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Scalar-Gauss-Bonnet (sGB) gravity with an additional coupling between the scalar field and the Ricci
scalar exhibits very interesting properties related to black hole stability, evasion of binary pulsar constraints,
and general relativity as a late-time cosmology attractor. Furthermore, it was demonstrated that a
spherically symmetric collapse is well posed for a wide range of parameters. In the present paper we
examine further the well-posedness through 3þ 1 evolution of static and rotating black holes. We show
that the evolution is indeed hyperbolic if the weak coupling condition is not severely violated. The loss of
hyperbolicity is caused by the gravitational sector of the physical modes, thus it is not an artifact of the
gauge choice. We further seek to compare the Ricci-coupled sGB theory against the standard sGB gravity
with additional terms in the Gauss-Bonnet coupling. We find strong similarities in terms of well-posedness,
but we also point out important differences in the stationary solutions. As a by-product, we show strong
indications that stationary near-extremal scalarized black holes exist within the Ricci-coupled sGB theory,
where the scalar field is sourced by the spacetime curvature rather than the black hole spin.
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I. INTRODUCTION

The rapid advance of gravitational wave detectors
gives us confidence that in the next decades we will have
the necessary observations to allow for precise tests of
gravity [1–8]. The availability of accurate theoretical
gravitational waveforms both in general relativity (GR)
and its modifications will be crucial for the correct inter-
pretation of the detected gravitational wave events. While
the accuracy of the former is on a steady path of improve-
ment, numerical relativity simulations beyond GR are
still in the development phase. The reason behind that is
twofold—first, the field equations typically get increas-
ingly more complicated compared to GR when we start
modifying the original GR action. The second more
fundamental obstacle is the question of well-posedness,
which is one of the main building blocks if we want to be
able to perform time evolution. Even though strong hyper-
bolicity is proven in certain formulations of the 3þ 1 field
equations in GR [9–12], it is by no means guaranteed that
this will remain true in modified gravity [13,14]. Whether
this is sourced by an intrinsic problem of the theory or just a

gauge change is required, is a question that awaits answer
in a number of GR modifications.
Our focus in the present paper will be the scalar-Gauss-

Bonnet gravity (sGB). It provides an important playground
for studying the possible deviations from GR one can have
in an effective field theory of gravity while keeping the field
equations of second order. It gained particular attention
because it was proven that black holes with scalar hair can
exist within this theory [15–19], including spontaneously
scalarized ones [20–22]. Even though evolution in spheri-
cal symmetry can be hyperbolic for a weak enough coup-
ling [23,24], solving the full 3þ 1 field equations is much
more subtle with the standard harmonic gauge proven to be
non-well-posed [13]. Interestingly, loss of hyperbolicity is
observed even at the level of linear perturbations [25,26].
An important breakthrough was the proof that a modified

harmonic gauge leads to well-posed 3þ 1 field equa-
tions in the weak coupling regime, i.e. when the contribu-
tions of the Gauss-Bonnet term to the field equations
are smaller than the two-derivative Einstein-scalar field
terms [27,28]. This regime is exactly where sGB gravity
can be considered as a viable effective field theory. This
eventually allowed the development of 3þ 1 numerical
relativity codes [29,30] and an extension to a well-posed
modified puncture gauge [31,32].
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The search for a well-posed formulation of sGB gravity
also eventually ignited the interest in alternative ways to
address the problem. An interesting approach is to “fix” the
field equations, which can be regarded as providing a weak
completion of the considered effective field theory [33–36]
and is inspired by the dissipative relativistic hydro-
dynamics [37–39]. Even though it seems promising, further
development is needed to have a self-consistent and robust
3þ 1 evolution. Another approach is to modify the original
sGB action and a natural extension is to add a coupling
between the scalar field and the Ricci scalar coupling [40].
It was shown that it can lead to hyperbolic evolution
in the case of a spherically symmetric collapse of a scalar
field [41]. As a matter of fact, this theory has other
interesting features such as linear stability of black holes
that are otherwise unstable in the standard sGB gravity and
the possibility to evade binary pulsar constraints for certain
ranges of parameters [42]. Furthermore, it also cures some
of the problems encountered when treating scalar-tensor
theories in a cosmological set-up. In particular, adding the
Ricci scalar coupling is a minimal model which succeeds in
having GR as a cosmological late-time attractor [43], which
is otherwise not true [44–46]. However, other problems
occurring at early times persist within this model [47] and
one would need to add extra operators [48] in order to
cure them.
In the present paper, we aim to explore further the Ricci-

coupled sGB gravity by investigating the well-posedness of
the theory in the 3þ 1 formulation of the field equations
using the modified gauge proposed in [27,28] in the
puncture gauge approach [31,32]. We also compare the
theory with certain subclasses of sGB gravity known to also
lead to linearly stable black holes [49,50] and hyperbolic
3þ 1 evolution (for weak enough scalar fields) [23,51].
Our results confirm that, as expected, the Ricci-coupled

sGB gravity leads to a hyperbolic evolution when the weak
coupling condition is satisfied (or even mildly violated),
similarly to pure sGB gravity. When the value of the scalar
field is large enough, though, hyperbolicity is lost. The
simulations lead to the conclusion that this is caused by the
physical modes of the purely gravitational sector, thus it is
not an artifact of a poor gauge choice. As a matter of fact,
the maximum value of the scalar field, and thus the
maximum deviation from GR, that one can have while
keeping the formulation well-posed is similar in the cases of
a sGB gravity with or without Ricci coupling. Overall, our
results suggest that many of the effects observed in the Ricci
coupling theory can be mimicked by pure sGB gravity but
with a more sophisticated Gauss-Bonnet coupling.
The paper is organized as follows. In Sec. II we define

the Ricci-coupled scalar-Gauss-Bonnet theory considered
in this work and give a brief overview of the modified
CCZ4 formalism, together with the concepts of the effec-
tive metric and the weak coupling conditions, which are
relevant in this manuscript. In Sec. III, after motivating

the specific form of the coupling functions that we are
using and introducing the numerical setup, we present our
results regarding the nonlinear evolution of rotating and
nonrotating black holes and their comparison within two
different set of coupling functions. Finally, in Appendix A
we include the equations of motion of the theory in the
modified CCZ4 formalism and in Appendix B we test the
validity of the developed code.
We follow the conventions in Wald’s book [52]. Greek

letters μ; ν;… denote spacetime indices and they run from 0
to 3; Latin letters i; j;… denote indices on the spatial
hypersurfaces and they run from 1 to 3. We set G ¼ c ¼ 1.

