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This paper aims to investigate charged spherically symmetric static black holes in the Lyra geometry, in
which a scale function naturally arises in the metric and affine structure of these types of manifolds. In
particular, it utilizes the appropriate generalization of general relativity, the recently proposed Lyra scalar-
tensor theory (LyST). The simplest generalization of Maxwell electrodynamics for Lyra manifolds is
considered. An analytic solution for the line element of a Reissner-Nordström LyST generalization is
presented. It is shown that, due to the natural presence of a scale radius, it is possible to have three different
extremal charges for positive or negative charge intervals. As a consequence, in natural units, the equality
of the mass and charge defined on Lyra manifolds does not give rise to an extremal black hole, which allows
the existence of solutions in which the charge is greater than the mass. An analysis with charged test
particles indicates that a finite positive Lyra parameter, referred as the Lyra scale radius in this case,
possibly allows for a violation of the weak cosmic censorship on Lyra manifolds. It is shown that an
extremal black hole can be overcharged to the point that the emergence of a naked singularity becomes
possible. The same behavior is observed for negative values of this parameter if its absolute value is greater
than 4 times the black hole mass. Notably, this investigation also shows that an eternal black hole can exist
for any charge increase if the Lyra parameter is sufficiently close to some critical values.
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I. INTRODUCTION

Observational evidence for black holes in different mass
ranges has greatly increased in recent years. These include
the direct detection of gravitational waves from binary
mergers by the LIGO and Virgo interferometers [1,2], the
first direct imaging of the M87* and Sgr A* shadows by
the Event Horizon Telescope Collaboration [3–11], and the
recently announced stochastic gravitational-wave back-
ground detected by the International Pulsar Timing Array
[12–15], which has been shown to be consistent with a
population of binary supermassive black hole systems [16].
From the theoretical perspective, black hole physics

poses many fundamental questions about the nature of
singularities [17–21] and of the inconsistencies between
quantum field theory and general relativity [22]. Moreover,
there have even been attempts to describe the dark sector of
the standard cosmological model ΛCDM by black holes in
different mass intervals [23–26]. As a result, the analysis of
black hole solutions in different gravitational theories is of
great importance: it can guide us in the construction of

better models and assist in the physical interpretation of the
growing amount of data of these astrophysical objects.
These solutions, when compared to those of Einstein’s

theory of gravitation, allow us to improve our under-
standing of black holes and gravity itself. Specifically,
owing to the geometrical nature of spacetime, it is impor-
tant to consider these physical objects in manifolds with
different metric and affine structures. For this reason, this
paper focuses on a generalization of Riemannian geometry
which was first presented by Lyra in 1951 [27]. This
metric-affine geometry introduces a scalar field, called the
Lyra scale function, which modifies vector lengths in a
similar manner as the Weyl integrable spacetimes [28–30].
Soon thereafter, in 1957, Sen proposed what is consid-

ered the first theory of gravitation in a Lyra manifold [31].
Notably, the static cosmological solution to his vector-
tensor theory accounts for the observed redshift of galactic
spectral lines at the linear level [31]. Afterward, owing to
the intrinsic geometrical meaning of the Lyra scale func-
tion, Sen and Dunn proposed in 1971 a scalar-tensor theory
on this geometry [32]. The resulting field equations are
dynamically equivalent to a specific case of the Brans-
Dicke theory in vacuum [32].
However, Jeavons et al. showed, in 1975, that the

proposed equation of Sen and Dunn missed important
contributions that were neglected from the variational
principle utilized and, therefore, presented the corrected
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expression in [33]. Much later, in 2021, Cuzinatto et al.
proposed that the use of an auxiliary vector field a priori
uncorrelated with the Lyra scale function as a mean to
obtain a scalar-tensor theory is unjustified [34], since a
relation between these two fields is a natural consequence
of the variational principle utilized by [33].
Therefore, the authors of [34] presented the so-called

Lyra scalar-tensor theory (LyST), which utilizes the metric
tensor and the Lyra scale function as the fundamental fields.
The LyST, owing to its simplicity and geometrical mean-
ing, is to be regarded as the proper generalization of general
relativity on Lyra manifolds [34]. They further presented a
vacuum spherically symmetric solution such that the metric
tensor components act as the de Sitter or anti–de Sitter ones
in the limit of large distances from the source [34].
The LyST is the result of many years of scientific

research, dating back to the works of Weyl [35] and
Dirac [36], in constructing a gravitational theory that is
also covariant by means of a scale (or gauge) trans-
formation [37]. As a matter of fact, the Lyra geometry is
the appropriate starting point to construct a scale covariant
field theory. As a consequence of the structure added by the
scale function and due to the natural appearance of a
nonsymmetric connection in torsionless and metric com-
patible manifolds, the Lyra geometry is an important
approach to the study of massless fields [37] and spinorial
ones [38], thereby rendering it useful for the study of
quantum theories of gravity [38].
In view of these relevant aspects, this work utilizes a

generalization of Maxwell’s electromagnetism for Lyra
manifolds so as to study charged spherically symmetric
black hole solutions in this geometry. We present in Sec. II,
based on the more complete studies of [27,32,34,39], a
brief review of the important concepts and structures of the
Lyra geometry. In Sec. III, the procedure to find the LyST
field equations from an appropriate variational principle is
shown [34]. The Maxwell-Lyra energy-momentum tensor
and the Reissner-Nordström LyST generalization line
element are presented in Sec. IV, along with an analysis
of the horizons, singularities, and geodesics of this new
spacetime. In Sec. V, we attempt to overcharge our black
hole solution with charged particles and without consid-
ering backreaction. Finally, Sec. VI features our final
remarks and the prospects for future research in Lyra
manifolds.

II. LYRA GEOMETRY

A C∞ differentiable Lyra manifold ML is a real set of
dimension n equipped with a maximal atlas AL ≔
fðOk;Xk;ΦkÞg [32].ALyra reference system [27] is defined
as a triad ðOk;Xk;ΦkÞ∈AL, such that the C∞ differentiable
mapXk∶ Ok → Rn is a chart over theopen subsetOk ⊂ ML
and Φk∶ Ok → R� is a C∞ scale map on this subset of the
manifold. Furthermore, if p∈Ok is a point of the manifold,
xðpÞ ≔ Xk∘p are its coordinates on the chart Xk; therefore,

the scalemap atp can bewritten in terms of these coordinates
as Φk∘p ¼ Φk∘X−1

k ∘xðpÞ ≔ ϕðxðpÞÞ. Consequently, the
map ϕ∶ Rn → R�, which is called a Lyra scale function
[27], is defined as ϕ ≔ Φk∘X−1

k [34].
If F is the set of all C∞ functions f∶ Ok → R, a tangent

vector at p is defined as the linear map v∶ F → R, which
respects the Leibniz product rule. As a result, the set T p of
all tangent vectors at p form a vector space if we assume
that the scalar multiplication and addition law are satisfied
by the elements of this space. A canonical basis for T p,
which obeys all of these rules, can be constructed by
defining

eμf ≔
1

ϕðxÞ
∂ðf∘X−1

k Þ
∂xμ

����
xðpÞ

; ð1Þ

in which xμ are the coordinates in the chart Xk [32]. Thus,
the fundamental difference between this geometry and
Riemannian ones is in the definition of this new basis
with noncommutative elements [34].
A tangent vector can then be written as v ¼ vμeμ, with vμ

being its components. Therefore, the basis elements of v
under a transformation of Lyra reference systems, from
ðO;X ;ΦÞ to ðŌ; X̄ ; Φ̄Þ, change accordingly to

