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We use the quasilocal formalism of Brown and York, supplemented with counterterms, to investigate the
thermodynamics of asymptotically flat black holes. We consider two families of exact regular black hole
solutions, which are thermodynamically stable. The first one consists of four-dimensional static charged
hairy black holes in extended supergravity. The second family consists of five-dimensional static charged
black holes in Gauss-Bonnet (GB) gravity. Despite the fact that their characteristics are completely
different, we found a striking similarity between their thermodynamic behavior.
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I. INTRODUCTION

The black hole represents the equilibrium end state of
gravitational collapse, and the relationship between
thermodynamic entropy and the area of an event horizon
is one of the most robust results in gravitational physics.
Once quantum effects were taken into account, it was
understood by Hawking [1] that black holes can emit
radiation. While the Hawking radiation produces a very
small effect that is not relevant from an empirical point of
view, the black hole thermodynamics makes sense only in a
theoretical framework in which the black holes are thermo-
dynamically stable. However, this is not the case for black
holes in flat spacetime, e.g., Schwarzschild, Reissner-
Nordström (RN), and Kerr black holes are thermodynami-
cally unstable.
One way to circumvent this situation is to enclose the

asymptotically flat black hole by a finite “box” [2] such that
the radiation cannot escape to the asymptotic region.
However, while this proposal is interesting from a theo-
retical point of view, it does not provide any concrete hint
of physical situations where this kind of boundary con-
ditions can appear naturally. A more general construction,

for a theory with a nontrivial negative cosmological
constant, was considered by Hawking and Page [3]. They
found that, indeed, there exists a general family of “large”
black holes [with the horizon radius comparable with the
radius of anti-de-Sitter (AdS) spacetime] that are thermody-
namically stable. In this case, the conformal boundary ofAdS
(where theboundary conditions shouldbe imposed) plays the
role of the “box.” However, the boundary conditions are
changed to correspond to a spacetime with a negative
cosmological constant and, while this is a very important
result in the context of AdS-CFT duality [4], it cannot be
applied to asymptotically flat black holes.
Therefore, to obtain a well-defined thermodynamic

framework, the key point is the existence of asymptotically
flat black holes, which are thermodynamically stable,
without imposing artificially boundary conditions corre-
sponding to a finite box. Elucidating this aspect could be
relevant for understanding the existence of supermassive
black holes that cannot be formed by gravitational collapse.
One can imagine a scenario where, in the early Universe,
small black holes exist in a suitable environment that makes
them thermodynamically stable, e.g., surrounded by dark
matter. Then, after a long time, they can grow up to become
supermassive if there is enough matter around they can
absorb.
In this work, we carefully investigate the existence of such

an “environment” and present a detailed analysis of the
thermodynamic stability by using the quasilocal formalism
supplemented with boundary counterterms. Both Gauss-
Bonnet-Maxwell and Einstein-Maxwell-dilaton theories can
be interpreted as particular completions of Einstein-Maxwell
gravity, and so the question of how these theories modify
some concrete features of black holes could be of significant
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interest. First, we consider a four-dimensional theory, with a
scalar field and its self-interaction, in which there exist exact
hairy black hole solutions.While this is a toymodel for static
black holes, it shows that, even in a simple theoretical setup,
the hair can stabilize, dynamically and thermodynamically,
the black holes (see, also, [5–7]). It canverywell be thatmore
complicatedmodels for darkmatter can have a similar effect.
Second, we consider the five-dimensional gravity when the
Einstein-Hilbert action is supplemented by GB corrections.
These models can be understood, for example, as effective
theories from string theory where the higher derivative
corrections are tree level, depending of the string tension
(there are also quantum corrections depending of the string
coupling). It was found a long time ago that there exist exact
static neutral black hole solutions, and they are thermody-
namically stable [8] (see also [9,10]).1 We consider the
generalization of RN black hole in GB theory, compute the
conserved chargeswithin the quasilocal formalism of Brown
and York [12] that is self-consistent, and so we do not need
Wald formalism [13] to obtain the entropy.2 We find again
that there exist thermodynamically stable charged static
black holes.
The quasilocal formalism supplemented with counter-

terms in flat spacetime was used in [17] to obtain the
thermodynamics of the dipole black ring [18]. However,
this formalism was put on a firm ground by Mann and
Marolf [19], where they have shown that the addition of an
appropriate covariant boundary term to the gravitational
action yields a well-defined variational principle for
asymptotically flat spacetimes. This becomes the standard
tool that leads to a natural definition of conserved quantities
at spatial infinity, e.g., [20–26]. In this work, we use
concrete counterterms to circumvent the problem with the
background subtraction method when the “background”
cannot be explicitly constructed. We construct the counter-
term for GB gravity (and fix the ambiguity of an overall
numerical factor), which is consistent with a correct
variational principle and regularizes the Euclidean action.
Interestingly, unlike the AdS case, there is no need of
adding counterterms for the scalar field in flat spacetime
when it vanishes at the boundary. We shall consider both
the grand canonical ensemble, in which the electric
potential difference between the event horizon and the
infinity is fixed, and the canonical ensemble, in which the
electric charge is fixed.
The remainder of the paper is organized as follows: In

Sec. II, we present the exact asymptotically flat hairy
charged black hole solution and study in detail the local and
global thermodynamic stability. We use the counterterm

method to obtain the on-shell regularized Euclidean action
and the quasilocal formalism to obtain the conserved
charges. We identify the region of the phase space where
there exist thermodynamically stable black holes. In
Sec. III, we present the charged black hole solution
in GB gravity. We obtain the on-shell Euclidean action,
conserved charges, Smarr formula, and verify the
quantum-statistical relation. Again, we identify the region
of the phase space where there exist thermodynamically
stable black holes. In the last section, we present a brief
review of our main results, complement the analysis of
thermodynamic behavior with an analysis using the
thermodynamic potential, and discuss to some extent the
extremal limit that is important for the existence of a
consistent canonical ensemble. In Appendix A, we sum-
marize the general thermodynamic stability conditions of
response functions for charged black holes. In Appendix B,
we compare the counterterm method in AdS with the one in
flat spacetime and explain why there is no need of scalar
counterterms for regularizing the Euclidean action of
asymptotically flat hairy black holes. In Appendix C, we
review the basics of the Arnowitt-Deser-Misner (ADM)
formalism in five dimensions, required for Sec. III.

II. BLACK HOLES IN EINSTEIN-MAXWELL-
DILATION THEORY

Let us consider the theory given by the action

I ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − eϕF2 − VðϕÞ

�
; ð1Þ

where κ ¼ 8π, in the unit system where G ¼ c ¼ 1;
F2 ¼ FμνFμν, where Fμν ¼ ∂μAν − ∂νAμ is the gauge field
and Aμ the gauge potential, and ð∂ϕÞ2 ≡ gμν∂μϕ∂νϕ.
The potential [27–29] is

VðϕÞ≡ 2ϒð2ϕþ ϕ coshϕ − 3 sinhϕÞ; ð2Þ

where ϒ is a dimensionful parameter that characterizes the
strength of the potential. Importantly, now it is well
understood that in fact this is a model of a dilaton and
its self-interaction in the sense that the dilaton is endowed
with a potential that originates from an electromagnetic
Fayet-Iliopoulos (FI) term inN ¼ 2 extended supergravity
in four spacetime dimensions [30,31] (see also, [32]).
Therefore, the theory we consider is consistent, and its
ground state is stable (recently, exact hairy charged soliton
solutions were constructed in [33–36]). The schematic
behavior of the potential (2) is depicted in Fig. 1. The
potential is symmetric under ϕ → −ϕ and ϒ → −ϒ
transformations.
The exact static hairy black hole solution was obtained

in [29]

1There is another physical mechanism that could be important
for the stability of black holes in theories with higher derivative
terms, namely the scalarization and existence of the scalar
condensates [11].

