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Using the “composite harmonic mapping method,” we construct exact solutions for cylindrically
symmetric gravitational and electromagnetic waves within the Einstein-Maxwell system, focusing on the
conversion dynamics between these types of waves. In this approach, we employs two types of geodesic
surfaces in H2

C: (a) the complex line and (b) the totally real Lagrangian plane, applied to two different
vacuum seed solutions: (i) a vacuum solution previously utilized in our studies and (ii) the solitonic vacuum
solution constructed previously by Economou and Tsoubelis. We study three scenarios: case (a) with seeds
(i) and (ii), and case (b) with seed (ii). In all cases (a) and (b), solutions demonstrate notable mode
conversions near the symmetric axis. In case (a) with seed (i) or seed (ii), we show that any change in the
occupancy of the gravitational or electromagnetic mode relative to the C-energy near the axis always reverts
to its initial state once the wave moves away from the axis. Particularly in case (b) with seed (ii), nontrivial
conversions occur even when the wave moves away from the axis. In this case, the amplification factors of
electromagnetic modes range from an upper limit of approximately 2.4 to a lower limit of about 0.4, when
comparing the contributions of electromagnetic mode to C-energy at past and future null infinities.
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I. INTRODUCTION

A series of gravitational wave detections since the first in
2015 [1] (for more references, see the LIGO webpage: [2].)
have opened up a new era of discovery in gravitational
physics [3]. In the future, these discoveries must provide us
with clues to the secrets of gravitation in the universe.
Indeed, based on these detections of gravitational waves,
tests of general relativity have been conducted [4–6].
Contrary to expectations, no signs of new physics beyond
Einstein’s theory of gravity have been found so far, but
future improvements in observational accuracy will likely
lead to breakthroughs in new aspects of gravitational
physics. Therefore, since no promising modified theory
of gravity has yet emerged in a clear form, we believe it is
meaningful to explore the hidden aspects of the original
theory of gravity, i.e., Einstein’s theory of gravity.
Especially in the near future, fundamental research on
nonlinear effects arising from the interaction of gravita-
tional waves with waves of matter fields will become more
important in order to reveal fundamental and unexpected
aspects of gravity through observed gravitational waves.
As a first step, considering the Einstein-Maxwell system

is simple and suitable for investigating such nonlinear
effects.
Our aim in this paper is to elucidate the fundamental and

mathematical aspects of gravitational physics, particularly
through the use of exact solutions to the Einstein-Maxwell
equations. While numerical general relativity offers a
practical and versatile approach [7–9], traditional methods
based on exact solutions are subject to limitations due to
necessary assumptions, such as spacetime symmetries.
However, with an appropriate exact solution, this method
has provided deeper insights into the fundamentals of
gravity from various angles [10–14]. Indeed, well-known
instances like the Schwarzschild solution and the Einstein-
Rosen waves have yielded significant discoveries about
black holes and gravitational waves, respectively, through
exact solution analysis. Thus, this method will continue
to have the potential to uncover new nonlinear effects
in strong gravitational fields. From the aforementioned
perspective, we aim to elucidate novel and intriguing
aspects of nonlinear effects in strong gravitational waves.
To this end, we have developed a new, straightforward,
and compelling wave solution of the Maxwell-Einstein
equations with cylindrical symmetry, employing a simple
harmonic map method. Our analysis of this solution
revealed significant conversion between gravitational and
electromagnetic waves under certain conditions [15].
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Remarkably, this phenomenon can occur without the
presence of intense background fields, such as the electro-
magnetic fields surrounding black holes, which typically
act as a “catalyst.” Thus, the substantial conversion
observed is attributed to the nonlinear dynamics resulting
from the interaction between the waves. This result dis-
tinguishes our work from previous studies that examined
similar conversion phenomena through perturbative
approaches [16–23], and likely represents the first demon-
stration of large conversion phenomena driven entirely by
“nonlinearity.” In fact, a numerical relativistic approach had
already been used to study the conversion phenomena [24].
As mentioned above, however, the use of exact solutions
can reveal new phenomena in the Einstein-Maxwell sys-
tem, especially from a global perspective or in the case of
extremely strong fields.
In this paper, we primarily focus on the characteristic

nonlinear effect in the Einstein-Maxwell system, specifi-
cally the conversion phenomena between gravitational
waves and electromagnetic waves. Here, we adopt a setup
similar to our previous works on cylindrically symmetric
gravitational waves [25]. The background spacetime is
regular and locally flat. A wave with a finite wave packet-
like shape enters the vicinity of the axis from past null
infinity, intensifies near the axis, reflects off the axis, and
moves toward future null infinity. In cylindrical symmetric
spacetimes, we can introduce the cylindrical energy (i.e.,
so-called C-energy) and related quantities (i.e., density,
flux) to measure how the conversion occurs. We will,
therefore, use the occupancy that represents the extent
of each mode’s contributions to the C-energy density.
The occupancy is a local quantity that depends only on the
radial coordinate ρ and the time coordinate t. As such,
the occupancy as a function of ρ changes over time as the
waves move. We expect that the occupancy near the axis
drastically changes when the wave moves into the intense
region of the fields near the axis. In our previous paper,
we noted that large conversions can occur near the axis.
Therefore, based on the previous result, we will treat such
conversion phenomena in a more systematic manner.
However, the conversions occurring in the vicinity of the
axis may disappear away from the axis; in fact, the solution
considered in the previous paper is of this type. Therefore,
another interesting question arises [26]: if the incident and
reflected waves are observed far enough off-axis, whether
and to what extent nontrivial conversions (especially
between gravitational and electromagnetic modes) occur,
i.e., whether the conversions that occur near the axis still
remain after the waves move away from the axis. In this
second paper, we examine the above problem by extending
the solution to soliton solutions.
This paper is organized as follows: In Sec. II, we first

introduce the basic equations derived from the vacuum
Einstein-Maxwell equations under the assumption of
cylindrical symmetry. Following the work in Ref. [27],

we define the amplitudes of cylindrical gravitational waves
as useful tools for analysis. We then prepare useful
quantities such as C-energy, among others. In Sec. III,
we explain the solution generation method adopted here
and present the solutions derived by this method. In Sec. IV,
after analyzing the spacetime structures represented by the
obtained solutions, we analyze the conversion phenomena
between gravitational and electromagnetic waves. In
Sec. V, we provide a summary and discussion.

II. BASIC EQUATION AND FUNDAMENTAL
QUANTITIES

In this paper, we explore the interaction between
gravitational and electromagnetic waves in cylindrically
symmetric spacetime. Initially, we utilize the Kompaneets-
Jordan-Ehlers form of the line element, as detailed in [28]
(refer to [14] for systematic treatments of cylindrical
symmetric systems), along with a gauge potential. The
line element and gauge potential are expressed as follows:

ds2 ¼ e2ψ ðdz − wdϕÞ2 þ ρ2e−2ψdϕ2

þ e2ðγ−ψÞð−dt2 þ dρ2Þ; ð1Þ
A ¼ Aϕdϕþ Azdz; ð2Þ

where ∂=∂z and ∂=∂ϕ are the Killing vectors corresponding
to translational and rotational symmetries, respectively. The
metric functions ψ , w, γ, and the gauge potentials Aϕ, Az are
functions only of the coordinates t and ρ. We employ the
geometric unit system where both the speed of light c and
the gravitational constant G are set to 1.

A. Basic equations

By inserting Eqs. (1) and (2) into the Einstein-Maxwell
equations below

Rμ
ν −

1

2
δμνR ¼ 8πTμ

ν;

Tμ
ν ¼

1

4π

�
FμρFνρ −

1

4
δμνFρδFρδ

�
; ð3Þ

∇μFμ
ν ¼ 0; ð4Þ

and then algebraically manipulating these equations, we
can derive the fundamental equations governing the fields
ψ , w, Aϕ, and Az, as follows:

∇2ψ ¼ −
1

2ρ2
e4ψ

�ð∂twÞ2 − ð∂ρwÞ2
�

þ e−2ψ
�ð∂tAzÞ2 − ð∂ρAzÞ2

�
−

1

ρ2
e2ψ

��
∂tAϕ þ w∂tAz

�
2

−
�
∂ρAϕ þ w∂ρAz

�
2
�
; ð5Þ
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−∂2t w −
1

ρ
∂ρwþ ∂

2
ρw ¼ 4

�
∂tψ∂tw − ∂ρψ∂ρw

�

− 4e−2ψ
�
∂tAz

�
∂tAϕ þ w∂tAz

�
− ∂ρAz

�
∂ρAϕ þ w∂ρAz

��
; ð6Þ

−∂2t Aϕ −
1

ρ
∂ρAϕ þ ∂

2
ρAϕ ¼ w

�
∂
2
t Az þ

1

ρ
∂ρAz − ∂

2
ρAz

�

þ �
∂tw∂tAz − ∂ρw∂ρAz

�
þ 2∂tψ

�
∂tAϕ þ w∂tAz

�
− 2∂ρψ

�
∂ρAϕ þ w∂ρAz

�
; ð7Þ

∇2Az ¼ −2∂tψ∂tAz þ 2∂ρψ∂ρAz

þ 1

ρ2
e4ψ

�
∂tw

�
∂tAϕ þ w∂tAz

�

− ∂ρw
�
∂ρAϕ þ w∂ρAz

��
: ð8Þ

In this framework, ∇ denotes the covariant derivative in
the three-dimensional Minkowski space Mð1;2Þ. The line
element in cylindrical coordinates is expressed as

ds2 ¼ hμνdxμdxν ¼ −dt2 þ dρ2 þ ρ2dϕ2; ð9Þ

where the Greek subscripts μ and ν sequentially take the
indices corresponding to the coordinates ðt; ρ;ϕÞ. More-
over, recognizing that Eqs. (6) and (7) correspond to the

following integrability conditions:

