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The parametrized post-Einsteinian (ppE) framework and its variants are widely used to probe gravity
through gravitational-wave tests that apply to a large class of theories beyond general relativity. However,
the ppE framework is not truly theory-agnostic as it only captures certain types of deviations from general
relativity: those that admit a post-Newtonian series representation in the inspiral of coalescing compact
objects. Moreover, each type of deviation in the ppE framework has to be tested separately, making the
whole process computationally inefficient and expensive, possibly obscuring the theoretical interpretation
of potential deviations that could be detected in the future. We here present the neural post-Einsteinian
(npE) framework, an extension of the ppE formalism that overcomes the above weaknesses using deep-
learning neural networks. The core of the npE framework is a variational autoencoder that maps the discrete
ppE theories into a continuous latent space in a well-organized manner. This design enables the npE
framework to test many theories simultaneously and to select the theory that best describes the observation
in a single parameter estimation run. The smooth extension of the ppE parametrization also allows for more
general types of deviations to be searched for with the npE model. We showcase the application of the new
npE framework to future tests of general relativity with the fifth observing run of the LIGO-Virgo-KAGRA
collaboration. In particular, the npE framework is demonstrated to efficiently explore modifications to
general relativity beyond what can be mapped by the ppE framework, including modifications coming from
higher-order curvature corrections to the Einstein-Hilbert action at high post-Newtonian order, and dark-
photon interactions in possibly hidden sectors of matter that do not admit a post-Newtonian representation.
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I. INTRODUCTION

Although general relativity (GR) is currently our best
theory of gravity, it has been challenged by theoretical
issues and observational anomalies. From the theoretical
perspective, for example, GR unavoidingly introduces
singularities [1,2], and it struggles to fit in any quantum
description [3]. From the observational perspective, the
theory also struggles to explain certain phenomena without
additional assumptions, such as the late-time acceleration
of the universe (without an unnaturally small cosmological
constant) [4,5], the rotation curves of the galaxies (without
introducing dark matter) [6,7], and the matter-antimatter
asymmetry of the universe (without satisfying the Sakharov
conditions) [8]. In response to the issues above, significant
amount of theoretical work has gone into modifications to
GR, and there is a growing need for testing GR against
these modified gravity theories through lab experiments
and astrophysical observations.

The successful observation of gravitational waves (GWs)
from compact binary coalescences (CBCs) in 2015 started a
new era for testing GR [9,10]. Unlike previous observa-
tional tests carried out in the Solar System [11] or with
binary pulsars [12], these GW signals probe the gravita-
tional interaction in a regime that involves both dynamical
and strong gravitational fields [13,14]. Currently, there are
∼100 confirmed CBC events in the open GW transient
catalogs published by the LIGO-Virgo-KAGRA (LVK)
collaboration [15–18] and by other researchers [19–26].
More events are expected as the LVK collaboration is now
operating a fourth observing run (O4) and a fifth run (O5) is
scheduled to begin in 2027 with increased sensitivity [27].
These future observations may also result in the detection
of fainter signals with higher signal-to-noise ratios (SNRs),
as the instruments continue to get upgraded.
Tests of GR with GW data generally fall into two

categories: consistency tests and parametrized tests [28].
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Consistency tests, such as the residual test and the inspiral-
merger-ringdown consistency test, search for possible
violations of GR by asking how consistent the observed
signal is with the prediction of GR. Parametrized tests, on
the other hand, search for possible non-GR effects that are
encoded by certain parameters in the gravitational wave-
form model. Although these parameters are related to
specific non-GR theories, parametrized tests can still be
theory-agnostic, as long as the parametrization covers the
predictions of many non-GR models. One successful
approach is provided by the parametrized post-Einstein
(ppE) framework [29–32], which introduces small defor-
mations to the GR waveform that are motivated by generic,
theoretical considerations and by a broad class of non-GR
theories.
The ppE framework is the general framework that the

LVK’s “parametrized inspiral tests of GR” is built from
[10,28,33–42]. In these tests, the deformation is given
by the leading-order modification to the post-Newtonian
(PN) expansion1 of the phase of the GR waveform. Such a
prescription introduces two parameters: a ppE exponent
or ppE index representing the PN order at which the
modification first takes place, and a ppE coefficient
representing the magnitude of the deformation at that
given PN order. In terms of a physical interpretation, the
ppE index maps to the type of non-GR modification one
wishes to consider, and the ppE coefficient maps to the
strength of the modification, including the coupling con-
stants of modified gravity theories [13,29,44,45]. To run ppE
or parametrized inspiral tests on GW data, one fixes the ppE
index at a chosen value and estimates the ppE coefficient via
Bayesian inference. The test is thenmade theory-agnostic by
repeating the estimation for all ppE indices consistent with a
non-GR theoretical prediction [10,38–40].
Despite being standard, the ppE or parametrized inspiral

test is unsatisfying for two reasons. First, the ppE test is not
truly theory-agnostic. The ppE deformation applied to an
inspiral waveform only captures modification at leading
PN order. This means the modification must admit a PN
expansion in the first place. Counterexamples exist, like
the GWs generated by a binary in massive scalar-tensor
theories [46–48] or with dark-photon interactions [49], in
which non-GR modifications activate suddenly, and thus,
cannot be represented as a simple power of velocity. Even
for modifications that are PN-expandable, a modeling bias
can exist when certain higher-PN-order effects are omitted.
Although one may formally add higher PN order terms to
the ppE deformation, they must be accompanied with more
coefficient parameters. Bayesian parameter estimation with
this expanded parameter space will lead to uninformative
results unless a certain marginalization procedure is

implemented [50]. The second reason ppE inspiral tests
are not ideal is their high computational expense, because
of the need for repeating parameter estimation for many
ppE indices. This issue may be mitigated by accelerating
each estimation run with a hybridized sampling technique
[51], but still, one must repeat the analysis for many ppE
indices. A transdimensional reversible-jump Markov-chain
Monte-Carlo algorithm can alleviate the latter [32,52], but
at an increased computational cost. We also note that a
principal component analysis allows multiple PN terms to
be estimated at once to search for potential deviations from
GR [53–55], but the deviations constrained or found this
way cannot be mapped back to any specific non-GR theory,
and hence, imply nothing about fundamental physics.
In this paper, we attempt to address both of these

weaknesses by extending the ppE parametrization for
inspiral tests through a new neural post-Einsteinian
(npE) framework. The framework is built by exploiting
variational autoencoders (VAE) [56], a type of neural
network that has recently found applications in various
GW studies, including glitched identification [57], wave-
form modeling [58,59], and parameter estimation [60]. We
use a VAE to find a latent space to parametrize GR
deformations, using the ppE inspiral modifications as
training data. After training, the VAE can use the learned
latent space to generate waveform modifications that
continuously interpolate between ppE waveforms with
different ppE indices in a physics informed way. This
means that testing GR with the npE parametrization will
naturally explore a larger set of non-GR effects. The
unification of various non-GR effects into a single con-
tinuous parameter space also allows for computationally-
efficient parameter estimation.
We study the performance of the npE framework to test

