what we find for quasicircular inspiral: The
trajectory that an inspiraling body follows in the ðp; eÞ
plane changes as the reflectivity parameter R is changed.
In quasicircular cases for fixed BH parameters, all
inspirals enter our band at some initial radius ri, and
inspiral ends essentially at the innermost stable circular
orbit. The quasicircular limit describes evolution through
a one-dimensional parameter space, and there is only one
way to move through this space. Eccentric inspiral, by
contrast, involves an evolution through a sequence of
orbits parametrized by p and e; an adiabatic inspiral
describes a curve eðpÞ in this parameter space. The slope

of this curve, de=dp, depends only on the ratio
dE=dLz ¼ ðdE=dtÞ=ðdLz=dtÞ. Modifying the tidal heat-
ing can modify this ratio, leading to an adiabatic inspiral
following a different trajectory in the ½pðtÞ; eðtÞ� than
what we find in the pure-GR, R ¼ 0 case.
We begin by discussing how modifications to tidal

heating alter the inspiral trajectory in the ðp; eÞ plane
and then discuss how waveforms are changed.

A. Modified trajectory

Figure 2 summarizes how the orbital trajectory changes
for prograde orbits. In each panel, we vary the spin of the
massive BH (horizontal axis) and the initial eccentricity ei

FIG. 2. Maximum change to the inspiral trajectory arising due to tidal heating. In these four panels, we examine a variety of prograde
inspirals; in all cases, the larger BH has mass 106M⊙, and the system has mass ratioM=μ ¼ 3 × 104. We vary the spin χ of the larger BH
(horizontal axis of the figures), as well as the initial eccentricity ei. We choose the initial semilatus rectum pi such that the orbital
harmonic ω20 ¼ 2π × 10−3 sec−1. (Them ¼ 2, n ¼ 0 harmonic typically makes the loudest contribution to the gravitational waveform.)
The four panels compare inspirals computed in “normal” GR (R ¼ 0) with maximum reflectivity (R ¼ 1); the various changes we
compute scale with the value of jRj2. The top left shows how the duration (which varies from 0.8 to 81.9 months across this parameter
space; our “month” is 30 days) changes with reflectivity; the top right shows similar information but presented as a fraction of the total
inspiral duration. Both panels indicate that, across much of the parameter space, tidal heating makes a non-negligible change to the
inspiral duration, just as previous work indicated for quasicircular inspiral. The bottom panels quantify the extent to which the path in the
ðp; eÞ plane is affected by tidal heating, with the bottom left showing how the value of p at which inspiral ends changes and the bottom
right showing similar data for the final value of e. The change to the trajectory is a qualitatively new aspect to the problem seen in the
eccentric case. By contrast, for quasicircular inspiral, all systems evolve with e ¼ 0 through a fixed range of orbital radius. This
illustrates how the physics of these systems are complicated when we consider more realistic orbital configurations.
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(vertical axis). The starting value of semilatus rectum p is
chosen so that the m ¼ 2, n ¼ 0 GW harmonic (which is
typically the loudest voice contributing to the waveform) is
at frequency 1 mHz. Our results show the difference
between inspirals computed with the normal tidal heating
prediction of GR (R ¼ 0), and inspirals computed with no
tidal heating at all (R ¼ 1).
The top panels in Fig. 2 show how the duration of

inspiral changes as we go from R ¼ 0 to R ¼ 1. The top
left shows the absolute change in duration Δt, and the top
right shows this as a percentage of the total inspiral time.
The total duration itself varies considerably over the
parameter space, leading to rather different contour shapes
between the two panels.
In both of the top panels in Fig. 2, there is a contour for

which Δt ¼ 0. To the left of this contour, modifying tidal
heating makes inspirals longer (Δt > 0); to the right,
modifying tidal heating makes inspirals shorter (Δt < 0).
It is interesting that, for each starting eccentricity of
prograde inspiral, there is some χ, typically, ∼0.1–0.3,
for which removing tidal heating does not change the