2The Wald formalism and a concrete computation of scalar
charge for various hairy black holes can be found, e.g., in [14–16].
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ds2 ¼ ΩðxÞ
�
−fðxÞdt2 þ η2dx2

x2fðxÞ þ dΣ2
2

�
;

Aμ ¼
�
Φ −

qðx − 1Þ
x

�
δtμ; ϕðxÞ ¼ lnðxÞ; ð3Þ

where dΣ2
2 ≡ dθ2 þ sin2θdφ2 and

fðxÞ ¼ ϒ

�
x2 − 1

2x
− ln x

�
þ η2ðx − 1Þ2

x

�
1 −

2q2ðx − 1Þ
x

�
;

ΩðxÞ ¼ x
η2ðx − 1Þ2 : ð4Þ

In the expressions above, x is a dimensionless coordinate
that is related to the standard canonical radial coordinate, r,
by the transformation ΩðxÞ ¼ r2. There are two constants
of integration, η and q, which are related to the mass and
electric charge of the solution, and Φ in the expression of
gauge field is an arbitrary additive constant. The black hole
event horizon is located at x ¼ xþ such that fðxþÞ ¼ 0 and
xþ is the biggest root. The asymptotic region is located at
x → 1, where the conformal factor Ω diverges, and the
scalar field (along with its potential) vanishes.
We distinguish two families of solutions: the family for

which ϒ > 0 and the family for which ϒ < 0. Within each
family, there are two branches of solutions, characterized
by the domain for the coordinate x, which in turn fixes the
sign of ϕ. These two branches are characterized by distinct
boundary condition for the scalar field. To obtain the
asymptotic behavior of the dilaton, we consider the trans-
formation to the canonical radial coordinate, namely
ΩðxÞ ¼ r2 near the boundary. This gives rise to two
possible changes of coordinates,

x ¼ 1� 1

ηr
þ 1

2η2r2
� 1

8η3r3
þOðr−4Þ: ð5Þ

The negative branch corresponds to the case where 0 ≤
x < 1 (and so ϕ < 0). By using the corresponding change
of coordinates, we obtain the following boundary expan-
sion: ϕ ¼ − 1

ηr þOðr−3Þ. The positive branch corresponds
to the case where 1 < x ≤ ∞ (and so ϕ > 0), and the

boundary expansion of the scalar field becomes
ϕ ¼ þ 1

ηr þOðr−3Þ.3 It is worth emphasizing that the

“scalar charge” Σ ¼ η−1 is not conserved, and so there is
no independent integration constant associated to the
scalar field.
In the remainder of this section, wewill be focusing on the

family ϒ > 0, which contains thermodynamically stable
black holes. The family ϒ < 0 only supports black hole
solutions for the positive branch, but in this case, the potential
(2) becomes unbounded from below, as shown in Fig. 1.

A. Euclidean action and thermodynamics

Let us briefly present the computation of the on-shell
Euclidean action. For concreteness, we perform the com-
putations in the positive branch, that is, under the
assumption that x − 1 > 0.
Let us consider first the bulk part of the action (1) and the

Gibbons-Hawking boundary term [41], given by

IGH ¼ 1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
K; ð6Þ

where K ≡∇μnμ is the trace of the extrinsic curvature, and
h is the determinant of the metric on the hypersurface
x ¼ const, with unit normal nμ. Within this foliation of the
spacetime, the boundary ∂M becomes the hypersurface
x ¼ const in the limit x → 1.
These two first contributions yield

IEbulkþ IEGH ¼ βð−TS−ΦQÞþ 4πβ

κ

×

�
2

ηðx− 1Þþ
ϒ− 12η2q2þ 3η2

3η3
þOðx− 1Þ

�
;

ð7Þ
where the temperature and entropy are defined as usual:
The temperature is obtained by removing the conical
singularity in the Euclidean section, and the entropy is
one quarter of the area of the event horizon,

T ¼ −
xþ
4πη

dfðrÞ
dr

����
x¼xþ

; S ¼ πΩðxþÞ; ð8Þ

and Q and Φ are the electric charge and its conjugate
potential. The electric charge, in terms of the constants of
integration, is obtained by using the Gauss law

FIG. 1. Schematic behavior of the scalar field potential for the
family ϒ < 0 and ϒ > 0. The region ϕ < 0 corresponds to the
negative branch, and ϕ > 0 corresponds to the positive branch.

3Generally, for example, in string theory, where the scalar
fields are moduli related to the coupling constants, the expansion
of the scalar field in flat spacetime is ϕ ¼ ϕ∞ þ Σ=rþ � � �, where
Σ is the scalar charge. A discussion of why scalar charges (which
are not conserved charges) [37], when ϕ∞ can vary, do not appear
in the first law of black hole thermodynamics was presented in
[38,39]. However, since the theory, we are interested in contains
the dilaton potential, the boundary conditions for the dilaton are
such that ϕ∞ ¼ 0 (see also, [40]).
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Q ¼ 1

4π

I
s2∞

eϕ � F ¼ q
η
: ð9Þ

and the conjugate potential is defined as

Φ ¼ Atðx → 1Þ − AtðxþÞ ¼
qðxþ − 1Þ

xþ
: ð10Þ

Now, in order to remove the divergent contribution
appearing in (7), it is necessary to add a gravitational counter-
term for asymptotically flat spacetime [17,19,42–44]4

Ict ¼ −
1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p ffiffiffiffiffiffiffiffiffiffiffi
2Rð3Þ

p
; ð11Þ

where Rð3Þ is the Ricci scalar on ∂M. In the Euclidean
section, we have

IEct ¼
4πβ

κ

�
−

2

ηðx − 1Þ −
ϒ − 12η2q2 þ 6η2

6η3
þOðx − 1Þ

�
:

ð12Þ

The total action is therefore

IE ¼ IEbulk þ IEGH þ IEct ¼ βð−TS−ΦQÞ þ β

�
12η2q2 −ϒ

12η3

�
:

ð13Þ

The last term in (13) is indeed the mass of the black hole,
as follows from computing the conserved charges of the
system. We compute this energy by using the Brown-York
quasilocal formalism [12], with the quasilocal boundary
stress tensor

τab ≡ −
2ffiffiffiffiffiffi
−h

p δI
δhab

; ð14Þ

where I ¼ Ibulk þ IGH þ Ict, and the index a stands for the
coordinates on the hypersurface x ¼ const. For this case,
the concrete expression for τab is [17]

τab ¼
1

κ
½Kab−habK−ΨðRð3Þ

ab −Rð3ÞhabÞ−hab□ΨþΨ;ab�;

Ψ≡
�

2

Rð3Þ

�1
2

: ð15Þ

Now, according to the Brown-York formalism, the con-
served charge associated to the isometry generated by the
killing vector ξa is

E ¼
I
s2∞

d2σ
ffiffiffi
σ

p
Naξbτab; ð16Þ

where Na is the timelike unit normal to the hypersurface
x ¼ const and σ is the determinant of the metric with x ¼
const and t ¼ const. The integration is performed in the
limit x → 1. For ξa ¼ δat and the result is

E ¼ 12η2q2 −ϒ
12η3

; ð17Þ

which also reproduces the mass read off from the expan-
sion, in the canonical coordinates, of gtt in the asymptotic
region. Therefore, the Euclidean on-shell action satisfies
the quantum-statistical relation

IE

β
¼ E − TS −ΦQ: ð18Þ

The computation made so far has assumed that the
boundary condition for the gauge field is δAtj∂M ¼ 0.
This implies that the conjugate potential, Φ, is fixed.
Thus, the thermodynamic potential obtained, namely,
G≡ E − TS −ΦQ, corresponds to the grand canonical
ensemble. One can construct the canonical ensemble, in
which Q is fixed instead, by performing a Legendre trans-
form in (Φ,Q), which is equivalent to adding to the action the
following boundary term:

IA ¼ 2

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
nνFμνAν; ð19Þ

giving rise to the thermodynamic potential F ≡ E − TS.
Now that we have all the thermodynamic quantities

consistently computed, one can verify that the first law of
black hole thermodynamics is satisfied,

dE ¼ TdSþΦdQ: ð20Þ

Notice that the scalar charge does not appear explicitly in
the first law as an independent term. This comes as a
consequence of the fact that this scalar field is a secondary
hair with no independent integration constant associated to
it. Explicitly, the scalar charge is Σ ¼ η−1 and, by rearrang-
ing (17), we get

E −
Q2

Σ
þ 1

12
ϒΣ3 ¼ 0; ð21Þ

and so Σ depends on the conserved charges E and Q, and
the parameter of the theory ϒ.