ēμ ¼
ϕðxÞ
ϕ̄ðx̄Þ

∂xν

∂x̄μ
eν; ð2Þ

and, consequently, the components must transform as

v̄μ ¼ ϕ̄ðx̄Þ
ϕðxÞ

∂x̄μ

∂xν
vν: ð3Þ

Hence, a change between different Lyra reference systems
is simultaneously a coordinate and a scale transformation.
Moreover, we can define a tangent vector to a smooth curve
γ∶ λ∈R → ML at p as the directional derivative,

vγf ≔
dðf∘γÞ
dλ

����
λp

¼ dxμ

dλ
∂μðf∘X−1

k Þ
����
xðpÞ

: ð4Þ

Therefore, the components of the tangent vector to the
curve γðλÞ in the basis (1) of chart Xk are defined as

vμ ¼ ϕðxÞ dx
μ

dλ
: ð5Þ

As it is inRiemanniangeometry, a tangent vector spaceT p
allows us to define linear maps ω∶ T p → R called dual
vectors, which define the dual vector space T �

p. Equation (4)
makes it possible to define the natural dual vectors as

df ¼ 1

ϕðxÞ ∂μðf∘X
−1
k Þ

����
xðpÞ

θμ; ð6Þ
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since df∘v ¼ dfμvμ, due to the orthonormality condition
θμ∘eν ¼ δμν, which is defined to be equal to Eq. (4). A
natural basis for T �

p can then, using the orthonormality
condition, be defined as [34]

θμ ¼ ϕðxÞdxμ: ð7Þ

Furthermore, by making ω∘ēμ, it is possible to find that the
components ωμ of a dual vector transform accordingly to
Eq. (2), and, as a consequence, its basis elements θμ trans-
form as in Eq. (3).
With the local vector space and its dual defined, it is

possible to define multilinear maps that take k elements of
T�
p and l vectors of Tp to the real numbers as objects called

Lyra tensors and defined as

T ¼ Tμ1…μk
ν1…νleμ1 ⊗ … ⊗ eμk ⊗ θν1 ⊗ … ⊗ θνl ; ð8Þ

so the sum, scalar product, tensorial product, and contrac-
tion of these objects are defined as in Riemannian geom-
etry. The sole difference is that, under a Lyra reference
system change, tensors transform as [34]

T̄μ1…μk
ν1…νl ¼

�
ϕ̄ðx̄Þ
ϕðxÞ

�
k−l ∂x̄μ1

∂xη1
…

∂xξl

∂x̄νl
Tη1…ηk

ξ1…ξl : ð9Þ

A. The metric structure

For the concept of a manifold to be associated with the
physical idea of spacetime, it is necessarily an additional
structure that allows for the definition of spatiotemporal
lengths. The object that adds this causal structure definition
is a smooth bilinear symmetric nondegenerate map
g∶ T p × T p → R called a metric tensor. It is a family
of inner products, so at each point ofML the inner product
of two vectors, v ¼ vμeμ and u ¼ uνeν, is given by

gðv;uÞ ¼ gμνvμuν; ð10Þ

since gμν ≔ gðeμ; eνÞ. This structure further adds the
canonical identification of the T �

p and T p spaces by
defining vμ ≔ gðv; eμÞ ¼ gμνvν.
Moreover, as it is in pseudo-Riemannian geometry, the

inner product of the vectors is not necessarily positive
definite due to the Lorentzian signature and the inverse
metric is defined as gμαgαν ¼ δμν. However, if we define
vector lengths as kvk2 ≔ gðv; vÞ, it is possible to see from
(5) that

kvk ¼ jϕj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

dxμ

dλ
dxν

dλ

r
: ð11Þ

Thus, the Lyra scale function alters tangent vector lengths
when compared to the definition in Riemannian manifolds.

It can further be shown to add no second clock effects [40],
allowing normalizations like vμvμ ¼ c2.
Consequently, the length of a curve γðλÞ with tangent

vector v from λ1 to λ2 is given by

s ¼
Z

λ1

λ1

jϕj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

dxμ

dλ
dxν

dλ

r
dλ; ð12Þ

so the line element, which is invariant under Lyra reference
system transformations, is defined as

ds2 ¼ ϕ2gμνdxμdxν: ð13Þ

If Eq. (12) is stationary for fixed extreme points in the
configuration space, by making δs ¼ 0 and considering λ
an affine parameter, we obtain the Lyra geodesic equation,

d2xγ

ds2
þ
�
γ

μν

�
dxμ

ds
dxν

ds

þ 1

ϕ
ðδγν∂μϕþ δγμ∂νϕ − gμν∂γϕÞ

dxμ

ds
dxν

ds
¼ 0; ð14Þ

which adds new terms that distinguish it from the metric
geodesic equation of the Riemannian manifolds.
Furthermore, since under a change of Lyra reference

systems the determinant of the metric g for n dimensions
transforms as [34]

ϕ̄2nðx̄Þḡðx̄Þ ¼ jJj2ϕ2nðxÞgðxÞ; ð15Þ

which is found by utilizing the transformation rule (9) and
such that jJj is the Jacobian determinant of the trans-
formation, the volume element in Lyra manifolds is
modified and is given by

dV ¼ ϕn
ffiffiffiffiffi
jgj

p
dnx; ð16Þ

so it is properly defined as a Lyra n-form.

B. The affine structure

To properly do physics on Lyra manifolds it is necessary
to include another structure that connects the vector spaces
of different points of ML. This structure is defined by the
map ∇∶ T p × T p → T p. It takes two vectors, for example,
u and v, to the object ∇uv. It is further required to be linear;
that is, it must satisfy [34]

�∇uðv þ wÞ ¼ ∇uv þ ∇uw;

∇uþvw ¼ ∇uw þ ∇vw;
ð17Þ

for w∈ T p. If f∈F , this linear object must also satisfy the
properties
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�∇fuv ¼ f∇uv;

∇uðfvÞ ¼ ðufÞv þ f∇uv:
ð18Þ

Therefore, by utilizing the canonical Lyra basis (1), these
properties lead us to [34]

∇uv ¼ uνð∇νvαÞeα ¼ uν
�
1

ϕ
∂νvα þ Γα

μνvμ
�
eα; ð19Þ

in which ð∇νvαÞeα ≔ ∇eνv defines the Lyra covariant
derivative and Γα

μνeα ≔ ∇eνeμ defines its affine connection.
It can be seen from (19) that the covariant derivative of a

scalar function f can naturally be defined as∇μf ¼ ϕ−1
∂μf.