duration of inspiral. For many systems, ðdE=dtÞH changes
sign at some point during inspiral. The contour on which
Δt ¼ 0 shows where the impact of tidal heating before and
after this change of sign balances out. Over most of the
parameter space, setting R ¼ 1 has a significant impact on
the inspiral. The effect is especially pronounced when
χ ≳ 0.5. Inspiral goes deep into the strong field for large
spins, since the LSO is at smaller p; the impact of tidal
heating is then quite strong.
The bottom two panels in Fig. 2 show how changing R

from 0 to 1 changes the values of p and e at which inspiral
reaches the LSO. (We show fractional changes in these
parameters,Δpf=pf andΔef=ef; absolute changes in these
parameters are shown in Appendix B.) As with the inspiral
duration, there is a contour along which Δpf and Δef are
zero. For ei ≲ 0.6, this contour hovers near χ ≈ 0.4, though it
goes to larger spin values for larger starting eccentricity.
The panels in Fig. 3 show the same information as those

in Fig. 2 but focusing now on retrograde orbits. Note that
we consider only ei ≤ 0.5; retrograde orbits with ei > 0.5
have very short durations with our starting requirement that

FIG. 3. Maximum change to the inspiral trajectory arising due to tidal heating. This figure shows the same information as Fig. 2 but
now considers retrograde orbits. The total duration of inspirals in this case varies from 8.8 to 55.3 months across this parameter space.
Although similar trends are seen as those found in the prograde examples, the changes due to tidal heating are typically much smaller
here. This is not surprising: The last stable orbit is typically at much wider separation for retrograde orbits, so the influence of tidal
heating (which is strongest as orbits come close to the event horizon) tends to be smaller for these orbits.
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ω20 ¼ 2π × 10−3 Hz. One interesting difference compared
to prograde orbits is that ðdE=dtÞH > 0 across the param-
eter space of retrograde inspiral. As such, changing from
R ¼ 0 to R ¼ 1 always increases inspiral. We also find
that the final values pf and ef are always slightly larger
with no tidal heating in retrograde cases.

B. Example waveform and dephasing

In Fig. 4, we show examples of waveforms correspond-
ing to inspiral using three different reflectivity values:
R ¼ 0 (i.e., the standard GR value), jRj2 ¼ 0.5, and
jRj2 ¼ 10−3. All three waveforms are for inspiral into a
BH with χ ¼ 0.9, starting eccentricity ei ¼ 0.8, larger mass
M ¼ 106M⊙, and mass ratio M=μ ¼ 3 × 104. The panels
show roughly 45 min of hþ, starting 2 months after
the signal enters band (left panel) and 3 months after
entering band (right panel). We can see a clear dephasing
of the waveforms as R is increased from zero. At
two months, the inspiral with jRj2 ¼ 10−3 is essentially
in phase with the GR waveform, though the one with
jRj2 ¼ 0.5 is highly dephased from the other two. At three
months, a clear separation can be discerned even between
R ¼ 0 and jRj2 ¼ 10−3.
A crude but commonly applied rule of thumb is that a

dephasing δΦ ∼ 1 rad between two model waveforms
indicates that the models can be clearly separated [55].
In our case, this would imply that the value of jRj2 which
yields dephasing δΦ ∼ 1 rad is the minimum horizon
reflectivity which may be discerned from the GR prediction
R ¼ 0. It should be strongly emphasized that such a
rule of thumb should be supplemented by a more careful
parameter study. Correlations between parameters might
hide the effect of nonzero R; nonzero R could perhaps be
found using a normal GR waveform model at the cost of

some systematic parameter error. Only a thorough study
can determine the true threshold one should apply for R.
With this caution in mind, Figs. 5 and 6 illustrate the