II. THEORETICAL BACKGROUND

We consider a scalar-Gauss-Bonnet theory with a Ricci
coupling (which belongs to the Horndeski class) corre-
sponding to the following action,

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ X − βðφÞRþ λðφÞ

4
R2

GB

�
; ð1Þ

where R is the Ricci scalar with respect to the spacetime
metric gμν, R2

GB is the Gauss-Bonnet invariant defined as
R2

GB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ , φ is the scalar field
with X ¼ − 1

2
∇μφ∇μφ being its kinetic term. The Gauss-

Bonnet and Ricci couplings are controlled by arbitrary
functions of the scalar field with λðφÞ having dimensions of
½length�2 and βðϕÞ being dimensionless. Its equations of
motion yield

ð1 − βðφÞÞ
�
Rμν −

1

2
Rgμν

�
þ Γμν

¼ 1

2
∇μφ∇νφ −

1

4
gμν∇αφ∇αφ

þ �
gμν□ −∇μ∇ν

�
βðφÞ; ð2aÞ

∇α∇αφ ¼ −
λ0ðφÞ
4

R2
GB þ β0ðφÞR; ð2bÞ

where Γμν is defined as

Γμν ¼ −
1

2
RΩμν −Ωα

α

�
Rμν −

1

2
Rgμν

�
þ 2RαðμΩνÞα

− gμνRαβΩαβ þ Rβ
μανΩβ

α; ð3Þ

with Ωμν ¼ ∇μ∇νλðφÞ.

A. Modified CCZ4 formalism

The equations of motion that follow from varying (1) in
the modified harmonic gauge introduced by [27,28] and
supplemented by constraint damping terms are given by (2)
with the following replacement,
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Rμν −
1

2
Rgμν → Rμν −

1

2
Rgμν þ 2

�
δðμα ĝνÞβ −

1

2
δβαĝμν

�
∇βZα

− κ1
�
2nðμZνÞ þ κ2nαZαgμν

�
; ð4Þ

where ĝμν and g̃μν are two auxiliary Lorentzian metrics that
ensure that gauge modes and gauge condition violating
modes propagate at distinct speeds from physical modes,
as in [27,28].1 They can be defined as

g̃μν ¼ gμν − aðxÞnμnν ĝμν ¼ gμν − bðxÞnμnν; ð5Þ

where aðxÞ and bðxÞ are arbitrary functions such that 0 <
aðxÞ < bðxÞ and nμ ¼ 1

α ðδμt − βiδμi Þ is the unit timelike
vector normal to the t≡ x0 ¼ const hypersurfaces with α
and βi being the lapse function and shift vector of the 3þ 1
decomposition of the spacetime metric, namely

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð6Þ

The damping terms in (4), whose coefficients should satisfy
κ1 > 0 and κ2 > − 2

2þbðxÞ, guarantee that constraint violat-
ing modes are exponentially suppressed [31,32].
In Appendix A we have written down the evolution

equations for the 3þ 1 formalism. The versions of the
1þ log slicing and Gamma-driver evolution equations that
result in the modified puncture gauge are

∂tα ¼ βi∂iα −
2α

1þ aðxÞ ðK − 2ΘÞ; ð7Þ

∂tβ
i ¼ βj∂jβ

i þ 3

4

Γ̂i

1þ aðxÞ −
aðxÞα∂iα
1þ aðxÞ ; ð8Þ

where Θ ¼ Z0, K is the trace of the extrinsic curvature of

the induced metric γij, Γ̂i ¼ γ̃klΓ̃i
kl þ 2γ̃ijZj, with Γ̃i

kl being
the Christoffel symbols associated to the conformal spatial
metric γ̃ij ≡ χγij, where χ ¼ detðγijÞ−1=3.

B. Effective metric

The hyperbolicity of the equations of motion is held
when its principal part is diagonalizable with real eigen-
values and a complete set of linearly independent and
bounded eigenvectors that depend smoothly on the varia-
bles. The eigenvalues from the gauge sectors lie on the null
cones of the auxiliary metrics, while the physical sector is
described by a characteristic polynomial of degree 6 which
factorizes into a product of quadratic and quartic poly-
nomials [53]. The former is defined in terms of an “effective
metric” and is associated with a “purely gravitational”
polarization, whereas the latter generically involves a
mixture of gravitational and scalar field polarizations.
Even though the “fastest” degrees of freedom are asso-

ciated with the quartic polynomial [53], it is not necessarily
the case that hyperbolicity loss should occur first in their
sector. Moreover, there is no simple way to study the
hyperbolicity of that sector. This is why we have focused
on the “purely gravitational” polarizations, which appear to
coincide with the breakdown of the simulation as was seen
in [51] and in this work. Nevertheless, we emphasize that
there could also be a nonhyperbolic behavior coming from
the eigenvalues of the quartic polynomial.
In the Ricci-coupled sGB theory, the effective metric

yields

gμνeff ¼ gμνð1 − βðφÞÞ −Ωμν; ð9Þ

and its determinant (normalized to its value in pure GR) can
be expressed as

detðgμνeffÞ
detðgμνÞ ¼

�
1

1þΩ⊥⊥ − βðφÞ
�

2

det

	
1

χ



ðγijð1 − βðφÞÞ − ΩijÞð1þΩ⊥⊥ − βðφÞÞ − 2

α
Ω⊥ðiβjÞ

−ð1 − βðφÞÞΩ⊥⊥ βiβj

α2
þΩ⊥iΩ⊥j

��
; ð10Þ

where Ωij ¼ γiμγ
j
νΩμν, Ω⊥i ¼ −nμγiνΩμν and Ω⊥⊥ ¼

nμnνΩμν. In the results shown later we will consider the
normalized determinant

Geff ≡ ð1þ Ω⊥⊥ − βðφÞÞ2 detðg
μν
effÞ

detðgμνÞ ; ð11Þ

which has no divergences when hyperbolicity is lost and is
normalized to unity in the absence of any scalar field.

