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In this work, we delve into the model of the shift symmetric and parity-preserving beyond Horndeski
theory in all its generality. We present an explicit algorithm to extract static and spherically symmetric black
holes with primary scalar charge adhering to the conservation of the Noether current emanating from the
shift symmetry. We show that when the functionalsG2 andG4 of the theory are linearly dependent, analytic
homogeneous black-hole solutions exist, which can become regular by virtue of the scalar charge
contribution. Such geometries can easily enjoy the preservation of the weak energy conditions, elevating
them into healthier compact objects than most hairy black holes in modified theories of gravity. Finally, we
revisit the concept of disformal transformations as a solution-generating mechanism and discuss the case of
generic G2 and G4 functionals.
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I. PROLOGUE

The “no-hair” theorem, also known as the “uniqueness
theorem” in the context of black holes (BH) [1–9], is a
fundamental concept in general theory of relativity (GR).
This theorem essentially states that all black holes can be
described by just three externally observable quantities,
regardless of their initial conditions or the nature of the
matter that formed them. These quantities are: the total
mass M of the black hole, the angular momentum J,
representing the rotation or spin of the black hole, and the
electromagnetic charge ðQ;PÞ of the black hole, although
astrophysical black holes are generally considered to be
nearly electromagnetically neutral.
The “no-hair” theorem suggests that these three param-

eters uniquely define the entire spacetime geometry of a
black hole. In other words, any black hole with the same
values of mass, angular momentum, and electric charge will
have the same external properties, such as its event horizon
and gravitational effects, regardless of its formation process
or initial conditions. This simplicity is metaphorically
referred to as a black hole having “no hair,” indicating
its characterization by only a limited set of observable
quantities.
General relativity, however, is commonly acknowledged

as an effective theory applicable only within the realm of
low energies. A plethora of cosmological observations
indicates instances where GR exhibits limitations, with

the most notable challenges being the dark energy problem
and GR’s inability to account for the inflationary epoch in
our universe. Consequently, such observations motivate us
to explore modified gravitational theories. Over the last few
decades, numerous such theories have been formulated;
however, among the most elementary and extensively
studied ones are the scalar-tensor (ST) theories. These
theories introduce an extra scalar degree of freedom
through the presence of a scalar field, which can be either
minimally or nonminimally coupled with gravity. Given
that a considerable number of modified and higher-dimen-
sional gravitational theories reduce to scalar-tensor theories
under specific conditions, ST theories offer a highly
conducive framework for exploring innovative concepts
and novel spacetime configurations. Among ST theories,
the most comprehensive theory featuring a single real scalar
field and producing second-order field equations is
Horndeski theory [10]. Recent extensions of Horndeski
theory have been devised to handle higher-order field
equations without introducing undesirable ghost degrees
of freedom. A particular example of such a theory is beyond
Horndeski theory [11,12], which will also occupy us in this
article.
In a manner analogous to GR, no-scalar-hair theorems

[2–4] have also been developed for ST theories. These
theorems, under certain conditions, impose constraints that
prevent black holes from possessing scalar hair—an addi-
tional physical quantity arising from the existence of the
scalar field in the theory. However, shortly after their
formulation, it became evident that these no-scalar-hair
theorems could be evaded. Consequently, an abundance
of black holes with scalar hair emerged in the scientific
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literature. These include black holes in ST gravities [13–36],
in Gauss-Bonnet and Chern-Simons gravities [37–51], black
holes under Abelian and non-Abelian vector fields [52–75],
and other local solutions stemming from theories of higher
or lower spacetime dimensionality [76–84].
It is important to clarify at this point, that the scalar hair

characterizing a black hole can be distinguished in primary
and secondary. In the context of a ST theory, primary scalar
hair/charge can be defined as the physical quantity that
characterizes the black hole in addition to its mass, angular
momentum, and electric charge. In this case, the scalar hair/
charge is directly related to an internal symmetry of the
theory which consequently leads to the existence of a
Noether current [85]. Especially within the framework of
beyond Horndeski theory, in Sec. II, we will see precisely
how the primary charge is defined and evaluated. On the
other hand, the secondary hair refers to modifications in the
black hole’s metric, where despite the inclusion of addi-
tional nontrivial fields beyond electromagnetism, the entire
configuration is still entirely determined by the black hole’s
mass, angular momentum, and electric charge.
Until recently, no explicit black holes with primary hair

had been discovered in single-field scalar-tensor theories. A
few other examples exist in the context of other theories
[86–88], while several black holes with secondary scalar
hair have been more easily constructed, bypassing the no-
scalar-hair theorem(s). In general, the complexity of scalar-
tensor theories seldom allows for exact analytical local
solutions. However, by imposing additional symmetries in
the underlying gravitational action, exact solutions may be
derived. This is the case for shift-symmetric and parity-
preserving beyond Horndeski theory. In such a framework,
the fact that the action depends solely on derivatives of
the scalar field allows the scalar field to be linearly
dependent on the time coordinate while preserving compat-
ibilitywith a staticmetric ansatz.Making use of this concept,
the existence of black holes with primary scalar hair in
shift-symmetric and parity-preserving beyond Horndeski
gravities was recently proven [85]. Following on this, black
holeswith primary hairwere also studied in [89] for arbitrary
spacetime dimensions, where Maxwell fields and Lovelock
corrections in the action were also considered.
In this work, we are also focusing on the framework