GR with simulated GW signals, using the anticipated LVK
O5 sensitivity. First, we verify that the npE framework can
be used to search for a variety of non-GR effects with a
single parameter estimation run. For the injected signals,
we consider not only modifications following the exact ppE
model, but also those going beyond the ppE description,
including higher-PN-order corrections in Einstein-dilaton-
Gauss-Bonnet (EdGB) theory [61], and non-PN-expandable
effects due to dark-photon interactions [49].We show that the
npE framework is able to detect both types of non-GR
deviations in all cases. This validation cements the npE
framework as a new and promising tool to test GR with
current and future GW observations.
The rest of this paper is organized as follows. In Sec. II,

we review the theoretical and technical background for
parametrized tests of GR with GW data. We summarize the
ppE inspiral tests, and discuss their weaknesses. In Sec. III,
we describe how we use the VAE to obtain the npE
parametrization. In particular, we briefly review the for-
mulation of VAEs in general in Sec. III A, sketch out the
general design of the npE parametrization in Sec. III B, and
specify the implementation of each component of the npE

1This is an expansion of the inspiral waveform in powers of the
binary velocity, which can be reexpressed in terms of the GW
frequency through the PN version of Kepler’s third law [43].
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framework in the subsections that follow. In Sec. IV, we
showcase the npE test with simulated GW signals. We
start by describing the GW sources that we study and
the Bayesian inference procedure in Sec. IVA. The
remaining subsections describe various injections and
the npE recoveries. In Sec. IV B, we inject signals in
GR and investigate the use of the npE framework to
constrain non-GR deviations. In Sec. IV C, we inject
signals with ppE modifications, and compare the npE
and ppE performance when searching for these mod-
ifications. In Sec. IV D, we inject a signal in EdGB
theory with modifications beyond leading PN order, and
show that the npE parametrization recovers such a
signal better than ppE templates. In Sec. IV E, we
inject signals with modifications from the non-PN-
expandable dark-photon interactions in the hidden sec-
tor, and show that the npE framework can handle such
a case reasonably well. Finally, in Sec. V, we draw
conclusions and point to future work. We note that, this
paper is prepared with extensive background informa-
tion for an audience composed of members from various
communities. Readers experienced in GW modeling
and Bayesian parameter estimation may wish to skip
Sec. II A, those experienced in the ppE framework may
wish to skip Sec. II B, and those experienced in deep
learning with the VAE may wish to skip Sec. III A. The
main ideas behind the npE framework and our particular
contributions begin in Sec. III B.
Henceforth, we use geometric units, in which

G ¼ 1 ¼ c. We reserve j · j for taking the absolute value
of a number or a scalar, and use k · k for the L2 norm of a
given quantity. Vectors will either be indexed or denoted by

ð⃗ ·Þ or ˆð ·Þ. In particular, we use Greek letters ðα; β; γÞ to
index a vector of physical waveform parameters, Latin
letters ði; j; kÞ to index a vector in the npE parameter space,
and ðl; m; nÞ to index the coefficients in a PN expansion (or
other expansions alike). We reserve Latin letters ða; b; cÞ
for indexing the elements of the training set of the neural

networks. We also reserve the symbol ð⃗ ·Þ for data either
from or comparable to an element of the training set,
assuming the data has multiple components. The notation
ˆð ·Þ further refers to the L2 normalized version of a ð⃗ ·Þ
vector. These conventions will be reiterated throughout the
paper when they are first introduced.

II. PARAMETRIZED THEORY-AGNOSTIC TESTS
OF GR WITH GW DATA

In this section, we review key concepts and tools in GW
science that are needed before introducing the npE frame-
work. We review the modeling of CBC signals in GR, as
well as the data analysis procedure used to extract infor-
mation from these signals. Then, we will describe the ppE
framework for inspiral tests of GR, and comment on its
weaknesses to motivate the npE framework.

A. CBC process and GW parameter estimation

CBCs are the only sources of GW signals observed by
current detectors to date. A CBC event can be divided into
three stages: (i) the inspiral, (ii) the merger, and (iii) the
ringdown. The first stage begins with two compact objects
orbiting each other. Due to GW radiation-reaction, the
distance between the objects gradually decreases. This
process accelerates over time and eventually the objects
enter the second stage, where they plunge and merge. The
third stage then follows, as the remnant rings down and
stabilizes. Detailed modeling of the CBC waveform
involves solving the Einstein equation in the dynamical
and strong-field regime, in which one would like to employ
numerical relativity (NR). However, for the inspiral stage,
where the velocity is relatively small and the field is
relatively weak, an analytical derivation of the waveform
is possible with a PN expansion [43].
Discussion in later sections will focus on quasicircular

and nonprecessing, binary black holes (BBH), and will use
the IMRPhenomDwaveform [62,63] to describe GWs from
such sources in GR. The IMRPhenomD waveform models
the GW response function in the frequency domain via

h̃ðfÞ ¼ AðfÞeiΦðfÞ; ð1Þ

where AðfÞ and ΦðfÞ are the frequency-domain amplitude
and phase, respectively, given as piecewise functionals, some
pieces ofwhich are fitted toNRdata.The amplitudeAðfÞ and
the phase ΦðfÞ each contains three pieces, associated with
each of the three stages of CBC described above. At low
frequencies, the functionals describe the inspiral, at inter-
mediate frequencies they describe an intermediate stage prior
to merger, and at high frequencies they describe the merger
and ringdown. In particular, for the inspiral piece, AðfÞ and
ΦðfÞ take the form of a PN expansion, with coefficients
analytically calculated up to 3PN and 3.5PN, respectively,
and higher PN order terms fitted to NR data.
For concreteness, let us write down the IMRPhenomD

inspiral phase for later reference:

ΦðfÞ ¼ 2πftc − ϕc −
π

4

þ 3

128η
ðπMfÞ−5=3

X11
n¼0

ϕnðΞαÞðπMfÞn=3; ð2Þ

where tc and ϕc are the time and phase of coalescence,
respectively. The total mass M and the symmetric mass
ratio η are defined as

M ¼ m1 þm2; η ¼ m1m2

ðm1 þm2Þ2
¼ q

ð1þ qÞ2 ; ð3Þ

where m1;2 are the component BH masses and q ¼
m2=m1 < 1 is the mass ratio. The PN expansion is carried
out in powers of the product of the total mass and
frequency, where a term proportional to ðπMfÞn=3 is said
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to be of ðn=2ÞPN order. Each PN coefficient ϕn is
calculated or fitted as a function of the intrinsic BBH
parameters

Ξα ¼ ðM; η; χ1; χ2Þ; ð4Þ

where χ1;2 are the dimensionless component spins pro-
jected onto the direction of the orbital angular momentum.
More details about the ϕn coefficients can be found in
Appendix A and C in [63]. As a final remark, the frequency
range for the use of Eq. (2) is

Mf < 0.018: ð5Þ
Beyond this range are the intermediate and the merger-
ringdown regions, for which different empirical ansatz are
fitted. However, at Mf ¼ 0.018 (as well as the counterpart
separating the intermediate and the merger-ringdown
regions), the different pieces of the phase function are
stitched with C1 smoothness.
With the waveform model at hand, one may analyze the