∂t

�
e4ψ

ρ
∂tw − 4

e2ψ

ρ
Azð∂tAϕ þ w∂tAzÞ

	

¼ ∂ρ

�
e4ψ

ρ
∂ρw − 4

e2ψ

ρ
Azð∂ρAϕ þ w∂ρAzÞ

	
; ð10Þ

∂t

�
1

ρ
e2ψð∂tAϕ þ w∂tAzÞ

	
¼ ∂ρ

�
1

ρ
e2ψð∂ρAϕ þ w∂ρAzÞ

	
;

ð11Þ

we can introduce potential functions χ and Φ, defined by
the respective equations:

ð∂tχ;∂ρχÞ ¼
�
1

ρ
e2ψ ð∂ρAϕþw∂ρAzÞ;

1

ρ
e2ψ ð∂tAϕþw∂tAzÞ

�
;

ð12Þ

ð∂tΦ; ∂ρΦÞ ¼
�
1

ρ
e4ψ∂ρw − 2

�
Az∂tχ − χ∂tAz

�
;
1

ρ
e4ψ∂tw

− 2
�
Az∂ρχ − χ∂ρAz

��
: ð13Þ

Thus, the basic equations (5), (6), (7), and (8) can be
reformulated in terms of the variables ψ , Φ, χ, and Az:

∇2ψ ¼ 1

2
e−4ψ ½ð∂tΦþ 2Az∂tχ − 2χ∂tAzÞ2 − ð∂ρΦþ 2Az∂ρχ − 2χ∂ρAzÞ2� þ e−2ψ ½ð∂tAzÞ2 − ð∂ρAzÞ2�

þ e−2ψ ½ð∂tχÞ2 − ð∂ρχÞ2�; ð14Þ

∇2Φ ¼ 4½−∂tψð∂tΦþ Az∂tχ − χ∂tAzÞ þ ∂ρψð∂ρΦþ Az∂ρχ − χ∂ρAzÞ� þ e−2ψ ½−ð∂tΦþ 2Az∂tχ − 2χ∂tAzÞ
× ð∂tA2

z þ ∂tχ
2Þ þ ð∂ρΦþ 2Az∂ρχ − 2χ∂ρAzÞð∂ρA2

z þ ∂ρχ
2Þ�; ð15Þ

∇2Az ¼ −2∂tψ∂tAz þ 2∂ρψ∂ρAz þ e−2ψ
�
∂ρχ

�
∂ρΦþ 2Az∂ρχ − 2χ∂ρAz

�
− ∂tχ

�
∂tΦþ 2Az∂tχ − 2χ∂tAz

��
; ð16Þ

∇2χ ¼ −2∂tψ∂tχ þ 2∂ρψ∂ρχ þ e−2ψ∂tAz½∂tΦþ 2ðAz∂tχ − χ∂tAzÞ�
− e−2ψ∂ρAz½∂ρΦþ 2ðAz∂ρχ − χ∂ρAzÞ�: ð17Þ

The wave equations (15) and (17) have been derived from
the compatibility of the definitions (12) and (13), i.e.,
∂t∂ρw ¼ ∂ρ∂tw and ∂t∂ρAϕ ¼ ∂ρ∂tAϕ, respectively. Next,
we introduce two complex potentials E and F as follows:

E ≔ e2ψ þ jFj2 − iΦ; F ≔ Az þ iχ: ð18Þ

Using these potentials, the set of wave equations (14)–(17)
can be succinctly expressed in the form of the cylindrically
symmetric version of the Ernst equations [29]:

ðRe½E� − FF̄Þ∇2E ¼ ð∇E − 2F̄∇FÞ ·∇E; ð19Þ

ðRe½E� − FF̄Þ∇2F ¼ ð∇E − 2F̄∇FÞ ·∇F; ð20Þ
where the dot ð·Þ means the scalar product defined with the
metric (9).

B. Construction of metric and electromagnetic fields

The methodology employed in this study to construct a
new set of metric and electromagnetic fields is as follows:

NONLINEAR DYNAMICS DRIVING THE CONVERSION OF … PHYS. REV. D 110, 024038 (2024)

024038-3



Initially, we solve Eqs. (19) and (20) to find their solutions. Next, utilizing the definition (18), we algebraically determine
the quantities e2ψ ,Φ, χ and Az. Subsequently, employing the relations (12) and (13), we derive the metric functionw and the
gauge field component Aϕ through integration. The initial step is crucial due to the nonlinearity of the fundamental
equations. Detailed elaboration of the first step will be provided later.
The remaining metric function γ can be determined by the following equations:

∂ργ ¼ ρ½ð∂tψÞ2 þ ð∂ρψÞ2� þ
1

4ρ
e4ψ ½ð∂twÞ2 þ ð∂ρwÞ2� þ ρe−2ψ ½ð∂tAzÞ2 þ ð∂ρAzÞ2�

þ 1

ρ
e2ψ ½ð∂tAϕ þ w∂tAzÞ2 þ ð∂ρAϕ þ w∂ρAzÞ2�; ð21Þ

∂tγ ¼ 2ρ∂tψ∂ρψ þ 1

2ρ
e4ψ∂tw∂ρwþ 2ρe−2ψ∂tAz∂ρAz þ

2

ρ
e2ψ ð∂tAϕ þ w∂tAzÞð∂ρAϕ þ w∂tρAzÞ: ð22Þ

These equations are derived from the ðt; tÞ and ðt; ρÞ components of the Einstein equation (3). Therefore, after calculating
the other quantities, γ can be obtained by integrating Eqs. (21) and (22). The integrability condition for these equations is
ensured by other equations in the system. It is important to note that the sum of the third and fourth terms on the right-hand
side of Eqs. (21) and (22) corresponds to the components of the electromagnetic stress-energy tensor, ðemÞTtt or ðemÞTtρ,
scaled by ρ=8π, respectively.

C. Amplitudes, C-energy, and related quantities

We introduce key quantities for analyzing the physical behavior of cylindrically symmetric gravitational systems,
particularly concerning mode conversion phenomena. Following the methodology of Piran, Safier, and Stark [27], and
extending the Einstein-Maxwell system as per [15], we introduce the “amplitudes” as follows:

Aþ ≔ 2∂vψ ; A× ≔
1

ρ
e2ψ∂vw ¼ e−2ψ ½∂vΦþ 2ðAz∂vχ − χ∂vAzÞ�;

Az ≔ 2e−ψ∂vAz; Aϕ ≔
2

ρ
eψð∂vAϕ þ w∂vAzÞ ¼ 2e−ψ∂vχ;

Bþ ≔ 2∂uψ ; B× ≔
1

ρ
e2ψ∂uw ¼ −e−2ψ ½∂uΦþ 2ðAz∂uχ − χ∂uAzÞ�;

Bz ≔ 2e−ψ∂uAz; Bϕ ≔
2

ρ
eψ ð∂uAϕ þ w∂uAzÞ ¼ −2e−ψ∂uχ; ð23Þ

where Að·Þ and Bð·Þ represent the “ingoing” and “outgoing” amplitudes, respectively, with the subscripts designating the
corresponding mode. Furthermore, the null coordinates u ¼ ðt − ρÞ=2 and v ¼ ðtþ ρÞ=2 are used for this formulation. The
fundamental equations for the amplitudes can be derived from the field equations for ψ, w, Aϕ, and Az [Eqs. (5)–(8)] as follows:

∂uAþ ¼ 1

2ρ
ðAþ − BþÞ þA×B× −

1

2
ðAzBz −AϕBϕÞ;

∂vBþ ¼ 1

2ρ
ðAþ − BþÞ þA×B× −

1

2
ðAzBz −AϕBϕÞ;

∂uA× ¼ 1

2ρ
ðA× þ B×Þ −AþB× þ 1

2
ðAϕBz þAzBϕÞ;

∂vB× ¼ −
1

2ρ
ðA× þ B×Þ −A×Bþ þ 1

2
ðAϕBz þAzBϕÞ;

∂uAϕ ¼ 1

2ρ
ðAϕ þ BϕÞ þ

1

2
ðAzB× −A×Bz −AþBϕÞ;

∂vBϕ ¼ −
1

2ρ
ðAϕ þ BϕÞ −

1

2
ðAzB× −A×Bz þAϕBþÞ;

∂uAz ¼
1

2ρ
ðAz − BzÞ −

1

2
ðAϕB× þA×Bϕ −AþBzÞ;

∂vBz ¼
1

2ρ
ðAz − BzÞ −

1

2
ðAϕB× þA×Bϕ −AzBþÞ: ð24Þ
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These equations are a generalization of the basic equations
presented in the previous work [27].
Furthermore, in analogy with the concept of C-energy in

cylindrically symmetric vacuum spacetimes, we introduce
local quantities related to the C-energy [30], denoted as
E ≔ ∂ργ and F ≔ ∂tγ. From Eqs. (21) and (22), the
quantities E and F can be expressed in terms of the
amplitudes from Eq. (23) as follows:

E ¼ ρ

8

�
A2þ þ B2þ þA2

× þ B2
× þA2

z þ B2
z þA2

ϕ þ B2
ϕ

�
;

ð25Þ

F ¼ ρ

8

�
A2þ − B2þ þA2

× − B2
× þA2

z − B2
z þA2

ϕ − B2
ϕ

�
:

ð26Þ

Using Eqs. (24), we can verify the local conservation law
−∂tE þ ∂ρF ¼ 0 through some algebraic manipulations.
This conservation law allows us to define a type of total
energy, specifically the C-energy, per unit length along the
coordinate z. This energy is contained within a cylindrical
region of radius ρ0 at a given time:

Eðt; ρ0Þ ¼
Z

ρ0

0

Edρ ¼ γðt; ρ0Þ − γðt; 0Þ: ð27Þ

In Eq. (27), the term γðt; 0Þ vanishes when the physical
quantities are regular at the axis, ensuring the physical
relevance of the defined C-energy.
For the remainder of the discussion, we focus on the

case where γðt; 0Þ ¼ 0, which aligns with our interest in
scenarios devoid of singular field sources on the axis of
symmetry. In such instances, it is reasonable to anticipate
that the C-energy for a suitably regular, packetlike wave,
denoted as Eðt;∞Þ, remains finite constant over time.
To further dissect the contribution of each mode to the
C-energy, we define the following quantities:

EIðt; ρ0Þ ¼
Z

ρ0

0

EIdρ; ð28Þ

where EI represents each mode contribution to the
C-energy density (25):

EI ≔
ρ

8
ðA2

I þ B2
I Þ; ðI ¼ þ;×; z;ϕÞ: ð29Þ

III. CONSTRUCTION OF THE SOLUTIONS

To investigate the conversion phenomena between
gravitational and electromagnetic fields as nonlinear
effects, it is essential to construct suitable solutions that
represent these phenomena. A standard approach for
deriving such solutions is the composite harmonic mapping

method, which is both straightforward and practical for our
objectives due to its operational simplicity.
This method has already been partially utilized in our

previous work [15]. In this section, we will review the
generation method and its extensions. The method will be
applied to the seed used in the previous work [15] and the
soliton solution explored by Economou and Tsubelis [31].
A detailed explanation of the composite harmonic mapping
method is provided in the Appendix.