of the shift-symmetric and parity-preserving beyond
Horndeski theory in all its generality. We present a way
to extract homogeneous static and spherically symmetric
black-hole solutions with primary charge in a semi-agnostic
subclass of beyond Horndeski gravity, described by a linear
dependence of the G2 and G4 functionals under the
reasonable assumption that the theories yield a smooth
limit to general relativity. We prove that such solutions can
always become regular at a critical value of the black hole
ADM mass by virtue of the primary charge contribution.
Moreover, we have verified that such configurations can
always be fixed to respect the weak energy conditions, thus

elevating our local solutions to healthier compact objects in
comparison to most hairy black holes in Horndeski gravity.
An important result of this analysis is that in the generic
subclass that we are working on, a canonical kinetic term in
the action will in general always yield solid deficit angles.
We have shown that in order to avoid such pathologies, a
pure disformal transformation is sufficient to result in
inhomogeneous configurations with correct Minkowski
asymptotics. Motivated by this result, we discuss the case
of wormhole solutions in the generic beyond Horndeski
gravity sourced by the primary charge and present indica-
tive arguments that such solutions cannot naturally exist if
the seed action is well defined, i.e. possesses a correct GR
limit. Finally, we delve into the case of generic G2 and G4

functionals. Due to the sheer number of degrees of freedom
of the problem, we focus on theories yielding homo-
geneous solutions and fix the kinetic term of the scalar
field, X ¼ − 1

2
∂μΦ∂

μΦ, to be expressed as a polynomial
equation of the radial coordinate, having also a smooth
limit to GR vacuum solutions. To this end, we are primarily
focused on the strength of the algorithm presented here,
which can be used to obtain new explicit local solutions,
rather than examining in detail the solutions.
This work is organized as follows: In Sec. II, we outline

the general theoretical framework on which this article is
focused. In Secs. III and IV, we investigate homogeneous
black-hole solutions and disformal transformations respec-
tively. Section V extends the methodology to more generic
beyond Horndeski theories, while the conclusions and
future directions of research are presented in Sec. VI.

II. THE GENERAL FRAMEWORK

We begin our analysis by first providing the generic
shift-symmetric and parity-preserving beyond Horndeski
theory under consideration, whose action in geometrized
units (c ¼ G ¼ 1) reads

S ¼
Z

d4x
ffiffiffiffiffijgjp

16π
½G4ðXÞRþ G4X½ð□ΦÞ2 −Φ;μνΦ;μν�

þ G2ðXÞ þ F4ðXÞϵμνρσϵαβγσ Φ;μΦ;αΦ;νβΦ;ργ�; ð2:1Þ

where Φ;μ ≡ ∂μΦ, Φ;μν ≡∇μ∂νΦ, X ≡ − 1
2
∂
μΦ∂μΦ is the

kinetic term of the scalar field, and

Φðt; rÞ ¼ qtþ ΨðrÞ: ð2:2Þ

Note that the linear time dependence in the expression of
the scalar field Φ is allowed due to the shift symmetry of
the considered Lagrangian density, while the parameter q
has dimensions ½L�−1, where ½L�≡ ðlength unitsÞ, since the
scalar field is dimensionless. Also, the internal shift
symmetry of the theory (2.1) results in the existence of
a Noether current which is given by
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J ¼ Jμdxμ; Jμ ¼ 1ffiffiffiffiffijgjp δS
δð∂μΦÞ ; ð2:3Þ

while the equation of motion regarding the scalar field is
expressed as ∇μJμ ¼ 0. This results in a primary scalar
charge which is related to the parameter q and is given by

Qs ¼
1

N

Z
⋆J; ð2:4Þ

where the ⋆ operator is the Hodge dual, N is a normali-
zation constant and Jr ¼ 0.
Throughout the current article, we will be occupied by

static and spherically symmetric spacetime configurations,
hence, the line element is of the form

ds2 ¼ −hðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð2:5Þ

with dΩ2 ¼ dθ2 þ sin2 θdϕ2. The variation of the action
functional (2.1) with respect to the metric tensor and the
scalar field leads us to the field equations of the theory.
Utilizing the results of [35,66,85], for the metric ansatz
(2.5) and the expression (2.2) for the scalar field, the
resulting independent field equations can be brought to the
following form:

f
h
¼ γ2

Z2
; ð2:6Þ

r2ðG2ZÞX þ 2ðG4ZÞX
�
1 −

q2γ2

2Z2X

�
¼ 0; ð2:7Þ

2γ2
�
hr −

q2r
2X

�0
¼ −r2G2Z − 2G4Z

�
1 −

q2γ2

2Z2X

�

þ q2γ2X0r
ZX2

ð2XG4X −G4Þ: ð2:8Þ

In the above, prime denotes differentiation with respect to
r, the subscript X denotes differentiation with respect to the
kinetic term, while ZðXÞ is an auxiliary function which
allows us to write the field equations in a more compact
way and is defined as

ZðXÞ≡ 2XG4X −G4ðXÞ þ 4X2F4ðXÞ: ð2:9Þ

For the derivation of the above equations we also used the
relation

X ¼ 1

2

�
q2

h
− fΨ02

�
: ð2:10Þ

Therefore, given the theory and the functional form of
G2ðXÞ, G4ðXÞ, and F4ðXÞ, the above equations can be

solved for the three unknown functions hðrÞ, fðrÞ,
and ΨðrÞ.
Focusing on Eq. (2.7), we observe that it is an algebraic

equation for X, while (2.8) is a first-order differential
equation for the metric function hðrÞ. This implies that
for most choices of G2, G4, and F4, the system can yield a
solution, even in an integral form. However, selecting
arbitrary forms for the aforementioned functions does
not guarantee that the solution will possess the desired
characteristics to describe a compact object. Nevertheless,
the form of the equations enables us to derive a straightfor-
ward algorithm regarding the selection of coupling func-
tions and the construction of solutions. Before we proceed
with the description of the algorithm, we note that the
choice