maximum dephasing we find as functions of BH spin χ
(horizontal axis) and initial eccentricity ei (vertical axis).
Figure 5 illustrates prograde inspiral; Fig. 6 is for retrograde.
In both figures, we compare the GR case R ¼ 0 with
maximum reflectivityR ¼ 1. The left panel in both figures
shows the change to the axial phaseΦϕ found by integrating
the axial frequency Ωϕ over inspiral; the right panel shows
the change to the radial phase Φr found by integrating Ωr.
All the various voices which contribute to the waveform
involve harmonics of these phases: Φmn ¼ mΦϕ þ nΦr.
We find the largest dephasing for high-spin, low-

eccentricity, prograde inspirals; these are also the cases
for which inspiral has the largest number of cycles in band.
As we found with various parameters, for prograde
inspirals there exists a contour at which the dephasing
vanishes; in Fig. 5, we highlight where −1 ≤ δΦx ≤ 1 (for
x ¼ ϕ and x ¼ r) as thin white strips near the left-hand side
of the two panels. No such contour exists for retrograde
inspirals. All regions outside this strip have dephasing with
magnitude larger than this; indeed, for both prograde and
retrograde inspirals, the maximum dephasing reaches
hundreds to thousands of radians across much of the
parameter space, though tending to be larger (by about
an order of magnitude) for prograde inspirals. Finally, it is
worth bearing in mind that the dephasing scales with jRj2
and inversely with the system’s mass ratio. Although a
more careful and comprehensive analysis is needed to truly
ascertain how sensitive EMRI waveforms are to changes in
tidal heating, the very large dephasings we find here show
how sensitive these waveforms are to this effect and
indicate the promise of these measurements as a test of
BH event horizons.

FIG. 4. Two moments along an example waveform, computed for three different reflectivities. Both panels show waveforms
corresponding to a prograde inspiral into a BH with χ ¼ 0.9, for a system with initial eccentricity e ¼ 0.8; other parameters are as
described in the caption to Fig. 2. The left panel shows a span of 0.001 month, or roughly 45 min starting 2 months into inspiral; the right
panel shows the same thing but 3 months into inspiral. Notice that, at two months, the case with jRj2 ¼ 0.5 is highly dephased from the
other two examples; after three months, even the case with jRj2 ¼ 10−3 is noticeably dephased from the GR waveform (R ¼ 0).
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C. Mismatch

As a supplement to our dephasing analysis, we also
examine themismatch between waveforms withR ¼ 0 and
R ≠ 0, as was done in Ref. [18]. We begin by defining the
overlap between two waveforms, which provides a robust
indicator of how well two waveforms agree in the presence
of an expected noise background. The overlap is given by

Oðh1jh2Þ ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð26Þ

where the noise-weighted inner product hh1jh2i is

hh1jh2i ¼ 4Re
Z

∞

0

h̃1h̃
�
2

SnðfÞ
df: ð27Þ

Here, SnðfÞ is the one-sided noise power spectral density
(PSD), h̃1ðfÞ and h̃2ðfÞ represent the Fourier transforms of
thewaveforms h1ðtÞ and h2ðtÞ, and the superscript � denotes

complex conjugate. Since the waveforms are defined up to
an arbitrary time and phase shift, we maximize the overlap
over these parameters, as described in Ref. [18]. For the
PSD, we use the LISA curve including the confusion
background from unresolved Galactic stellar binaries over
a one-year mission lifetime, following from Ref. [56].
The overlap is defined such that O ¼ 1 indicates perfect

agreement between two waveforms. The mismatch M is
defined as

M ¼ 1 −O ð28Þ

and indicates the degree to which two waveforms are not in
agreement. In Fig. 7, we show the mismatch for the plus
polarization of waveforms of prograde EMRIs with differ-
ent reflectivities. We fix χ ¼ 0.9 for all cases; each panel
shows a different value of initial eccentricity ei. The
mismatch is shown as a function of observation time for
orbits starting at 1 mHz. Since we start each inspiral when

FIG. 6. The same as Fig. 5 but for retrograde inspirals. In contrast to prograde configurations, there is no place in this parameter space
where the net dephasing is zero; we find non-negligible dephasing for all retrograde configurations.