Using this property on the covariant derivative of a vector
contracted with a dual vector, it is possible to find that this
map when applied to dual vectors is given by

∇μων ¼
1

ϕ
∂μων − Γα

νμωα: ð20Þ

Therefore, the covariant derivative of a general tensor is
almost similar to the Riemannian expression, the exception
being the factorϕ−1 multiplying the partial derivative and the
presence of a different affine connection.
The inclusion of an affine structure to ML means that

there is now a notion of parallelism between vectors on
different points. Since tangent vectors are associated with
directional derivatives on curves, a constant change of a
vector v along a curve represented by u is given by
∇uv ¼ 0. It is then said that v is parallel transported in
the direction of u. Thus, ∇vv ¼ 0, which can be written as

d2xα

dλ2
þ ðϕΓα

μν þ δαμ∇νϕÞ
dxμ

dλ
dxν

dλ
¼ 0; ð21Þ

means that we are parallel transporting a vector along its
own curve. For this reason, the curves whose tangent
vectors satisfy this relation are then called autoparallel
curves.
With this structure defined, it is straightforward to obtain

other important geometrical entities. Since curvature and
torsion produce noncommutativity of successive covariant
differentiations of a tensor, using the Lyra covariant
derivative defined by (19) allows us to obtain the
Riemann tensor on Lyra manifolds,

Rρ
μγα ¼

2

ϕ2
∂½γðϕΓρ

jμjα�Þ þ 2Γρ
σ½γΓ

σ
jμjα�; ð22Þ

which is antisymmetric in its last two indices. It is further
possible to define the Lyra torsion tensor as

τργα ¼ Γρ
αγ − Γρ

γα þ 1

ϕ
ðδρα∇γϕ − δργ∇αϕÞ; ð23Þ

in which the new term is equal to the basis noncommu-
tativity tensor [34]. Moreover, since the nonmetricity tensor
Qαμν ≔ −∇αgμν relates the metric and affine structure,
taking −Qαμν þQμνα þQναμ yields

Γγ
μν ¼ 1

ϕ

�
γ

μν

�
þ 1

ϕ
ðδγν∇μϕ − gμν∇γϕÞ þ Nγ

μν; ð24Þ

in which Nγ
μν ¼ Kγ

μν þ Lγ
μν is the Lyra distortion tensor,

such that gγαðξμαν þ ξναμ − ξαμνÞ=2 is the contorsion tensor
Kγ

μν if ξαμν ¼ ταμν, and Lγ
μν if ξαμν ¼ Qαμν.

III. LYRA SCALAR-TENSOR THEORY—LYST

To construct a generalization of general relativity on Lyra
manifolds from a metric variational principle, it is first
required for geodesics to be autoparallel curves. When
using (14), (21), and (24), this imposition results in the
condition LγðμνÞ ¼ τðμνÞγ. It is also necessary a well-defined
divergence theorem version for Lyra manifolds to properly
deal with surface terms; this can be simply done if
Qγμν ¼ −2τðμνÞγ . As a consequence of these two conditions,
we have QðγμνÞ ¼ 0. However, since a version of Einstein’s
theory in the Lyra geometry is required, it is necessary to
consider only torsionless and metric compatible manifolds,
which automatically satisfy the above conditions [34].
These considerations lead to thevanishing of the distortion

tensor in the Lyra linear connection (24). This further allow
us to separate the Riemann tensor (22) in a Riemannian part
and in derivatives of the Lyra scale function such that the
nonsymmetric Ricci tensor is written as

Rμν ¼
1

ϕ2
Rμν −

2

ϕ
∇ν∇μϕ −

1

ϕ
gμν□ϕ

þ 3

ϕ2
gμν∇ρϕ∇ρϕ; ð25Þ

in which Rμν is defined as the Ricci tensor of Riemannian
geometry and such that □ ≔ ∇ρ∇ρ is the d’Alembertian
generalization on Lyra manifolds. Therefore, the Ricci scalar
in a four-dimensional manifold is given by

R ¼ 1

ϕ2
R −

6

ϕ
□ϕþ 12

ϕ2
∇ρϕ∇ρϕ; ð26Þ

in which R ≔ gμνRμν has the same definition as the Ricci
scalar of Riemannian manifolds.
By using Eq. (26) and considering the volume element

(16), it is then possible to write the four-dimensional action
for the Lyra scalar-tensor theory as [34]

SLyST ¼ 1

c
1

2κ

Z
M

Rϕ4
ffiffiffiffiffi
jgj

p
d4xþ Smðψ ;ϕ; gμνÞ; ð27Þ

in which the matter action Sm depends on the matter fields
ψ and the geometrical fields, gμν and ϕ, and its derivatives
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∂αgμν; ∂γ∂αgμν and ∇μϕ ¼ ϕ−1
∂μϕ. The LyST field equa-

tions are then obtained by the variation of this action with
respect to the metric tensor if the surface terms are ignored;
this action yields [34]

1

ϕ2
Gμν −

2

ϕ
∇ðμ∇νÞϕþ 2

ϕ
gμν□ϕ

−
3

ϕ2
gμν∇ρϕ∇ρϕ ¼ κTμν; ð28Þ

such that Gμν ≔ Rμν − 1
2
Rgμν and the energy-momentum

tensor is defined as

Tμν ≔
−2ffiffiffiffiffijgjp δðLm

ffiffiffiffiffijgjp Þ
δgμν

: ð29Þ

The left-hand side of Eq. (28) is simply the symmetric
part of the Einstein tensor Gμν generalized on Lyra
manifolds. As a matter of fact, the Riemannian geometry
and general relativity are obtained in the special case of
ϕ ¼ 1. As a consequence, it is justified to set κ ¼ 8πGc−4.
Additionally, if we vary the action (27) with respect to ϕ,
we obtain R ¼ κΩ, in which

Ω ¼ −4Lm − ϕ

�
∂Lm

∂ϕ
−∇μ

∂Lm

∂∇μϕ

�
þ ∂Lm

∂∇μϕ
∇μϕ: ð30Þ

Taking the trace of the field equations (28), we find that
R ¼ −κT, so Ω ¼ −T.

IV. CHARGED SPHERICALLY SYMMETRIC
SOLUTION

One of the purposes of this paper is to find an analytic
charged spherically symmetric solution to the LyST equa-
tions (28). As a consequence, it is first necessary to
generalize Maxwell’s electromagnetism to Lyra manifolds.
Using a minimal coupling prescription, the Maxwell-Lyra
energy-momentum tensor is defined as

Tμν ¼
1

μ0

�
gαγFμαFγν þ

1

4
gμνFαγFαγ

�
; ð31Þ

in which the generalized Faraday tensor is now defined
with Lyra covariant derivatives as

Fμν ¼ 2∇½μAν� ¼ 2ϕ−1ð∂½μAν� þ Aαδ
α½μ∇ν�ϕÞ; ð32Þ

such that the new term emerges from the effective torsion
2Γα

½νμ�. Consequently, the first Maxwell-Lyra equation in the
absence of matter fields is simply given by

∇μFμν ¼ 0; ð33Þ

with the covariant derivative defined on Lyra manifolds.

On the geometrical part, it is assumed that the isometry
group of the spatial part of the metric is the SO(3) one. It is
also considered a static metric, such that its radial and
temporal parts are described by the function α ¼ αðrÞ as

gμν ¼ diagðα;−α−1;−r2;−r2 sin2 θÞ: ð34Þ

As a result of the spherical symmetry, ϕ ¼ ϕðt; rÞ, so as to
keep the line element (13) invariant by spatial rotations.
However, it is also assumed that ϕ ¼ ϕðrÞ so that the metric
is static. Therefore, the four-potential Aμ of a static electric
charge can be written as

Aμ ¼ ðf; 0; 0; 0Þ; ð35Þ

in which f ¼ fðrÞ is a solution of the Eq. (33).
With these assumptions, and considering the prime

symbol as indicating the derivative of a function with
respect to r, the first two LyST field equations from (28)
with the energy-momentum tensor (31) are then simply
given by

1

r2
−

1

r2α
þ α0

rα
þ 4ϕ0

rϕ
þ α0ϕ0

αϕ
−
ϕ02

ϕ2
þ 2ϕ00

ϕ
¼ ζðrÞ; ð36Þ

1

r2
−

1

r2α
þ α0

rα
þ 4ϕ0

rϕ
þ α0ϕ0

αϕ
þ 3ϕ02

ϕ2
¼ ζðrÞ; ð37Þ

in which the function ζðrÞ corresponds to the electromag-
netic part,

ζðrÞ ¼ −
κ

2μ0αϕ
2
ðϕf0 þ ϕ0fÞ2: ð38Þ

If we subtract Eq. (37) from Eq. (36), it is possible to obtain
a equation for the scale function,