ðG2ZÞX ¼ ΞðG4ZÞX; ð2:11Þ

with Ξ ¼ ΞðXÞ a new auxiliary function, brings Eq. (2.7) in
a much more meaningful form, namely

XZ2ð2þ r2ΞÞ − q2γ2 ¼ 0: ð2:12Þ

The algorithm consists of the following steps. First, the
decision is made on whether the solution will be homo-
geneous or not. From Eq. (2.6), it is observed that a
constant value of Z leads to a homogeneous solution, while
a nontrivial form of Z results in a nonhomogeneous
solution. Subsequently, the function Ξ is chosen to solve
Eq. (2.12) with respect to X. The selection of Ξ ensures that
X exhibits the desired characteristics. Once Z and Ξ are
chosen, a form for G2 is selected, and Eq. (2.11) yields G4

(or vice versa). Finally, Eq. (2.8) is solved to find the
functional form of h.
Throughout this work, we will mainly focus on theories

that lead to the following expression for the kinetic term of
the scalar field

X ¼ βq2

2β þ αr2
; ð2:13Þ

while the generic case will be tackled in Sec. V. The
constants β and α are related to the coupling constants
of the theory. The specific form of X exhibits constant
asymptotics at both r ¼ 0 and infinity, a characteristic
commonly associated with well-behaved solutions for
compact objects. Moreover, this particular selection typi-
cally results in analytical solutions for the metric function
hðrÞ. Additionally, it is noteworthy that constructing a
nonhomogeneous solution is always possible by applying a
disformal transformation to a homogeneous solution (see
Sec. IV). Consequently, our emphasis will predominantly
be on the scenario where Z is a constant, leading to
homogeneous solutions.
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III. HOMOGENEOUS SOLUTIONS

For simplicity, we start our analysis by setting Ξ to
be constant. Pertaining now to homogeneous solutions,
i.e., hðrÞ ¼ fðrÞ and Z ¼ γ, it is interesting to observe
that the proportionality between G4ðXÞ and G2ðXÞ makes
Eq. (2.12) trivially solvable for X (this property is also
discussed in [89] for arbitrary dimensions).1 Hence, by
assumingG2 ¼ αSðXÞ andG4ðXÞ ¼ ζ þ βSðXÞ, Eq. (2.12)
always yields to X ¼ βq2

2βþαr2. In order to be sure that X is

everywhere regular, we set α ¼ 2β=λ2 obtaining

X ¼ q2

2

1

1þ ðr=λÞ2 : ð3:1Þ

Given the action (2.1), it is straightforward to deduce that
the function G2 has dimensions ½L�−2, ½G4� ¼ ½Z� ¼ 1,
while ½F4� ¼ ½L�4. Consequently, by assuming that the
function SðXÞ is dimensionless, we can readily infer the
dimensionality of the coupling constants, i.e. ½α� ¼ ½L�−2,
½ζ� ¼ ½β� ¼ ½γ� ¼ 1, and ½λ� ¼ ½L�. We can now directly
integrate (2.8) and obtain the expression for the metric
function hðrÞ, which is given by

hðrÞ ¼ 1þ C
r
þ
�
1þ ζ

γ

�
r2

λ2
þ 2β

γλ2
1

r

Z
r2ðS − 2XSXÞdr:

ð3:2Þ

In order to have a well-defined theory, it is natural to
assume that the function SðXÞ is analytic in X. To further
generalize the framework, we extend upon the notion of
analytic functions and incorporate the cases that are finite at
X → 0 (when q → 0), but not necessarily differentiable at
that point. To this end, we can express the function SðXÞ in
a power series in the following way:

SðXÞ ¼
X∞
n¼0

cn
s
X

n
s; s∈Zþ; ð3:3Þ

where in accordance to the preceding discussion,
½cn

s
� ¼ ½L�2ns . We have included the parameter s to allow

for the examination of any positive rational exponent of X,
something that will prove useful below. Note also that one
may consider finite terms in the above expansion by
selectively fixing the desired constants cn=s to zero. By
substituting (3.3) into (3.2) and utilizing the interchange-
ability of summation and integration, we are led to

hðrÞ ¼ 1þ C
r
þ
�
1þ ζ

γ
þ 2β

3γ
c0

�
r2

λ2

þ 2β

3γ

r2

λ2
X∞
n¼1

cn
s

�
1 −

2n
s

��
q2

2

�
n=s

× 2F1

�
3

2
;
n
s
;
5

2
;−

r2

λ2

�
: ð3:4Þ

In the above, the expression of the hypergeometric function
with a negative argument and an absolute value greater
than unity may initially appear erroneous. However, it
actually constitutes a more concise representation of a
rigorously defined hypergeometric function, as it adheres to
the following relation

2F1

�
3

2
;
n
s
;
5

2
;−

r2

λ2

�
¼

�
1þ r2

λ2

�
−n=s

× 2F1

�
n
s
; 1;

5

2
;

1

1þ λ2=r2

�
:

Note also, that the preceding relation stems from the Pfaff
transformation

2F1ða; b; c; zÞ ¼ ð1 − zÞ−b2F1

�
b; c − a; c;

z
z − 1

�
:

In the asymptotic regime, r → þ∞, the metric function
takes the form

hðrÞ ¼ 1þ 1

r

�
Cþ λβ

ffiffiffi
π

p
2γ

X∞
n¼1

cn
s

�
1−

2n
s

��
q2

2

�
n=sΓðns− 3

2
Þ

ΓðnsÞ
�

þ
�
1þ ζ

γ
þ 2β

3γ
c0

�
r2

λ2
þ 2β

3γ

X∞
n¼1

cn
s

�
q2

2

�
n=s

�
λ

r

�
2n=s

×

��
1− 2n

s

1− 2n
3s

�
r2

λ2
−
3n
s
þO

�
1

r2

��
: ð3:5Þ

It is obvious from the above expression that the second
term will contribute to the ADM mass of the compact
object, while an additional contribution to the ADM mass
comes from the bottom-line summation in the case where
2n=s ¼ 1. The third term decides whether the spacetime is
asymptotically flat or not. In the context of this article, we
are interested in asymptotically flat compact-object solu-
tions and therefore henceforth we set c0 ¼ 0 and ζ ¼ −γ to
always have Minkowski asymptotics. In addition to
what we already mentioned, one has to verify that the
bottom-line summation does not generate global-monopole
terms [90,91] and that the ADM mass is finite everywhere.
Consequently, one has to set c1 ¼ 0 in order to make the
monopole configurations to vanish from the last summa-
tion. As for the terms in the first summation, one has to
cancel all the terms—through the constants cn=s—that

1For nonhomogeneous solutions with primary scalar hair in the
context of shift-symmetric and parity-preserving pure Horndeski
theory with Ξ ¼ const the reader is referred to the Appendix.
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make the Gamma functions blow up. Moreover, from the
expansion of the metric function at r → 0, i.e.

hðrÞ ¼ 1þ C
r
þ 2β

3γ

r2

λ2
X∞
n¼1

cn
s

�
1 −

2n
s

��
q2

2

�
n=s

×
�
1 −

3n
5s

r2

λ2
þOðr4Þ

�
; ð3:6Þ

it is straightforward to deduce that in order to obtain regular
black-hole and soliton configurations, it is mandatory to set
C ¼ 0, which, as previously mentioned, does not cancel out
the effective ADM mass term.
Let us now evaluate the scalar charge that accompanies

the solutions described by the metric function (3.4). To this
end, we need first to compute the components of the
Noether current Jμ and then make use of the defining
relation (2.4) for the scalar charge. By doing so, we obtain

Jμ ¼
�
−

4βq
r2 þ λ2

SX; 0; 0; 0

�
; ð3:7Þ

Qs ¼
1

N

Z
⋆J ¼ 4π

N

Z
r2Jtdr

¼ 8π3=2β

N
λ

q

X∞
n¼1

cn
s

n
s

�
q2

2

�
n=s Γðns − 3

2
Þ

ΓðnsÞ
; ∀ n

s
>

3

2
:

ð3:8Þ
It is crucial to observe that both the asymptotic expansion
of the metric function and the expression for the scalar
charge yield identical constraints on the permissible values
for the parameter n=s. Examining (3.5) and (3.8), it is
evident that both the ADM mass and the scalar charge Qs
become undefined for those instances of n=s where the
Gamma functions reach infinity. Consequently, regardless
of the chosen value for s, any constant cn=s with n=s ≤ 3=2
must be set to zero.
Having established the permissible nonzero values for

the constants cn=s within a given ansatz, we can proceed to
examine specific examples that hold particular significance.
To begin, when s ¼ 1, the function SðXÞ, as provided in
(3.3), represents the expansion of an analytic function in
terms of X, thus, for any given function, the solution will
invariably be described by (3.4). Also, according to the
preceding discussion, we know that in every case, the term
c1X must be excluded from the expansion. For example,
one can readily consider a theory that is characterized by
the function SðXÞ ¼ aX − eaX, or any other similar combi-
nation of a canonical kinetic term and an analytic function.
Furthermore, considering cases with s ≠ 1, the theory can
be naturally extended. Notably, the case s ¼ 2 holds
particular interest because, in addition to its capacity to
describe any analytic function, it incorporates terms of the
form X

2kþ1
2 for k∈Z≥. What is interesting here is the fact

that for all these terms, the hypergeometric function in (3.4)

will take the form 2F1ð32 ; 2kþ1
2

; 5
2
;− r2

λ2
Þ which can always be

written in a closed form.
Before we investigate the case s ¼ 2 more thoroughly, it

is important to note that compact-object solutions described
by (3.4) can easily respect the weak energy conditions
(WEC), as opposed to many hairy black-hole solutions in
modified gravities. Indeed, considering a normalized time-
like vector l, the WEC read

Tμνlμlν ¼ −
2βc0 þ 3ðγ þ ζÞ

γλ2
þ 2β

γλ2
X∞
n¼1

cn
s

�
q2

2

�n
2

�
2n
s
− 1

�

×

�
1þ r2

λ2

�−n
s ð3:9Þ

As can be immediately verified, the weak energy conditions
will be respected for such configurations, assuming an
appropriate fixing of the coupling constants in the action.
Indeed, omitting the cosmological constant c0 and setting
ζ ¼ −γ ¼ 1 to yield correct Minkowski asymptotics and a
unitary coupling to the Ricci scalar, the positivity of the
above expression can be easily enforced by the choice
β
P∞

n¼1 cn
s
< 0 under s ≤ 2. The reasoning behind that is

that such configurations are dominated by the tangential
pressure of the effective perfect fluid. This lies in agreement
with the findings of [92], where it was shown that there are
two distinct ways to bypass the violation of the energy
conditions for hairy and spherically symmetric black holes,
depending on the homogeneity of the geometry. Our result
falls in the first case, where the radial pressure of the perfect
fluid is dominated by the corresponding tangential pres-
sure, while the second case applies only to inhomogeneous
black holes.
Let us now delve into the s ¼ 2 case. From the preceding

discussion we already know that in order to have an
asymptotically flat solution with well-defined ADM mass
and scalar charge, we need to impose ζ ¼ −γ and
c0 ¼ c1=2 ¼ c1 ¼ c3=2 ¼ 0. The first nonzero term in the
expansion (3.3) corresponds to n=s ¼ 2, for which one
finds that

hðrÞ ¼ 1þ C
r
−
3βc2q4

4γ

�
arctanðr=λÞ

r=λ
−

1

1þ ðr=λÞ2
�
:

ð3:10Þ
This black-hole solution was recently discovered in [85],
representing the inaugural instance of a solution featuring
primary scalar hair in beyond Horndeski theory. Hence, to
obtain a new solution we have to go beyond n=s ¼ 2. The
next term that we can consider is n=s ¼ 5=2 for which we
obtain

hðrÞ ¼ 1 −
2M
r

þ
ffiffiffi
2

p
βc5

2
q5

3γ

λ

r
−

ffiffiffi
2

p
βc5

2
q5

3γ

r2=λ2

ð1þ r2=λ2Þ3=2 :

ð3:11Þ
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Note that in the aforementioned expression, we have
chosen C ¼ −2M þ ffiffiffi

2
p

βc5
2
λq5=ð3γÞ to ensure that the

parameter M corresponds to the ADM mass. Notice that
by choosing M=λ ¼ βc5

2
q5=ð3 ffiffiffi

2
p

γÞ the 1=r term in the
above expression vanish identically. In this scenario, the
solutions described by the metric function hðrÞ could vary
from regular black holes to solitons, as shown in Fig. 1(b).
It is also important to mention that in this case, our solution
mimics at a very good extent the Bardeen solution [93] of
nonlinear electrodynamics. On the other hand, allowing the
1=r term results in solutions ranging from singular black
holes to naked singularities, see Fig. 1(a). All parameters
depicted in Fig. 1 are dimensionless. Finally, notice that for
the chosen values of the parameters, the horizon radii of the
singular black holes [Fig. 1(a)] reside at rh ≈ 2M, while the
regular black holes [Fig. 1(b)] have rh > 2M. This means
that the regular black-hole solutions have a larger horizon
radius than the corresponding Schwarzschild black hole of
the same mass. Given the values of the theory parameters,
one can readily deduce whether the resulting black hole has
a greater or lower horizon radius compared to that of a
Schwarzschild black hole, by simply substituting the value
r ¼ 2M in the expression (3.11) and determine the sign of
hð2MÞ. By doing so, one finds that

hð2MÞ ¼
βc5

2
q5

3
ffiffiffi
2

p
γ

λ

M

�
1 −

8M3

λ3

�
1þ 4M2

λ2

�−3=2�
: ð3:12Þ

A black-hole solution with hð2MÞ > 0 will be more sparse
than the corresponding Schwarzschild black hole of the
same mass, while for hð2MÞ < 0 the resulting solution will
be more compact than the Schwarzschild one. We note that
one may easily verify the existence of a critical value

mc ≈ 0.393076 such that hð2MÞ ¼ 0 for M=λ ¼ mc,
hð2MÞ > 0 for M=λ < mc and hð2MÞ < 0 for M=λ > mc.
A key insight drawn from the preceding analysis is that

within the realm of shift-symmetric and parity-preserving
beyond Horndeski theories, particularly in cases where the
functions G4ðXÞ and G2ðXÞ exhibit proportionality, we
have successfully devised a comprehensive algorithm that
enables the explicit derivation of compact-object solutions
with primary scalar hair/charge for any theory governed by
the function SðXÞ in Eq. (3.3).

IV. DISFORMAL TRANSFORMATIONS

A disformal transformation of the spacetime metric
tensor is a well-established process that transforms an
initial Horndeski solution into a solution that belongs to
the beyond Horndeski framework. Additionally, a disfor-
mal transformation applied to a theory already classified as
beyond Horndeski results in its mapping to an alternative
beyond Horndeski class. In the subsequent analysis, we
consider a specific scenario, where quantities denoted with
a hat symbol represent the disformed functions, while those
without the hat symbol signify the initial “seed” solution.
In this context, we denote the seed variables as Φ, h, f,
and, notably, X, within the context of a specific (beyond)
Horndeski theory characterized by G2, G4, F4. The dis-
formal transformation is explicitly expressed as follows:

ĝμν ¼ gμν −WðXÞ∂μΦ∂νΦ: ð4:1Þ

Note that under a disformal transformation, the scalar field
remains invariant Φ̂ ¼ Φ. Also, since the disformal map-
ping does not contain any explicit Φ dependence, the shift
symmetry is retained in the target theory. By applying the
transformation to the seed metric (2.5), we get

FIG. 1. (a) One single-horizon black hole, two black holes with two horizons, and a naked singularity. (b) Two regular black-hole and
two soliton solutions. The horizontal axis in both figures is logarithmic.
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dŝ2 ¼ −ðhþ q2WÞdt2 − 2qΨ0Wdtdrþ
�
1 −WfΨ02

f

�
dr2

þ r2dΩ2: ð4:2Þ

Redefining the time coordinate as dt ¼ dτ − qΨ0W
hþq2W dr, we

can eliminate the cross terms that appear in the above
metric. Using this new coordinate, the metric takes the
following form

dŝ2 ¼ −ðhþ q2WÞdτ2 þ Z2

γ2
1þ 2WX
ðhþ q2WÞ dr

2 þ r2dΩ2

ð4:3Þ

where in the derivation of the above equation we have used
Eqs. (2.6) and (2.10). Note that although the scalar field
does not change under the disformal transformation, it will
change due to the coordinate transformation. Therefore, in
the τ coordinate the scalar field is