C. Weak coupling condition

One of the main reasons for the relevance of the sGB
theory is that it accounts for the more general parity-
invariant (up to field redefinitions) scalar-tensor theory of
gravity up to four derivatives, when considering a scalar
field with no potential and neglecting the four-derivative
scalar term, which we see from our work in [31,32] is
justified since it is always subdominant to the effect of the
Gauss-Bonnet term.
In this sense, we view these theories as effective field

theories (EFTs) that arise as a low energy limit of a more
fundamental theory, whose terms are organized in a

1Note that g̃μν is hidden in the definition of the constraints Zμ

(see Refs. [31,32] for further details).
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derivative expansion and appear multiplied by dimension-
ful coupling constants that encode the effects of the
underlying (unknown) microscopic theory.
Therefore, in order for our theory to be justified and valid

as an EFT, one has to make sure that we are not beyond
the threshold where the EFT breaks down and the higher
derivative terms would become relevant. This is ensured
as long as our theory is in the weak coupling regime
throughout all its evolution. Namely, we require that the
contributions of the Gauss-Bonnet term to the field equa-
tions are smaller than the two-derivative Einstein-scalar
field terms, which can be expressed in the form of the
following weak coupling condition [32,51]:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ0ðφÞj

p
=L ≪ 1; ð12Þ

where L accounts for any characteristic length scale of the
system associated to the spacetime curvature and the
gradients of the scalar field, which can be computed as

L−1 ¼ max
jRijj1=2; j∇μφj; j∇μ∇νφj1=2; jR2

GBj1=4
�
: ð13Þ

III. RESULTS

A. Coupling functions

We will concentrate on the following forms of the
coupling functions λðφÞ and βðφÞ:

λðφÞ ¼ λGBφ
2 þ γGBφ

4; ð14Þ

βðφÞ ¼ βRiccφ
2; ð15Þ

with nonzero value of λGB. These coupling functions lead
to the so-called spontaneous scalarization since any GR
spacetime with a zero scalar field is also a solution of the
sGB field equations. Therefore, the weak field limit coin-
cides with Einstein’s gravity. For a strong enough space-
time curvature, though, the Kerr black hole becomes
unstable with respect to scalar field perturbations giving
rise to a scalarized black hole. As it is well known, a pure
φ2 term in the λðφÞ function is enough to admit scalarized
black holes [20–22,54], but they are linearly unstable. The
minimum modification to stabilize the solutions is to add a
φ4 term [49,50] or an alternative is to slightly change the
theory, such as the introduction of a Ricci scalar coupling
βðφÞ [40] considered in the present paper. Thus, if γGB and
βRicc are large enough by absolute value, the resulting black
hole solutions are linearly stable.
In the first part of the results presented below, we will

consider the case of γGB ¼ 0 because our main goal is to
examine the effect of the Ricci scalar coupling on the
hyperbolicity. In the second part of the results, we will
compare the effects of the γGBφ

4 term in λðφÞ on the one
hand and the Ricci coupling on the other. The motivation is

that these are the simplest modifications of pure sGB
gravity with a λðφÞ ¼ λGBφ

2 coupling that lead to a
restoration of stability and share similar properties of the
solutions.

B. Numerical setup and hyperbolicity loss treatment

It was shown in [41] that the 1þ 1 nonlinear evolution
within the Ricci-coupled sGB theory is hyperbolic for an
extensive region of the parameter space. It is natural to
generalize these results to a 3þ 1 evolution where fixing
a gauge is much more subtle. Another major difference
between our results and the ones presented in [41] is that in
the latter the authors consider collapse of a scalar cloud
while we start from an unstable Kerr black hole and let it
scalarize as the evolution proceeds.
We have all reasons to believe that the modified gauge

for sGB gravity [27,28] will also work for the considered
theory with a Ricci scalar coupling. We also conjecture that,
similarly to sGB gravity [53], the loss of hyperbolicity,
at least for the considered simulations, is related to the
physical modes of the purely gravitational sector rather
than the mixed scalar-gravitational one. This is based on the
observation that the determinant of the effective metric (11)
turns negative right before the breakdown of the simulation.
This is a signal that either the speed of these modes diverge
or they become degenerate [51,53].
An important property of the sGB modified gauge

proposed in [27,28] is that the mathematical proof for
well-posedness is valid only in the weak coupling regime
where the scalar field should be weak enough. As a matter
of fact, in practice, hyperbolicity is also preserved when
the weak coupling condition is slightly violated [51]. It is
natural to assume that this will also remain true when we
consider an additional coupling between the Ricci scalar
and the scalar field. This is why we have performed a series
of numerical relativity simulations to probe the hyper-
bolicity of the employed Ricci-coupled sGB theory. A
newly developed modification of GRFolres [55] (based on
GRChombo [56–58]) was implemented taking into account
the Ricci scalar coupling in Eqs. (2), which are explicitly
written down in our modified CCZ4 formalism in
Appendix A. Details about the code convergence and
constraint violation are presented in Appendix B.
In our simulations we fix the auxiliary simulation para-

meters to the following values. The functions aðxÞ and bðxÞ
in the auxiliary metrics (5) are chosen to be constants,
namely a ¼ 0.2 and b ¼ 0.4 [29,51]. The rest of the
parameters in the CCZ4 formulation (4) are κ1 ¼ 1.0=M,
κ2 ¼ −0.1, with M being the ADM mass (which is set to
be 1 in all our simulations), and the Kreiss-Oliger numeri-
cal dissipation coefficient is σ ¼ 1.0. We refer the reader
to [58] for a detailed discussion of these parameters.
We consider as initial data a Kerr black hole with a scalar

field Gaussian pulse superimposed on it. In the theory we
study, the Kerr black hole is a solution of the field equations
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but the parameters are chosen in such a way so that
it is linearly unstable. As the evolution proceeds and the
scalar pulse “hits” the black hole, the scalar hair starts
developing quickly until it reaches equilibrium or a loss of
hyperbolicity occurs. The resolution that we mostly worked
with is 128 points in each spatial direction with 6 refine-
ment levels and a domain size of 256M. The finest grid
level (which embeds an area with a diameter twice the
apparent horizon) has roughly 60 points across the black
hole horizon.
The employed puncture gauge enables us to evolve the