A. Preparation to generate the harmonic map

1. Overview

To facilitate the generation of solutions from a clearer
perspective, we transform the original Ernst equations (19)
and (20) into an alternative set of Ernst equations, as per
Ernst [29], Kinnersley [32], and Mazur [33]. This trans-
formation helps to elucidate the structure of the equations
and streamline the process of finding solutions that encap-
sulate the nonlinear interaction between gravitational and
electromagnetic fields. The transformed Ernst equations are
as follows:

ðξξ̄þ ηη̄ − 1Þ∇2ξ ¼ 2ðξ̄∇ξþ η̄∇ηÞ ·∇ξ; ð30Þ

ðξξ̄þ ηη̄ − 1Þ∇2η ¼ 2ðξ̄∇ξþ η̄∇ηÞ ·∇η; ð31Þ

where the complex quantities ξ and η are related to the
potentials E and F defined by (18), as follows

ξ ¼ E − 1

Eþ 1
; η ¼ 2F

Eþ 1
; ðξξ̄þ ηη̄ < 1Þ: ð32Þ

Inversely, the potentials E and F can be expressed in terms
of ξ and η:

E ¼ 1þ ξ

1 − ξ
; F ¼ η

1 − ξ
: ð33Þ

These relationships and equations form the basis for
analyzing and generating solutions to represent the inter-
action between gravitational and electromagnetic fields in
the context of Ernst’s formalism.
It is noticed that the equations (30) and (31) can be

derived as Euler-Lagrange equations from the following
Lagrangian:

L ¼ ρ

2

∇ξ ·∇ξ̄þ∇η ·∇η̄ − ðξ∇η − η∇ξÞ · ðξ̄∇η̄ − η̄∇ξ̄Þ
ðξξ̄þ ηη̄ − 1Þ2 :

ð34Þ

This formulation implies that equations (30) and (31) can
be viewed as determining the harmonic map from the base
space Mð1;2Þ into the target space H2

C, which is the ball
model of complex two-dimensional hyperbolic space, as
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described in the literature on complex hyperbolic geometry [34,35]. The line element of the target space, extracted from the
Lagrangian (34), is expressed as

dl2 ¼ GABdzAdzB ¼ dξdξ̄þ dηdη̄ − ðξdη − ηdξÞðξ̄dη̄ − η̄dξ̄Þ
ðξξ̄þ ηη̄ − 1Þ2 ; ð35Þ

where the coordinates zA, zB, etc., correspond to ðξ; η; ξ̄; η̄Þ. The metric form associated with the line element (35) is
represented in matrix form as follows:

ðGABÞ ¼
1

2ðξξ̄þ ηη̄ − 1Þ2

0
BBB@

0
1 − ηη̄ ηξ̄

ξη̄ 1 − ξξ̄

1 − ηη̄ ξη̄

ηξ̄ 1 − ξξ̄
0

1
CCCA: ð36Þ

This metric representation delineates the geometric struc-
ture of the target space.
The procedure outlined in the Appendix can be sum-

marized as follows: First, identify an embedding map to
create a totally geodesic subspace within the target space,
denoted as H2

C. Then, establish a harmonic map from the
base space to this subspace, and finally, integrate both
mappings. Mathematically, it is established that H2

C pos-
sesses only two isometrically distinct classes of totally
geodesic subspaces: (a) the complex planes, corresponding
to the Poincaré disc model (hereinafter referred to as H1

C),
and (b) the totally real Lagrangian planes, corresponding
to the Klein disc model (abbreviated as Kd) [34,35].
These subspaces, represented as two-dimensional real
(or one-dimensional complex) hyperbolic surfaces, exhibit
distinct Gaussian curvatures, rendering them nonisometric.
Once a totally geodesic surface is chosen, the next step
involves identifying a suitable harmonic map from the base
space to this hyperbolic surface (either H1

C or Kd), serving
as an intermediate target space. The final step essentially
involves solving the vacuum Ernst equation.

2. Case (a): Complex plane

First, as an illustrative example of a totally geodesic
embedding map in the coordinates of H2

C, denoted as ðξ; ηÞ,
we consider the surface defined by

ðξ; ηÞ ¼ ðcos 2θz; sin 2θzÞ; ð37Þ

where z is viewed as a complex coordinate that character-
izes the subspace H1

C, and the parameter θ differentiates
between various subspaces. We can verify that the map (37)
fulfills the second of Eqs. (A3), aligning with case (a)
previously discussed. The corresponding line element is
given by

dl2 ¼ dzdz̄
ðzz̄ − 1Þ2 ; ð38Þ

which represents the line element of the Poincaré disc
model. A similar ansatz to Eq. (37) has been utilized in
different contexts, such as analyzing colliding plane waves,
as noted in Halilsoy’s work [36]. Our previous research
[15] is based on this case. Furthermore, this includes the
particular case θ ¼ π=2, which was treated in the study by
Xanthopoulos [37]. According to the aforementioned
procedure, once a solution ξvðxÞ of the vacuum Ernst
equation is obtained

ðξvξ̄v − 1Þ∇2ξv ¼ 2ξ̄v∇ξv · ∇ξv; ð39Þ

by substituting the coordinate z with ξv, we obtain the
desired harmonic map as follows:

ðξðxÞ; ηðxÞÞ ¼ ðcos 2θξvðxÞ; sin 2θξvðxÞÞ: ð40Þ

Next, we represent ξv as ξ1 þ iξ2, where ξ1 and ξ2 are the
real and imaginary parts of ξv, respectively. Using (33), we
derive the following expressions for E and F:

E ¼ 1 − ðξ21 þ ξ22Þcos22θ
1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ
þ i

2ξ2 cos 2θ
1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ

; ð41Þ

F ¼ ½ξ1 − ðξ21 þ ξ22Þ cos 2θ� sin 2θ
1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ
þ i

ξ2 sin 2θ
1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ

: ð42Þ

Following the definition (18), the expressions for the metric
function ψ , the gravitational twist potential Φ, the gauge
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field component Az, and the dual potential χ associated
with Aϕ are derived as follows:

e2ψ ¼ 1 − ξ21 − ξ22
1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ

;

Φ ¼ −
2ξ2 cos 2θ

1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ
;

Az ¼
½ξ1 − ðξ21 þ ξ22Þ cos 2θ� sin 2θ

1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ
;

χ ¼ ξ2 sin 2θ
1 − 2ξ1 cos 2θ þ ðξ21 þ ξ22Þcos22θ

: ð43Þ

These equations explicitly define the fields in terms of ξ1,
ξ2, and the angle θ, encapsulating the relationship between
the geometrical structure of the solution and the physical
fields.

3. Case (b): Totally real Lagrangian plane

The totally real Lagrangian plane ðξ; ηÞ ¼ ðv1; v2Þ,
where v1 and v2 are real coordinates, forms a totally
geodesic surface in H2

C. This surface constitutes a real two-
dimensional hyperbolic surface, represented as the Klein
disc model. New harmonic maps can be generated from the
solutions of the vacuum Ernst equation by employing the
coordinate transformation between the Klein disc model
ðv1; v2Þ and the Poincaré disc model z ¼ z1 þ iz2, given by

v1 þ iv2 ¼
2z

1þ jzj2 ; ð44Þ

or equivalently,

v1 ¼
2z1

1þ z21 þ z22
; v2 ¼

2z2
1þ z21 þ z22

: ð45Þ

The corresponding line element is expressed as

dl2 ¼ dv21 þ dv22 þ ðv1dv2 − v2dv1Þ2
ðv21 þ v22 − 1Þ2 ¼ 4

dzdz̄
ðzz̄ − 1Þ2 :

ð46Þ

The second expression is the standard line element in the
Klein disc model, and the third is essentially identical to the
line element (38), albeit with a factor of 4. This factor
reflects the scale difference between the Poincaré and Klein
models. This leads to another solution that is isometrically
distinct from the previous one. By substituting ðz1; z2Þ with
ðξ1ðxÞ; ξ2ðxÞÞ, we obtain

ðξðxÞ;ηðxÞÞ ¼
�

2ξ1ðxÞ
1þ ξ1ðxÞ2þ ξ2ðxÞ2

;
2ξ2ðxÞ

1þ ξ1ðxÞ2þ ξ2ðxÞ2
�
:

ð47Þ

From the relation (33), the corresponding potentials are
given as follows:

E ¼ ðξ1 þ 1Þ2 þ ξ22
ðξ1 − 1Þ2 þ ξ22

; ð48Þ

F ¼ 2ξ2
ðξ1 − 1Þ2 þ ξ22

: ð49Þ

Then, using the definition (18), we can finally obtain the
following expressions:

e2ψ ¼
�

1 − ξ21 − ξ22
ðξ1 − 1Þ2 þ ξ22

�
2

;