Φ ¼ qτ þΨ − q2
Z

Ψ0W
hþ q2W

dr: ð4:4Þ

The field is still linear in the new time coordinate since the
shift symmetry remains.
From Eq. (4.3), it is evident that under a disformal

transformation, a homogeneous seed solution undergoes a
transformation into a nonhomogeneous one. This flexibility
in transforming solutions is a notable advantage of dis-
formal transformations, providing a versatile tool for
exploring diverse spacetime structures. By strategically
choosing a disformal function, specifically such that
1þ 2WX ¼ γ2=Z2, we consistently arrive at a homo-
geneous local solution within the framework of shift and
parity symmetric beyond Horndeski theory. This character-
istic not only underscores the power of disformal trans-
formations in generating homogeneous solutions but also
establishes their efficacy within the specific context of
beyond Horndeski theories, particularly those adhering to
shift and parity symmetry. Moreover, it is noteworthy that
the resulting metric, after such transformations, will gen-
erally exhibit an explicit dependence on q, while the
disformed action does not contain such a dependence,
thereby confirming the existence of a primary charge.

A. Regularization of monopolelike configurations

Beyond the transformation of homogeneity, disformal
transformations offer a systematic approach to manipulat-
ing metric structures, providing a valuable means to study
gravitational theories comprehensively. The ability to con-
trol and modify solutions through disformal transforma-
tions enhances our capacity to model various astrophysical
phenomena and explore a broader range of theoretical
scenarios. Notably, from Eq. (4.3), it becomes evident that,

due to the linear time dependence of the scalar field, the
disformed metric contains terms of the form q2W.
Consequently, through the application of the appropriate
disformal transformation, it becomes feasible to rectify
metric pathologies, such as the solid angle deficits observed
in the solutions of the previous section.
As an illustrative example, we will adopt a monopole

configuration as our seed solution, which was initially
explored in [85]. This particular solution belongs to the
class described by Eq. (3.4), specifically characterized by
c1 ≠ 0, while all other ci coefficients trivially vanish.
Assuming the same notation with [85], the seed configu-
ration is

hðrÞ ¼ 1þ ηq2 −
2M
r

þ ηq2
π=2 − arctanðr=λÞ

r=λ
;

fðrÞ ¼ hðrÞ; XðrÞ ¼ λ2q2

2ðλ2 þ r2Þ : ð4:5Þ

The above solution is supported by the seed action of
G2 ¼ 2 η

λ2
X;G4 ¼ 1þ ηX, and F4 ¼ − η

4X.
Therefore, it is clear that a disformal function of the form

WðXÞ ¼ −η, would cancel out the deficit that appears in the
seed metric. The transformed solution has the following
form

dŝ2 ¼−
�
1−

2M
r

þ ηq2
π=2− arctanðr=λÞ

r=λ

�
dτ2

þ r2þ λ2−q2ηλ2

ðr2þ λ2Þ
�
1− 2M

r þ ηq2 π=2−arctanðr=λÞr=λ

�dr2þ r2dΩ2:

ð4:6Þ

By expanding the solution at infinity, it becomes evident
that the new solution is asymptotically flat, with the
ADM mass being M. The existence of the horizon readily
confirms that the provided solution characterizes a black
hole. Examining the expansion near r ¼ 0, we deduce that

jgττj ¼ 1 − ηq2 þ
1
2
πηλq2 − 2M

r
þOðr2Þ: ð4:7Þ

Hence, even when M ¼ 1
4
πηλq2, the regularization of

the black hole is unattainable since a singularity persists,
attributed to the ηq2 term. The numerator of grr encounters
an issue with a problematic root occurring at r2 ¼
λ2ðηq2 − 1Þ. At this radius, the disformal transformation
becomes noninvertible. The occurrence of this root can be
prevented if ηq2 < 1 or if η < 0. In the latter case, the seed
black hole possesses a phantom kinetic term. The detailed
investigation of the phenomenology associated with this
solution exceeds the scope of the current work, and we
defer a comprehensive analysis to a future article.
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B. Wormholes in parity-preserving
and shift-symmetric theories

A traversable wormhole, expressed in Schwarzschild-
like coordinates, is characterized by the following metric:

ds2 ¼ −e2AðrÞdt2 þ dr2

1 − BðrÞ
r

þ r2dΩ2; ð4:8Þ

where AðrÞ and BðrÞ are known as the redshift and shape
functions, respectively [94]. Within this coordinate system,
the throat is defined by the equation Bðr0Þ ¼ r0. It is
essential to note that the condition for the absence of
horizons necessitates A to be everywhere finite. From
Eq. (2.6), it is evident that, under the conditions of parity
and shift symmetry, the requirement for the existence of the
throat is ð1=Z2Þjr¼r0 ¼ 0. The auxiliary function Z is a
function of the kinetic term, with the kinetic term itself
being determined from the algebraic Eq. (2.7). It is apparent
from this equation that XðrÞ and, consequently, ZðrÞ
depend solely on the scalar charge q and the coupling
constants of the theory. This implies that the throat radius
r0, if it exists, will also depend on these parameters.
In the cases where q ¼ 0, a No-Go theorem concerning

the existence of a wormhole with a mass dependent throat
can be readily derived. This is because the kinetic term of
the scalar field X will always be mass independent, as can
be immediately verified from (2.7). As such, in this case,
the wormhole throat is solely dependent on the coupling
constants of the theory. Given that, for a particular theory,
these coupling constants are fixed, it follows that, in
theories supporting wormholes, the wormhole throat
remains constant and does not exhibit variability akin to
the horizon throat of black holes like the one presented in
[95]. On the other hand, wormholes with a mass dependent
throat were found in [96] in the context of shift-symmetric,
but parity breaking theories.
When q ≠ 0, the wormhole throat, in addition to depend-