4Unlike AdS spacetime where counterterms for the scalar field
should be also included, in our case, there is no need of
counterterms associated to the dilaton. We discuss this point
in great detail in Appendix B.
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B. Equation of state Φ=ΦðQ; TÞ
To proceed further with the thermodynamic behavior, let us construct the equation of state Φ ¼ ΦðQ; TÞ. First, we

replace q ¼ Qη in the expressions for the thermodynamic quantities, as follows from (9). We then have the parametric
expressions

T ¼ ðxþ − 1Þ½ðη4Q2 − 1
2
η2 − 1

4
ϒÞx2þ þ ðη4Q2 − 1

2
η2 þ 1

4
ϒÞxþ − 2η4Q2�

2πηx2þ
; Φ ¼ Qηðxþ − 1Þ

xþ
; ð22Þ

where η must be isolated from the horizon equation
fðxþÞ ¼ 0. In Fig. 2, we have depicted the equation of
state for the positive and negative branch, respectively. In
both cases, we have considered the family ϒ > 0.
The equation of state contains relevant information on

the local stability. Concretely, the response function

ϵT ≡
�
∂Q
∂Φ

�
T
; ð23Þ

known as isothermal permittivity, is a measure of the
stability of the configurations against small fluctuations
of the electric charge (for more details, see [45,46]). If
ϵT > 0, the system is locally stable against electric fluc-
tuations. In both cases, the positive and negative branches
contain regions where ϵT > 0. For the negative branch (the
plot at the right-hand side of Fig. 2), the region for which
ϵT > 0 corresponds, as we are going to show in the next
section, to the region where the second relevant response
function, the heat capacity at constant electric charge, CQ

(and also CΦ), is negatively defined, indicating a thermal
instability. This is similar with the thermodynamics of RN
black hole, and so these configurations are not locally
stable.
The interesting case is for the positive branch (the plot on

the left-hand side of Fig. 2), where a novel region with
ϵT > 0 develops. This is the region A, as shown in the plot.

It looks a very small region in the phase space, but it is valid
for any Q > 0 (and T > 0). Next, we show that in this
particular region, the heat capacity is also positive, thus
fulfilling the conditions for local stability. The regions A,
B, and C are separated by the curves characterized by
ð∂Φ=∂QÞT ¼ 0 (the dotted curve that separates A from B)
and ð∂Q=∂ΦÞT ¼ 0 (the dashed curve that separates B
from C).

C. Phase diagram and local stability

The second response function relevant for the local
stability is the heat capacity, both at fixed electric charge,
CQ, and at fixed conjugate potential CΦ,

CQ ≡ T
�
∂S
∂T

�
Q
; CΦ ≡ T

�
∂S
∂T

�
Φ
: ð24Þ

Thermally stable configurations are those with CQ > 0 for
the canonical ensemble and CΦ > 0 for the grand canonical
(see Appendix A for a brief summary on the criteria for
local stability).

1. Canonical ensemble: Q fixed

In Fig. 3, we have depicted the phase diagram T − S of
the canonical ensemble for the positive (left-hand side plot)
and negative branch (right-hand side plot), respectively.

FIG. 2. Equation of state Φ −Q, for T fixed. Left-hand side: positive branch. Right-hand side: negative branch.
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As commented above, the interesting behavior occurs for
the positive branch, where we observe that CQ > 0 for both
regions, A and B. However, only in region A we have, in
addition, ϵT > 0 and, hence, only region A contains fully
locally stable configurations for the positive branch. On the
other hand, the negative branch is characterized by two
regions, according to the sign of CQ. These two regions are
separated by exactly the same curve that divides the regions
ϵT > 0 and ϵT < 0 in the Φ −Q phase space [the dashed
curve, for which ð∂Q=∂ΦÞT ¼ 0 and C−1

Q ¼ 0], and thus,
the response functions CQ and ϵT cannot be simultaneously
positive for the negative branch.

2. Grand canonical ensemble: Φ fixed

A similar analysis can be done in the grand canonical
ensemble. As shown in Fig. 4, since clearly CΦ < 0, the
black holes of the negative branch are not stable. However,
for the positive branch, we also observe that, in particular,
the region A is characterized by CΦ > 0, which also
corresponds to ϵT > 0, and so there exist black hole

solutions, which are thermodynamically stable (region B
corresponds to ϵT < 0, and so the response functions are
not simultaneously positively defined). We would also like
to point out that, for the positive branch, the stable black
holes are also globally stable, as they minimize the
thermodynamic potential, G. We are going to discuss this
point in more detail in discussion section.

III. BLACK HOLES IN EINSTEIN-MAXWELL-
GAUSS-BONNET

Let us now consider the Einstein-Maxwell-Gauss-
Bonnet action [8]

I ¼ 1

2κ

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 1

4
αRGB − F2

�
; ð25Þ

where κ ¼ 8π in the unit system where G ¼ c ¼ 1,
Fμν ¼ ∂μAν − ∂νAμ, Aμ is the gauge potential,RGB ≡ R2 −
4RμνRμν þ RμνσρRμνσρ is the GB invariant, and α is the
coupling constant with GB sector. It is convenient to

FIG. 3. T − S for fixed Q. Left-hand side: positive branch. Right-hand side: negative branch.

FIG. 4. T − S for fixed Φ. Left-hand side: positive branch. Right-hand side: negative branch.
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distinguish two branches, according to the sign of α
since they have different thermodynamic properties, as
shown below.
The equations of motion for this system are

Rμν −
1

2
Rgμν þ

1

4
αHμν ¼ κTEM

μν ; ∇μFμν ¼ 0; ð26Þ

where TEM
μν ≡ 1

4π ðFμαFν
α − 1

4
gμνF2Þ is the energy-

momentum tensor for the electromagnetic field, and

Hμν ≡ 2RμαβσRν
αβσ − 4RμσνρRσρ − 4RμσRσ

ν þ 2RRμν

−
1

2
RGBgμν: ð27Þ

The spherically symmetric black hole solution was
obtained in [47]

ds2¼−fðrÞdt2þ dr2

fðrÞþ r2dΣ2
3; Aμ ¼

�
Φ−

ffiffiffi
3

p
q

2r2

�
δtμ;

ð28Þ

where dΣ2
3 ≡ dθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2 is the line

element of the unit three-sphere, Φ is an additive constant
in the expression of gauge potential, and q is the charge
parameter. Working with this ansatz, the differential equa-
tion for fðrÞ becomes