GW data collected by detectors and recover the properties
of the binary merger. Bayesian inference is applied to
estimate the parameters of the binary, such as the masses,
the spins, the distance, the sky location, etc, in terms of
their posterior distribution. According to Bayes’ theorem,

pðfΘαgjdÞ ∝ pðdjfΘαgÞpðfΘαgÞ; ð6Þ

where pðfΘαgjdÞ is the posterior for the set of CBC
parameters Θα given the GW data d, pðfΘαgÞ is the prior
of the parameters, and pðdjfΘαgÞ is the likelihood func-
tion. Assuming that the detector noise is additive and
Gaussian, the likelihood can be further expressed as:

pðdjfΘαgÞ ∝ e−
1
2
hd−hðΘαÞjd−hðΘαÞi; ð7Þ

where h is the detector response given by the waveform
model, and h·j·i is an inner product defined as

hAjBi ¼ 4Re
Z

fhigh

flow

ÃðfÞB̃ðfÞ�
SnðfÞ

df; ð8Þ

where ˜ð ·Þ denotes Fourier transformation, ð·Þ� denotes
complex conjugation, SnðfÞ is the one-sided power spectral
density of the detector noise, and flow (fhigh) is the lowest
(highest) frequency considered for the GW data. If the
observation is made by a network of detectors, Eq. (7) has
to be evaluated for each detector and results have to be
summed up to obtain the total log likelihood function.
The numerical estimation of the posterior can be carried

out with sampling algorithms, such as Markov-Chain
Monte Carlo and nested sampling methods. Due to the
high dimensionality of the GW parameter space (e.g., 11
free parameters in IMRPhenomD), parameter estimation
can be computationally expensive, typically requiring

the likelihood to be evaluated tens of millions of times
before the algorithm converges [51]. Methods to accelerate
the computational process of posterior sampling remain
an active area of research in GW data science (see,
e.g., [64–79]).

B. GW Tests of GR with the ppE Framework

The previous subsection has briefly summarized the
study of astrophysical properties of binary mergers with
GW data. The same GW parameter estimation scheme also
applies to parametrized tests of GR, which are typically
carried out by introducing a modified waveform that admits
the GR one as a nested model.
Consider, for example, a specific modified-gravity

theory that recovers GR when its coupling constant goes
to zero. In particular, let us assume that the waveform in this
theory can be derived analytically or numerically, and that
the waveform is characterized by the BBH astrophysical
parameters and the coupling constant of the theory.
Bayesian parameter estimation can then be carried out as
usual, with only the simple modification of adding the
coupling constant to the parameter array Θα. Given a
detected CBC event, one may then run GW parameter
estimation with the modified waveform and the augmented
parameter set, and a deviation from GR can be claimed if
the marginalized posterior of the coupling constant is
statistically incompatible with zero. On the other hand, if
GR is not rejected by the posterior, a constraint on the
modified-gravity theory can be obtained with the upper
bound of the coupling constant at a certain credible level.
We note that the test described above is theory-specific.

A more theory-agnostic test can be built from the ppE
framework, like those performed by the LVK [10,28,38–41].
In this scheme, the GR waveform is deformed by terms that
aremotivated by generic theoretical considerations and cover
a broad class of non-GR theories. Let us then follow the
prescription of [13] and consider only modifications to the
frequency-domain phase of the inspiral GW. The ppE
waveform can then be written as

h̃ppEðfÞ ¼ h̃GRðfÞeiΦppEðfÞ; ð9Þ

ΦppEðfÞ ¼ βppEðπMfÞbppE=3; ð10Þ

where h̃GRðfÞ is the GR waveform (e.g. IMRPhenomD),
bppE is the ppE index parameter, βppE is the ppE coefficient
parameter, and M ¼ Mη3=5 is the chirp mass of the binary.
The physical motivation of the ppE framework requires

the index bppE to take only integer values, with each integer
featuring certain non-GR effects. This formally aligns ΦppE

with the ðbþ5
2
ÞPN term in the GR phase [see e.g. Eq. (2)].

Therefore, Eq. (10) models deviations from GR that capture
the leading-order PN correction in the GW phase. In Table I,
we provide a list of ppE indices with the effects and example
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theories they may represent. Mappings between βppE and the
physical constants (the coupling strength, mass, etc) in each
theory can be further found in [13,80].
To run a ppE or parametrized test of GR, one chooses a

list of integer bppE’s and estimate βppE for each one of them.
If any of the βppE posteriors is statistically incompatible
with zero, a deviation from GR can be claimed under the
physical mechanisms implied by the corresponding bppE. If
GR is not rejected by the posterior, the constraint on each
βppE can be mapped to constraints on the theories asso-
ciated. The ppE framework is relatively efficient, because a
large number of non-GR theories are “compressed” into a
smaller (and finite) set of ppE indices. Moreover, if new
theories are developed in the future, chances are that they
can be represented in the ppE way at leading PN order, and
that constraints on those ppE indices may already have
been obtained.
Despite having been widely adopted, [10,28,33–42] the

ppE framework can be unsatisfactory for two main reasons.
First, ppE tests are not truly theory-agnostic. Equation (10)
only makes sense for theories that admit a PN expansion for
their description of the inspiral. Counterexamples exist, like
the massive scalar-tensor theories [46–48] and theories with
dark-photon interactions in the hidden sectors of matter
[49], in which this is not the case. In these theories, the
gravitational dynamics is affected by the competition
between GW quadrupole emission, occurring at the binary
scale, and scalar emission, which can be dynamically
activated at a certain (Compton wavelength) scale asso-
ciated with the mass of the scalar field. A typical conse-
quence of this is that the phase of the inspiral waveform
acquires modifications that are proportional to a Heaviside
step function in frequency (to be discussed in more detail in
Sec. IV E). This step function introduces sudden modifi-
cations to the waveform phase, which cannot be described
as a Taylor series in velocity. Moreover, even for theories
that admit PN-expandable modifications, a modeling bias
can exist when certain higher-PN-order effects are omitted.
Although one may formally add higher PN order terms to

Eq. (10), they must be accompanied with more coefficient
parameters, and the prior range of each coefficient must be
carefully regularized in order for Bayesian parameter
estimation to produce informative results after marginal-
izing over the higher-PN-order terms [50].
The second reason ppE inspiral tests are not ideal is their

high computational expense. Although the ppE framework
is more efficient than separately testing each specific theory
available in the literature, one still has to run Bayesian
parameter estimation for every element in a list of ppE
indices, repeating parameter estimation many times. This
issue may be mitigated by a sampling technique that
hybridizes one expensive estimation in GR with a set of
cheaper estimations that include ppE deviations [51], but
still one must repeat the analysis for many ppE indices.
Though the latter can be alleviated with a transdimensional
reversible-jump Markov-chain Monte Carlo algorithm that
enables sampling across parameter spaces with varying
dimensions [32,52] (such as transitions between GR
models and non-GR ppE models), such an algorithm is
complex and may elevate computational expenses.
Previous to this work, a principal component analysis

has been shown to be effective at extracting information
from parameter estimation studies with multiple non-GR
PN terms included [53–55]. This approach seems to
address both weaknesses of the ppE framework (if non-
PN-expandible theories are ignored). However, the infor-
mation extracted by such a principal component analysis is
always encoded in linear combinations of all PN terms in
the estimate. Such a combination may be used to identify a
deviation from GR (or the presence of an astrophysical
environment), but it cannot be mapped back to any specific
non-GR theories.