spacetime also through the black hole horizon, thus no
explicit excision of the horizon is being made. Still, in order
to achieve a stable evolution one has to “turn-off” the
Gauss-Bonnet coupling inside the black hole [31,32] and
practically evolve GR in the interior. As the apparent
horizon is being approached, the Gauss-Bonnet term is
gradually turned on so that outside the apparent horizon we
are solving the full field equations. As long as the turning
on and off of the sGB coupling is performed entirely inside
the apparent horizon, this does not affect the spacetime
outside the black hole. As a matter of fact, there is a second
important reason for switching off the Gauss-Bonnet terms
in the black hole interior. Typically, a hyperbolicity loss
develops first inside the black hole horizon and then it can
emerge above it [59–61]. As long as this nonhyperbolic
region is entirely inside the horizon, it is casually dis-
connected from the rest of the spacetime and it can be still
accepted as a viable black hole solution. From the point of
view of a numerical relativity code, though, as long as an
elliptic region forms anywhere inside the computational
domain it leads to unavoidable numerical divergences.
Therefore, if we want to determine the threshold between
hyperbolic and nonhyperbolic solutions (outside the ap-
parent horizon) it is desirable to cure the black hole interior
through the described procedure of switching on and off the
Gauss-Bonnet terms.

C. Hyperbolicity of black hole nonlinear evolution
in Ricci-coupled sGB theory

First, we start presenting the results for the evolution of
sequences of nonrotating black holes with fixed γGB ¼ 0
and increasing mass. Two different values of the Ricci
coupling constant βRicc are considered, being adjusted in
such a way that the resulting static black hole solutions are
linearly stable. The mass and the scalar field at the black
hole horizon are plotted in Fig. 1 for sequences of models at
the end state of the numerical relativity simulations of black
hole scalarization (after the metric and scalar field stabilize
and become nearly static). Red and black squares in the
figure correspond to the two values of βRicc. Naturally, only
the models where the evolution is hyperbolic are depicted
because typically hyperbolicity is lost at early times of
the scalar field development [51]. As evident in Fig. 1, we
could reach higher maximum scalar fields at the horizon

(before hyperbolicity is lost) for the smaller value
βRicc ¼ 2. On the other hand, the range of values of
M=

ffiffiffiffiffiffiffiffi
λGB

p
where the black holes have a well-posed evolu-

tion enlarges with the increase of βRicc, which is consistent
with the findings in spherical symmetry [41].
As a comparison, with solid and dashed lines in Fig. 1 we

plot the sequence of solutions resulting from solving the set
of static field equations similar to [20]. Thus, the lines
contain all asymptotically flat, regular, and linearly stable
black hole solutions regardless of their hyperbolicity. The
branches originate from hφiAH ¼ 0, at the bifurcation point
of the Schwarzschild solution, and they are terminated at
some smaller M=

ffiffiffiffiffiffiffiffi
λGB

p
. As one can see in the figure, the

lines match very well the points, which is a strong argument
for the correctness of the developed extension of GRFolres.
As expected, the lines span a larger range of M=

ffiffiffiffiffiffiffiffi
λGB

p
as

compared to the models resulting from nonlinear evolution.
This happens because black holes with larger hφiAH cannot
be formed dynamically through a hyperbolic time evolu-
tion, i.e. the dynamical variables diverge before the scalar
field settles to a constant value. Therefore, similarly to pure
sGB gravity [51], only the small scalar field black hole
solutions are hyperbolic.
We should also point out that hyperbolicity does not only

depend on the final static or stationary black hole, but also
on the path to reach this configuration. In the results
presented in Fig. 1 we start from GR initial data, that is a

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6
BHs with a hyperbolic evolution:

Ricc = 8, GRFolres

Ricc = 2, GRFolres

Full static BH sequences:

Ricc = 8, Static code

Ricc = 2, Static code

A
H

FIG. 1. The mean value of the scalar field at the apparent
horizon hφiAH as a function of the normalized black hole mass
M=

ffiffiffiffiffiffiffiffi
λGB

p
for sequences of black holes with γGB ¼ 0 and two

different values of the Ricci coupling constant βRicc ¼ 2 and
βRicc ¼ 8. The squares are the end states of the 3þ 1 simulations
of black hole scalarization while the lines depict the full sequence
of solutions obtained through solving the static field equations.
The sequences of red and black squares are terminated at the last
model for which we were able to perform hyperbolic evolution,
since black hole evolutions with lower M=

ffiffiffiffiffiffiffiffi
λGB

p
develop hyper-

bolicity loss during the scalar field growth.
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solution of the field equations due to the specific choice
of coupling, and scalar field developed because the initial
data is chosen to be unstable with respect to scalar field
perturbations. If we started instead from constraint satisfy-
ing scalarized black hole initial data, then a rapid growth of
the scalar field would be avoided and hyperbolicity would
probably be preserved for a larger range of parameters.
Let us also examine how the evolution of a single black

hole looks in the event of a hyperbolicity loss. Several
snapshots of the time evolution are depicted in Fig. 2,
where the top panel represents the scalar field development
while in the lower panel one can see the normalized
determinant of the effective metric Geff defined by
Eq. (11). The snapshots are adjusted in such a way that
the first one is when the scalar field starts developing and is
already non-negligible while the last snapshot is the time
step just before the code “crashes.”
In the plots of the determinant Geff , negative values are

depicted with black color. Let us remind the reader that
inside the black hole horizon (the dashed white line) we
have turned off the Gauss-Bonnet coupling, practically
setting λðφÞ ¼ 0 and βðφÞ ¼ 0 in the vicinity of the

singularity. For the particular models in Fig. 2 the cutoff
is set at a coordinate radius of roughly r=M ≅ 0.9 and, after
that, the Gauss-Bonnet term is slowly turned on before
the horizon is reached (at r=M ≅ 1.07). This ensures that
the Gauss-Bonnet term is turned on completely inside the
horizon and that this transition region is far enough from
the apparent horizon because, otherwise, some undesired
numerical error might propagate outside it [31,32]. There-
fore, only the spacetime outside the apparent horizon is a
self-consistent solution of the full field equations and
Geff ≅ 1 deep inside the black hole (i.e. the determinant
of the effective metric (10) is the same as in GR).
The most important fact that we observe in the graph is