ϕ00 −
2ϕ02

ϕ
¼ 0; ð39Þ

such that its solution can be expressed as

ϕðrÞ ¼ r0=rL
1 − r=rL

; ð40Þ

in which rL; r0 ∈R are integration constants. From this
expression, it can be seen that the field ϕðrÞ naturally
induces a characteristic scale rL on these types of mani-
folds, leading to the designation of this parameter as the
Lyra scale radius if its value is positive. However, there is
no a priori physical process which restricts the value of this
parameter, so negative values are also considered in this
work. Owing to this consideration, rL is generically named
the Lyra parameter and its physical consequences are
further explored in the following sections.
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Regarding the electric part, the first Maxwell-Lyra
equation obtained from the definition (33) is given by

f00 þ 2f0ϕ0

ϕ
þ 2f0

r
þ 2fϕ0

rϕ
þ fϕ00

ϕ
¼ 0; ð41Þ

which results in the static potential solution

fðrÞ ¼
�

1

4πϵ0c
QL

r
þ c1

��
1 −

r
rL

�
ð42Þ

if Eq. (40) is included in (41). If we further define the
electric field as EðrÞ ≔ cF01, it is straightforward to obtain
from (40), (42), and (32) that

EðrÞ ¼ 1

4πϵ0

QL

r2

�
1 −

r
rL

�
2

; ð43Þ

which is a nonmonotonic function if rL is positive, with
QL=4πϵ0r2L as its asymptotic limit for large radii, provided
that the Lyra scale radius is finite.
The constant denoted as QL in the electric field expres-

sion (43), due to the form of the Maxwell-Lyra equations
with source terms, cannot always be trivially identified with
the standard electric charge definition if the charge dis-
tribution is not punctual. Moreover, it is necessary to set
r0 ¼ rL in the Lyra scale function (40) to ensure that the
same constant, differing only by a factor of c, appears in
both (42) and (43). In this manner, these two expressions
directly converge to their well-established Lorentzian
counterparts when rL approaches infinity and provided
that c1 is an appropriate constant.
Finally, substituting the Lyra scale function (40) and the

electric potential (42) into the LySTequation (37) yields the
αðrÞ expression, which results in the Lyra line element

ds2 ¼ r2L
ΔL

ΔðrÞ
r2

c2dt2 − ϕ4
ΔL

r2L

r2

ΔðrÞ dr
2 − ϕ2r2dΩ2; ð44Þ

such that ΔðrÞ ¼ ðr − rþÞðr − r−Þ, ΔL ≔ ΔðrLÞ and
ϕ ¼ ð1 − r=rLÞ−1, with rL, rþ, and r− being the roots of
αðrÞ. If we further set

� rs ¼ rþ þ r−;

r2Q ¼ rþr−;
ð45Þ

it is possible to define the Lyra geometrical massM and the
Lyra geometrical charge Q by considering

�
2M ≔ rsr2L=ΔL;

Q2 ≔ r2Qr
2
L=ΔL;

ð46Þ

so that, as a consequence, the metric tensor component g00
can be rewritten as

αðrÞ ¼ ϕðrÞ−2
�
1 −

2M
r

�
1 −

r
rL

�
þQ2

r2

�
1 −

r2

r2L

�	
; ð47Þ

which can be shown to be consistent with the unused third
LyST equation, a necessary step since we set (47) to
describe the radial and temporal parts of the metric.
As for the relations in (46), it is important to emphasize

that the definition of charge provided above aligns with the
one specified in Eqs. (42) and (43), since the static electric
potential was used to find (47) and the constant r0 was fixed
as rL. Additionally, the geometrical mass M, which is
equivalent to the Newtonian mass if ϕ ¼ 1, is consistent
with the definition presented in Ref. [34]. In the absence of
electric charges, i.e., rQ ¼ 0, the relationship between the
Lyra mass and the roots of g00 simplifies to that described
in [34].

A. Properties

The LyST theory is expected to reduce itself to the
general relativity form when the scale function is constant.
Therefore, Eq. (47) becomes the Reissner-Nordström
metric time component if rL → �∞:

lim
rL→�∞

αðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð48Þ

with the geometrical mass M now the standard Newtonian
mass definition in natural units. Although positive or
negative values of rL lead to different spacetime interpre-
tations, the behavior of the black hole horizons is the same
for rL > 0 and rL < −4M, as will be shown in Sec. IV B 2;
therefore, for the black hole anatomy, the limits rL → �∞
are indistinguishable. Furthermore, Eq. (47) transforms into
the spherical symmetric solution obtained by [34] if
Q ¼ 0, such that its root rs ¼ ð1=2M þ 1=rLÞ−1 can be
interpreted as the LyST generalization of the Schwarzschild
radius [34].
Another interesting limit is that of large distances from

the source. The asymptotic expansion of Eq. (47) for r →
∞ at leading order takes the form

αðrÞ ¼ −
ΛL

3
r2; ð49Þ

such that the constant in this expression is given by

ΛL ¼ −
3

r2L

�
1þ 2M

rL
−
Q2

r2L

�
: ð50Þ

As a result, in analogy with the large distance limit of the
Reissner–Nordström–de Sitter metric, Eq. (50) can be
interpreted as an emerging cosmological constant.
The mass and charge of objects defined on Lyra mani-

folds act so as to produce a dark energy like effect
if we solely consider the metric tensor components.
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However, owing to the definition (13), in which ϕ2 is
multiplied by gμν, the asymptotic r → ∞ limit of the line
element (44) will not behave as the de Sitter one. Moreover,
it is possible to observe from Eq. (50) that the effective
cosmological constant will be positive (of the de Sitter
type) if

−M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
< rL < −M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
; ð51Þ

and that (49) behaves as anti–de Sitter (ΛL < 0) if

rL > −M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
or rL < −M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
:

ð52Þ

B. Horizons and singularities

With the metric of a charged black hole on the Lyra
geometry defined in (44), it is now essential to analyze the
possible horizons and singularities of this solution. As
revealed at the beginning of this section, there are three
roots for αðrÞ ¼ 0. It can be easily found from (47) that a
positive Lyra parameter is one of them and that the other
two can be written, by construction, with respect to rs and
rQ as

r� ¼ 1

2



rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2Q

q �
: ð53Þ

It is also important to understand for which cases
αðrÞ → ∞. In this respect, there are two possible solutions:

�
r ¼ 0;

rL2 − rSrL þ rQ2 ¼ 0;
ð54Þ

such that the latter can be viewed as a condition which
requires r� and rL to be different. In addition, it is
important to mention that for rL → 0 the field ϕ diverges
for any finite value of r; therefore, this case is not
considered in our analysis. To summarize, there are then
four physical or coordinate singularities:

r ¼ 0; r ¼ rL; r ¼ r�: ð55Þ

1. Physical singularities

To ensure that some of the values of r defined in (55) are
physical singularities, it is essential to understand the
behavior of curvature scalar invariants on these points.
The Ricci scalar of Lyra geometry, Eq. (26), vanishes at
every point since the solution in consideration is obtained in
the absence of matter fields. For this reason, it is necessary to
consider the Kretschmann scalar K ¼ RαβμνRαβμν, with the
Riemann tensor given by (22), so the expression

K ¼ 8

r8

�
1 −

r
rL

�
6

×

�
Q4

�
7 −

2r
rL

þ r2

r2L

�
þ 6MrðMr − 2Q2Þ

	
; ð56Þ

in which (46) was utilized, reveals that at r ¼ 0 a physical
singularity certainly exists, since this curvature scalar
diverges at this radius. Additionally, as expected, the general
relativity expression is recovered for rL → �∞,

lim
rL→�∞

K ¼ 56Q4

r8
−
96MQ2

r7
þ 48M2

r6
: ð57Þ

Furthermore, as the Ricci scalar is zero everywhere, the
Kretschmann scalar becomes equivalent to the contraction
of the Weyl tensor with itself, commonly known as the
Weyl curvature scalar. Owing to the relation between this
tensor and the shear of a geodesic congruence,

ffiffiffiffi
K

p
can be

interpreted as a measure of the intensity of tidal deforma-
tions at a given radius. As an example, K vanishes at
r ¼ rL, so this radius can be characterized by a null tidal
force intensity and a Lyra field ϕ that diverges.
Nevertheless, a geodesic analysis is further necessary to
comprehend more about r ¼ rL, as is also the case
for r ¼ r�.