ðr2 þ α − αfÞf0 þ 2rðf − 1Þ þ 2q2

r3
¼ 0; ð29Þ

and there exist two families characterized by ϵ ¼ �1,
which can be expressed in a compact form as

fðrÞ ¼ 1þ r2

α

�
1þ ϵ

�
1þ 2αμ

r4
−
2αq2

r6

�1
2

�
; ð30Þ

where μ is the constant of integration related to the mass.
However, only the family ϵ ¼ −1 is consistent with asymp-
totic conditions of flat spacetime, namely fðr → ∞Þ ¼
1þOðr−2Þ. The other family characterized by ϵ ¼ 1 is
not asymptotically flat, namely fðr → ∞Þ ¼ 2r2=αþ
1þOðr−2Þ. Since we are interested in asymptotically flat
spacetime, in what follows, we are going to consider the
family ϵ ¼ −1.
As in general relativity, in GB theory, the black hole

configurations can also have at most two horizons for
which fðrÞ ¼ 0,

r� ¼ 1

2

h
2μ − α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ − αÞ2 − 16q2

q i1
2
; ð31Þ

with the outer one, rþ, corresponding to the event horizon.
We would like to emphasize that the solution is regular

when 2μ − α ≥ 0; otherwise, it becomes a naked singu-
larity. Therefore, the extremal black holes exist when the
constraint ð2μ − αÞ2 ¼ 16q2 is satisfied. In this case, the
two horizons coincide (rþ ¼ r−), and so the mass param-
eter can be written as μ ¼ 2r2þ þ ð1=2Þα.
In the next section, we shall explicitly compute the

regularized quasilocal stress tensor and energy. As a
consistency check, we prove that, once an ambiguity in
the overall factor that multiplies the counterterm is fixed,
the quasilocal mass matches, indeed, the Arnowitt-Deser-
Misner (ADM) mass [48–51].

A. Euclidean action and thermodynamics

In this section, we use again the counterterm method and
quasilocal formalism of Brown and York [12] to consis-
tently compute the regularized Euclidean on-shell action,
boundary stress tensor, and energy. We verify that the
quantum-statistical relation and first law of black hole
thermodynamics are consistently satisfied. We also obtain
the Smarr formula in this nontrivial case.
The regularized action of this theory is

IE ¼ IEbulk þ IEGH þ IEct; ð32Þ

where IEbulk is the bulk part of the action given by (25), IGH
and Ict are the Gibbons-Hawking boundary term [52] and
the gravitational counterterm, respectively, with their cor-
responding extension for the GB sector,

IEGH ¼ −
1

κ

Z
∂M

d4x
ffiffiffiffiffiffi
hE

p �
K þ 1

2
αKGB

�
; ð33Þ

IEct ¼
1

κ

Z
∂M

d4x
ffiffiffiffiffiffi
hE

p �
3

2
R
�1

2

�
1þ j

9
αR

�
; ð34Þ

where h is the determinant of the induced metric hab on the
boundary ∂M, Kab ¼ ∇anb is the extrinsic curvature, with
na being the normal unit vector to ∂M, K ≡ habKab, and

KGB≡
�
2

3
KacKdbðKhcd−KcdÞþ1

3
KabðKcdKcd−K2Þ

�
hab

−2

�
Rab−

1

2
Rhab

�
Kab; ð35Þ

and R ¼ habRab is the trace of the Ricci tensor on ∂M.
For now, we use an arbitrary factor denoted by j in the

GB counterterm because the variational principle is well
defined for any j. This ambiguity can be eliminated on
physical grounds, and we are going to fix this factor in a
consistent manner later on so that the physical quantities
are well defined. A similar couterterm was used in [53] (see
also, [54,55] for GB counterterms in AdS).
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The on-shell Euclidean action in the bulk can be
written as5

IEbulk ¼
πβ

8
½r3f0 − 3αrðf − 1Þf0�jrbrþ −

3πβq2

4r2þ
; ð36Þ

where f0 ≡ df=dr, and rb is the location of the boundary.
We shall take the limit rb → ∞ at the end of the compu-
tation. Specifically, for RNGB black hole, the result for the
bulk term can be written in the compact form as

IEbulk ¼
πβ

4

�
μ −

r4þ þ 3αr2þ þ 2q2

r2þ þ α

�
: ð37Þ

The Gibbons-Hawking boundary term is6

IEGH ¼ πβ

2
ðμ − αÞ − 3πβ

4
r2b þOðr−2b Þ: ð38Þ

Observe that IEGH contains a divergent part ∝ r2b, which does
not come from the GB sector. As expected, this divergent
quantity is going to be removed with the gravitational
counterterm that turns out to be

IEct ¼ −
πβ

2

�
3

4
μ − jα

�
þ 3πβ

4
r2b þOðr−2b Þ: ð39Þ

All the divergent contributions are now canceled out, and
the final result for the Euclidean action is

IE¼ 3πβ

8
μþπβ

2
ðj−1Þα−πβ

4

�
r4þþ3αr2þþ2q2

r2þþα

�
: ð40Þ

Notice that the second term in Eq. (40), proportional to α, is
a finite contribution purely due to the GB sector. We shall
see below that, for consistency with the asymptotically flat
spacetime boundary conditions, we have to fix j ¼ 1 such
that we recover the usual ADM mass.
We now compute the quasilocal energy for this system at

spatial infinity. According to the Brown-York formalism,

Equasi ¼
Z
s3∞

d3x
ffiffiffi
σ

p
naτabξb ð41Þ

is the conserved charge associated with the time symmetry
of the metric, given by the Killing vector ξa ¼ δat , where σ

is the determinant of the metric on the three-sphere
ds2σ ¼ r2dΣ2

3, na ¼ δta=
ffiffiffiffiffiffiffiffi
−gtt

p
¼ f

1
2δta is the normal unit

to the hypersurface t ¼ constant, and τab is the boundary
stress tensor

τab≡ 2ffiffiffiffiffiffi
−h

p δI
δhab

¼ 1

κ

�
Kab−Khabþ

1

2
α

�
Q̃ab−

1

2
Q̃hab

��

−
2

κ
Ψ̃ab; ð42Þ

where

Q̃ab ≡ 3J ab þ 2KRab − 4RacKc
b þRKab − 2KcdRcadb;

Q̃ ¼ Q̃abhab; ð43Þ

and

Ψ̃ab ≡ dΨðRÞ
dR

Rab −
1

2
ΨðRÞhab;

ΨðRÞ ¼
�
3

2
R
�1

2

�
1þ 1

9
jαR

�
: ð44Þ

The components of the boundary stress tensor are

τtt ¼
f

8πr3b
½3ðr2b þ αÞf1

2 − αf
3
2 − ð2jαþ 3r2bÞ�

¼ −
1

4πr3b

�
3μ

4
þ ðj − 1Þα

�
þOðr−5b Þ; ð45Þ

τθθ ¼ −
4rbf

1
2ðf1

2 − 1Þ þ ðr2b þ α − fαÞf0
16πf

1
2

¼ −
μ2 − 4q2

32πr3b
þOðr−5b Þ; ð46Þ

where f ¼ fðrbÞ and τψψ ¼ sin2ϕτϕϕ ¼ sin2θsin2ϕτθθ.
We have now all the necessary ingredients to compute

the thermodynamic quantities. By using the formula (41),
we get

Equasi ¼
3

8
πμþ 1

2
πðj − 1Þα: ð47Þ

This expression for the energy of RNGB black hole is
consistentwith the usual statistical formula obtained from the
thermodynamic potential in the grand canonical ensemble:

E ¼
�
∂IE

∂β

�
Φ
−
Φ
β

�
∂IE

∂Φ

�
β

¼ Equasi: ð48Þ

A similar computation can be done in the canonical
ensemble as E ¼ ð∂ĨE=∂βÞQ, where [56]