the development of aGeff < 0 (black) region just before the
evolution stops. This is a very strong argument that the
breakdown of the code is caused by a hyperbolicity loss in
the gravitational sector of physical modes [governed by the
effective metric (10)]. Therefore, similarly to pure sGB
gravity, it is unlikely that this can be improved by a gauge
transformation.
We point out that the loss of hyperbolicity in Fig. 2

clearly happens inside the apparent horizon. Actually, what

FIG. 2. Time evolution of a nonrotating black hole with λGB=M2 ¼ 4, γGB ¼ 0, βRicc ¼ 2. Several coordinate times during the
scalarization are plotted, capturing the evolution just before the code breaks down due to a loss of hyperbolicity. Note that the time
frames are not equally spaced to better demonstrate the development of a negativeGeff region. In each figure, both x − y and x − z slices
are depicted. The apparent horizon is plotted as a white dashed line. Top: time evolution of the scalar field. Bottom: time evolution of the
normalized determinant of the effective metric Geff defined by Eq. (11). Negative values of Geff are depicted in black.
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typically happens is that a nonhyperbolic region forms
inside the black hole horizon, it grows and expands outside
it [61], rendering the solution nonhyperbolic.2 We cannot
follow such growth, though, because the code crashes
right after the determinant of the effective metric gμνeff turns
negative anywhere in the computational domain. Therefore,
what is actually observed in simulations, including Fig. 2,
is that hyperbolicity loss appears right above the region
where we turn on the Gauss-Bonnet term even if this is
below the apparent horizon. We have checked that, when
moving the cutoff radius further inside or outside, hyper-
bolicity loss still happens for slightly shifted threshold
values of the parameters. Nevertheless, the main qualitative
features reported here remain unchanged.

D. Rotating black holes with Ricci scalar coupling

A natural question to ask is whether hyperbolicity is
preserved for the models depicted in Fig. 1 in case one
includes rotation. For that purpose, we have chosen a model
from Fig. 1 not far away from the point of hyperbolicity
loss and performed evolutions for gradually increasing
black hole angular momentum. The time evolution of the
scalar field on the pole is depicted in Fig. 3, which shows
that we can perform stable evolution even for very rapidly
rotating black holes. The maximum depicted value of a0=M
is 0.9. Above that, i.e. close to the extremal limit, we could
also perform evolution of the black hole scalarization
but in these cases ending up with a stable hairy black
hole requires a subtle adjustment of the auxiliary simulation
parameters σ, κ1 and κ2, with κ1 being especially important
in order to damp the constraints (an increase of κ1 usually
contributes to stabilize the evolution as we increase the
spin). [31,32].
It is interesting to note that the domain of existence of

scalarized rotating black holes in sGB gravity presented
so far in the literature [62,63] (excluding the case of spin-
induced scalarization [64–68]) seem to be vanishingly
small at a moderate a0=M due to the violation of the
regularity condition. Our simulations suggest that, at least
for the considered values of the parameters, scalarized
black holes with non-negligible scalar field strength might
exist up until (or close to) the extremal limit. Of course,
we are considering different coupling functions and a Ricci
scalar coupling compared to [62]. In addition, the time
evolution we perform cannot be a rigorous proof of the
existence of stationary black hole solutions. Still, our
results suggest that rotating scalarized black holes, where
the scalarization is driven by the spacetime curvature rather
than the spin of the black hole, exist up until close to the
extremal limit. It is also highly likely that this is not

attributed to the Ricci coupling alone, but perhaps a good
choice of the coupling function in sGB gravity can lead to
the same behavior.

E. Comparison between φ4 term and Ricci coupling

One of the most important effects of the Ricci coupling
term on the spectrum of black hole solutions is that it
manages to “stabilize” them and with the increase of βRicc
the scalar field gets more and more suppressed. But this is
also exactly the effect that a φ4 term has when added to the
λðφÞ coupling function in (14). Of course, the two theories
are intrinsically different but it will be interesting to
compare the loss of hyperbolicity for both of them. We
have already pointed out that the loss of hyperbolicity is
mainly controlled by the effective metric gμνeff , which differs
slightly in the case with and without a Ricci coupling. It
might be interesting to ask how far away from the weak
coupling condition one can deviate before the modified
gauge [27,28] can no longer secure hyperbolic evolution
and how strong the scalar field would be.
Such a comparison is made in Fig. 4, where the time

evolution of the scalar field, its time derivative and the weak
coupling condition defined by (12) is plotted for models
with fixed M=

ffiffiffiffiffiffiffiffi
λGB

p
. The simulations are performed for

nonrotating black holes. In the upper panel, βRicc ¼ 0 and
γGB is varied (thus we are in sGB gravity with a quadratic
and quartic coupling) and in the lower panel γGB ¼ 0 while
βRicc varies (Ricci-coupled sGB theory). The ranges of γGB
and βRicc are chosen on the threshold of hyperbolicity loss.
A star at the end of some lines marks hyperbolicity loss
while for the rest we observe a saturation of the scalar field
to a constant. As one can see, in the upper panels the
behavior of the weak coupling condition is oscillatory at

0 50 100 150 200 250
10-6

10-5

10-4

10-3

10-2

10-1

po
le

t/M

a0 /M = 0

a0 /M = 0.4

a0 /M = 0.6

a0 /M = 0.8

a0 /M = 0.9

FIG. 3. The scalar field on the pole for models with increasing
angular momentum a0=M, having M=

ffiffiffiffiffiffiffiffi
λGB

p ¼ 0.45, γGB ¼ 0
and βRicc ¼ 8.