2. Horizons

In the Reissner-Nordström spacetime obtained from
general relativity it is well known that two important null
hypersurfaces exist: the inner and exterior horizons, also
respectively referred to as the Cauchy and event horizons.
These two surfaces are defined from relations (53), so that
in this case rs is related only to the mass and rQ only to the
charge, since for ϕ ¼ 1 the quantity ΔL is equal to r2L in
(46). As a consequence, since this spacetime solution is a
particular case of the metric obtained from Eq. (47), it is
a priori reasonable to designate rþ as the exterior horizon
and r− as the inner one.
Nonetheless, the relation between these horizons and the

Lyra geometrical mass and charge is not as trivial as in the
case of a constant ϕ. The presence of an effective
cosmological constant alters this relation when compared
to the aforementioned particular case. As a result, by
considering the relations in (46), the expressions (53) take
the form

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − λLQ2

p
λL

; ð58Þ

such that this new factor λL, which depends on the Lyra
parameter and on the mass and charge of the black hole, is
related to (50) via
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λL ¼ −
ΛL

3
r2L: ð59Þ

The quantity inside the square root of Eq. (58), which
from now on is designated as ΞL ≔ M2 − λLQ2, and the
factor λL defined in (59) are fundamental to the

comprehension of the LyST charged black hole anatomy.
These two expressions are essential for understanding the
inner and exterior horizon behaviors when considering
different mass and charge configurations. For this purpose,
it is necessary to consider the values of Q for which
ΞL ¼ 0: �

þQx
� ¼ þ 1

2
ðrL �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rL2 þ 4MrL

p
Þ;

−Qx
� ¼ −þQx

�;
ð60Þ

and the roots of λL, which are expressed as

Q� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ 2MrL

q
: ð61Þ

The relations in (60) have information as to which charge
values rþ equates to r− and as to when these roots become
complex numbers. As for the mathematical expressions in
(61), they describe for which values of Q the radius rþ is
non-negative. As a consequence, when examining the
conditions under which the square roots of these expres-
sions vanish, it becomes natural to define three distinct
regimes: rL > 0 or rL < −4M, −4M ≤ rL < −2M, and
−2M ≤ rL < 0. Depending on the charge value Q and the
regime within which rL is located, there will be four
different types of physical objects: one solution defined by
two horizons, two peculiar varieties of extremal black
holes, and a naked singularity. These possibilities are
shown in Figs. 1 and 2.
If the horizon configurations are thoroughly scrutinized,

it is interesting to observe that for the first regime, for a
positive Lyra parameter,

(i) rL > 0,
the horizons will cease to exist, i.e., r� ∈C, if

Q∈ ð−Qxþ; þQx
−Þ or Q∈ ð−Qx

−; þQx
þÞ; ð62Þ

FIG. 1. Left panel: rL < −4M. Center panel: −4M ≤ rL < −2M. Right panel: −2M ≤ rL < 0. The black solid curves represent Ξ1=2
L

as function ofQ for different values of rL, and the dashed ones correspond to 1=λL. The black vertical solid lines are associated with the
extremal charges, and the dash-dotted ones with the roots Q�. The limit cases (gray curves) rL ¼ −4M and rL ¼ −2M are also shown.
The colored regions simply represent the charge intervals in which they are confined: green, two horizons; blue, one horizon; indigo,
naked singularity.

FIG. 2. Top left panel: rL < −4M. Top right panel: rL > 0.
Bottom left panel: −4M ≤ rL < −2M. Bottom right panel:
−2M ≤ rL < 0. The solid lines represent rþ and the dashed
ones r−, with each line corresponding to a value of rL. The blue
curves become darker as jrLj increases. For M ¼ 1, the Lyra
parameter values utilized were ð−4.1;−4.25;−4.5;−5.5;−∞Þ,
ð1.46;2.2;3;4.5;∞Þ, ð−2.1;−2.5;−3;−3.5;−4Þ, and ð−0.25;−0.5;
−1;−1.5;−2Þ. The red dots describe the extremal charges
Q ¼ �Q

x
�, while the black ones represent Q ¼ Q�. The darker

colors were utilized for the rL → �∞, rL ¼ −4M, and rL ¼
−2M cases.
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resulting in the emergence of a naked singularity. As a
consequence, an extremal black hole with rþ ¼ r− will
form if Q ¼ �Q

x
�, such that its radius is defined by

lim
Q→�Q

x
�
r� ¼ 2M

1þ 2M
rL

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Lþ4MrL

p
rL

; ð63Þ

in which the upper sign of ∓ corresponds to Q ¼ �Q
x
þ. In

addition, the exterior horizon rþ will have a negative value
ifQ > Qþ orQ < Q−, so an extremal black hole with r− as
its horizon emerges. Therefore, in this regime, if the charge
is in the open interval,

ðQ−; −QxþÞ; ðþQx
−; −Q

x
−Þ; or ðþQx

þ; QþÞ; ð64Þ

the LyST charged black hole will possess two horizons.
For negative values of rL, in particular, for
(ii) rL < −4M,

the horizon configurations are exactly the same as in the
positive rL case, with the extremal charge values being the
sole difference. Therefore, for rL < −4M, the horizons will
cease to exist if the charge value satisfies

Q∈ ðþQx
−; þQ

x
þÞ or Q∈ ð−Qxþ; −Qx

−Þ; ð65Þ

resulting in the emergence of a naked singularity in those
cases. As a consequence, an extremal black hole with rþ ¼
r− will form if Q ¼ �Q

x
�, such that its radius is defined by

(63). In this regime, a LyST charged black hole will then
possess two horizons if