5Here, β ¼ R β
0 dτ is the periodicity of the imaginary time in the

Euclidean section.
6Some intermediate results are

J abhab ¼ −
f

1
2ð3rf0 þ 2fÞ

r3
; GabKab ¼ −

3rf0 þ 6f

2r3f
1
2

;

where Gab ≡Rab − 1
2
Rhab.
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Ĩ¼ Iþ2

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−h

p
FμνnμAν→ ĨE ¼ IEþβQΦ: ð49Þ

This action is compatible with the boundary condition for
the gauge field that fixes the electric charge, which is given
by the Gauss law,

Q ¼ ϵ0

I
⋆F ¼

ffiffiffi
3

p
π

2
q; ð50Þ

and Φ≡ Atð∞Þ − AtðrþÞ ¼
ffiffi
3

p
2r2þ

q is the conjugate poten-

tial. The Hawking temperature is computed as usual by
removing the conical singularity in the Euclidean section,

T ¼ β−1 ¼ 1

4π
f0ðrþÞ ¼

r4þ − q2

2πr3þðr2þ þ αÞ : ð51Þ

Before comparing the ADM and quasilocal masses, let us
first proceed further with computing the entropy directly
from the regularized action

S ¼ −IE þ β

�
∂IE

∂β

�
Φ
¼ 1

2
π2rþðr2þ þ 3αÞ; ð52Þ

which follows from statistical mechanics, after using the
semiclassical approximation lnZ ≈ e−I

E
, where Z is the

partition function. The entropy receives a contribution from
the GB sector and can be also computed by Wald
formalism [13,57].
Before fixing j, let us first verify the quantum-statistical

relation. There is some hope that we can eliminate the
ambiguity related to j by using this relation, but since the τtt
component of the boundary stress tensor has a similar
contribution, both contributions cancel each other in the
quantum statistical relation. Concretely, we obtain7

G≡ E − TS −ΦQ ¼ 3

8
πμþ 1

2
πðj − 1Þα

−
1

4
π

�
r4þ þ 3αr2þ þ 2q2

r2þ þ α

�
¼ β−1IE; ð53Þ

and so it is satisfied for any j.
Therefore, the correct way to fix j is to compare the

quasilocal mass at spatial infinity with the ADM mass.
Once j is fixed for one specific solution, the counterterm
can be used to regularize the energy of all regular solutions
with the same boundary conditions. We emphasize that the
falloff of the GB term is very fast at the boundary, and that
is why the asymptotic flat boundary conditions are

permitted. For completeness, in Appendix C, we provide
the basic details for computing the ADMmass that matches
the holographic mass only for j ¼ 1.
We would also like to emphasize that in the limit

rb → ∞, the trace of the boundary stress tensor vanishes,

τabhab ¼
3μ

16πr3b
þOðr−5b Þ; ð54Þ

and it is covariantly conserved, τab;b ¼ 0, which is com-
patible with our solution with no matter or conical defects
at spatial infinity [58].
It is also straightforward to verify the first law of black

hole thermodynamics,

dE ¼ TdSþΦdQ: ð55Þ

The Smarr formula is

2E ¼ 3TSþ 2ΦQþ 2Bα; ð56Þ

where the last term is, in principle, consistent with an
extension of the first law, dE ¼ TdSþΦdQþ Bdα,

B≡
�
∂E
∂α

�
S;Q

¼ −
3

8
π

�
1

2
þ 3r2þ − 2μ

r2þ þ α

�
; ð57Þ

when the parameter α can vary, which is not our study case.

B. Equation of state: Q−Φ
In this section, we obtain the equation of state and study

in detail the regions where the system achieves local
stability.
The equation of state Φ ¼ ΦðQ; TÞ can be implicitly

written as

T ¼ 1

6

�
QΦ
π

�1
2 3 − 4Φ2

ΦπαþQ
: ð58Þ

In the limit α ¼ 0, the equation of state reduces to the one
of charged black hole in general relativity. For this case, it is
well known that there are no locally stable configurations as
CQ and ϵT cannot be simultaneously positive.
For the family α > 0, the isotherms T ≠ 0 in the Q −Φ

plane are characterized by being “closed,” i.e., starting and
ending at Q ¼ Φ ¼ 0, as shown in the first plot of Fig. 5.
This indicates that there is one curve, say Φ0 ¼ Φ0ðQÞ,
along which ϵT ¼ 0, and another curve, say Φ∞ ¼ Φ∞ðQÞ,
along which ϵT diverges or, alternatively, ϵ−1T ¼ 0. From the
expression of the isothermal permittivity,

ϵT ¼ Qð12παΦ3 þ 20QΦ2 þ 3παΦ − 3QÞ
ð4Φ2 − 3ÞðQ − παΦÞΦ ; ð59Þ

7We have assumed the boundary condition δAμj∂M ¼ 0 for the
gauge potential that fixes Φ (the grand canonical ensemble).
Similarly, F ≡E− TS¼ 3

8
πμþ 1

2
πðj− 1Þα− 1

2
π2rþðr2þ þ 3αÞ ¼

β−1ĨE for the canonical ensemble.
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it follows that the Φ0 ¼ Φ0ðQÞ is given implicitly by the
cubic equation

12παΦ3
0ðQÞ þ 20QΦ2

0ðQÞ þ 3παΦ0ðQÞ − 3Q ¼ 0; ð60Þ

whereas

Φ∞ðQÞ ¼ Q
πα

: ð61Þ

Because ϵT changes twice its sign along a given isotherm
T ≠ 0, we can distinguish three regions. Regions A and C
contain electrically stable configurations (ϵT > 0), and
region B contains electrically unstable ones. While region
B and C mimic the behavior for charged black holes in
Einstein-Maxwell gravity, the presence of the GB invariant,
moduled by the constant α, is responsible for new stable
configurations within region A, which consists of small
black holes characterized by Φ > Q

πα, which is equivalent
to r2þ < α.
Moreover, for α > 0, there exists a maximum allowed

temperature that depends only on α. By looking at the first
plot in Fig. 5, we can observe that, as temperature
approaches to its maximum, Tmax, the corresponding
isotherm shrinks to eventually disappears. It can be shown
but also follows from visual inspection that in the limit
T → Tmax, Φ → Q=ðπαÞ. In other words, the isotherms

tend to align with the dotted curve in Fig. 5. Replacing
Φ ¼ Q=ðπαÞ in the equation of state and then taking the
limit Q → 0 leads to

Tmax ¼
1

4π
ffiffiffi
α

p : ð62Þ

On the other hand, for α < 0, there is one special curve in
the Q −Φ phase space, namely, Φ0 ¼ Φ0ðQÞ, where
ϵT ¼ 0. This situation is depicted in the second plot of
Fig. 5. As shown next, for the α < 0 case, the region with
ϵT > 0 is thermally unstable, CQ < 0.

C. Phase diagram and local stability

1. Canonical ensemble: Q fixed

Let us focus on the case α > 0. From the equation of
state, we have that, for a given Q within the region A, the
electrically stable configuration is the one that has the
largest value of Φ. We now explicitly show that configu-
rations within region A are also thermally stable. The heat
capacity in this case is

CQ¼T

�
∂S
∂T

�
Q
¼ 3

ffiffiffiffiffiffiffiffiffiffi
πQΦ

p ðQþπαΦÞ2ð3−4Φ2Þ
2Φ2ð12παΦ3þ20QΦ2þ3παΦ−3QÞ :

ð63Þ

FIG. 5. Equation of state Φ −Q, for fixed T. Left-hand side: α ¼ 1. Right-hand side: α ¼ −1.