Φ ¼ 0;

Az ¼
2ξ2

ðξ1 − 1Þ2 þ ξ22
;

χ ¼ 0: ð50Þ

4. Seed harmonic maps treated here

We examine two distinct types of maps that correspond
to solutions of the vacuum Ernst equation (39). The first
seed map, denoted as (i), is derived from a specific set of
geodesics in the target space and has been previously
utilized in the previous works [15,25]. The second seed
map, (ii), is based on the solitonic vacuum solution
provided by Economou and Tsoubelis [31].
The expression of the seed map (i) is given, as follows:

ξvðxÞ ¼
1− e−2τðxÞ þ iA

1þ e−2τðxÞ − iA

¼ 1−A2 − e−4τðxÞ

ð1þ e−2τðxÞÞ2 þA2
þ i

2A

ð1þ e−2τðxÞÞ2 þA2
; ð51Þ

where A is a real constant, and τðxÞ is a real, cylindrically
symmetric wave function that satisfies the linear wave
equation ∇2τ ¼ 0 on Mð1;2Þ. On the other hand, the
expression of the second seed map (ii) is provided as
follows:

ξvðxÞ ¼
1 − il

px − iqy
¼ pxþ lqy

p2x2 þ q2y2
− i

lpx − qy
p2x2 þ q2y2

; ð52Þ

where ðx; yÞ represent pseudospheroidal coordinates.
The parameters l, p, q in this expression are subject to
the constraint q2 − p2 − l2 ¼ 1. The relations between the
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coordinates ðx; yÞ and ðt; ρÞ are as follows:

t ¼ axy; ρ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þðy2 − 1Þ

q
;

x ¼
ffiffiffi
2

p
atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ρ2 − t2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ ða2 þ ρ2 − t2Þ2

pq ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ρ2 − t2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ ða2 þ ρ2 − t2Þ2

pq
ffiffiffi
2

p
a

: ð53Þ

In the rest, when the seed (ii) is used, the parameter a in
Eq. (53) is set to 1 to match the formulas in the work [31].

B. The expressions of the solutions

In this section, we outline the solutions derived using the
methodologies associated with cases (a) and (b), utilizing
the seed maps (i) and (ii) discussed in the previous section.
These solutions exemplify the application of the discussed
harmonic mapping techniques to generate specific, physi-
cally relevant solutions of the vacuum Ernst equation,
demonstrating the versatility and effectiveness of these
methods in gravitational and electromagnetic field studies.

1. Solutions for case (a)

Applying the method associated with case (a) to seed
map (i), we achieve expressions as detailed below, some of
which have already been utilized in [15]. By substituting
Eq. (51) into Eq. (43), we derive the subsequent expres-
sions for the solution

e2ψ ¼ 1

A2e2τcos4θ þ e−2τðcos2θ þ e2τsin2θÞ2 ;

Φ ¼ −Ae2τ cos 2θe2ψ ; χ ¼ 1

2
Ae2τ sin 2θe2ψ ;

Az ¼ −
1

2

�
A2e2τcos2θ þ ðe−2τ − 1Þ

× ðcos2θ þ e2τsin2θÞ� sin 2θe2ψ : ð54Þ

Furthermore, by substituting the expressions (54) into
Eq. (13), we obtain the following relation for the gravita-
tional twist potential w:

ð∂tw; ∂ρwÞ ¼ −4A cos4 θρð∂ρτ; ∂tτÞ; ð55Þ

where the integrability of this equation is ensured if the
function τ satisfies the linear wave equation in M1;2. This
condition underscores the relationship between the gravi-
tational twist potential and the underlying wave function τ,
illustrating how the characteristics of τ influence the
gravitational field’s configuration. Then, the function w
is given as follows:

w ¼ −4Acos4θ
Z ðt;ρÞ

ρð∂ρτdtþ ∂tτdρÞ

¼ −4Acos4θ
Z ðt;ρÞ

ðt;0Þ
ρð∂ρτdtþ ∂tτdρÞ; ð56Þ

where an integration constant has been chosen such that
wðt; 0Þ ¼ 0. This choice is valid if the seed function τ is
regular across the spacetime, ensuring that the integration
yields a well-defined gravitational twist potential w con-
sistent with the boundary conditions of the system.
Once the twist function w is determined, the gauge

potential Aϕ can be derived as follows: Starting by trans-
forming Eq. (12) into the equation for ð∂tðAϕ þ wAzÞ;
∂ρðAϕ þ wAzÞÞ, and utilizing Eqs. (54) and (55), we obtain
the following expression:

ð∂tðAϕ þ wAzÞ; ∂ρðAϕ þ wAzÞÞ
¼ ðρe−2ψ∂ρχ þ ∂twAz; ρe−2ψ∂tχ þ ∂ρwAzÞ
¼ − tan θð∂tw; ∂ρwÞ: ð57Þ

Thus, the gauge potential Aϕ can be obtained, up to an
arbitrary constant, as follows:

Aϕ ¼ −wAz − tan θw: ð58Þ

Finally, to determine the quantity γ, we substitute the
expressions from (54) into Eqs. (25) and (26). As a result,
E and F take the following simplified forms:

E ¼ ρ½ð∂tτÞ2 þ ð∂ρτÞ2�; F ¼ 2ρ∂tτ∂ρτ: ð59Þ

From this, the metric function γ can be represented as a line
integral

γ ¼
Z ðt;ρÞ

ð0;0Þ

�
2ρ∂tτ∂ρτdtþ ρ½ð∂tτÞ2 þ ð∂ρτÞ2�dρ

�þ const;

¼
Z ðt;ρÞ

ðt;0Þ
ρ
�ð∂tτÞ2 þ ð∂ρτÞ2

�
dρ: ð60Þ

The second equality for γ is affirmed by the assumption that
γðt; 0Þ ¼ 0, as indicated after Eq. (27). It is significant to
note that the expression for γ is independent of the
parameters A and θ. Therefore, γ maintains the same form
as in the case when A ¼ θ ¼ 0, aligning with the character-
istics of the original Einstein-Rosen wave. This consistency
corresponds to a fundamental property of γ, namely
isometric invariance in the target space.
Next, applying the same method to seed map (ii), we

derive the following expressions by substituting Eq. (52)
into Eq. (43):
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e2ψ ¼ p2ðx2 þ 1Þ þ q2ðy2 − 1Þ
p2x2 þ q2y2 − 2ðpxþ lqyÞ cos 2θ þ ðl2 þ 1Þcos22θ ;

Φ ¼ −
2ðlpx − qyÞ cos 2θ

p2x2 þ q2y2 − 2ðpxþ lqyÞ cos 2θ þ ðl2 þ 1Þcos22θ ;

Az ¼
½pxþ lqy − ðl2 þ 1Þ cos 2θ� sin 2θ

p2x2 þ q2y2 − 2ðpxþ lqyÞ cos 2θ þ ðl2 þ 1Þcos22θ ;

χ ¼ ðlpx − qyÞ sin 2θ
p2x2 þ q2y2 − 2ðpxþ lqyÞ cos 2θ þ ðl2 þ 1Þcos22θ : ð61Þ

Then, utilizing Eqs. (12) and (13), we can determine the remaining quantities as follows:

w ¼ y − 1

p½p2ðx2 þ 1Þ þ q2ðy2 − 1Þ�
�
qðl2 þ 1Þðyþ 1Þ þ 2½p2lðx2 þ 1Þ − q2lðyþ 1Þ − qpxðyþ 1Þ� cos 2θ

þ qðl2 þ 1Þðyþ 1Þcos22θ�;
Aϕ ¼ ðy − 1Þ sin 2θ

p½p2x2 þ q2y2 − 2ðpxþ lqyÞ cos 2θ þ ðl2 þ 1Þcos22θ�
�
−p2lx2 þ q2lyþ qpxðyþ 1Þ

− qðl2 þ 1Þðyþ 1Þ cos 2θ þ ðl3 þ 1Þcos22θ�: ð62Þ

Due to the isometric invariance of the metric function γ in
the target space, the C-energy γ is identical to that presented
in the work [31],

γ ¼ 1

2
ln
p2ðx2 þ 1Þ þ q2ðy2 − 1Þ

p2ðx2 þ y2Þ : ð63Þ

Consequently, the density E and flux F corresponding to
the C-energy are directly given as follows:

E ¼ ∂ργ ¼ ρ
ðl2 þ 1Þðy2 − x2 þ 2x2y2Þ

ðx2 þ y2Þ½ðp2ðx2 þ 1Þ þ q2ðy2 − 1Þ� ;

F ¼ ∂tγ ¼ 2
ðl2 þ 1Þxyðx2 þ 1Þðy2 − 1Þ

ðx2 þ y2Þ½p2ðx2 þ 1Þ þ q2ðy2 − 1Þ� : ð64Þ

2. Solutions for case (b)

For the seed map (i), by utilizing Eq. (51), the functions
in (50) can be written as

e2ψ ¼
�

e2τ

A2e4τ þ 1

�
2

;

Az ¼
1

A
−

1

AðA2e4τ þ 1Þ ;

Φ ¼ 0; χ ¼ 0: ð65Þ

By setting the parameter A to cos θ sin θ and replacing
the seed function τ with ðτ0 − lnðcos2 θÞÞ=2, which also
satisfies the linear wave equation in Mð1;2Þ, the above
equations transform as follows:

e2ψ ¼
�

eτ
0

e2τ
0
sin2θ þ cos2θ

�
2

;

Az ¼ tan θ þ
�
cot θ −

1

cos θ sin θ
1

ðtan2θe2τ0 þ 1Þ

	
;

Φ ¼ 0; χ ¼ 0: ð66Þ

The observation that the derived expressions from the seed
map (i) are essentially the same as those in Eq. (54) with the
parameter A set to 0 indicates that no new solution emerges
from this specific case.
For the seed map (ii), derived from Eq. (52), we obtain

the following expressions:

e2ψ ¼
�
p2ðx2 þ 1Þ þ q2ðy2 − 1Þ
ðpx − 1Þ2 þ ðqy − lÞ2

	
2

;

w ¼ 0; γ ¼ 2 ln
p2ðx2 þ 1Þ þ q2ðy2 − 1Þ

p2ðx2 þ y2Þ ;

Az ¼ −2
lpx − qy

ðpx − 1Þ2 þ ðqy − lÞ2 ;

Φ ¼ 0; χ ¼ 0: ð67Þ

This solution corresponds to the solution in (61) when
θ ¼ 0. In this case, the metric function ψ in (67) corre-
sponds to twice the function ψ in (61), and the gauge
potential component Az is identical to the twist potential Φ
in (61). This relationship may be seen as an instance of the
Bonnor transformation [38,39], which is treated in [10,13].
A treatment similar to this case has been already presented
in [40], but its aims are essentially different from ours.
Consequently, the C-energy γ and related quantities for the
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solution (67) can be straightforwardly determined. The
C-energy for this solution is exactly four times the value on
the right-hand side of Eq. (63). Similarly, the associated
quantities E and F are four times those on the right-hand
side of (64), respectively.