ðQ−; þQx
−Þ; ðþQx

þ; −Q
xþÞ; or ð−Qx

−; QþÞ: ð66Þ

This transition between the different types of horizon
configurations, for both the rL > 0 and rL < −4M cases,
can be better perceived if the left panel of Fig. 1 is
considered. It can be observed that as the charge Q
increases from negative to positive values, the first and
last possibilities are characterized by a black hole with one
horizon, i.e., r−, which is represented by the blue regions
encompassing the values of Q for which rþ < 0. Between
these cases, there is an alternation among the green regions,
for which there are two horizons, and the indigo ones,
which symbolize the naked singularity cases.
Moreover, the top panels of Fig. 2 also show these

considerations. It can be observed from Q ¼ 0 to Q ¼
−Qx

− (or −Qxþ for rL < −4M) that the horizons behave in
a manner similar to the Reissner-Nordström ones, such that
the rþ ¼ r− black hole for the general relativity case forms at

lim
rL→þ∞−Qx

− ¼ M: ð67Þ

Thus, considering (60), the equality between the mass and
charge on a Lyra manifold with a finite scale radius does not

generate an extremal black hole. As a consequence, in
contrast to the infinite rL case, black holes with Q > M
are conceivable in this physical scenario. Besides, it can be
further seen from these graphics that the possibility of a
resurgence of the horizons after the naked singularity
emergence is non-null.
If this phenomenon is physically plausible, which will be

considered in Sec. V, then, as the charge increases, a
horizon with rþ ¼ r− first arises, covering the naked
singularity. It eventually splits into rþ and r−, so that,
for Q growing beyond Qþ, the exterior horizon rþ simply
vanishes. In those cases in which r� are real numbers, the
interior horizon never disappears, since its numerator
always has the same sign as its denominator, resulting in
r− > 0. Furthermore, in this first regime, at values of Q
equal to the charge values in (61), the rþ horizon diverges
and becomes discontinuous and the inner one reaches the
limit,

lim
Q→Q�

r− ¼ rL

�
1þ rL

2M

�
; ð68Þ

so that, as Q goes to infinity, the horizons attain the limits

lim
Q→�∞

r� →∓ jrLj: ð69Þ

As for the remaining negative Lyra parameter cases, in
particular, for
(iii) −4M ≤ rL < −2M,

the extremal charges in (60) reduce to�rL=2 if rL ¼ −4M,
so that the possibility of a naked singularity formation is
null. The extremal black hole is then defined by (63), with
its square root term vanishing, which results in a extremal
horizon given by the Schwarzschild-Lyra parameter men-
tioned in Sec. IVA. In this case, therefore, there will be two
horizons if Q∈ ðQ−; QþÞ and Q ≠ �rL=2. For the rest of
the interval, the extremal charges (60) become complex
numbers, so that only the extremal rþ < 0 black hole will
form ifQ > Qþ orQ < Q−. As a consequence, this regime
has at least one everlasting horizon.
For the third and last Lyra parameter and mass configu-

ration defined by
(iv) −2M ≤ rL < 0,

there are no extremal charges since �Q
x
� ∈C. It can be

further noted that Q� ∈C or, if rL ¼ −2M, that Q� ¼ 0.
As a result, the exterior horizon rþ always has negative
values in this regime, and there are no charge intervals in
which the appearance of a naked singularity is possible. If
the case in which rþ ¼ 0, i.e., rL → −2M, is to be regarded
as unphysical, this regime is then characterized by the sole
presence of the r− horizon. This behavior can be better
understood in the bottom right panel of Fig. 2, in which this
horizon reaches the limit jrLj as Q → ∞.
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C. Geodesics and causal structure

To properly determine if the surfaces r� defined by (58)
are apparent horizons, it is essential to understand the
behavior of null and timelike geodesics. By fixing the
angular coordinates θ ¼ π=2 and φ̇ ¼ 0, one can express
the only necessary remaining Lyra geodesic equation from
(14) in terms of r� as

dt
dτ

¼ k
αϕ2

¼ k
ΔL

r2L

r2

ΔðrÞ ; ð70Þ

in which τ is an affine parameter and k an a priori positive
real constant. This relation tends to positive infinity if
r → rþþ, so that, as is typical of apparent horizons, any
information transmitted by an infalling observer from r− <
r ≤ rþ to r > rþ will be infinitely redshifted. However, this
behavior is inverted if the peculiar r− < rL < rþ case is
considered.
Similar to what happens at the Cauchy horizon of the

Reissner-Nordström metric, since (70) tends to −∞ if
r → rþ− , an infalling observer at r ¼ r− will receive
infinitely blueshifted radiation from r > r− if the scale
radius does not satisfy r− < rL < rþ. Nevertheless, since it
was revealed in Sec. IV B that the exterior horizon fades
away for certain charge values and that, as will be shown,
the metric necessarily changes its causal nature in r < r−,
the inner horizon will act as a usual apparent horizon if
rþ < 0, given that (70) generally tends to þ∞ for r → rþ−
in this scenario. However, it will oddly tend to negative
infinity if 0 < rL < r− or, for negative values of rL,
if rL > rþ.
To analyze how nonmassive particles are radially

affected by the LyST charged black hole, the normalization
uμuμ ¼ 0 is assumed, with the four-velocity defined by (5).
As a result,

dt
dr

¼ � 1

α
¼ �

�
1 −

r
rL

�
−2ΔL

r2L

r2

ΔðrÞ ð71Þ

is obtained, in natural units, through the use of (70).
Therefore, for a constant t0, the coordinate time measured
for null geodesics as a function of r can be expressed as

t� ¼ t0 �
�
rϕþ rL

�
rþ

rL − rþ
þ r−
rL − r−

�
lnϕ

þ ΔL

rþ − r−

�
r2þ ln ðr − rþÞ
ðrL − rþÞ2

−
r2− ln ðr − r−Þ
ðrL − r−Þ2

	�
; ð72Þ

with the scale field given by (40) for r0 ¼ rL. As expected,
Eq. (72) results in the general relativity case for an infinite
Lyra parameter.
The behavior of the metric component (47) and of

ingoing and outgoing null geodesic congruences defined
by (72) are shown in Fig. 3. In the top graphics, it is

straightforward to notice that αðrÞ is negative for
r∈ ðr−; rþÞ, so the coordinate time t becomes spacelike
and r assumes a timelike character within this nonstatic
region. Consequently, in the remaining radial intervals,
these coordinates return to their conventional causal con-
figurations. Thus, null cones are rotated by a right angle
only between the two horizons or, for the cases in which the
exterior horizon is absent, if r < r−. It is also possible to
observe, in the bottom panels, that null geodesics reach
r ¼ rþ at an infinite coordinate time, so the light cones are
continuously squeezed for r → rþþ. As a result, the causal
structure of this spacetime is qualitatively similar to the
Reissner-Nordström one.
For the S2 sphere defined by a positive Lyra parameter,

however, the coordinate t is timelike inside and outside of
it. Moreover, Eq. (70) indicates no infinite redshift pos-
sibility in this region. Thus, although t� diverges at r ¼ rL
from both directions, the region r ¼ rL does not seem to be
an apparent horizon. It is thereby necessary to consider the
trajectory of free falling massive particles at this radius. For
this purpose, the normalization uμuμ ¼ 1, in natural units,
leads to

dτ
dr

¼ �
�
1 −

r
rL

�
−2

ffiffiffiffiffiffi
ΔL

p
jrLj

�
Δðr0Þ
r02

−
ΔðrÞ
r2

�
−1=2

; ð73Þ

such that for r ¼ r0 the right side of the equation above
vanishes.
Despite the fact that Eq. (73) possesses an analytic

solution, its mathematical expression is excessively large to

FIG. 3. Left panels: rL < 0. Right panels: rL > 0. In the top
panels, the plotted curves correspond to αðrÞ. In the bottom
panels, the coordinate time solutions tþ (light blue dashed lines)
and t− (dark blue solid lines) of null geodesics are shown as
functions of r. Future directed null cones are artistically repre-
sented. The vertical black solid lines represent r ¼ r−, r ¼ rþ,
and r ¼ rL.
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be present in the current text. Nonetheless, its behavior in
different configurations is shown in Fig. 4. From the bottom
panel in this figure and by examining Eq. (73), it becomes
evident that the proper time of a massive particle tends to
infinity as it approaches the Lyra surface defined by rL > 0.
A particle coming from r0 > rL takes an infinite proper
time to reach r ¼ rL or to move out of it and fall into the
black hole. As a consequence, the Lyra scale radius
separates the spacetime manifold into two regions that
no nonaccelerated observers can trespass.
For observers trying to travel through the surface defined

by rL, it would be as if they were venturing into spatial
infinity. An examination of the black hole physics would
then be essential to characterize the corresponding geom-
etry. The fact that tidal deformations are null at the Lyra
radius—the proper time τ of free falling observers increases
infinitely as r approaches rL and the coordinate time t is
equivalent to the proper time of a fixed observer at the
surface rL [see (44), for example]—is a further indication
that the r ¼ rL case is equivalent to the scenario of
infinitely distant regions of conventional Riemannian
manifolds. In other words, one of the effects of the Lyra
field ϕ is to compactify spacetime. As a result, for non-
negative values of the Lyra parameter, the radial coordinate
r must satisfy r∈ ½0; rL� and rL > r� for a plausible
physical solution.