FIG. 5. Total dephasing found as a function of χ and ei for prograde inspirals, comparing the “normal”GR inspiral (R ¼ 0) tomaximum
reflectivity (R ¼ 1). The binaries considered are the same ones described in the caption to Fig. 2. The left panel shows the change to the
accumulated azimuthal phase δΦϕ; the right panel shows the change to the radial phase δΦr. Over a very large section of this parameter
space, the change is quite large (dozens to thousands of radians). Indeed, only within the narrowwhite band to the left of both panels dowe
have jδΦj ≤ 1. It is worth noting that these dephasings scale proportional to jRj2 and inversely proportional to the system’s mass ratio.
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ω20 ¼ 2π × 10−3 sec−1, the inspiral duration varies signifi-
cantly depending on the initial eccentricity.
For small values of jRj2, the mismatch during the initial

months is very small, but it grows rapidly with time.
Interestingly, the accumulated mismatch when the systems
approach the LSO is of the same order of magnitude for
different initial eccentricities, even though the inspiral time
is much shorter for larger initial eccentricities. This is
related to the fact that the impact of tidal heating tends to be
more important for larger eccentricities, compensating for
the smaller number of cycles. This feature can also be seen
in the dephasing plot (Fig. 5). As expected, the mismatch
decreases with decreasing jRj2. As discussed in the next
section, these results suggest that reflectivities as small as
jRj2 ∼ 10−5 could have an observable impact, in agreement
with previous results obtained for circular orbits [18],
though we emphasize a proper parameter study must be
done to assess this suggestion. We find similar results for
retrograde orbits, as shown in Appendix C.

V. DISCUSSION

It has long been established that EMRIs will be unpar-
alleled probes of fundamental physics and unique sources
for the LISA mission [12,19,57,58]; see also [59–63] for
specific examples of recent, detailed studies of this type.
EMRI dynamics are affected by modified boundary con-
ditions at a compact object’s surface, which give rise to
modified tidal heating, modified fluxes, and resonant
quasinormal mode excitations in a consistent fashion.
In the spirit of devising a model-independent test of the

presence of a Kerr horizon, we have studied the signal
emitted by a small body in eccentric orbits around a Kerr
BH. In order to formulate such a test, we have focused our
analysis on a simplified modeling of the tidal heating,
leaving other effects like modified boundary conditions and
possible resonances for future work. Our approach can be
regarded as a simple modification of the standard BH case,
modifying adiabatic inspiral by adjusting the down-horizon
flux which describes tidal coupling of an orbiting body to
the primary’s event horizon.

FIG. 7. Mismatch M ¼ 1 −O for prograde inspiral as a function of observation time between the plus polarization for a waveform
computed with jRj2 ≠ 0 (ECO) and another computed with jRj2 ¼ 0 (BH), maximized over time and phase shift. Each panel shows a
different starting eccentricity; in all cases, the large BH has spin χ ¼ 0.9. All other parameters are as described in the caption to Fig. 2.
The dashed horizontal line shows the threshold M ¼ 1=ð2ρ2Þ, with ρ ¼ 20 chosen as a fiducial SNR associated with the true signal.
Notice that inspirals with reflectivity parameter jRj2 ¼ 10−3 exceed this threshold in all cases we consider here.
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Twowaveforms can be considered indistinguishable if the
mismatch M between them satisfies M≲ 1=2ρ2 [55,64],
where ρ is the SNR. For an EMRIwith ρ ≈ 20, this implies a
“threshold” mismatch M≲ 10−3 for two signals to be
indistinguishable. In Figs. 7 and 10, we show that, at
ρ ¼ 20, this level of mismatch is exceeded across a very
wide range of plausible EMRI parameters.
Previous work [18] has shown that this level of mismatch

is exceeded even for small BH spins. The present work
shows this phenomenon also for eccentric inspirals, sug-
gesting that horizon reflectivity jRj2 can be constrained to
quite small values by future measurements of these events.
We note that, as eccentricity increases, inspiral time tends to
decrease, resulting in less time for the effect of tidal heating
to accumulate. We nevertheless find that the impact of jRj2
on an inspiral is similar to that for circular orbits, high-
lighting the fact that the effect of “down-horizon” flux on the
inspiral is enhanced for nonzero eccentricities. Such an
effect has been noted in analytical studies as well [65,66].
As a result, for a supermassive object with χ ¼ 0.9 and a