IV. ANALYSIS

In this section, we will investigate the nonlinear proper-
ties of the Einstein-Maxwell system through the behavior
of the exact solution. Our primary focus will be on the
mode conversion phenomena between gravitational and
electromagnetic waves as significant occurrences. In par-
ticular, we aim to clarify the process and extent of these
conversions when waves incident near the cylinder axis
intensify rapidly. Furthermore, we will examine the rate at
which conversion phenomena occur after the incident
waves on the axis travel to the far side. After briefly
summarizing the asymptotic behavior of spacetimes cor-
responding to the derived solutions, we will dedicate our
discussion to the mode conversion phenomena exhibited by
each solution.

A. Asymptotics

Here, we present the asymptotic forms of the metric
obtained from the previous discussions for three distinct
scenarios: case (a) with seed (i), case (a) with seed (ii), and
case (b) with seed (ii). In the subsequent discussion, we
define the function FðxÞ as

FðxÞ ¼ 2xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 1

p
: ð68Þ

For case (a) with seed (i), a typical example we consider
is the Weber-Wheeler-Bonnor (WWB) solution with a
single peak. The explicit form of this WWB solution is
given as follows [41],

τðt;ρÞ ¼ cffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2t2 þ ða2 þ ρ2 − t2Þ2
p

þ a2 þ ρ2 − t2

4a2t2 þ ða2 þ ρ2 − t2Þ2
	1=2

:

ð69Þ

The metric derived in this context bears resemblance to the
one previously presented in [25]. Consequently, it can be
anticipated that the spacetime structure is almost identical
to that of the case discussed earlier.
Near the axis ρ ¼ 0 (where t ¼ const), the metric can be

approximately expressed as

ds2 ≃ ef
�ðcos2θ þ efsin2θÞ2 þ e2fA2cos4θ

�
−1dz2

þ e−f
�ðcos2θ þ efsin2θÞ2 þ e2fA2cos4θ

�
× ð−dt2 þ dρ2 þ ρ2dϕ2Þ; ð70Þ

where f ¼ 2ac=ðt2 þ a2Þ. From the given metric expres-
sion, it becomes evident that the deficit angle around the

axis disappears if the period of the angle ϕ is set to 2π.
This characteristic indicates that the spacetime near the axis
is regular and free from angular deficits, which would
otherwise suggest the presence of a conical singularity or
similar topological defect.
At spacelike infinity, where ρ → ∞ (with t ¼ const), the

asymptotic form of the metric is given by

ds2 ≃
1

1þ A2cos4θ
dz2 þ ρ2ð1þ A2cos4θÞdϕ2

þ ð1þ A2cos4θÞe c2

2a2ð−dt2 þ dρ2Þ: ð71Þ

This indicates that the spacetime approaches a locally flat
spacetime but with a deficit angle expressed as

Δϕ ¼ 2π − lim
ρ→∞

R
2π
0

ffiffiffiffiffiffiffigϕϕ
p dϕR ρ

0

ffiffiffiffiffiffigρρ
p dρ

¼ 2π

1 − e−

c2

4a2

�
: ð72Þ

At timelike infinities, as t → �∞ (with ρ ¼ const), the
metric asymptotically approaches the form

ds2 ≃
1

1þ A2cos4θ
dz2 þ ð1þ A2cos4θÞ

× ð−dt2 þ dρ2 þ ρ2dϕ2Þ: ð73Þ

This indicates that at sufficiently late (or early) times, the
spacetime converges to Minkowski spacetime, devoid of
any deficit angle.
At future null infinity, where v → ∞ (u ¼ const), the

metric behaves as

ds2 ≃
1

1þ A2cos4θ

�
dz − 2Ac

Fð−uÞ1=2cos4θ ffiffiffi
v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4u2

p dϕ

�
2

þ ρ2ð1þ A2cos4θÞdϕ2 þ ð1þ A2cos4θÞeFþ

× ð−dt2 þ dρ2Þ; ð74Þ

where

Fþ ¼ c2½3a4 þ 12a2u2 þ 32u4 − 4uða2 þ 4u2Þ3=2�
16a2ða2 þ 4u2Þ2 :

At past null infinity, where u → −∞ (v ¼ const), the
metric behaves as follows:

ds2 ≃
1

1þ A2cos4θ

�
dzþ 2Ac

FðvÞ1=2cos4θ ffiffiffiffiffiffi
−u

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4u2

p dϕ
�

2

þ ρ2ð1þ A2cos4θÞdϕ2 þ ð1þ A2cos4θÞeF−

× ð−dt2 þ dρ2Þ; ð75Þ

where
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F− ¼ c2½3a4 þ 12a2v2 þ 32v4 þ 4vða2 þ 4v2Þ3=2�
16a2ða2 þ 4v2Þ2 :

It is significant to note that Fþ (for F−) reaches 0 as u (or v)
approaches ∞ (−∞), corresponding to timelike infinity,
and attains the value of c2=4a2 as u (or v) approaches −∞
(∞), corresponding to spacelike infinity. These findings
indicate that spacetime rapidly becomes locally flat as we
approach non-null infinities. Conversely, near null infin-
ities, there remains a residual disturbance from waves.
This pattern of behavior appears to be general. Indeed,
the case involving solitonic waves demonstrates similar
characteristics.
For the case (a) with the seed (ii), which utilizes a

solitonic solution as the seed, the asymptotic forms of the
metric are as follows: When the parameter θ is set to 0,
the spacetime structure aligns with the vacuum spacetime

described in [31], with their parameter jcpj ¼ 1, indicating
the vanishing condition of the deficit angle on the axis.
Near the axis, the spacetime exhibits the following

metric form:

ds2 ≃G−1dz2 þ Gð−dt2 þ dρ2 þ ρ2dϕ2Þ; ð76Þ

where

GðtÞ ¼ ðl − qÞ2 þ ð1 − ptÞ2
p2ð1þ t2Þ

− 4sin2θ
ðl2 þ 1Þcos2θ − lq − pt

p2ð1þ t2Þ : ð77Þ

At spacelike infinity, the metric asymptotically
approaches the form

ds2 ≃
�
dzþ 2

ð1þ l2 − lqÞ þ ½−lqþ ð1þ l2Þcos2θ�sin2θ
pq

dϕ

�
2

þ q2

p2
ð−dt2 þ dρ2Þ þ ρ2dϕ2: ð78Þ

By appropriately redefining z, it can be shown that the
spacetime approaches a flat spacetime with a deficit angle
of 2πð1 − jq=pjÞ. Then, the metric form simplifies to

ds2 ≃ dz2 þ ð−dt2 þ dρ2 þ ρ2dϕ2Þ: ð79Þ

This indicates the emergence of Minkowski spacetimes.
At future null infinity v → ∞, the metric takes the form

ds2 ≃
�
dzþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð−uÞp ð−lpþ qFð−uÞÞ ffiffiffi

v
p

p2 þ q2ð1 − 4uFð−uÞÞ cosð2θÞdϕ
�2

þ ρ2dϕ2 þ p2 þ q2ð1 − 4uFð−uÞÞ
2p2ð1 − 2uFð−uÞÞ ð−dt2 þ dρ2Þ:

ð80Þ

At past null infinity u → −∞, the metric behaves as

ds2 ≃
�
dz −

2
ffiffiffiffiffiffiffiffiffiffi
FðvÞp ðlpþ qFðvÞÞ ffiffiffiffiffiffi

−u
p

p2 þ q2ð1þ 4vFðvÞÞ cosð2θÞdϕ
�2

þ ρ2dϕ2 þ p2 þ q2ð1þ 4vFðvÞÞ
2p2ð1þ 2vFðvÞÞ ð−dt2 þ dρ2Þ:

ð81Þ

It can be verified from Eqs. (80) and (81) that the metric
coefficients gρρ at future(past) null infinity approaches 1 as
uðvÞ → ∞ð−∞Þ, corresponding to timelike infinity, while
those take the value q2=p2 as uðvÞ → −∞ð∞Þ, correspond-
ing to spacelike infinity.