ing on the coupling constants, will also be influenced by
the scalar charge q. As this parameter is an integration
constant, the throat radius can theoretically vary. Instead of
searching for theories with Z functions that can support
both a throat and a regular spacetime, we can derive
insights from the disformal transformation. Given that
wormholes are characterized by nonhomogeneous solu-
tions, the disformal transformation offers a general frame-
work for understanding the behavior of nonhomogeneous
spacetimes. Using Eq. (4.3), we find that the construction
of a wormhole in this case appears to be unattainable. This
is because constructing a wormhole necessitates a finite and
negative definite gττ as well as a minimum region at r ¼ r0.
For this to be satisfied, it implies�

1

1þ 2XW

�				
r¼r0

¼ 0 ⇒ ð1þ 2XWÞjr¼r0 → ∞

⇒ Wjr¼r0 → ∞ ð4:9Þ

for finite X. Consequently, the gττ component blows up at
the wormhole throat, rendering the construction impos-
sible. Possible ways to overcome this limitation include
utilizing a seed X that diverges at a finite double point while
ensuringWðXÞ remains finite everywhere. It is important to
note that this implies the target

X ¼ Xseed

1þ 2WXseed
ð4:10Þ

remains regular throughout. Another approach involves
employing a seed metric with a q-dependent additional
singularity, represented as hðrÞ ¼ hfinite −WðXÞq2. In this
case, the target metric remains well behaved, andWðXÞ can
be employed to construct the wormhole throat. Both of
these approaches seem highly unlikely, suggesting a lack of
viable wormhole solutions sourced from these configura-
tions. If a seed solution capable of sourcing a wormhole
exists, it is likely to possess highly pathological character-
istics, like ill-defined action functionals at X → 0.

V. BREAKING THE LINEAR DEPENDENCE

Now that we have extracted the possible information
from linearly dependent functionals, we are focusing on the
more general problem. We shall refrain from presenting
any actual solution, but rather focus on the strength of
the algorithm presented, due to the high complexity of the
results. We note that the Eq. (2.12), which provides the
solution for X, is a generic algebraic equation. To keep
the analysis tractable and driven by our motivation for exact
compact-object solutions, we will consider configurations
for X, when (2.12) yields a polynomial equation of order m
with respect to X. For this to be the case, we express Ξ as a
ratio of polynomials P

Q. Then, (2.12) is expressed as

r2XPðXÞ − q2QðXÞ þ 2XQðXÞ
QðXÞ ¼ 0: ð5:1Þ

It is clear that in order for X to be given via a polynomial
equation of order m, two cases exist: Either P and Q are
polynomials of order m − 1 or P and Q are polynomials of
order m with Q being singular at X → 0, i.e., Q does not
contain a constant term. The second case is problematic
because it no longer yields a smooth GR limit when q → 0.
This is because X will in general not vanish when q ¼ 0
and as such, fine tuning is required to recover GR solutions.
For this reason, we drop this case and consider only the first
one. Naturally, when (5.1) is a polynomial equation of the
first order, the previous analysis is recovered. The logical
extension here is to consider the cases when X is given by a
polynomial equation of second order under the constrain of
X → 0 when q → 0. To this end, we set

Ξ ¼ cX − a
bX − d

ð5:2Þ
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for which the X solution is

X ¼ ar2 þ bq2 þ 2d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðar2 þ bq2 þ 2dÞ2 − 4dq2ð2bþ cr2Þ

p
4bþ 2cr2

: ð5:3Þ

Now, let G4 be smoothly connected to GR for X → 0 via

G4 ¼ ζ þ
X∞
n¼1

gn
s
X

n
s; s∈Zþ; ð5:4Þ

in consistency with the previous analysis. From the
definition of the auxiliary function Ξ, (2.11), we extract
a G2, which reads

G2 ¼−2Λþa
d

X∞
n¼1

gn
s
X

n
s

þab− cd
d2

X∞
n¼1

n
s

n
sþ 1

gn
s
X

n
sþ1

2F1

�
1;
n
s
þ 1;

n
s
þ 2;

bX
d

�
:

ð5:5Þ

Due to the existence of the hypergeometric function in G2,
either particular ns needs to be chosen in order to extract any
possible exact configurations or one may fine-tune the
parameters. We note that from the definition of X, if the
coupling constant c vanishes, X blows up at infinity, while
if d vanishes, X does not vanish for q → 0. On the other
hand, if b vanishes and a does not, one is able to construct
action configurations with a canonical kinetic term,
although X again does not vanish for q → 0. Thus, one
may verify that the choice of b ¼ 0, a ¼ 0 and d ¼ −λ2
yields a well behaved X with a relatively manageable G2

functional form of

G2 ¼ −2Λþ c
λ2

X∞
n¼1

gn
s

n
s

n
s þ 1

X
n
sþ1; ð5:6Þ

while X reads

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cλ2q2r2 þ 4λ4

p
− 2λ2

2cr2
; ð5:7Þ

where c is positive and we kept the plus sign in the solution.
Integrating (2.8), we found a complicated metric compo-
nent given in terms of summations of hypergeometric
functions that does not offer additional insight in being
presented here. We conclude that, from the point of view of
exact homogeneous local solutions, abandoning the linear
dependence in the functionals yields highly complicated
metric components, whose further analysis deviates from
the scope of this article. The existence of square roots in X
makes any subsequent calculations increasingly unman-
ageable, due to the generality of our approach on the

problem of local solutions in beyond Horndeski gravity.
However, we wish to pinpoint that the generality of the
procedure allows one to in principle extract all possible
static and spherically symmetric local solutions in the
framework of shift and parity symmetric beyond Horndeski
gravity. Indeed, even under the constraint that we are
working on a subclass agnostic framework, by considering
a polynomial behavior of ΞðXÞ, one can always find the X
configuration. Then, under the reasonable assumption
that G4 is smooth at X → 0, we can extract the G2

functional that supports such solutions. The final step is
a relatively simple integration of (2.8) that yields the metric
component.