V. OVERCHARGING

In the previous section, it was shown that Lyra charged
black holes can exist for jQj > M and that a timelike naked
singularity can arise for certain charge intervals. As for the
current section, an investigation is employed to assess the
possibility of overcharging LyST black holes defined by the
metric (44) so as to expose the physical singularity.

Specifically, an overcharge attempt is also made to skip
the charge intervals in which the horizons vanish so that an
eternal charged black hole can emerge. In both scenarios,
the phenomenological case in which rL > 0 or rL < −4M
is considered.
The following analysis is a generalization of the one

constructed for Reissner-Nordström black holes by
Ref. [41]. As done in the aforementioned work, Q > 0
is considered without loss of generality. The first step to
expose the singularity is to consider a near-extremal
charged black hole. A particle with charge q, rest mass
m, and energy E is radially sent to the black hole satisfying
m < E < q ≪ Q < −Qx

�, in which −Qx
− corresponds to

rL > 0 and −Qxþ to rL < −4M [see Eqs. (62) and (65)].
Three conditions are then necessary: the particle descends
past the exterior horizon; the final configuration overcomes
the first extremal scenario without surpassing the second
one, that is,Qþ q > −Qx

� þ E such thatQþ q < þQx
þ (or

−Qx
− if rL < −4MÞ þ E; and a test particle is to be

considered as the overcharge causing agent, so that back-
reaction effects are negligible.
The restriction on the maximum allowable charge for the

black hole’s final state, wherein Qþ q must not reach or
exceed þQx

þ þ E or −Qx
− þ E, is naturally satisfied when

rL > 0 or rL < −4M, given that a test charged particle is
considered. In essence, this requirement is satisfied due to
the particle’s energy condition E < q ≪ Q and the fact
that, for values of rL not too close to zero or −4M, the
charge interval between the first and second extremal
charges is large enough (see the left panel of Fig. 1).
Otherwise, backreaction effects would be non-negligible
and the mentioned requirement might not be satisfied.
As for the second analysis, the black hole final charge is

required to surpass the charge interval in which the
horizons vanish. Therefore, the only difference from the
analysis of the first case is the presence of the black hole
final state requirement:Qþ q > þQx

þ þ E when rL > 0 or
Qþ q > −Qx

− þ E for rL < −4M. However, to maintain
the approach of charged test particles, the charge interval in
which a naked singularity is possible has to be small
enough that a slight overcharge has the potential to yield an
eternal black hole. As a result, it is further required that the
rL value is close to −4M or 0.
To perform both analyses, it is convenient to define a

new coordinate v ¼ tþ r� such that dr� ¼ α−1dr. The
black hole metric (44) is then rewritten as

ds2 ¼ ϕ2ðαdv2 − 2dvdr − r2dΩ2Þ ð74Þ

for α given by Eq. (47). Furthermore, it is important to note
that, since a scale transformation is not performed and the
coordinate one is given simply by xμ ¼ ðt; r; θ;φÞ → x̄μ ¼
ðv; r; θ;φÞ, the transformation law (9) applied to the electric
potential yields Āμ ¼ Aμ.

FIG. 4. Left panel: rL < 0. Right panel: r0 < rL. Bottom panel:
0 < rL < r0. The blue curves represent the absolute value of the
massive particles’ proper time plotted as a function of r. Different
configurations of the initial position r0 are considered. The black
vertical solid line represents the positive rL case.
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To describe the test charged particle dynamics the
equation of motion is utilized,

ūα∇αūμ ¼
q
m
F̄μ

βūβ; ð75Þ

in which Eq. (32) is considered and such that the four-
velocity components are defined by (5). The Lagrangian
that generates the above equation is constructed as
L ¼ ḡμνūμūν=2þ qĀμūμ=m, which can be rewritten for
radial trajectories θ̇ ¼ φ̇ ¼ 0 as

L ¼ 1

2
ϕ2

�
αv̇2 − 2v̇ ṙþ 2qQ

mr
ϕ−2v̇

	
; ð76Þ

in which the dot symbol represents the derivative with
respect to the particle’s proper time and such that c1 ¼ 0 in
(42). Thus, since the Euler-Lagrange equations are valid in
this case and (76) does not explicitly depend on v, the
canonical momentum conjugate to this new coordinate is
the particle’s energy,

E
m
≡ ∂L

dv̇
¼ ϕ2ðαv̇ − ṙÞ þ qQ

mr
: ð77Þ

It is also considered a timelike trajectory for the charged
particle such that ūμūμ ¼ 1, which leads to

αv̇2 − 2v̇ ṙ ¼ ϕ−2: ð78Þ

Isolating v̇ in the particle’s energy relation (77) and
substituting it into the above equation yields

ṙ2 ¼ 1

m2ϕ4

�
E −

qQ
r

�
2

−
α

ϕ2
; ð79Þ

which must obey the condition ṙ2 > 0 when r ≥ rþ, since
ṙ ¼ 0 is a turning point, so as to guarantee that the charged
particle falls into the black hole. Using (79), this condition
leads to

�
E −

qQ
r

�
2

> m2ϕ2α: ð80Þ

Given that ϕ2αðrÞ is non-negative for values of r greater
than rþ when rL > rþ or rL < −4M, the inequality in (80)
is equivalent to E > qQ=r. As a result, since ṙ2 > 0 for
r ≥ rþ [41], the lower bound on the particle’s energy is
simply given by

E >
qQ
rþ

: ð81Þ

A. Exposing the singularity

To obtain a naked singularity, it is necessary to consider
the second aforementioned condition, in which the final
black hole charge must surpass the first extremal case, that
is, Qfinal > −Qx

� þ E. Therefore, the upper bound for the
energy is

E < Q − −Qx
� þ q: ð82Þ

These two energy bounds imply that a LyST extremal black
hole can be overcharged, since the extremality condition
does not imply that Q ¼ rþ ¼ M, as is the case of the
Reissner-Nordström metric, in which it is not possible to
overcharge an extremal solution [41]. Moreover, if
Eqs. (81) and (82) are combined, the following inequality
for the particle’s charge is obtained:

q >

�
1 −

Q
rþ

�
−1
ð−Qx

� −QÞ: ð83Þ

It is further necessary to address the particle’s mass
values that satisfy ṙ2 > 0. By considering (80), it is easy to
find that m < ϕ−1α−1=2ðE − qQr−1Þ for r ≥ rþ.
Calculating the minimum value of the function on the
right-hand side of this relation for r ¼ rm,

rm ¼ 1

2
rs þ

1

6
ð31=3A1=3 − 32=3ᾱA−1=3Þ; ð84Þ

in which A ¼ β̄ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ᾱ3 þ β̄2

p
, with ᾱ and β̄ given by8>><

>>:
ᾱ ¼ 2γ̄ − 3rs2;