In discussing the case (b) with the seed (ii), we observe
that the asymptotic forms of the spacetime are simple.
Near the axis, the line element can be approximated as

follows:

ds2 ≃G−2
0 dz2 þG2

0ð−dt2 þ dρ2 þ ρ2dϕ2Þ; ð82Þ

where G0 is defined as Gjθ¼0.
At spacelike infinity, the line element simplifies to

ds2 ≃ dz2 þ q8

p8
ð−dt2 þ dρ2Þ þ ρ2dϕ2: ð83Þ

Therefore, the corresponding spacetime approaches a flat
spacetime with a deficit angle of 2πð1 − q4=p4Þ.
At the timelike infinities, the metric takes the form

ds2 ≃ dz2 þ ð−dt2 þ dρ2 þ ρ2dϕ2Þ: ð84Þ

This indicates the emergence of Minkowski spacetimes,
similar to the case (a) with seed (ii).
At future null infinity, the metric behaves as follows:

ds2 ≃ dz2 þ ρ2dϕ2 þ
�
p2 þ q2ð1 − 4uFð−uÞÞ
2p2ð1 − 2uFð−uÞÞ

	
4

× ð−dt2 þ dρ2Þ: ð85Þ

At past null infinity, the metric behaves as
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ds2 ≃ dz2 þ ρ2dϕ2 þ
�
p2 þ q2ð1þ 4vFðvÞÞ
2p2ð1þ 2vFðvÞÞ

	
4

× ð−dt2 þ dρ2Þ: ð86Þ

As in the case (a) with seed (ii), from Eqs. (85) and (86)
the metric coefficients gρρ at future (past) null infinity
approaches 1 as uðvÞ → ∞ð−∞Þ, while those take the
value q8=p8 as uðvÞ → −∞ð∞Þ.

B. Conversion between gravitational and
electromagnetic waves

In the previous paper [15], we discussed the possibility
of substantial mutual conversion between gravitational and
electromagnetic modes in the spacetime corresponding to
case (a) seed (i), as mentioned in the preceding section.
Indeed, we observed that when a large cylindrically
symmetric clump of gravitational waves, which includes
a tiny portion of electromagnetic waves, explodes, the
electromagnetic wave component is significantly amplified
due to the vast amount of energy from the gravitational
waves. As a continuation of this analysis, we use the exact
solutions presented earlier to clarify the observed conver-
sion phenomena. To introduce an experimental perspective
(akin to a simulation), we consider scenarios resembling
wave scattering experiments commonly studied in physics,
as depicted in Fig. 1.
In the first half of this section, following our previous

work, we will examine case (a) with seed (i) in greater
detail. We will explore a wider range of parameters than in
the previous work, observing how the ratio of gravitational
to electromagnetic modes contributing to the C-energy
density changes over time as the waves incident near the
axis scatter away. In the second half, we will address

solitonic solutions for cylindrical waves within the
Einstein-Maxwell system from the above perspective.

1. Case (a) with seed (i)

First, we introduce specific formulas for the occupancy
ratio: each mode’s contribution to the C-energy density E,
which is defined by Eq. (25). By using the expressions of
physical quantities (54), the following formulas of the
occupancy ratio are given

Rþ ≔
Eþ
E

¼ D−2
�ðA2e4τ − 1Þcos4θ þ e4τsin4θ

�
2;

R× ≔
Eþ
E

¼ 4A2D−2e4τcos8θ;

Rϕ ≔
Eϕ

E
¼ 4A2D−3e6τðcos2θ þ e2τsin2θÞ2cos4θsin2ð2θÞ;

Rz ≔
Ez

E
¼ D−3e2τ

�
A2e4τcos4θ − ðcos2θ þ e2τsin2θÞ2�2

× sin2ð2θÞ; ð87Þ

where D is A2e4τ cos4 θ þ ðcos2 θ þ e2τ sin2 θÞ2 and E is
ρ½ð∂tτÞ2 þ ð∂ρτÞ2� from Eq. (59). The above quantity RI ≔
EI=E represents the occupancy for each mode I. It should
be noted that the C-energy density E itself has no
dependence on individual modes, so that the mode con-
tributions arise only from the occupancies. From these
formulas, the occupancies of gravitational and electromag-
netic modes have been directly derived, as follows:

Rg≔RþþR×¼D−1½A2e4τ cos4 θþðcos2 θ−e2τ sin2 θÞ2�;
Rem ≔RϕþRz¼D−1e2τ sin2ð2θÞ; ð88Þ

which have been used in the previous work [15].

FIG. 1. The left and right figures are schematic diagrams to make the setup clearer to understand. In the left figure, the cylindrical
surface represents a wavefront. The figure on the right is a kind of conformal diagram restricted to surfaces of z ¼ const.
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We now introduce a two-dimensional extension of the
occupancy diagram used in our previous work. For in-
stance, a set of diagrams for A ¼ 1=6 is depicted in Fig. 2.
These contour plots are generated using Mathematica. The
horizontal and vertical axes represent the parameter θ and
the value of the seed function τ, respectively. Each contour
plot corresponds to a specific occupancy ratio RI , where the
subscript I denotes one of the modes þ;×; Az; Aϕ. By
fixing the parameter θ and specifying the seed function τ,
we can determine the percentage of each mode’s contribution
at any point in spacetime from these diagrams. Further-
more, they allow us to qualitatively predict how mode
conversion will occur. Indeed, the graph resulting from setting
θ to a specific constant in this diagram is identical to the
occupancy diagram treated in our previous work. However,
these diagrams offer a broader perspective on how the
conversion phenomenon varies as the parameter θ changes.
To further our investigation, let us adopt the WWB

impulse solution [referenced in Eq. (69)] as the seed
function τ. This same seed function has already been used
in previous works. The width and height of the function τ
are determined by the parameters a and c. As an example,
Fig. 3 shows the case where a ¼ 1=3 and c ¼ 8=5. The
graphs in Fig. 3 demonstrate that the wave height increases
as the wave approaches the cylindrical axis (ρ ¼ 0) and
decreases with increasing distance.
In general, it is reasonable to assume that a cylindri-

cally symmetric wave packet, when launched toward the

symmetric axis from a distance, initially has a small peak
which grows as it approaches the axis and diminishes as it
moves away. It can be known by examining the represen-
tation of Eq. (59) that the C-energy is generally concen-
trated near the peak of the wave packet. if the parameter θ is
predefined, we can track how the mode conversion evolves
over time by referencing the corresponding diagrams in
Fig. 2 (also see Ref. [15]). For instance, if θ is set to π=10,
corresponding to a choice of a vertical line on the diagram,
the peak of the seed function τ begins near τ ¼ 0 (i.e.,
near past null infinity), and either ascends or descends
along the vertical line (the direction depends on the sign
of the τ peak). After reaching the maximum of jτj (i.e.,
at the symmetric axis), it returns to the starting point.
Concurrently, as τ progresses along the line, the contour
plots in each diagram indicate the occupancy of the corres-
ponding mode at every point the wave packet traverses.
The snapshots in Fig. 4 display the temporal behaviors
of mode contributions to C-energy density for the case:
ðA; θ; a; cÞ ¼ ð1=6; π=10; 1=3; 8=5Þ. This figure shows that
at t ¼ �4, Ez, E×, and Eϕ dominate over Eþ. Conversely, at
t ¼ 0, the þ mode temporarily becomes more dominant
than the other modes. This observation can be inferred by
carefully seeing the occupancy diagrams in Fig. 2.
Next, let us consider the simple but intriguing case where

A ¼ 0, in which neither the gravitational × nor the electro-
magnetic Aϕ modes are excited. This fact is confirmed
directly by the expressions in Eq. (87). The occupancy

FIG. 2. The case A ¼ 1=6: Four figures, from left to right, are graphs of contour plot of occupancy ratio of each mode: þ, ×, Az, Aϕ,
respectively.

FIG. 3. Snapshots of the WWB type seed function τ: The parameters (a, c) are set to (1=3, 8=5). The function τ is an even function
in time.
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diagram illustrating this is shown in Fig. 5. Indeed,
the second and fourth figures within this diagram display
no signs of excitation for the × mode and Aϕ mode,
respectively.
By examining the diagrams, we can identify some

parameters θ that correspond to waves with characteristic
behavior. For example, the behavior along the line at θ ¼
π=6 suggests the following dynamics: initially, when the
wave is positioned far from the axis (i.e., near past null
infinity), it predominantly exhibits electromagnetic contri-
butions. As the wave moves away from this position and

approaches the axis, its strength increases. Upon nearing
the axis, the wave primarily transitions to gravitational
modes. The snapshots in Fig. 6 display the temporal
behavior of these corresponding waves. It is evident from
this figure that at t ¼ �4, the wave is predominantly in the
electromagnetic Az mode. At t ¼ 0, as the wave reaches the
axis, there is significant amplification of the gravitational
þ mode.
As another example, consider the case θ ¼ 39π=80

(≈1.53). In this case, the trajectory along which the wave
propagates is positioned near the left edge of the diagram.

FIG. 4. Snapshots of each mode contribution for the case of ðA; θ; a; cÞ ¼ ð1=6; π=10; 1=3; 8=5Þ: Each line of black, red, blue, yellow,
and green corresponds to þ, Az, ×, Aϕ, and total C-energy density, respectively. At t ¼ �4 the blue line is hidden by the red
and yellow lines.

FIG. 5. The case A ¼ 0: Four figures, from left to right, are graphs of contour plot of occupancy ratio of each mode: þ, ×, Az, Aϕ,
respectively.

FIG. 6. Snapshots of each mode contribution for the case of ðA; θ; a; cÞ ¼ ð0; π=6; 1=3; 8=5Þ: Each line of black, red, and green
corresponds to þ, Az, and total C-energy density, respectively. At t ¼ �4 the green line is almost completely hidden by the red line.
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From this placement, it is easily anticipated that if the sign
of the seed τ is negative, the initially small electromagnetic
wave accompanying the large gravitational wave will be
greatly amplified near the axis. Indeed, the snapshots in
Fig. 7 clearly illustrate the occurrence of this conversion
phenomenon as described.
Before proceeding, let us discuss whether the wave

retains its altered occupancy after leaving the vicinity of
the axis (i.e., the strongly nonlinear region) and returning to
the original distant side from the axis (i.e., near future null
infinity, as shown in Fig. 1). In conclusion, if the seed τ is a
decreasing function at infinity, the occupancy rates evalu-
ated at both past and future null infinities always coincide,
as indicated by the formulas in Eq. (87). This means that in
this category of solutions, the reflected wave inevitably
returns with the same content as the initial wave, even if

the seed τ is not an even function with respect to t. This
observation naturally leads to the following question: to
what extent do nontrivial conversions, particularly between
gravitational and electromagnetic modes, occur when the
incident and reflected waves are at sufficiently far dis-
tances? This issue [26] prompts further investigation. Let us
now continue by analyzing the remaining two cases to seek
answers to this question.