signal having ρ ¼ 20, we can infer a very stringent constraint
on the reflectivity jRj2 ∼Oð10−5Þ based on the results
shown in Figs. 7 and 10. This implies that an EMRI detection
is capable of discerning an effective reflectivity of the central
supermassive object as small as∼Oð0.001Þ%. This outcome
aligns with previous findings in the context of circular orbits.
It underscores the importance of accurately modeling tidal
heating for all types of orbital configurations to prevent
substantial dephasing and systematic errors. Furthermore,
we have demonstrated that the inclusion or absence of tidal
heating can serve as a robust, model-independent discrimi-
nator for the presenceof a horizon in the central supermassive
object, even in eccentric orbits.
Our analysis exclusively focuses on the modification of

fluxes at the leading order in the mass ratio, specifically
considering only the leading-order dissipative component
of the self-force [67,68]. We have neglected conservative
contributions and higher-order terms. Although these cor-
rections are crucial for parameter estimation, their effects
are unlikely to be confusedwith those of tidal heating. Tidal
heating effects are typically much more pronounced,
especially for realistic spin values whenR is not negligibly
small. Consequently, our earlier findings under circular
orbit assumptions are substantiated, suggesting that accu-
rate constraints can be attained by modeling the (partial)
absence of tidal heating in state-of-the-art waveform
approximations at the leading order.
In Refs. [33–35], alongside the consideration of tidal

heating, the role of different boundary conditions and
resonances resulting from the excitation of low-frequency
quasinormalmodes, which are prevalent for ECOs [1,21,22],
was also explored. This investigation demonstrated that
modified boundary conditions, and, in particular, resonances,
significantly amplify the effects, enhancing the sensitivity to
even smaller reflectivities. In the current work, we have
observed that the majority of the conclusions obtained for

circular orbits extend to eccentric cases. Therefore, we
anticipate that the conclusions drawn in the circular orbit
analysis of Refs. [33,34] are also likely to apply to eccentric
orbits. However, it is important to note that Ref. [35] high-
lighted that a frequency-domain analysis tends to overesti-
mate the impact of resonances, emphasizing the need for
further investigations in this regard.
In addition to our model-agnostic approach, an accurate

modeling of the effect of tidal heating relies on the properties
of the ECOs. In this context, the presence of structure at the
horizon scale (even possibly arising from quantum correc-
tions) can also have an impact on tidal heating. If the area or
mass of a BH is quantized, then it can also significantly
modify the features of tidal heating and its signatures
[69–71]. Additionally, in Ref. [23], apart from examining
the reflectivity, the impact of the reflective surface position
ðrsÞ, denoted as rs ¼ rþð1þ εÞ, where ε < 1, was analyzed
analytically and later extended in Ref. [72]. This analysis
revealed a degeneracy between the reflectivity and ε,
establishing that ε on the order of ∼OðjRj2Þ can have a
noticeable impact. This suggests an observable effect of ε on
the order of Oð10−5Þ. Using a frequency-domain approach,
Ref. [34] further demonstrated that the impact of resonances
and ab initio boundary conditions can contribute to make
even smaller corrections detectable. If the current work
serves as an indicator, it implies the possibility of retaining
these findings in eccentric cases as well. Therefore, the
impact of ε should be investigated meticulously in the
context of EMRIs, possibly in a model-dependent fashion.
Another crucial point is the connection between tidal

deformability and tidal heating. In Refs. [73–75], the observ-
ability of very small values of tidal deformabilities has
already been demonstrated with circular equatorial EMRI,
which was extended to eccentric orbits in Refs. [76,77]. The
connection between reflectivity and tidal deformability has
already been established in several works [78,79]. Therefore,
a holistic approach considering both tidal effects can not only
break the degeneracy between jRj2 and ε, but also may lead
to bettermeasurementof reflectivity altogether. These aspects
must be explored in the future.
It isworth emphasizing that our analysis is grounded in the