FIG. 6. T − S for fixed Q. Left-hand side: α ¼ 1. Right-hand side: α ¼ −1.
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It is easy to translate the curves that divide region A, B, and
C, given by (60) and (61), into the diagrams T − S, as
shown in the first plot in Fig. 6. As commented earlier,
region A contains small black holes, r2þ < α, which is
S < 2π2α

3
2. These configurations are thermally stable as

CQ > 0 and thus are locally thermodynamically stable.

2. Grand canonical ensemble: Φ fixed

The thermodynamic stability in the grand canonical
ensemble can be investigated in the same way, though the
analysis is simpler. The heat capacity for this ensemble is

CΦ ¼ 3
ffiffiffiffiffiffiffi
πQ

p ðQþ παΦÞ2
2Φ3

2ðπαΦ −QÞ : ð64Þ

Consider the case of interest, α > 0. Since region A is
characterized by Φ > Q=ðπαÞ, it immediately follows that
CΦ > 0 within this region.
Thus, we conclude that region A contains fully thermo-

dynamically stable configuration both in the canonical and
grand canonical ensembles.

IV. DISCUSSION

In this paper, we provide examples of thermodynami-
cally stable asymptotically flat black holes. We have shown
that effective theories with the dilaton and its self-
interaction, as well as gravity with GB corrections, can
allow for thermodynamic stability regions in the phase
diagram of charged static black holes.
The conserved charges of asymptotically flat black

holes are usually computed by using Hamiltonian methods
[48–51]. However, supplemented with counterterms, the
quasilocal formalism of Brown and York [12] becomes a
powerful framework for computing conserved quantities in
general relativity. The basic idea in [12] is to define a
“quasilocal” energy inside a given finite region that can be
directly derived from the gravitational action for that
specific spatially bounded region. The quasilocal energy
is the value of Hamiltonian that generates unit magnitude
proper-time translations in a timelike direction orthogonal
to spacelike hypersurfaces at some fixed spatial boundary,
and so it agrees with the ADM energy in the limit when the
spatial boundary is pushed to infinity. We emphasize,
though, that while within the ADM formalism the foliation
is made by hypersurfaces that are Cauchy surfaces such that
the data on a slice determine completely the future
evolution of the system, that is not necessary the case
for the quasilocal formalism. One important result of our
work was to obtain a consistent counterterm for GB gravity
in flat spacetime. While the variational principle is at the
basis of this construction, a relevant subtlety we had to deal
with was the existence of a finite contribution coming from
the counterterm that is related to the ambiguity in defining
its overall factor. To fix this ambiguity and construct the

general counterterm that regularizes the action, we had to
rely on the Hamiltonian formalism. Once the quasilocal
formalism is consistently supplemented with counterterms,
it can be also used for theories with higher derivative
corrections. We emphasize that, unlike in the case of Wald
formalism, we do not need to use the first law a priori, and
so the quasilocal formalism is self-consistent providing all
information about the thermodynamic behavior of the
gravitational system.
The existence of asymptotically flat hairy black holes in

theories with a scalar field potential was proposed in [59].
We made this proposal concrete by analyzing exact
solutions when the dilaton together with its potential are
present in the theory. Since in flat spacetime, the effective
potential (obtained from the self-interaction of dilaton
together with the non-trvial coupling to the gauge field)
plays the role of the local “box,” one can expect that there can
exist thermodynamically stable black holes in such theories.
This is indeed true for four-dimensional supergravity theory
with FI terms for which, interestingly, there exist exact hairy
solutions. Unlike the black holes inAdS spacetime, the small
black holes (the parameter ϒ coming from the FI sector
provide a scale in the theory) are stable. This can be
understood as follows: When the horizon radius is large,
the dilaton potential gets weaker (it vanishes at the boun-
dary), and so the large black holes are not stable, while for
small ones, the self-interaction becomes relevant acting like a
box allowing configurations in stable thermal equilibrium.
There exists a family of solutions that contains two distinct
branches, but only one branch contains thermodynamically
stable hairy black holes (see the first plot in Fig. 2 and the first
plot in Fig. 3, where the stable black holes reside within
region A, for the positive branch). The range for which these
black holes exist is close to the extremality.
Surprisingly, the charged black holes in a gravity theory

with GB corrections have a similar thermodynamic behav-
ior. As discussed in Sec. III, there is again a family of
asymptotically flat black holes with two different branches,
but only one branch contains thermodynamically stable
black holes. In this case, it seems that the GB term in the
action behaves as an “effective potential.” This can be
explicitly checked by comparing the behavior in the
asymptotic region of the VðϕÞ vs GB term:

VðϕÞ ¼ ϒ
30

ϕ5 þ ϒ
630

ϕ7 þOðϕ9Þ

¼ ϒ
30η5r5

−
3ϒ

560η7r7
þOðr−9Þ; ð65Þ

and

RGB ¼R2−4RμνRμνþRμνσρRμνσρ

¼ 72μ2

r8
−
360μq2

r10
−
336ðμ3αþq4Þ

r12
þOðr−14Þ: ð66Þ
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We observe the rapid falloff that explains, in both cases, the
existence of asymptotically flat solutions. However, in both
cases, the backreaction deep in the bulk becomes relevant.
For GB theory, the small black holes in the range close to

the extremality are again thermodynamically stable.
However, there is now an extra constraint, namely the
existence of a critical charge: Only those with Q < 1

2

ffiffiffi
3

p
πα

or, equivalently, S < 2π2α3=2 are thermodynamically sta-
ble. This can be also understood from the first plot in
Figs. 5 and 6, where we see that one zone that contains the
near-extremal black holes (those close to the horizontal
dotted curve) is within Region A (stable), but the other is in
Region B (unstable).
To summarize this striking analogy, let us concretely

emphasize which branches are relevant for the existence of
thermodynamically stable black hole configurations. For
the Einstein-Maxwell-scalar theory, stability criteria are
met when the scalar field potential has positive concavity
and is bounded from below. This occurs for one of two
families, namely the ϒ > 0 one, where ϒ is the (global)
parameter that controls the strength of the self-interaction.
Within this family, only the branch for which the scalar
field is positively defined and satisfies some particular
boundary condition contains thermodynamically stable
black hole solutions. For charged black holes in the GB
theory, stability criteria are met when the metric is
asymptotically flat. This occurs for one of the two families,
namely the one defined by ϵ ¼ −1, where ϵ ¼ �1 defines
the asymptotic structure of the metric, and, within this
family, for one of the two branches, namely the one where
α > 0, where α controls the strength of the GB correction in
the action.
To complement the thermodynamic analysis in the bulk

of the paper that was based on the equation of state, we now
briefly present an analysis of the thermodynamic potential.
We start with the GB case and focus on the case of interest,
namely α > 0. The relevant information obtained from the
equation of state can also be read off from the F −Q
diagram when T is fixed, depicted in the first plot of Fig. 7.
The locally thermodynamically stable black holes are the

ones in region A, i.e., those with the biggest value of Φ, for
a given Q < 1

2

ffiffiffi
3

p
πα. Since Φ ¼ ð∂F=∂QÞT , the stable

configurations in F −Q diagram correspond to the lowest
part of each isotherm, having the biggest slope. Also from
Fig. 7, it follows that these configurations minimize the
thermodynamic potential. From this observation, we con-
clude that locally stable black holes are also globally stable.
We shall investigate the global stability using the F − T
diagram, depicted in the second plot of Fig. 7. Since
CQ ¼ −Tð∂2F=∂T2ÞQ, it follows that locally stable con-
figurations are those satisfying ð∂2F=∂T2ÞQ < 0, which
also corresponds to the lower part of the curve, containing
again configurations minimizing F .
The thermodynamic potential for the hairy black hole

solution is depicted in Fig. 8 where we consider the positive
branch. However, the thermodynamically stable configu-
rations are present only in the positive branch, correspond-
ing to the first plot in Fig. 8. Since CQ ¼ −Tð∂2F=∂T2ÞQ,
we observe that the locally stable configurations CQ > 0

are those with negative concavity, which correspond to the
configurations that minimizes F . Therefore, in a similar
manner as we did in the GB case, we obtain that these
solutions are also globally stable.