2. Case (a) with seed (ii)

To delve into the question posed, we investigate the solu-
tion for case (a) with seed (ii). We start by providing the
expressions for the mode contributions to the C-energy den-
sity at past or future null infinity, corresponding to u ¼ −∞
or v ¼ ∞, respectively. The expressions are given below:

ð−ÞEþðvjp; q; lÞ ¼ cos2ð2θÞKþðvjp; q; lÞ; ð−ÞE×ðvjp; q; lÞ ¼ cos2ð2θÞK×ðvjp; q; lÞ;
ð−ÞEzðvjp; q; lÞ ¼ sin2ð2θÞKþðvjp; q; lÞ; ð−ÞEϕðvjp; q; lÞ ¼ sin2ð2θÞK×ðvjp; q; lÞ;
ðþÞEþðujp; q; lÞ ¼ cos2ð2θÞKþð−ujp; q;−lÞ; ðþÞE×ðujp; q; lÞ ¼ cos2ð2θÞK×ð−ujp; q;−lÞ;
ðþÞEzðujp; q; lÞ ¼ sin2ð2θÞKþð−ujp; q;−lÞ; ðþÞEϕðujp; q; lÞ ¼ sin2ð2θÞK×ð−ujp; q;−lÞ; ð89Þ

where superscripts (−) and (þ) are assigned to past and future null infinities, respectively, and the functionsKþ and K× are
defined as follows.

Kþðxjp; q; lÞ ≔
FðxÞfqFðxÞ½−12pqx − 3lp2 þ lq2ð16x2 þ 1Þ� þ 4lq3xþ p3 − 3pq2g2

2ð4x2 þ 1Þð4q2xFðxÞ þ p2 þ q2Þ4 ;

K×ðxjp; q; lÞ ≔
FðxÞfqFðxÞ½12lpqx − 3p2 þ q2ð16x2 þ 1Þ� þ 4q3x − lp3 þ 3lpq2g2

2ð4x2 þ 1Þð4q2xFðxÞ þ p2 þ q2Þ4 ; ð90Þ

where FðxÞ has been already given in Eq. (68) as a positive definite function. It is noteworthy that the functionsKþ andK×
satisfy the following useful formulas:

KIðxjp; q; lÞ ¼ KIðxj − p; q;−lÞ ¼ KIðxjp;−q;−lÞ ¼ KIðxj − p;−q; lÞ: ð91Þ

FIG. 7. Snapshots of each mode contribution for the case of ðA; θ; a; cÞ ¼ ð0; 39π=80; 1=3;−8=5Þ: Each line of black, red, and green
corresponds to þ, Az, and total C-energy density, respectively. At t ¼ �4 the green line is almost completely hidden by the black line.
respectively.
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The gravitational and electromagnetic contributions to the C-energy density E are given as follows:

ð−ÞEgðvÞ ≔ ð−ÞEþðvÞ þ ð−ÞE×ðvÞ ¼
ðl2 þ 1Þcos2ð2θÞFðvÞ

2ð4v2 þ 1Þð4q2vFðvÞ þ p2 þ q2Þ ;

ð−ÞEemðvÞ ≔ ð−ÞEzðvÞ þ ð−ÞEϕðvÞ ¼
ðl2 þ 1Þsin2ð2θÞFðvÞ

2ð4v2 þ 1Þð4q2vFðvÞ þ p2 þ q2Þ ;
ðþÞEgðuÞ ≔ ðþÞEþðuÞ þ ðþÞE×ðuÞ ¼ ð−ÞEgð−uÞ;

ðþÞEemðuÞ ≔ ðþÞEzðuÞ þ ðþÞEϕðuÞ ¼ ð−ÞEemð−uÞ: ð92Þ

More general expressions of contributions corresponding to gravitational and electromagnetic parts, defined at arbitrary
points in spacetime, are also given as follows:

Eg ¼
cos2ð2θÞðp2x2 þ q2y2Þ − 2 cosð2θÞðlqyþ pxÞ þ l2 þ 1

ðl2 þ 1Þcos2ð2θÞ − 2 cosð2θÞðlqyþ pxÞ þ p2x2 þ q2y2
E;

Eem ¼ sin2ð2θÞðp2x2 þ q2y2 − l2 − 1Þ
ðl2 þ 1Þcos2ð2θÞ − 2 cosð2sθÞðlqyþ pxÞ þ p2x2 þ q2y2

E; ð93Þ

where E has already been given in Eq. (64), and the
coordinates ðx; yÞ can be transformed into ðρ; tÞ by the
formulas in (53). Here, however, the detailed expressions of
each mode contribution are omitted due to the complexity
of the expressions. Whenever necessary, the explicit forms
can be generated by substituting Eq. (61) into Eq. (23) and
then using the formula (25).
First, it should be noted from Eq. (92) that the gravi-

tational contribution ð−ÞEg and the electromagnetic contri-
bution ð−ÞEem are essentially the same as ðþÞEg and ðþÞEem,
respectively. This indicates that the occupancy of gravita-
tional and electromagnetic modes in C-energy density is
invariant when compared at past null infinity and future
null infinity. It can be expected that even within the
scenario of case (a) with seed (ii), the conversion between
gravitational and electromagnetic waves does not occur.
Additionally, it can be demonstrated from Eq. (89) that the
forms of modes þð×Þ and AzðAϕÞ are exactly identical
except for an overall constant factor.

To further elaborate the analysis, let us examine the
expressions for ð−ÞEI and ðþÞEI in Eq. (89), where the
subscript I denotes þ, ×, z, and ϕ. A key distinction from
the previous case (a) with seed (i) is that for each mode (I),
ð−ÞEI differs from ðþÞEI except in the case l ¼ 0.
It can therefore be shown, using Eq. (89), that con-

versions within the gravitational or electromagnetic modes
can occur. In other words, we can observe a type of
“Faraday rotation” within these solutions. In fact, Fig. 8
presents an example of a conversion between gravitational
þ and × modes as the wave moves from past null infinity
toward the axis and is reflected back to future null infinity.
As the additional arrows in Fig. 8 indicate, a significant
conversion within the gravitational component is clearly
visible. Conversely, according to Eq. (93), near the axis, the
waves exhibit a substantial depression of the electromag-
netic modes due to the nonlinear effects in this region, as
illustrated in Fig. 9. However, as expected and depicted in
Fig. 10, the occupancies corresponding to the incident and

FIG. 8. Conversion between gravitational þ (blue line) and × (yellow line) modes observed at the past and future null infinity:
ðθ; q; p; lÞ ¼ ðπ=10;−9 ffiffiffi

5
p

=16;
ffiffiffi
5

p
=16; 3=4Þ. Two additional arrows are superimposed for assistance.
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reflected waves become closer as the observer’s position
moves away from the axis.

3. Case (b) with seed (ii)

The third case [i.e., case (b) with seed (ii)] is not
geometrically equivalent to the other cases treated above.
Therefore, the wave represented by the solution corre-
sponding to the third case can be expected to exhibit
behaviors essentially different from those in other cases. In
fact, comparing Eq. (61) with Eq. (67), the expressions for
2ψ andΦ at θ ¼ 0 in Eq. (61) are exactly equal to those for

ψ and Az in Eq. (67). Hence, according to considerations
similar to those for case (b) with seed (ii), the conversion
between the gravitational and electromagnetic parts, evalu-
ated at null infinities, can be expected to occur in a
nontrivial manner.
Therefore, let us first present the corresponding expres-

sions for the gravitational and electromagnetic contribu-
tions to the C-energy density, evaluated at past or future
null infinity. Similar to Eq. (89) and utilizing the functions
defined in (90), the formula for case (b) with seed (ii) can be
specified as follows:

ð−ÞEgðvÞ ¼ 4Kþðvjp; q; lÞ; ð−ÞEemðvÞ ¼ 4K×ðvjp; q; lÞ;
ðþÞEgðuÞ ¼ 4Kþð−ujp; q;−lÞ; ðþÞEemðuÞ ¼ 4K×ð−ujp; q;−lÞ; ð94Þ

where the subscripts g and em denote gravitational and
electromagnetic modes, respectively. From this, we can
anticipate nontrivial conversions between gravitational and
electromagnetic modes when comparing past and future
null infinities. Indeed, Fig. 11 illustrates an example of such
nontrivial conversion. In cases depicted in Figs. 12 and 13,
a wave with a dominant gravitational mode incident near the
axis results in the electromagnetic modes being significantly
amplified by nonlinear effects. Subsequently, after departing
from the axis, the wave continues to propagate while
maintaining the enhanced electromagnetic mode.

Finally, we will discuss the extent to which conversion
occurs when waves are observed at past and future null
infinities, although a systematic mathematical analysis has
not yet been successful. To advance the analysis, let us first
introduce the following quantities:

ð−Þγem=g ≔ 2

Z
∞

−∞

ð−ÞEem=gðvÞdv;

ðþÞγem=g ≔ 2

Z
∞

−∞

ðþÞEem=gðuÞdu; ð95Þ

FIG. 9. Snapshots at t ¼ −4, 0, 4 of the gravitational(blue line) and electromagnetic(red line) contributions to C-energy density for
ðθ; q; p; lÞ ¼ ðπ=10;−9 ffiffiffi

5
p

=16;
ffiffiffi
5

p
=16; 3=4Þ.