III. NPE FRAMEWORK

In this section, we describe the npE framework that
extends the ppE parametrization and addresses the
weaknesses of the ppE tests. This is achieved using
neural networks that exploit the VAE architecture.

TABLE I. Mapping between the ppE index bppE and example non-GR effects/theories. Adapted from [13].

bppE Order Theoretical effect Example theories

−13 −4PN Anomalous Acceleration RS-II Braneworld [81,82]
Varying-G [83,84]

−7 −1PN Scalar Dipolar Radiation Einstein-dilaton Gauss-Bonnet [85–88]
Scalar-Tensor Theories [89,90]

−5 0PN Modified Quadrupolar Radiation Einstein-Æther [91,92]
Khronometric [93,94]

−3 1PN Second Order Dispersion Massive Gravity [95–98]

−1 2PN Scalar Quadrupolar Radiation Dynamical Chern-Simons [88,99]
Scalar Dipole Force

Quadrupole Moment Deformation
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Neural 4networks are universal function approximators
[100]. A VAE adopts neural networks in its substructure
to find an effective parametrization of the given data. In
our case, this allows us to build the npE waveform
template to search for deviations from GR that are not
required to follow a human-designed parametrization (e.g.
bppE and βppE). We will begin with a brief introduction to
VAEs, as well as a sketch of how VAEs will be utilized
as the base of the npE parametrization. We will then
describe our implementation of the npE framework, and
give a preliminary analysis on the training results of these
neural networks.

A. VAE

Neural networks are numerical approximants to compli-
cated functions [100]. The defining structure of a neural
network is a sequence of alternating linear and nonlinear
mappings. The nonlinear mapping at each level of the
network, also known as a “hidden layer,” is implemented as
a nonlinear activation (e.g., a sigmoid function) that acts
element-wise on each component of the input. Such an
activation is analogous to a collection of neurons reacting to
some neurological signals in synchrony. The linear map-
pings between adjacent layers are then analogous to the
connections between neurons, and they contain parameters
to be fitted by minimizing a loss function that evaluates the
difference between the network output and the expected
outcome. This process of minimization is also known as
“learning” or “training,” and it is usually carried out
through methods based on stochastic gradient descent.
For more general information about neural networks, the
readers may refer to [101].
A VAE [56] is a class of neural network designed to

(i) find a representation for the underlying pattern of a given
dataset, and (ii) generate samples from that representation
that mimic these data. More precisely, a VAE encodes a
training dataset into a dimensionally-reduced “latent space”
by automatically minimizing a certain loss function. The
variational part of the VAE enters through the choice of
loss function, which guarantees continuity across the latent
space, i.e. two infinitesimally-separated points in the latent
space lead to decoded data that is also similarly infinitesi-
mally separated.
Let us then dig deeper into the construction of a VAE.

This kind of neural network is composed of two subnet-
works: an encoder network and a decoder network (see
Fig. 1). The encoder takes some data x⃗ ¼ ðx1; x2; x3;…Þ
and finds a distributional representation of this data in a
latent space. More precisely, in the standard VAE formal-
ism, the encoder outputs a normal distribution with mean μi
and standard deviation σi for each dimension i of the latent
space. For example, if the latent space is 2-dimensional,
then there are two normal distributions with mean and
standard deviations ðμ1; σ1Þ and ðμ2; σ2Þ. The decoder,
then, takes a sample zi in the latent space and generates

some x⃗0 ¼ ðx01; x02; x03;…Þ in such a way as to resemble x⃗,
which is achieved by minimizing a loss function.
The loss function for training of a VAE is

LVAE ¼
X
a

½Lreconðx⃗ðaÞ; x⃗0ðzðaÞi ÞÞþ κDKLðμðaÞi ;σðaÞi Þ�; ð11Þ

where x⃗ðaÞ is the ðaÞth element in the training set. For each

x⃗ðaÞ, we draw a sample zðaÞi from the latent space created by

the encoder, with mean μðaÞi and standard deviation σðaÞi .

This sample zðaÞi , then, allows the decoder to generate an
x⃗0ðaÞ. For a decoded x⃗0ðaÞ to resemble the element x⃗ðaÞ of the
training set, we must minimize LVAE, because Lrecon

penalizes the difference between x⃗0ðaÞ and x⃗ðaÞ (with a
choice of an appropriate metric), while DKL penalizes the
difference between the encoded distribution of the latent
space and a prior distribution. More specifically,DKL is the

Kullback-Leibler (KL) divergence between N ðμðaÞi ; σðaÞi Þ
and a prior distribution of the latent representation, which
one usually chooses to beN ð0; 1Þ by default. This KL term
regularizes the VAE model, and its importance in the total
loss function is tuned by the coefficient κ.
After training, the decoder becomes a continuous model

for the overall structure and variation of the original data.
This model takes the latent parameters zi as input, and it
outputs an approximation to the original data. Therefore,
after training, the encoder is not needed any longer for our
purposes, but it could be used as an approximation for the
inverse of the decoder. The model is continuous on the
latent parameters in the following sense. When the model is

evaluated at the mean μðaÞi , it generates an output x⃗0ðμðaÞi Þ
that is close to x⃗ðaÞ. If we now evaluate the model at a point
in the latent parameter space that is shifted from the mean

FIG. 1. Diagram of a VAE, composed of an encoder subnet-
work (blue-shaded) mapping from the data x⃗ to the latent
representation ðμi; σiÞ, and a decoder subnetwork (orange-shaded)
mapping from a latent point zi to the reconstructed data x⃗0. The
diamonds are the input or output of a network. The circles repre-
sent “neurons” of nonlinear functions in the hidden layer. The solid
arrows represent linear mappings, with free parameters to be fitted
byminimizing theVAE loss function. The dashed arrows represent
the random sampling of zi ∼N ðμi; σiÞ. This diagram showcases
an example, in which the data is 3-dimensional, the latent space is
2-dimensional, and the encoder and decoder are each fully
connected with 2 hidden layers of width 4.
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by some small amount Δi, the output generated x⃗0ðμðaÞi þ
ΔiÞ will remain close to x⃗0ðμðaÞi Þ, and thus, close to x⃗ðaÞ.
This is ensured by the fact that Lrecon remains small only if

x⃗0ðμðaÞi þ ΔiÞ is close to x⃗ðaÞ for any Δi smaller than σi. The
inclusion of DKL in the loss function regularizes the latent
representation by pushing the encoder output to match the
prior distribution.
Reason for using a VAE
The above features make the VAE a useful tool for

theory-agnostic tests of GR with GW data, which may
overcome some of the weaknesses of the ppE framework.
A neural-enhanced ppE framework would then arise from
the training of a VAE on GW models that contain as many
GR modifications as can be modeled. After training, the
decoder would be used for parameter estimation, with
non-GR parameters taken directly from the latent space.
This way, one single Bayesian parameter estimation study
across the latent space would be sufficient to test GW data
against all theories of gravity that have been modeled.
Furthermore, because the latent space is continuous, the
gap between the latent training data points (i.e., gaps in
theory space) can still be used to construct a VAE model,
thus automatically extending the non-GR waveforms
beyond known modified theories. Tests of GR with this
npE model would therefore be naturally more theory-
agnostic than those limited by the ppE scheme.