FIG. 7. Left-hand side: F −Q for fixed T for α ¼ 1. Right-hand side: F − T for fixed Q for α ¼ 1.

FIG. 8. F − T for fixed Q, in the positive branch of the hairy
solutions.
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For completeness, we present the plots of T vs rþ for both
cases corresponding to the hairy andGBblackhole solutions.
For the hairy case, we consider rþ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩðxþÞ
p

that plays the
role of the canonical radial coordinate of the horizon (for the
positive branch, 1 < xþ ≤ ∞). This is depicted in Fig. 9,
where we observe again a clear similarity: In the presence of
electric charge, there exists a maximum value of the temper-
ature and two branches, of which the branch of small black
holes contains the stable ones.
Since there is no solution of flat spacetime with constant

charge, and unlike AdS spacetime where hairy charged
solitons were explicitly constructed in some specific cases
[34–36], making sense of the ground state in this case is not
obvious. However, as in [45], one can consider the extremal
black hole (otherwise the spacetime can collapse in a naked
singularity) as the statewith respect towhichwe compute the
energy. Therefore, to complete the analysis, let us consider
the extremal limit that is relevant for the existence of the
canonical ensemble. One can use the entropy function
formalism [60–62] to obtain the near horizon geometry of
black hole solutions in theories that are diffeomorphism and
gauge invariant. This method is based on the existence of an

enhanced AdS2 in the near horizon geometry that also plays
an important role for understanding the entropy of spinning
[62] astrophysical black holes [63]. For asymptotically flat
hairy black holes in a theory with a dilaton potential, this
analysiswas done in [6] (see also [64] for a related discussion
in a different context), and for GB charged hairy black holes,
the details can be found in [54], and sowe do not repeat them
here. We would only like to emphasize that, for the extremal
black holeswe have considered in ourwork, the entropy does
not vanish, and so these are regular solutions of the equations
of motion. In the GB case, the results can be obtained
analytically, as follows: Consider T ¼ 0 limit, namely
r2þ ¼ q, as follows from (51). By replacing this value in
the horizon equation, fðrþÞ ¼ 0 or, equivalently, in (31), we
get the following relation between the conserved charges for
the extremal black hole:

E ¼ 1

16
ð3παþ 8

ffiffiffi
3

p
QÞ; ð67Þ

and the entropy becomes

FIG. 9. Horizon temperature vs rþ for both scenarios, the hairy black hole (the plot at the left) and for the Gauss-Bonnet black hole
(the plot at the right).

FIG. 10. Entropy of extremal black hole for the hairy black holes in the positive branch. ϒ ¼ 1.
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S ¼ ð2πQÞ12
2 × 3

1
4

�
3παþ 2Qffiffiffi

3
p

�
: ð68Þ

In the hairy case, we can show, through numerical
computations, that the entropy of extremal black holes is
also positive, with its values depending of the electric
charge. It turns out that, for increasing values of Q, the
entropy of extremal hairy black hole rapidly approaches to
zero, as depicted in Fig. 10. This can be also seen from the
first plot of Fig. 3, though, from that plot and for curves
with large values of Q, it is not as easy to discern that
SðT ¼ 0Þ > 0.
While the theories are completely different, wewould like

to point out that, generally, theories with higher derivatives
fðRÞ are equivalent with theories with a scalar field and its
self-interaction [65,66]. However, this consideration cannot
be applied for our work because one theory is four-
dimensional, while the other is five-dimensional. The GB
term is trivial in four dimensions, but once it is coupled with
the scalar field, it contributes to the equations of motion, and
so we expect that the hairy black holes receive corrections.
Since wewere not able to generate exact solutions, we leave
the detailed analysis of this specific case for a future work.
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APPENDIX A: LOCAL STABILITY CONDITIONS

The local stability of equilibrium configurations follows
from demanding that heat capacity CQ ≡ Tð∂S=∂TÞQ and
isothermal permittivity ϵT ≡ ð∂Q=∂ΦÞT to be simultane-
ously positive defined. The proof follows from considering
that at stable equilibrium, the entropy has a maximum value
with respect to the entropy of the system when considering
the fluctuations. We can use the argument (see, for instance,
[67]) that, if SðE;QÞ represents the entropy before some
fluctuations in E and Q, given by δE and δQ, respectively,
then, for the configuration SðE;QÞ to be stable, the average
entropy 1

2
½SðEþ δE;Qþ δQÞ þ SðE − δE;Q − δQÞ� after

the perturbation cannot be greater than the initial one. The
same argument is valid in terms of the energy: For a given
state E ¼ EðS;QÞ to be locally stable, the average energy
after the perturbation cannot be lower than the initial one.

This gives rise to three mathematical conditions for local
stability, namely

�
∂
2E
∂S2

�
Q

�
∂
2E

∂Q2

�
S
−
��

∂

∂S

�
Q

�
∂E
∂Q

�
S

�
2

> 0;

�
∂
2E
∂S2

�
Q
> 0;

�
∂
2E

∂Q2

�
S
> 0: ðA1Þ

Consider the canonical ensemble, for which the thermo-
dynamic potential is F ¼ E − TS. For infinitesimal
changes in its thermodynamics, we can describe the system
by dF ðT;QÞ ¼ −SdT þΦdQ, and it can be shown, using
the standard thermodynamic relations, that the conditions
(A1) can be written in terms of F and, indeed, can be
reduced to only two independent requirements:

CQ ¼ T

�
∂S
∂T

�
Q
¼ −T

�
∂
2F
∂T2

�
Q
> 0; ðA2Þ

ϵT ¼
�
∂Q
∂Φ

�
T
¼

�
∂
2F
∂Q2

�−1

T
> 0; ðA3Þ

where we have used S ¼ −ð∂F=∂TÞQ andΦ ¼ ð∂F=∂QÞT .
In the grand canonical ensemble, it can be shown that

stability also follows from analyzing the concavity of the
thermodynamic potentialG. In this case,G ¼ E − TS −ΦQ,
the first law takes the form dGðT;ΦÞ ¼ −SdT −QdΦ, and
the relevant response function for local stability in this case is

CΦ ≡ T

�
∂S
∂T

�
Φ
¼ −T

�
∂
2G
∂T2

�
Φ
> 0; ðA4Þ

where S ¼ −ð∂G=∂TÞΦ.