β̄ ¼ 36rLrQ2 − γ̄rs þ rs3;

γ̄ ¼ rQ2 þ rLrs −
qQ
E ð2rL − rsÞ:

ð85Þ

As a result, combining Eq. (84) with the particle’s mass
inequality yields

m <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2ðrmÞαðrmÞ
p �

E −
qQ
rm

�
: ð86Þ

Therefore, to overcharge a LyST black hole with fQ;Mg
to the point that a naked singularity emerges, it is essential
to choose q which satisfies Eq. (83) with the default
fQ;Mg, the particle’s energy inequalities (81) and (82)
must then be simultaneously satisfied, and it is further
required that m obeys (86) by using the previously defined
q and E. These steps assure that a charged test particle falls
past the exterior horizon and overcharges the black hole to a
final state fQf ;Mfg such that

�Qf ¼ Qþ q;

4M�
f ¼ 1

rL
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rL2 þ 4MrL

p
� 2EÞ2 − rL;

ð87Þ
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in which the final massMþ
f corresponds to the case rL > 0

and M−
f corresponds to rL < −4M.

B. Eternal black hole

A new interesting possibility within Lyra black holes is
the existence of eternal overcharged solutions, a physical
scenario which is impossible in the Reissner-Nordström
spacetime. Nevertheless, there is no physical plausibility of
some cases such as Q → Q�, since the exterior horizon
goes to positive infinity for these charge values (see Fig. 2).
As mentioned, the final charge and mass of the black hole
must obey new conditions such that�

E < Q − þQx
þ þ q; for rL > 0;

E < Q − −Qx
− þ q; for rL < −4M;

ð88Þ

By combining these relations with (81), one can easily
obtain an inequality for the charge q,

q >

�
1 −

Q
rþ

�
−1
ðQx −QÞ; ð89Þ

in which Qx ¼ þQx
þ when rL > 0 and Qx ¼ −Qx

− for
rL < −4M. Moreover, as mentioned, it is further consid-
ered that the rL value is close enough to 0 or −4M to satisfy
þQx

þ − −Qx
− < q for rL > 0 or −Qx

− − −Qxþ < q when
rL < −4M, which results in(

rL < q for rL > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ 4MrL

p
< q for rL < −4M;

ð90Þ

given that 0 < q ≪ Q < �Q
x
�.

As a consequence, to overcharge a black hole with
fQ;Mg so as to surpass the charge intervals in which a
naked singularity is possible, it is necessary that the
particle’s charge satisfies the inequality (89), its energy
must be within the bounds defined in (88) and (81) such
that m obeys (86) with the previously defined E and q. If
these steps are completed, such that the rL value enables the
inequalities in (90), a charged particle q with energy E and
mass m, for negligible backreaction effects, is able to fall
into the black hole and overcharge it so that no further
increase in its charge is capable of dissolving its horizons.
This eternal black hole has then a charge Qf and a massMf
defined by the expressions in (87).

VI. FINAL REMARKS

We constructed a generalization of Maxwell’s electro-
dynamics for the Lyra geometry, which enabled us to find
an analytical solution for the metric of a charged spherically
symmetric black hole in the Lyra scalar-tensor theory [34].
It was shown that one of the Lyra scale function effects is to
compactify spacetime if the Lyra parameter is positive,
acting then as a scale radius such that for an infinite Lyra

parameter the Reissner-Nordström solution is reobtained.
In the absence of electric charges, our solution proved to be
consistent with the one obtained in [34]. Moreover, the
Kretschmann scalar for Lyra manifolds revealed that a
physical singularity is present at the origin. An analysis
involving null and timelike geodesics additionally indicated
that the r− and rþ coordinate singularities are, respectively,
a Cauchy and an apparent horizon.
It was further shown that, due to the presence of the Lyra

parameter, an effective cosmological constant arises from the
black hole mass and charge when we consider the metric
components alone. This main quantity effect is to alter the
relation between the horizons and themass and charge of the
black hole such that a black hole with a charge value greater
than its geometrical mass is conceivable to exist within Lyra
manifolds. It was also revealed the presence of six extremal
charges, which divide the black hole anatomy into different
phenomenological cases: a singularity enclosed by two
horizons, a naked singularity, and two unique types of
extremal black holes defined by Eqs. (63) and (68).
These different black hole varieties are separated into

three classes: rL > 0 or rL < −4M, −4M ≤ rL < −2M,
and −2M ≤ rL < 0. In the first class, we discovered that
there is no difference in the anatomy of the black hole if
positive values of rL or negative values of it that are smaller
than −4M are considered. However, there are important
physical distinctions between these cases, as for rL < −4M
there is no spacetime compactification and their asymptotic
limits are different (see, e.g., Fig. 3). Furthermore, all types
of aforementioned black holes are possible in the first class,
such that the horizons configurations of the positive charge
interval limited by the second extremal charge are similar to
the ones in charged black holes of general relativity. A third
extremal charge produces an unphysical scenario in which
the exterior horizon diverges, such that for larger charge
values it simply vanishes, so what was initially the inner
horizon evolves into a lonely apparent horizon.
The second class is similar to the first one, although it is

impossible for a naked singularity to exist in this case. As
for the third class, it has only one horizon that is to be
regarded as unphysical, since in the absence of charges no
black hole would exist. This is further highlighted by the
fact that, for large charge values, a black hole in this class
would span all of the tridimensional space. Therefore,
values of the Lyra parameter in the third class, i.e.,
−2M ≤ rL < 0, are to be disregarded.
Furthermore, we studied the overcharging process of

LyST charged black holes. Radially infalling test charged
particles were considered so as to overcharge our solution.
A detailed analysis was constructed so as to produce a
naked singularity for the cases in which rL > 0 or
rL < −4M. A similar process was constructed for a new
possibility that emerges within the Lyra geometry, that is,
an eternal overcharged black hole. It was further noted that,
unlike what happens at the Reissner-Nordström metric, in
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the LyST theory it is possible to overcharge an extremal
black hole. This analysis serves as a preliminary study to
further consider backreaction effects so as to verify if the
weak cosmic censorship still holds in the Lyra scalar-tensor
theory. In addition, it is also important to consider an
external magnetic field [42], since the overcharging process
can be prevented in some cases [43].
The study of LyST charged black holes and its different

possible horizons configurations is very important: it is a
preliminary analysis of how rotating black holes behave in
the Lyra geometry. This is expected because the relation
between the horizons and the mass and charge in the
Reissner-Nordström solution is similar to what happens in
the Kerr metric but with the presence of the angular
momentum instead of the charge, and given that the
solutions of general relativity are always subcases of the
LyST ones. Therefore, for example, by observing black
hole shadows, it would be possible to measure deviations
from Einstein’s theory through the parameter uL ¼ 1=rL.
Thus, if general relativity is compatible with observational
data, one expects uL ∼ 0.

Additionally, we are currently probing a more funda-
mental relation between the scalar-tensor theories obtained
in the Lyra geometry, scale transformations of the metric
components and the Weyl integrable spacetimes. This
relation motivated us to pursue an unique Lyra theory with
interesting cosmological applications. We are further study-
ing rotating black holes in Lyra manifolds by considering a
scale function that possesses only a radial dependence.
Electromagnetic phenomena arising from the Maxwell-
Lyra equations are also being investigated. All of these
results will soon be published.
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