B. A sketch of the npE framework

Now that we have provided an introduction to neural
networks and VAEs, let us discuss how we will implement
these machine-learning tools to develop an npE model.
Similar to the ppE framework, let us consider a generic
phase modification to the GR inspiral signal in the
frequency domain:

h̃modðfÞ ¼ h̃GRðfÞeiΦmodðfÞ; ð12Þ

we only consider here inspiral modifications to GR, leaving
the modeling of non-GR modifications to the interme-
diate and merger-ringdown stages of the IMRPhenom
models to future work. In the ppE framework, ΦmodðfÞ ¼
ΦppEðf;M; b; βÞ. In our npE framework, we start with the
following generic form of the non-GR phase model:

ΦmodðfÞ ¼ ΦnpEðf;Ξα; ziÞ; ð13Þ

where zi contains all parameters needed to describe the
non-GR modifications. This modified GW phase in the
frequency domain is then the quantity that we will develop
a VAE to emulate.
Because we intend to use the npE framework for tests of

GR through Bayesian inference, we expect the vector zi
in ΦnpE to be accompanied by a simple prior that describes
a uniform distribution of theories for modifications of

different magnitude. An example of such a simple prior,
and the choice we will make in this paper, is that of a flat
distribution bounded by the unit hypersphere centered at
zi ¼ 0. We choose zi ¼ 0 to represent GR, and kzik ¼ 1 to
represent a “prior boundary,” associated with the largest
modifications of interest. In this paper, we will require
that the modifications to GR be small deformations (as in
the ppE framework), and thus, we will not allow these
corrections to be larger than the GR terms in the GW phase
themselves; this EFT condition sets the size of the prior,
which we shall refer to as the EFT prior boundary.2 With
this in mind, the magnitude kzik represents the size of the
modification, ΦnpE ∝ kzik, while the direction in the latent
space ni ¼ zi=kzik represents the type of GR modification.
The above considerations motivate the following choice

for the npE phase model:

ΦnpEðf;Ξα; ziÞ ¼ kzikTðΞα; niÞSðf̄; niÞ: ð14Þ

We define the quantity S as the shape function, which will
contain all the frequency dependence and encode the type
of modification we wish to consider. We have here replaced
f with the dimensionless frequency f̄ ¼ Mf, which scales
better between different sources. We define the quantity
T > 0 as the scale function, which ensures the prior bound
at kzik ¼ 1 is the same for all sources. The actual func-
tional forms of S and T are left undetermined for now, and
they will be calculated later through the VAE algorithm.
For now, however, let us consider the symmetry properties
of S and T. We wish forΦnpE to be odd under zi → −zi, i.e.,

ΦnpEðf;Ξα;−ziÞ ¼ −ΦnpEðf;Ξα; ziÞ; ð15Þ

This allows points along the þni and the −ni directions in
the latent space to be interpreted as the same type of
modification, assigning the same prior density in both
directions. One way to ensure this is the case is to require
that S and T be an odd and even function of ni, respectively.
In our npE phase model, the shape function will be

learned through a VAE, which we will train first. The scale
function will be learned through a separate neural network,
which we refer to as the secondary network and which
we will train later, treating the latent parametrization as
already completed by the trained VAE. Such a separation of
the training processes is beneficial when the prior boundary
is chosen to reflect the most stringent constraints on
theories of interest. If these constraints are tightened by
future observations, one only needs to retrain the secondary

2Note of caution is now necessary. By “EFT boundary”, we do
not here mean a cut-off boundary beyond which the energies
probed are beyond the regime of validity of the effective theory.
Rather, we mean a boundary at which the GR modifications cease
to be perturbatively small on average over all source parameters.
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network to update the scale function, while the VAE for the
shape function does not necessarily require an update.
As a summary, Fig. 2 shows how the encoder, the

decoder and the secondary network are connected and how
they can be used to carry out different tasks, while Fig. 3
illustrates the internal structure of each network. Our
discussion so far has covered Fig. 2(a), i.e., how ΦnpE is
given by the decoder and the secondary network. The
elements of other panels in these figures will be explained
in the following subsections. In particular, we will specify,
in order, the dataset for training, the detailed implementa-
tion of the VAE and the secondary network, the training
procedure, and the training results.

C. Modified gravity dataset for the npE networks

Our training and validation sets will be constructed from
a modified gravity dataset, which will be created from a
range of ppE models for non-GR frequency-domain GW
phases generated by BBH sources. Because ppE modifi-
cations with the same bppE do not differ in shape, we may

(a)

(b)

(c)

decoder

secondary
network

encoder decoder

encoder decoder

secondary
network

FIG. 2. Ways to connect the npE networks to (a) model the npE
phase modification ΦnpE with the latent parameters zi and the
source parameters Ξα, (b) train the VAE for the shape function S
given a dataset of non-GR phase modificationsΦtrain

mod, and (c) train
the secondary network for the scale function T given Φtrain

mod and
Ξtrain
α in the same dataset. The quantity ni represents a unit vector

in the latent space, and μi and σi are the mean and standard
deviation of the encoder output, respectively. Each rounded
rectangle represents an operation, either predefined (uncolored)
or provided by a neural network (colored). For the predefined
operations, N represents a random draw from a normal distri-

bution, and ð·Þ
k·k means vector normalization. For the neural

networks, the name of the network is italic if the network
parameters are being fitted, and is roman if the network is treated
as a known function and no parameter update takes place.

encoder

grid

pseudo
PN

decoder

secondary
network

(a)

(b)

(c)

FIG. 3. Internal structure of (a) the encoder, (b) the decoder, and
(c) the secondary network, as one zooms into the colored rounded
rectangles in Fig. 2. These networks employ the fully-connected
neural maps ðE;DU;DV; T Þ and wrap them with appropriate
operations to condition their input and output. The neural maps
are illustrated following the same format as in Fig. 1. The actual
dimension of these neural maps are significantly larger than what
is shown here, which we indicate with ellipses. The operators
wrapping the neural maps are represented by uncolored rounded
rectangles inside each network. For the notation of these

operators, we have already introduced ð·Þ
k·k for vector normalization

in Fig. 2. In addition, “exp”means the natural exponential, “grid”
means discretizing a function of frequency in a frequency grid,
and “pseudo-PN” refers to

P
n Unf̄Vn to construct the shape

function (see more details explained in Sec. III D). The operations
denoted by�,þ and − are related to the symmetry considerations
discussed in the text. In particular, � creates two copies of the
input, and add a minus sign to one of them. Once the two copies
have both gone through a neural map, the þ (−) operation takes
the sum (difference) of the two corresponding outputs, enforcing
symmetrization (antisymmetrization) of the overall network.
Finally, in the secondary network, the inputting source param-
eters Ξα is coordinate-transformed into Ξ0