2Note that if we have a nonhyperbolic region inside the
horizon this does non necessarily mean that the solution is non-
physical since this problematic region is casually disconnected
from the rest of the spacetime.
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early times, which is an artifact of the changes in the scalar
field gradient before it settles to an equilibrium value.
In both cases, one can go beyond the weak coupling

condition while still maintaining hyperbolicity, and the
weak coupling condition defined by (12) reaches the order

of unity before hyperbolicity is lost. In the case with the
Ricci coupling, one is able to have hyperbolic evolution for
black holes with a stronger scalar field (referring to the
value of the scalar field once a quasi-equilibrium configu-
ration forms at late times). However, the maximum values
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1.0
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<
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C
>
A
H
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GB /M
2 = 6, Ricc= 0

GB /M
2 = �30

GB /M
2 = �40

GB /M
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GB /M
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GB /M
2 = �1000

0 50 100 150 200 250 300
0.0
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0.4
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H

t/M

GB /M
2 = 6, GB /M

2 = 0
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Ricc = 4 Ricc = 20
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FIG. 4. A comparison between the black hole evolution for models in pure scalar-Gauss-Bonnet gravity with the coupling function
(14) (left panels) and when including an additional Ricci coupling (right panels). The top line figures depict the scalar field evolution for
both hyperbolic and nonhyperbolic black holes. The time derivative of the scalar field is presented in the middle line figures. Stars
indicate the moment of the evolution when hyperbolicity is lost, which typically happens when the scalar field starts growing during
spontaneous scalarization. The bottom line figures demonstrate the evolution of the weak coupling condition defined by Eq. (12).
Interestingly, for both theories, the maximum values of the scalar field at the apparent horizon and the maximum of the weak coupling
condition, before loss of hyperbolicity is observed, are relatively similar.
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that both the scalar field and its time derivative can reach at
any point of the evolution for the two theories are still of the
same order. Of course, this might change from model to
model (e.g. when changing M=

ffiffiffiffiffiffiffiffi
λGB

p
). Nevertheless, bas-

ing ourselves on these results, one can conclude that both
theories perform similarly in terms of hyperbolicity loss.
Because of these similarities, both in the evolution and

the behavior of the spectrum of solutions, one can ask
whether the two theories lead to black holes that can be
distinguished through observations. For that purpose, we
examined the radial profiles of the metric and the scalar
field for two models in sGB gravity with and without Ricci
scalar coupling in Fig. 5. The parameters of the model are
adjusted in such a way that the masses and the scalar charge
in the two theories are identical. As one can see, away from
the horizon the two solutions look very similar but the
differences close to the horizon can be significant, reaching
over 30%. Of course, in this figure we examine only static
solutions and it is yet unknown whether the nonlinear
dynamics will differ as well. Such a study is underway.

IV. CONCLUSIONS

In the present paper, we have examined the 3þ 1
nonlinear evolution of static and rotating black holes in
scalar-Gauss-Bonnet gravity with an additional coupling
between the scalar field and the Ricci scalar. The study was
motivated by the recently discovered nice properties of
this theory, such as having general relativity as a late-time
cosmology attractor and being able to stabilize hairy black
hole solutions that are otherwise unstable in certain flavors
of pure sGB gravity [40]. Extending previous results on
hyperbolic spherically symmetric scalar field collapse in
sGB gravity with a Ricci coupling [41], we explored in

detail the well-posedness of the equations of motion in
3þ 1 evolutions. For that purpose, a modification of the
GRFolres code (based on GRChombo) was developed in order
to handle a self-consistent coupled evolution of the field
equations.
The results show that, as expected from the mathe-

matical analysis, the modified gauge developed in sGB
gravity [27,28,31] also leads to a hyperbolic evolution
when adding a Ricci coupling as long as the weak coupling
condition is satisfied. As a matter of fact, well-posedness is
numerically preserved even slightly above the threshold
corresponding to violation of the weak coupling condition.
This applies to both static and rotating black holes. As a by-
product of our studies, we have discovered that rotating
black holes with a scalar field sourced by the curvature of
the spacetime exist for very large angular momenta, close
to the extremal limit. This is in contrast with previous
studies [62] in sGB gravity, where the domain of existence
of black holes was getting really narrow as the extremal
limit was approached due to a violation of the regularity
condition at the horizon. Our results suggest that with a
proper choice of the coupling function between the scalar
field and the Gauss-Bonnet invariant, similar near-extremal
scalarized black holes with a non-negligible scalar field
also exist in pure sGB gravity. A systematic study of the
stationary solutions in this case is underway.
Finally, we have compared the results for the threshold

of hyperbolicity loss in the Ricci-coupled sGB theory and
also in sGB gravity with a more sophisticated coupling
function, possessing both quadratic and quartic scalar field
terms. Such a coupling has also a stabilization effect on
the scalarized solution even for zero Ricci coupling. Our
findings confirm that while the two theories are quite
different, the threshold for hyperbolicity loss, in terms of

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

r/rH

Ricci coupling:
grr
gtt

4 term
grr
gtt

0 2 4 6 8 10
0.0

0.1

0.2

0.3

r/rH

Ricci coupling
4 term

FIG. 5. A comparison between the metric and scalar field radial profiles for two static black hole solutions adjusted with the same
M=

ffiffiffiffiffiffiffiffi
λGB

p ¼ 0.248 andD=
ffiffiffiffiffiffiffiffi
λGB

p ¼ 0.049, withM being the ADMmass of the black hole andD being the scalar field charge. One of the
solutions is in an sGB theory with Ricci coupling where βRicc ¼ 5 and γGB ¼ 0, while the other one considers a φ4 GB coupling with
γGB ¼ 50 and βRicc ¼ 0.
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scalar field strength and violation of the weak coupling
condition, are very similar. In addition, the profiles of the
spacetime metric and the scalar field in the black hole
solutions are alike in both cases, even though important
differences can be present in the near vicinity of the
horizon. It is therefore interesting to study to what extent
future observations, e.g. of gravitational waves emitted
by merging black holes, will be able to distinguish
between both.
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APPENDIX A: EQUATIONS OF MOTION
IN 3+ 1 FORM

The 3þ 1 form of the Einstein equations in our
formalism with an arbitrary Tμν yield