assumption that the external geometry of the central object
can be adequately described by the Kerr metric. ECOs may
potentially exhibit deviations from the Kerr metric [80–86].
Such departures from the Kerr metric influence the dissipa-
tive aspects of EMRIs at the leading order in the mass ratio
and, as a consequence, provide an additional avenue for
distinguishing the presence of horizons.
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FIG. 8. The characteristics of inspiral when the central object is assumed to be a BH, i.e., when we putR ¼ 0. Each panel shows some
important characteristic of the inspiral for a system that begins with spin χ (horizontal axis) and starting eccentricity ei (vertical axis) and
for which M ¼ 106M⊙, M=μ ¼ 3 × 104. All inspirals begin when the GW frequency corresponding to the m ¼ 2, n ¼ 0 voice crosses
10−3 Hz. Left-hand panels show results for prograde inspirals; right-hand panels are for retrograde. From top to bottom, the panels show
the final value of semilatus rectum, pf, when inspiral ends; the final value of eccentricity ef; and the total inspiral duration in months.
Note that our retrograde data cover a smaller span of initial eccentricity than the prograde data, since high-eccentricity retrograde
inspirals have very short duration with the above constraints.
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APPENDIX A: BH RESULTS

For completeness, in this appendix, we show the
results for an inspiral process when the central object is
a BH (R ¼ 0). This is shown in Fig. 8, where we present
the semilatus rectum (upper panels), the eccentricity
(central panels), and inspiral time (bottom panels), all
computed at the LSO. The results for prograde motion are
displayed in the left column, while the outcomes for
retrograde motion are shown in the right column. All the
binaries were initiated at a semilatus rectum p such that
ω20 ¼ 2π × 10−3 sec−1. The initial eccentricity of the
system and the spin of the central object are plotted in
the x and y axes, respectively, whereas the colored
contours represent the value of the relevant parameter
for such configurations.

APPENDIX B: ABSOLUTE DIFFERENCES
IN THE FINAL PARAMETERS

In the main text, we discussed the changes in several
orbital quantities if tidal heating is neglected. The results
demonstrated that the inspiral takes a different trajectory if
tidal heating is modified. For relative comparison with the
standard BH case, we showed only the fractional
differences between the cases where tidal heating is
neglected or not. To complement that information here,
we also show the absolute differences Δef and Δpf; see
Fig. 9. The top panels show results for prograde orbits,
whereas in the bottom panels we show results for retrograde
orbits. As discussed in the main text, for prograde orbits
there is a contour line where the difference between the BH
case (jRj ¼ 0) and the ECO case (jRj ¼ 1) vanishes.

FIG. 9. The absolute change in final eccentricity ef (left-hand panels) and final semilatus rectum pf (right) comparing a pure GR
inspiral (R ¼ 0) with maximum reflectivity (R ¼ 1). The top is for prograde inspiral; the bottom is for retrograde. These plots
complement the fractional changes shown in Figs. 2 and 3.
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APPENDIX C: MISMATCH
FOR RETROGRADE ORBITS

In this section, we discuss the mismatch results for
retrograde orbits. In Fig. 10, we show the mismatch M≡
1 −O for the waveforms of retrograde EMRIs with differ-
ent reflectivities while fixing χ ¼ 0.9 and the initial
eccentricity ei, each plot corresponding to a different ei
similarly to the plots shown in Fig. 7 for prograde orbits.

The mismatch is shown as a function of observation time
for orbits starting at 1 mHz. Similar to the prograde orbits,
for smaller values of jRj2, the mismatch during the initial
months is small, and it grows with time. As expected, the
mismatch decreases with decreasing jRj2. From these
results, one can deduce that, similarly to the prograde
orbits case, reflectivities as small as jRj2 ∼ 10−5 could have
an observable impact.
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