α ¼ ðlnM; q; ðχ1 þ
χ2Þ=2; ðχ1 − χ2Þ=2Þ before being inserted into the neural map T .
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create the dataset with only the largest modifications of
interest,

ΦðaÞ
modðfÞ ¼ βðaÞppE;maxðπMðaÞfÞbðaÞppE=3; ð16Þ

where the superscript (a) iterates over all elements in the
dataset, i.e., over all astrophysical parameters and all ppE
theories of gravity considered.
Here, we quantify the largest modification as

βppE;max ¼
� jϕbþ5jη−ðbþ5Þ=5; b ≥ −5;

jϕ0jðπMflowÞ−ðbþ5Þ=3; b < −5;
ð17Þ

where ϕn is the ðn=2ÞPN coefficient of the GR phase in
Eq. (2),3 and flow is the smallest frequency that we are
sensitive to in the GW data. For observations made
during the O5 run, we choose flow ¼ 10 Hz. Equation (17)
implies that the ppE modifications we consider are small
compared to GR effects in the observed data. An alternative
to Eq. (17) could be the maximal βppE associated with
observational constraints on theories associated with bppE.
In this work, we choose Eq. (17) as a proof of principle.
The modified gravity dataset is then composed of

elements that represent GW phases in different theories
of gravity and produced by BBHs with different astro-
physical properties. For the former, we choose odd ppE
indices between −13 and −1, which cover all of the
modified gravity predictions listed in Table I. For the
BBH sources, we assume a population with masses m1;2

distributed uniformly in the range ½5; 30�M⊙. The spins are
always aligned, and the population of χ1;2 is assumed to be
uniform in the range ½−0.99; 0.99�. We randomly initiate
22,500 BBH sources for each ppE theory, creating a dataset
of total size 157,500.

To numerically representΦðaÞ
modðfÞ, we choose a grid of f

and evaluate ΦðaÞ
mod as a vector composed of phases at each

grid point, i.e.,

Φ⃗ðaÞ
mod ¼ ðΦðaÞ

modðf1Þ;ΦðaÞ
modðf2Þ;ΦðaÞ

modðf3Þ;…Þ; ð18Þ

In this work, we make a grid of 640 points equally spaced
in ln f̄, ranging from f̄min ¼ 0.0004 to f̄max ¼ 0.018. The
choice of f̄min ensures that the low-frequency cutoff flow ¼
10 Hz is covered even for the smallest masses in the
dataset. The f̄max above, on the other hand, serves as an
inspiral cutoff for the IMRPhenomD model, taken from
Eq. (5). The 640-point grid, equally spaced in ln f̄, ensures
that the ppE phase modifications in our modified gravity set
are appropriately dense, in the sense that

jΦðaÞ
modðfÞ −ΦðaÞ

mod;interpðfÞj≲ π

10
; ∀ a and f; ð19Þ

where ΦðaÞ
mod;interpðfÞ is a linear interpolation of Φ⃗ðaÞ

mod in the
frequency grid. Here, π=10 is chosen as the threshold to
ensure the discretization error of the output is ≪ π.
The modified gravity dataset will be split into a training

set and a validation set. The training set, as its name
indicates, will be used for the training of the VAE and the
secondary networks. The validation set will be used to
check that the trained networks can efficiently capture
signals that the networks were not trained on. In this paper,
88% of the modified gravity dataset will be used for
training, while 12% will be used for validation.
In the following subsections, we will describe the

behavior of the VAE and the secondary network, assuming
that they work on elements of the modified gravity dataset,

given by ΞðaÞ
α and Φ⃗ðaÞ

mod. However, one should keep in mind
that these descriptions should also formally apply to any
generic source parameters Ξα and phase modification
function ΦmodðfÞ. For the latter, a vector Φ⃗mod will be
created following the procedure in Eq. (18).

D. The VAE network for the shape function

As we have discussed in Sec. III B, we will use a VAE to
learn the shape function Sðf̄; niÞ. A formal description is as
follows. First, the encoder extracts information from the
modified gravity data in a scale-invariant way:

μðaÞi ¼ μiðΦ̂ðaÞ
modÞ; σðaÞi ¼ σiðΦ̂ðaÞ

modÞ; ð20Þ

where Φ̂ðaÞ
mod ¼ Φ⃗ðaÞ

mod=kΦ⃗ðaÞ
modk. The decoder, then, takes a

point nðaÞi on the latent unit hypersphere and maps it to a
shape vector

S⃗ðaÞ ¼ S⃗ðnðaÞi Þ; ð21Þ
which is to be interpolated in the frequency grid to recover
the continuous shape function of f̄.
We connect the encoder and the decoder in the latent

space, and the output of the decoder to the training data as

follows. First, we require μðaÞi to be a unit vector, i.e.,

kμðaÞi k ¼ 1. Second, we require that the random sample,

taken from distributions associated with μðaÞi and σðaÞi , be
generated from

nðaÞi ¼ zðaÞi =kzðaÞi k; zðaÞi ∼N ðμðaÞi ; σðaÞi Þ: ð22Þ

Finally, the reconstruction loss is penalized in a scale-
invariant way, namely

Lrecon ¼
X
a

kΦ̂ðaÞ
mod − ŜðnðaÞi Þk2: ð23Þ3The coefficient vanishes for b ¼ −4 (0.5PN) and one may, for

example, replace it with ϕ0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffijϕ0ϕ2j
p

.
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Note here that the loss function depends on ŜðaÞ ¼
S⃗ðaÞ=kS⃗ðaÞk and not on S⃗ðaÞ alone, which ensures the same

scale invariance as for Φ̂ðaÞ
mod.

The encoder and the decoder will be neural networks,
but before we define them, let us first discuss some npE
specific choices for the network designs. First, because
ΦppE is modeled by two non-GR parameters ðbppE; βppEÞ,
we choose the VAE latent space to also be two-
dimensional, which we find to be sufficient to faithfully
represent these ppE theories. Based on that, we also require
the two standard deviations of the encoder to be degenerate,
i.e. σ1 ¼ σ2. This logically makes sense because the true
VAE parametrization only takes place on the unit circle,
which is just 1-dimensional.
We require the shape function to take the form of a

psuedo-PN expansion:

Sðf̄; niÞ ¼
XNp

n¼1

UnðniÞf̄VnðniÞ; ð24Þ

where Un and Vn are to be implemented as subnetworks
of the decoder. This choice makes our shape network
physically informed, allowing it to emulate any power-
law behavior in the training set and recover the standard
ppE modifications, while a generic network cannot.
Equation (24) also formally addresses how the decoder
output is interpolated in the frequency grid. The number of
pseudo-PN terms Np is a hyperparameter of the VAE.
When Np ¼ 1, Eq. (24) resembles a naïve extension of the
ppE framework, i.e., upgrading the bppE from an integer to a
real number. When Np ≥ 2, Eq. (24) resembles an
advanced ppE framework with higher-PN corrections
included. In this case, we expect the VAE to learn a latent
space with fewer dimensions as compared to the total
number of PN coefficients to be otherwise included, and
distribute a different mixture of PN orders with appropriate
prior weights. In this paper, we will fix Np ¼ 2, but other
choices can be studied in the future. Note that, usually, the
decoder and the encoder are designed to mirror each other,
but here we do not require this property. In particular, we do
not ask the encoder to know anything about the pseudo-PN
expansion of the decoder, because we wish the encoder to
be able to handle more generic modifications.
Let us now specify the lower-level implementation of the