∂⊥γ̃ij ¼ −2αÃij þ 2γ̃kði∂jÞβk −
2

3
γ̃ij∂kβ

k; ðA1aÞ

∂⊥χ ¼ 2

3
χðαK − ∂kβ

kÞ; ðA1bÞ

∂⊥K ¼ −DiDiαþ α½Rþ 2DiZi þ KðK − 2ΘÞ� − 3κ1ð1þ κ2ÞαΘþ κα

2
½S − 3ρ�

−
3αbðxÞ

4ð1þ bðxÞÞ


R − ÃijÃ

ij þ 2

3
K2 − 2κ1ð2þ κ2ÞΘ − 2κρ

�
; ðA1cÞ

∂⊥Θ ¼ α

2



R − ÃijÃ

ij þ 2

3
K2 þ 2DiZi − 2ΘK

�
− ZiDiα − κ1ð2þ κ2ÞαΘ − καρ

−
bðxÞ

1þ bðxÞ
	
α

2

�
R − ÃijÃ

ij þ 2

3
K2

�
− κ1½2þ κ2�αΘ − καρ

�
; ðA1dÞ

∂⊥Ãij ¼ α
�
ÃijðK − 2ΘÞ − 2ÃikÃ

k
j

�þ 2Ãkði∂jÞβk −
2

3
ð∂kβkÞÃij

þ χ½αðRij þ 2DðiZjÞ − κSijÞ −DiDjα�TF; ðA1eÞ

∂⊥Γ̂i ¼ 2α

�
Γ̃i
klÃ

kl −
2

3
γ̃ij∂jK −

3

2χ
Ãij

∂jχ

�
− 2Ãij

∂jα − Γ̂j
∂jβ

i þ 2

3
Γ̂i
∂jβ

j þ 1

3
γ̃ik∂k∂jβ

j þ γ̃jk∂j∂kβ
i

þ 2αγ̃ij
�
∂jΘ −

1

α
Θ∂jα −

2

3
KZj

�
− 2κ1αγ̃

ijZj − 2καγ̃ijJj

−
2αbðxÞ
1þ bðxÞ



D̃jÃ

ij −
�
2

3

�
γ̃ij∂jK −

3

2χ
Ãij

∂jχ þ γ̃ij
�
∂jΘ −

1

3
KZj

�

− ÃijZj − κ1γ̃
ijZj − κγ̃ijJj

�
; ðA1fÞ

where ∂⊥ ¼ ∂t − βi∂i. Taking into account a scalar field with no potential, with an arbitrary βðφÞ coupling to the Ricci scalar
and a nonzero contribution of λðφÞ ¼ λGBfðφÞ, with an arbitrary coupling constant λGB and function fðφÞ, the equations
become those above with the following decomposition of Tμν,
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κρ ¼ 1

1 − βðφÞ
�
1

2
ρφ − Bþ λGBρ

GB

�
; ðA2aÞ

κJi ¼
1

1 − βðφÞ
�
1

2
Jφi − Bi þ λGBJGBi

�
; ðA2bÞ

κSij ¼
1

1 − βðφÞ
�
1

2
Sφij − Bij þ γijðB − BnnÞ þ λGBSGBij

�
;

ðA2cÞ

where the contribution from the kinetic term is given by

ρφ ¼ 1

2
ðK2

φ þ ð∂φÞ2Þ; ðA3aÞ

Jφi ¼ Kφ∂iφ; ðA3bÞ

Sφij ¼ ð∂iφÞð∂jφÞ þ
1

2
γijðK2

φ − ð∂φÞ2Þ; ðA3cÞ

with ð∂φÞ2 ¼ γijð∂iφÞð∂jφÞ and Kφ ¼ − 1
α ∂⊥φ. The ele-

ments Bnn, Bij and Bi coming from the decomposition of
Bμν ¼ ∇μ∇νβðφÞ ¼ β0∇μ∇νφþ β00∇μφ∇νφ yield

Bnn ¼ nμnνBμν ¼ β00K2
φ −

β0

α
ðDkαDkφþ ∂⊥KφÞ; ðA4aÞ

Bi ¼ −γμi nνBμν ¼ β00KφDiφþ β0ðDiKφ − Kj
iDjφÞ;

ðA4bÞ

Bij ¼ γμi γ
ν
jBμν ¼ β00DiφDjφþ β0ðDiDjφ − KφKijÞ;

ðA4cÞ

with B ¼ γijBij. With regards to the Gauss-Bonnet sector,
we define

ρGB ¼ ΩM
2

−MklΩkl; ðA5aÞ

JGBi ¼ ΩiM
2

−MijΩj − 2
�
Ωj

½iNj� −ΩjkD½iKj�k
�
; ðA5bÞ

with

Mij ¼ Rij þ
1

χ

�
2

9
γ̃ijK2 þ 1

3
KÃij − ÃikÃ

k
j

�
; ðA6aÞ

Ni ¼ D̃jÃ
j
i −

3

2χ
Ãj
i∂jχ −

2

3
∂iK; ðA6bÞ

Ωi ¼ f0
�
∂iKφ − Ãj

i∂jφ −
K
3
∂iφ

�
þ f00Kφ∂iφ; ðA6cÞ

Ωij ¼ f0ðDiDjφ − KφKijÞ þ f00ð∂iφÞ∂jφ; ðA6dÞ

where Ni is the GR momentum constraint, and Ωi and Ωij

come from the 3þ 1 decomposition of Cμν ¼ ∇μ∇νfðφÞ,
where λðϕÞ ¼ λGBfðφÞ. In addition, we have

MTF
ij ≡Mij −

1

3
γijM; ðA7aÞ

ΩTF
ij ≡Ωij −

1

3
γijΩ; ðA7bÞ

where M ¼ γklMkl is the GR Hamiltonian constraint and
Ω ¼ γklΩkl. Finally, the equations of the two additional
degrees of freedom are

∂⊥φ ¼ −αKφ; ðA8aÞ

∂⊥Kφ ¼ αð−DiDiφþ KKφÞ − ðDiφÞDiαþ β0Zβ

−
λGB
4

f0ðϕÞR2
GB: ðA8bÞ

where

Zβ ¼ Rþ KijKij þ K2 −
2

α
ð∂⊥K þDiDiαÞ: ðA9Þ

All the definitions above enable us to write down the
3þ 1 equations of γ̃ij, χ, Θ, Γ̂i and ϕ with a right-hand side
(rhs) not depending on the time derivatives of the variables.
The rest of the variables (Ãij, K and Kφ) include time
derivatives in the rhs and that is why we have to specify
them with the following linear system,