FIG. 10. Snapshots at t ¼ −1000, 1000 of the gravitational(blue line) and electromagnetic(red line) contributions to C-energy density
for ðθ; q; p; lÞ ¼ ðπ=10;−9 ffiffiffi

5
p

=16;
ffiffiffi
5

p
=16; 3=4Þ.
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where ð−ÞEem=gðvÞ and ðþÞEem=gðuÞ have already been given
in Eq. (94). Doubling the quantities is necessary to ensure
that ð�Þγg þ ð�Þγem equals the total C-energy (here
lnðq=pÞ4). Then, using these quantities ð−Þγem and ðþÞγem,
we introduce the ratio of the electromagnetic contribution

to the C-energy at future null infinity to the electromagnetic
contribution to the C-energy at past null infinity:

Ratio ≔
ðþÞγem
ð−Þγem

: ð96Þ

FIG. 12. Snapshots at t ¼ �10;�4;�1 of the gravitational (blue line) and electromagnetic (red line) contributions to C-energy density
for ðq; p; lÞ ¼ ð−9 ffiffiffi

5
p

=16;
ffiffiffi
5

p
=16; 3=4Þ.

FIG. 13. Snapshots at t ¼ −1000, 1000 of the gravitational (blue line) and electromagnetic (red line) contributions to C-energy density
for ðq; p; lÞ ¼ ð−9 ffiffiffi

5
p

=16;
ffiffiffi
5

p
=16; 3=4Þ.

FIG. 11. Conversion between gravitational (blue line) and electromagnetic (red line) modes observed at the past and future null
infinity: ðq; p; lÞ ¼ ð−9 ffiffiffi

5
p

=16;
ffiffiffi
5

p
=16; 3=4Þ. Two additional arrows are superimposed for assistance.
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To evaluate the integral numerically, the upper and lower
limits of the integration range, originally set to �∞, are
replaced with sufficiently large finite values, �1000. For
example, the ratios corresponding to various C-energies
(i.e., lnðq=pÞ4) are depicted in Fig. 14, the horizontal axes
of which represent the parameter l. It is important to note
that the parameters must satisfy the constraint equation
q2 − p2 − l2 ¼ 1; given two parameters l and q=p, the
value of the ratio can be uniquely determined. This
constraint equation also restricts the range of the para-
meter q=p to jq=pj > 1. A useful fact is that by using the
formulas in (91), we can demonstrate that the ratio
corresponding to the case q=p < 0 and l is equal to the
ratio corresponding to the case q=p > 0 and −l, thus
studying only the former case is sufficient. By examining
several graphs, including those in Fig. 14, we can discern
qualitative features of the conversion phenomena, albeit
within the scope of the phenomena represented by the
solutions treated here. It is anticipated that upper and lower
bounds, which are positive definite, exist for the amplifi-
cation factor of electromagnetic modes, respectively. This
fact is certainly ensured by the positivity of the function
K×ðxjp; q; lÞ, except for some points where it becomes
zero, as can be deduced from inspection of Eq. (90).
Indeed, from several graphs, including Fig. 14, we can
predict that the upper limit of amplification is approxi-
mately 2.3 and the lower limit of suppression is approx-
imately 0.4. Furthermore, when the parameter l is zero or
approaches close to�∞, the ratio appears to approach one.
The latter fact, however, can be easily deduced, due to the
fact that the l-dependence of the ratio (96) is represented by
using Eqs. (90) and (94), as follows:

Ratio ¼ Pðq=pÞl2 −Qðq=pÞlþ Rðq=pÞ
Pðq=pÞl2 þQðq=pÞlþ Rðq=pÞ ; ð97Þ

where P, Q, and R are constants determined by q=p, and
also P and R are positive.

V. SUMMARY AND DISCUSSION

In this study, we have used the composite harmonic
mapping method to broaden the Einstein-Maxwell system
solution previously examined, aiming to uncover new
phenomena driven by the system’s nonlinear dynamics.
Specifically, we focused on the phenomena of mode
conversion between gravitational and electromagnetic
waves. Utilizing the exact solutions constructed by the
composite mapping method, we analyzed three scenarios:
case (a) with seed (i), case (a) with seed (ii), and case (b)
with seed (ii). In cases (a) and (b), we utilized the complex
line and the totally real Lagrangian plane, respectively, as
totally geodesic surfaces within H2

C. For both seed (i) and
seed (ii), we employed harmonic maps constructed using a
linear wave function τ and a solitonic vacuum solution,
respectively.
In our expanded examination of case (a) with seed (i),

previously addressed in our prior work, we present a more
comprehensive analysis that includes a detailed description
of the solution and its intriguing features. Specifically,
we have enhanced the occupancy diagram to a two-
dimensional format, offering a clearer view that facilitates
the identification of significant conversion phenomena
between gravitational and electromagnetic modes near
the axis. The updated occupancy diagrams reveal diverse
wave behaviors close to the axis, particularly in terms
of conversion phenomena. However, any changes in the
occupancy ratio between gravitational and electromagnetic
modes near the axis invariably revert to their original state
as the waves move away from the axis. This observation
prompts an important question: Is there ever a lasting
difference in the occupancy of gravitational and electro-
magnetic modes, even when the incident and reflected
waves are distant from the axis? Our research into sub-
sequent cases has provided insights into this query.
In both cases (a) and (b) with seed (ii), solutions were

constructed using the solitonic vacuum solution [31],
governed by three parameters fq; p; lg that satisfy the
constraint equation q2 − p2 − l2 ¼ 1. These solutions from

FIG. 14. The ratio of the electromagnetic contribution to the C-energy at future null infinity to the electromagnetic contribution to the
C-energy at past null infinity: Each figure, from left to right, corresponds to q=p ¼ −3;−9;−21;−150, respectively.
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both cases demonstrate nontrivial and varied mode con-
versions near the axis. Observing these waves from a
distance, case (a) shows no conversion between gravita-
tional and electromagnetic waves, whereas case (b), except
when l ¼ 0, exhibits significant conversion. Additionally,
as outlined in the previous section, finite upper and lower
limits exist for the amplification and attenuation of mode
contributions to C-energy at past and future null infinities.
Specifically, in case (b) for seed (ii), the upper and lower
bounds on the amplification factor are approximately 2.4
and 0.4, respectively.
From both a fundamental and applied physics perspec-

tive, determining the extent of conversion between wave
types presents an important and intriguing question. If large
amplifications occur when gravitational waves, accompa-
nied by minor electromagnetic waves, imploded in a finite
region without collapsing into a black hole, such as a
sufficiently elongated object, significant electromagnetic
waves could be emitted, amplified by the energy from the
gravitational waves. Notably, the interaction of gravita-
tional waves is very weak, allowing them to concentrate
significantly even if only a small amount of matter is
distributed. In contrast, electromagnetic waves, due to their
strong interaction, do not behave this way. Thus, it is
expected that unwieldy energy in incident waves could be
converted into more manageable energy in reflected waves.
Although not practically feasible, exploring the extent of
this conversion might yield interesting insights. Within the
approach of using the exact solutions, other types of soliton
solutions may provide more interesting and novel con-
version phenomena [42–44].

ACKNOWLEDGMENTS

We would like to thank Ken-ichi Nakao, Kouji
Nakamura, Tomohiro Harada, and Tsutomu Kobayashi for
helpful comments. T. M. was supported by the Grant-in-
Aid for Scientific Research (C) [JSPS KAKENHI Grant
No. 20K03977], and S. T. was supported by the Grant-in-
Aid for Scientific Research (C) [JSPS KAKENHI Grant
No. 21K03560] from the Japan Society for the Promotion
of Science.

APPENDIX: COMPOSITE HARMONIC
MAPPING METHOD

When a map φ from a base space MðxαÞ with the metric
hμν to a target spaceNðφAÞwith the metricGAB satisfies the

following equation:

∇2φA þ ΓA
BCh

αβ∇αφ
B∇βφ

C ¼ 0; ðA1Þ

the map φ, i.e. φAðxαÞ, is called a harmonic map. Here, ΓA
BC

means Christoffel symbol corresponding to GAB. In gen-
eral, the harmonic map equation (A1) is difficult to solve
directly, so that the composite harmonic mapping method
have been used widely, as a simple and convenient method.
The essence of the idea is that, to reduce the difficulty, by

embedding an appropriate totally geodesic subspace KðviÞ
in the target space N, the map is divided into two steps:

φðxÞ ¼ φ̃ðvðxÞÞ∶MðxαÞ ⟶ KðviðxÞÞ ⟶ Nðφ̃AðvÞÞ:

As shown in the above diagram, the first map v trans-
forms the base space M into the intermediate space K,
and the second map φ̃ embeds K into the final target space
N as a totally geodesic subspace. Then the composite
map φ whose explicit expression is φ̃ðvðxÞÞ can give a map
from M to N. If the map satisfies the harmonic map
equation (A1), this composite map becomes a harmonic
map. If we substitute the composite map function φ̃ðvðxÞÞ
into Eq. (A1), the equation is transformed into the follow-
ing form:

0 ¼ �∇2vk þ Γk
ijhαβ∂αvi∂βvj

�
∂kφ̃

A

þ �
∂i∂jφ̃

A − Γk
ij∂kφ̃

A þ ΓA
BC∂iφ̃

B
∂jφ̃

C
�
hαβ∂αvi∂βvj:

ðA2Þ

Therefore, the following set of equations can be considered
a sufficient condition for the φðxÞ to be a harmonic map:

�
0 ¼ ∇2vk þ Γk

ijhαβ∂αvi∂βvj;

0 ¼ ∂i∂jφ̃
A − Γk

ij∂kφ̃
A þ ΓA

BC∂iφ̃
B
∂jφ̃

C:
ðA3Þ

From the first equation, the map corresponding to viðxÞ
means a harmonic map from the base space M to the
intermediate space K. On the other hand, the second
equation imposes that the submanifold embedded by the
map φ̃AðvÞ is totally geodesic. The mathematical founda-
tion of the method adopted here is given in [45].
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