VAE. We introduce three neural mappings, E∶R640 ↦ R3,
DU∶ R2 ↦ R2 and DV∶ R2 ↦ R2. The neural map E
takes in 640 real numbers associated with the modified
phase at each frequency grid point, and it returns 3 real
numbers associated with the 2 means of the latent space and
the 1 standard deviation. The neural mapDU and DV , then,
take 2 real numbers in the 2-D latent space and outputs two
real numbers to be used as amplitudes and exponents in the
pseudo-PN representation of the shape function. Each of

these neural maps contains 4 fully connected hidden layers,
and each hidden layer contains 512 neurons taking the
ReLU activation.4 Therefore, the entire encoder-decoder
network contains 3,486,727 parameters that we must train
by minimizing the loss function.
With this in hand, we implement the encoder and the

decoder as follows. Consider the encoder first. For every
element (a) in the training set,

μðaÞi ¼ EiðΦ̂ðaÞ
modÞ − Eið−Φ̂ðaÞ

modÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j¼1;2½EjðΦ̂ðaÞ

modÞ − Ejð−Φ̂ðaÞ
modÞ�2

q ; ð25Þ

σðaÞi ¼ exp ½E3ðΦ̂ðaÞ
modÞ þ E3ð−Φ̂ðaÞ

modÞ�; ð26Þ

where the i, j and 3 subscripts in E indexes over the 3 real
numbers in the output of E (the same notation also applies
to other neural maps below). Note that both σ1 and σ2
comes from the same output E3, as previously stated. We
implement the decoder as

UðaÞ
n ¼ DU;nðnðaÞi Þ −DU;nð−nðaÞi Þ; ð27Þ

VðaÞ
n ¼ DV;nðnðaÞi Þ þDV;nð−nðaÞi Þ; ð28Þ

The normalization in Eq. (25) ensures that μi is on the unit
circle. The exponential in Eq. (26) ensures that σi is
positive. The symmetrization and antisymmetrization
through Eqs. (25)–(28) are in response to the requirement
that Sðf̄Þ be modeled as an odd function of ni.
To summarize, the elemental components of the encoder

and the decoder are presented in Figs. 3(a) and 3(b),
respectively. These two networks compose the shape
VAE, and the way they connect for training follows
Fig. 2(b). The training process minimizes the VAE loss
function in Eq. (11), in which the reconstruction loss is
further specified by Eq. (23). We customize the VAE with
additional operations (uncolored rounded rectangles in the
figures) beyond the standard formulation in Fig. 1, includ-
ing normalization, symmetrization, and especially the
pseudo-PN expansion.

E. The secondary network for the scale function

Let us now describe the secondary network for the
scale function TðΞα; niÞ. Unlike the modeling of Sðf̄Þ, the

4Here, ReLU stands for the rectified linear unit, whose
functional form is ReLUðxÞ ¼ xΘðxÞwhere Θð·Þ is the Heaviside
step function. Other example activation functions include the
hyperbolic tangent function, the sigmoid function, etc. The ReLU
is the standard choice for deep learning because it mimics
biological behavior in the cortex [102], while also addressing
an issue common to neural networks, where numerical precision
issues cause gradients to “vanish,” preventing further optimiza-
tion [101].
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accuracy of T does not significantly impact the npE tests of
GR. More precisely, a mismodeling of T changes the EFT
prior boundary, which only affects the magnitude of the
largest modifications that will be covered by the latent
space. In our case, the EFT prior boundary is determined by
the map to the largest ppE modifications we allow,
characterized by Eq. (17). In this way, if GR is modified
through a small deformation, the resulting GW signals
should never map to areas of the latent space that are
anywhere close to our EFT prior boundary.
With that in mind, we follow a simple design for the

secondary network. We introduce one neural mapping,
T ∶R6 ↦ R, which takes in 6 real numbers associated with
the 4 source parameters plus 2 latent space coordinates, and
returns 1 real number associated with the scale value. As
with the VAE neural maps, we also implement T with 4
fully connected hidden layers, each containing 512 neurons
taking the ReLU activation. The entire secondary network
contains 1,054,721 parameters for training.
The scale function is then constructed with the same

strategy presented in Eq. (26):

TðaÞ ¼ exp ½T ðΞ0ðaÞ
α ; nðaÞi Þ þ T ðΞ0ðaÞ

α ;−nðaÞi Þ�; ð29Þ
where the exponential ensures that T is positive, and the
symmetrization ensures that T is an even function of ni.
Before inserting the source parameters Ξα in T , we change
coordinates in the source parameter space to

Ξ0
α ¼

�
lnM; q;

χ1 þ χ2
2

;
χ1 − χ2

2

�
; ð30Þ

which are better adapted for the exploration of the like-
lihood in Bayesian parameter estimation of GW signals
from BBH systems. The above specifications of the
secondary network is summarized in Fig. 3(c).
To train the secondary network, we connect it to the

shape VAE as shown in Fig. 2(c) and choose the following
loss function:

L2nd ¼
X
a

�
ln

kΦ⃗ðaÞ
modk

TðΞðaÞ
α ; μðaÞi ÞkS⃗ðμðaÞi Þk

�2
; ð31Þ

where μi and S⃗ are the encoder mean and the decoder
reconstruction from the shape VAE. Because the shape
VAE should have been trained before this stage, μi and S⃗
should be known functions, and all neural parameters in E,
DU and DV should be kept frozen when training L2nd.
The above loss function is designed to penalize the

fractional error in the modeling of the scale function.

Because μðaÞi is on the unit circle, the denominator of

Eq. (31) essentially gives kΦ⃗npEðΞðaÞ
α ; μðaÞi Þk, or the norm of

the npE phase at the EFT prior boundary, where the training

data is defined (see Sec. III C). Assuming that S⃗ðμðaÞi Þ has

learned the shape of Φ⃗ðaÞ
mod, any difference between

kΦ⃗npEðΞðaÞ
α ; μðaÞi Þk and kΦ⃗ðaÞ

modk can only be attributed to
modeling error in T, which is summed over in Eq. (31) in
terms of a fractional error.