APPENDIX B: DILATON COUNTERTERMS
IN ADS VS FLAT SPACETIME

Let us consider the Einstein’s equation derived from
Einstein-Maxwell-scalar gravity (1), but now with the
general potential (see, e.g., [68] where the extremal limit
was also discussed)

VðϕÞ ¼ 2Λ
3

ð2þ coshϕÞ þ 2ϒð2ϕþ ϕ coshϕ − 3 sinhϕÞ;
ðB1Þ

which contains the cosmological constant Λ. We now
consider the asymptotically AdS solution, for which the
limit Λ → 0 leads to the asymptotically flat solution,

ds2 ¼ ΩðxÞ
�
−fðxÞdt2 þ η2dx2

x2fðxÞ þ dθ2 þ sin2θdϕ2

�
; Aμ ¼

�
Φ −

qðx − 1Þ
x

�
δtμ; ðB2Þ
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where

ΩðxÞ ¼ x
η2ðx − 1Þ2 ; fðxÞ ¼ −

Λ
3
þϒ

�
x2 − 1

2x
− ln x

�
þ η2ðx − 1Þ2

x

�
1 −

2ðx − 1Þq2
x

�
: ðB3Þ

By taking the trace of the Einstein’s equation, we can use the relation R ¼ 1
2
ð∂ϕÞ2 þ 2V to simplify the bulk part of the

action that yields

Ibulk ¼
1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − eϕF2 − VðϕÞ

�
¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ½VðϕÞ − eϕF2�: ðB4Þ

The on-shell Euclidean action is

IEbulk ¼
1

4
β

Z
xb

xþ
dx

�
2ηΩðxÞ

x
−
ðxfðxÞΩ0ðxÞÞ0

η

�
: ðB5Þ

Together, the bulk part and Gibbons-Hawking boundary term add up to

IEbulk þ IEGH ¼ β½ð12η2q2 −ϒÞðxþ − 1Þ − 6η2ðxþ − 3Þ�
24η3ðxþ − 1Þ −

βð6η2 − ΛÞ
6η3ðxb − 1Þ þ

βΛ
2η3ðxb − 1Þ2 þ

βΛ
3η3ðxb − 1Þ3 ; ðB6Þ

where xb → 1 is the boundary location. We note that there are three divergent terms proportional withΛ that are not going to
survive for the asymptotically flat solution when the cosmological constant vanishes. The gravitational counterterm
required to remove the divergences is specific to the flat and AdS spacetimes. For asymptotically flat spacetime, the
gravitational counterterm is

IEctðflatÞ ¼
1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
jhj

p ffiffiffiffiffiffiffiffiffiffiffi
2Rð3Þ

p
¼ β

ηðxb − 1Þ −
βð12η2q2 − 6η2 −ϒÞ

12η3
þOðxb − 1Þ: ðB7Þ

It is clear that the counterterm for asymptotically flat spacetime perfectly cancels the only divergence coming from
Ibulk þ IGH whenΛ ¼ 0. The total action for flat spacetime satisfies the quantum-statistical relation β−1IE ¼ E − TS −ΦQ,
as shown in Sec. II.
Now, the gravitational counterterm for asymptotically AdS spacetime is

IEct;ðAdsÞ ¼
1

κ

Z
∂M

d3x
ffiffiffi
h

p �
2

l
þ l

2
Rð3Þ

�
ðB8Þ

¼ βðΛþ 4ϒþ 24η2 − 48η2q2Þ
48η3

þ βð8η2 − ΛÞ
8η3ðxb − 1Þ −

βΛ
2η3ðxb − 1Þ2 −

βΛ
3η3ðxb − 1Þ3 ; ðB9Þ

whereΛ ¼ −3=l2. For the AdS case, the divergence coming from Ibulk þ IGH are not completely canceled by (B9), and one
of the terms ∝ ðxb − 1Þ−1 survives. Concretely,

IEbulk þ IEGH þ IEct;ðAdsÞ ¼
β½12η2ðxþ þ 1Þ þ ðΛþ 2ϒ − 24η2q2Þðxþ − 1Þ�

48η3ðxþ − 1Þ þ βΛ
24η3ðxb − 1Þ ; ðB10Þ

and the remaining divergent term is canceled by the contribution from the scalar field counterterm [69,70] (consistent with
the Hamiltonian formalism [71,72])

IEϕ ¼ 1

2κ

Z
∂M

d3x
ffiffiffi
h

p �
ϕ2

2l
þWðϕÞ

lA
ϕ3

�
¼ −

βΛ
24η3ðxb − 1Þ −

βΛ
48η3

; ðB11Þ

where ϕðrÞ ¼ A=rþ B=r2 þ � � �, r ¼ ffiffiffiffiffiffiffiffiffiffi
ΩðxÞp

, and B ¼ dWðAÞ=dB (in this case, B ¼ 0 and W ¼ 0). The total action also
satisfies the quantum-statistical relation, β−1IE ¼ E − TS −ΦQ, where IE ¼ IEbulk þ IEGH þ IEct;ðAdsÞ þ IEϕ.
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APPENDIX C: ADM MASS IN D= 5 DIMENSIONS

Let us employ the ADM formalism, which is as follows:
First, consider a generic equation of motion for GB gravity

Rμν −
1

2
Rgμν þ

1

4
αHμν ¼ κTμν; ðC1Þ

where Tμν is a generic energy-momentum tensor. It is
convenient to rewrite it as

Rμν þ
1

4
α

�
Hμν −

1

3
Hgμν

�
¼ κT̄μν; ðC2Þ

where H ≡ gμνHμν and T̄μν ¼ Tμν − 1
3
Tgμν, T ¼ gμνTμν.

Now, we expand the left-hand side for a small perturbation,
gμν ¼ ̊gμν þ hμν, where jhμνj ≪ 1 is the perturbation around
a background spacetime, ̊gμν. The left-hand side of (C2)
expands as − 1

2
□hμν þOðh2Þ when the harmonic gauge

condition is considered,

∇̊μ

�
hμν −

1

2
̊gμνh

�
¼ 0; ðC3Þ

where h ¼ ̊gμνhμν. Since jhμνj ≪ 1, we consider the non-
relativistic limit, under which □hμν ≈∇2hμν, T ≈ −T00. In
this limit, we have the Poisson equation

∇2hμν ¼ −2κT̄μν: ðC4Þ

The solution to (C4) can be expressed as

hμνðxiÞ ¼
κ

A

Z
T̄μνðyiÞd4y
jx − yj2 ; ðC5Þ

where A ¼ R
π
0 sin2θdθ

R
π
0 sinϕdϕ

R
2π
0 dψ ¼ 2π2 is the area

of the unit three-sphere. We obtain

∇2
xhμνðxiÞ ¼

κ

A

Z
T̄μνðyiÞd4y∇2

x

�
1

jx − yj2
�
: ðC6Þ

Notice that

Z
V
∇2

�
1

r2

�
dV¼

I
S
∇
�
1

r2

�
dS¼−

2

r3

I
S
dS¼−2A; ðC7Þ

where
H
S dS ¼ Ar3 is the area of the three-sphere of

radius r. Therefore,

∇2
x

�
1

jx−yj2
�
¼−2Aδ4ðx−yÞ→∇2

xhμνðxiÞ

¼−2κ
Z

T̄μνðyiÞδ4ðx−yÞd4y¼−2κT̄μνðxiÞ;

ðC8Þ
which is consistent with (C5).
Now, to get the ADM mass, MADM, one must identify

MADM ¼ R
T00d4x. By expanding h00 from (C5) for the

asymptotic region, jxj ≫ jyj, we obtain

h00ðxiÞ ¼
κ

A

�
1

r2

Z
T̄00d4yþOðr−4Þ

�
; ðC9Þ

¼ κ

A

�
1

r2

Z �
T00−

1

3
g00T

�
d4yþOðr−4Þ

�
; ðC10Þ

¼ κ

A

�
2

3r2

Z
T00d4yþOðr−4Þ

�
; ðC11Þ

¼ 2κMADM

3Ar2
þOðr−4Þ: ðC12Þ

Therefore, the ADMmass can be directly read by obtaining
h00 from expanding g00,

MADM ¼ 3

8
πr2h00; ðC13Þ

where we have replaced κ ¼ 8π and A ¼ 2π2. For the GB
metric (30), we asymptotically expand gtt to read h00
around the flat spacetime,

g00 ¼ −1þ μ

r2
þOðr−4Þ; h00 ¼

μ

r2
; ðC14Þ

Therefore, only for j ¼ 1, we consistently obtain

MADM ¼ Equasi ¼
3

8
πμ; ðC15Þ

and so (34) with j ¼ 1 is the correct counterterm that is
going to regularize the Euclidean action for any solution
with the same boundary conditions.
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