0
BB@

Xkl
ij Yij 0

Xkl
K YK − 3β0

2ð1−βðφÞÞ
Xkl
Kφ

YKφ
1

1
CCA
0
B@

∂tÃkl

∂tK

∂tKφ

1
CA¼

0
B@

ZÃ
ij

ZK

ZKφ

1
CA; ðA10Þ

where the elements of the matrix are defined as follows,

Xkl
ij ¼ γki γ

l
j

�
1 −

λGB
3

Ω
�
þ 2λGB

�
γkðiΩ

TF;l
jÞ −

γij
3
ΩTF;kl

− λGBf02MTF
ij M

TF;kl

�
; ðA11aÞ

Xkl
K ¼ λGB

2χ

�
ΩTF;kl − λGBf02MMTF;kl

�
; ðA11bÞ

Xkl
Kφ

¼ λGB
2χ

f0MTF;kl; ðA11cÞ

Yij ¼
λGB
3

χ

�
−ΩTF

ij −
6f0β0MTF

ij

1 − βðφÞ þ λGBf02MMTF
ij

�
;

ðA11dÞ

3þ 1 NONLINEAR EVOLUTION OF RICCI-COUPLED … PHYS. REV. D 110, 024040 (2024)

024040-11



YK ¼ 1−
λGB
3

�
Ωþ 3f0β0M

2ð1− βðφÞÞ−
λGB
4

f02M2

�
; ðA11eÞ

YKφ
¼ 2β0 −

λGB
12

f0M; ðA11fÞ

while the terms of the rhs are

ZÃ
ij ¼ χ

�
−DiDjαþ αðRij þ 2DðiZjÞ − κS̄ijÞ

�
TF þ βk∂kÃij þ 2Ãkði∂jÞβk −

2

3
Ãijð∂kβkÞ þ α

�
ÃijðK − 2ΘÞ− 2ÃilÃ

l
j

�
; ðA12aÞ

ZK ¼ βi∂iK −DiDiαþ α½Rþ 2DiZi þ KðK − 2ΘÞ� − 3κ1ð1þ κ2ÞαΘþ κα

2
ðS̄ − 3ρÞ

−
3αbðxÞ

4ð1þ bðxÞÞ


R − ÃijÃ

ij þ 2

3
K2 − 2κ1ð2þ κ2ÞΘ − 2κρ

�
; ðA12bÞ

ZKφ ¼ βi∂iKφ þ αð−DiDiφþ KKφÞ − ðDiφÞDiαþ αβ0Z̄β −
λGB
4

αf0R̄2
GB; ðA12cÞ

where the bar denotes that the terms depending on the time derivatives of Ãij, K and Kφ of the expressions Zβ, Sij, S and
R2

GB are subtracted, yielding

κS̄ij ¼
1

1 − βðφÞ
�
1

2
Sφij − Bij þ γijðB − B̄nnÞ þ λGBS̄GBij

�
; ðA13aÞ

R̄2
GB ¼ −

4

3
M



−
1

α
βi∂iK þ 1

α
DiDiα − ÃijÃ

ij −
K2

3

�
− 4H þ 8MTF;kl



1

α
DkDlαþ 1

χ
ðÃkjÃ

j
l − Θ̂klÞ

�
;

Z̄β ¼ Rþ KijKij þ K2 þ 2

α
ðβi∂iK −DiDiαÞ; ðA13bÞ

with S̄ ¼ γijS̄ij, B̄nn ¼ β00K2
φ −

β0
α ðDkαDkφ − βk∂kKφÞ and

S̄GB;TFij ¼ −
1

3
ðΩTF

ij − λGBf02MMTF
ij Þ



−
1

α
βi∂iK þ 1

α
DiDiα − ÃklÃ

kl −
K2

3

�

−MTF
ij ½Ωþ f00ðK2

φ − ð∂φÞ2Þ − β0f0Zβ − λGBf02H�

−
1

3
Ω


1

α
DiDjαþ 1

χ
ðÃimÃ

m
j − Θ̂ijÞ

�
TF

−
2

3
ΩTF

ij

�
1

α
DkDkα − ÃklÃ

kl

�

þ 2ΩTF;k
ði



1

α
DjÞDkαþ 1

χ
ðÃjÞmÃm

k − Θ̂jÞkÞ
�
þ ½NðiΩjÞ�TF

− 2

�
1

3
γijΩTF;kl þ λGBf02MTF

ij M
TF;kl

�

1

α
DkDlαþ 1

χ
ðÃkmÃ

m
l − Θ̂klÞ

�

− 2ðDkAij −DðiAjÞkÞΩk − γijðDkAklÞΩl þ ΩðiDkAjÞk; ðA14aÞ

S̄GB ¼ 2

3

�
Ω −

λGB
4

f02M2

�

−
1

α
βi∂iK þ 1

α
DiDiα − ÃijÃ

ij −
K2

3

�
− 2ΩiNi − ΩTF;ijMTF

ij

þ 2M

�
1

4
f00ðK2

φ − ð∂φÞ2Þ − β0

4
f0Zβ −

λGB
4

f02H þ 1

3
Ω
�
− ρGB

þ ðΩTF;kl − λGBf02MMTF;klÞ
�
1

α
DkDlαþ 1

χ
ÃkmÃ

m
l −

Θ̂kl

χ

�
; ðA14bÞ
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where we have used Θ̂kl ¼ 1
αLβÃkl þ 2

3
ðK − 1

α ∂iβ
iÞÃkl with

LβÃij ¼ βk∂kÃij þ 2Ãkði∂jÞβk and

H ¼ −
4

3
DiK

�
Ni þDiK

3

�
þ 2DiAjk

�
DiAjk −DjAik

�

− 2NiNi: ðA15Þ

APPENDIX B: CODE TESTING

In this appendix we present the basic evidence for the
validity of the developed extension of GRFolres. The first test
we have made is to verify that the late-time evolution

of GRFolres, namely when the black hole scalarizes and
reaches a quasi-equilibrium state, agrees with the results
from the solution of the static field equations. This is
already presented in Fig. 1, where one can see a very good
agreement between the masses and the scalar charges
obtained by the modified GRFolres evolution and the static
black hole solutions.
The average value of the Hamiltonian constraint at the

apparent horizon, as well as a convergence plot, are
presented in Fig. 6. We observe that the convergence
matches well to a fourth order, which is consistent with
the order of the finite difference stencils, as was also shown
in the pure sGB case [31].
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