VI. CONCLUSIONS

Our research has centered on exploring the comprehen-
sive framework of shift-symmetric and parity-preserving
beyond Horndeski gravity, employing a local solution-
generating algorithm. Within a semiagnostic subclass of
beyond Horndeski gravity, characterized by a linear depen-
dence of the G2 and G4 functionals and a smooth transition
to general relativity, we have successfully derived homo-
geneous static and spherically symmetric black hole sol-
utions endowed with a primary charge. A notable finding is
that these solutions can achieve regularity at a critical value
of the black hole ADM mass, facilitated by the contribu-
tion of the primary charge. Furthermore, our investigations
confirm that these configurations consistently adhere to the
weak energy conditions, establishing them as healthier
compact objects in contrast to many hairy black holes
within Horndeski gravity.
An essential outcome of our analysis is the revelation

that in the examined generic subclass, a canonical kinetic
term in the action generally leads to solid deficit angles.
To circumvent such pathologies, we have demonstrated that
a pure disformal transformation is adequate to produce
inhomogeneous configurations with correct Minkowski
asymptotics. This insight prompted a discussion on worm-
hole solutions within the broader framework of beyond
Horndeski gravity, originating from the primary charge.
Indicative arguments were presented, suggesting the non-
existence of such solutions in the generic framework when
the seed action is well defined and yields a proper general
relativity limit.
Finally, our exploration extended to generic G2 and G4

functionals, with a focus on theories yielding homogeneous
solutions. We specifically constrained the kinetic term of
the scalar field, X ¼ − 1

2
∂μΦ∂

μΦ as a polynomial equation
of the radial coordinate, ensuring a smooth transition to
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general relativity vacuum solutions. Emphasizing the
strength of the algorithm employed, our attention was
directed toward the methodology rather than presenting
specific local solutions, given the increasing complexity of
the results.
In a compelling extension of our investigation, it would

be intriguing to explore the shift and parity-breaking case
within the realm of beyond Horndeski gravity. An impor-
tant facet of this exploration would involve testing whether
the weak energy conditions of black holes endowed with a
primary charge can still be upheld in the presence of a
Gauss-Bonnet term. Notably, the quadratic curvature nature
of the Gauss-Bonnet term leads us to anticipate that the
kinetic term of the scalar field will generally exhibit
dependence on the metric components. This introduces a
particularly intriguing expansion of the scalar charge to
incorporate a correlation with the ADM mass.
Should this expectation materialize, it becomes highly

plausible that wormholes featuring a dynamically varying
throat contingent upon both the mass and the primary
charge q could manifest in this scenario, since the scalar
configurations inherent in this context may be able to
produce the necessary pathologies in the seed configura-
tions in order to reach a wormhole solution in the disformed
frame. Consequently, although wormholes with a dynami-
cal throat seem impossible in the parity-preserving case, the
potential existence of such configurations remains an
intriguing prospect in the natural extension of the frame-
work. It is important to underscore that a comprehensive
analysis of these aspects is currently pending and represents
a promising avenue for future exploration.
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APPENDIX: NONHOMOGENEOUS SOLUTIONS
WITH PRIMARY SCALAR HAIR

IN SHIFT-SYMMETRIC AND PARITY-
PRESERVING HORNDESKI THEORIES

In this section, we are revisiting the nonhomogeneous
case in the context of shift-symmetric and parity-preserving
Horndeski theory, hence, the theory that will occupy us is
described by the action (2.1) with F4ðXÞ ¼ 0. Also, we will
constrain ourselves to theories with Ξ ¼ const, which by
following the discussion in Sec. II means that

G4Z ¼ αþ λ2G2Z; ðA1Þ

where α is dimensionless and ½λ� ¼ ½L�. We recall that for
the line element

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2 ðA2Þ

the equations of motion are given by (2.6)–(2.8) with
Z ¼ 2XG4X − G4. For this particular relation between
functions G4 and G2, and for nondegenerate theories,
Eq. (2.7) can be rewritten as

Z2X ¼ q2γ2

2þ ðr=λÞ2 : ðA3Þ

The above relation forces to us the constraint Z ≠ cX−1=2.
Plugging this result into (2.8), we obtain the very simple
differential equation

2γ2
d
dr

½rhðrÞ� − γ2q2

X
− α

r2

λ2
¼ 0: ðA4Þ

As it can be immediately verified, assuming homogeneous
solutions in Horndeski, X is linear in q2 and, as such, no
homogeneous black holes with primary charge can exist
when Ξ is constant. In particular, by the definition of the
auxiliary Z function, one may immediately verify that Z
is constant yields G4 ∼

ffiffiffiffi
X

p
. Then, by (A1), G2 ∼

ffiffiffiffi
X

p
.

This corresponds to a stealth Schwarzschild black hole,
already presented in [85]. Consequently, the simple set of
equations (2.6), (A3), and (A4) can be used to obtain
nonhomogeneous compact-object solutions.
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