F. Training procedure and results

We implement the networks described in Secs. III D and
III E with PYTORCH [103]. For training, we choose a
combination of the ADAMW optimizer [104], with a weight
decay of 10−4, and the EXPONENTIALLR scheduler, with a
learning rate decay of by a factor of 0.9 every epoch.5 We
start by training the VAE for 50 epochs with a batch size of
64 and an initial learning rate of 10−4. The coefficient of the
KL loss is fixed to κ ¼ 10−6 during the process. Then, we
freeze the VAE parameters and train the secondary network
for another 50 epochs using the same batch size and initial
learning rate. Here, the value of κ is empirically determined
to give the best learning result for the shape function. The
other settings, such as the learning rate and the batch size,
are free to vary in some reasonable range, at most impacting
the speed of convergence.
After training is complete, we can then use the decoder

and the secondary network as a model for the modified
waveform phase. Although the neural network infrastruc-
ture may slow down the evaluation of the npE waveform,
we have checked that this is not a significant effect for the
parameter estimation studies we considered, at most dou-
bling the waveform evaluation time in single-CPU test runs
(for more detail, see Appendix A).
Figure 4 shows the training and validation losses as

functions of epochs for the VAE [panel (a)] and the
secondary network [panel (b)]. Observe that both the
VAE and the secondary network reach convergence within
the maximum number of epochs explored. The validation
loss of the secondary network is considerably higher than
the training loss after the loss has converged, implying
overfitting. However, as mentioned in Sec. III E, the
secondary network does not necessarily require high
accuracy, since it only affects the EFT prior boundary.
The validation loss after convergence implies a ∼6%
fractional error for the modeling of the scale function
T,6 which is acceptable for our purposes.

5In each epoch, the training set is randomly split into mini-
batches. Then minimization of the loss is progressively per-
formed by the optimizer batch by batch so as to evade local
minimums. The completion of an epoch marks one full iteration
over the entire training set. The learning rate controls how much
the network parameters get updated by each minibatch of training
data. At the end of each epoch, the learning rate is reduced by the
scheduler, so that optimization converges over epochs. See
Ref. [105] for more details about the related concepts.

6According to Eq. (31), this error is roughly the exponential of
the square-root average loss minus one. Here, the average loss is
read from the rightmost orange marker in Fig. 4(b).
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The performance of the npE is determined by the
accuracy of the reconstruction of the shape function, which
in turn depends on howwell theVAE learned the shape of the
training data [see Appendix B for examples using the npE
framework to reproduce the ppE modeling of EdGB theory
and dynamical Chern-Simons (dCS) gravity.] However, to
assess whether the npE is appropriate for tests of GR, we
must carry out Bayesian parameter estimation. The key
question is how much information we can get from the
posterior when using the VAE and the latent space to
parametrize the waveform, which we leave for discussion
in Sec. IV. For themoment, however, let us first take a look at
how the VAE perceives and extends the ppE theories in the
modified gravity dataset, which is summarized in Fig. 5.
The representation of ppE theories in the latent space

(given by the encoder mean) is shown in Fig. 5(a). These
ppE theories map to radial lines, which is not surprising
given the npE prescription in Eqs. (14) and (15), and the
fact that ppE phases associated with the same bppE, do not
vary in shape. What matters is that these ppE theories are
well organized in the latent space. In particular, the
mapping is injective, in the sense that there is a one-to-
one relation between the ppE index bppE (or PN order) and
the polar angle (up to π) of the latent line, so each theory
maps to one line and different theories separate. Moreover,
the mapping is ordered, in the sense that theories with
deformations that enter at similar PN orders are also close
to each other in angle in the latent space. We highlight that
we arrive at this result in a completely unsupervised
manner, i.e., ordering is not imposed explicitly.
Figure 5(a) also presents ppE theories that introduce

modifications that enter at half-integer PN orders. These
theories are not included in the modified gravity dataset for
training, but they are mapped to the latent space in a similar
way to those in the training set. This means that the VAE
understands well the structure of ppE theories in the latent
space. These observations are further confirmed by Fig. 5
(b), where we present the shape functions generated from a

sample of latent space angles, which is much denser than
the distribution of angles of the ppE theories contained in
the training set. These functions form a band when over-
laid, suggesting that the ppE parametrization has been
continuously extended by the npE latent space.
As discussed in Sec. III D, the pseudo-PN expansion

adopted by the decoder leads to a trivial extension of the
ppE parametrization when Np ¼ 1. Although we have
chosen Np ¼ 2, the two terms in Eq. (24) may lead to
degeneracies after training, and reduce to the trivial case.
Therefore, we must investigate the behavior of the learned
pseudo-PN expansion across the latent space, which is
illustrated in Fig. 6. In this figure, the blue (orange) curve

FIG. 4. Training history for (a) the VAE and (b) the secondary
network of the npE framework. The history is given as the
training and validation losses (each normalized by the size of the
corresponding dataset) versus the number of training epochs.
Observe that both networks reach convergence within the
maximum number of epochs explored.

FIG. 5. Latent space angular parametrization learned by the
VAE. (a) shows the representation of ppE theories (given by the
encoder mean) in the latent space. Observe that each ppE index
maps to a radial line. Different indices are separated, and are put
in order in the latent space. (b) overlays the shape functions
generated from a grid of the latent space polar angles separated by
1°. Observe that these shape functions form a continuous band,
confirming that the learned npE angular parametrization is
continuous.
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shows the effective PN order of the leading (subleading)
pseudo-PN term, i.e., the term with a smaller (greater) V
exponent on f̄ in Eq. (24), with respect to the polar angle of
the latent space θ. The green curve then shows the ratio
between the two effective PN coefficients, with the sublead-
ing one divided by the leading one. Observe that the
subleading PN order never coincides with the leading PN
order, i.e. the blue and theorange curves never cross.Observe
also that the coefficient ratio is ≳1 (right y-axis) for most of
the polar angles between the ppE lines. These two observa-
tions suggest that the double-term pseudo-PN expansion
learned by our VAE does not reduce to the single-term case.
Thus, we verify that we have obtained a npE parametrization
that nontrivially extends the ppE framework.
Another observation one can make about Fig. 6 is that

the coefficient ratio is smaller at the angles where the ppE
lines are denser, and it is greater at the angles where the ppE
lines are sparse, i.e. within the “big gap” between −4PN to
2PN order. This suggests that the ppE-denser region is
more ppE-like, with a better-ordered pseudo-PN expansion.
On the other hand, the ppE-sparse region is where the
decoder behavior is not of ppE type. One may then define a
reference angle θref inside the ppE-sparse region, and
define the bilateral deviation zb and the theory angle φ as

zb ¼ kzksign½sinðθ − θrefÞ�; ð32Þ

φ ¼ mod ðθ − θref ; πÞ: ð33Þ

The reference angle θref can be chosen as the angle at which
the shape function varies the most rapidly, which for us is at
θref ¼ 1.88 rads,with details provided inAppendixC.Under
this description, each ppE index bppE is represented by a
unique φ value, and zb scales linearly with βppE, with both
positive and negative values allowed. In the next section, we
will find this zb-φ parametrization convenient for compari-
son between npE and ppE Bayesian parameter estimation.

IV. TESTING GR WITH THE NPE FRAMEWORK

In this section, we investigate the practical use of the npE
framework for testing GR, by running Bayesian parameter
estimation with a npE-parametrized waveform template on
simulated signals with or without modifications to GR. The
discussion will be carried out under the following four
different studies:
(1) Constraining deviations from GR. We inject a GR

signal and attempt to recover it with an npEmodel and
a ppEmodel to find bounds onnon-GRmodifications.

(2) Detecting leading-PN-order deviations from GR.
We inject a ppE signal and attempt to recover it
with both an npE model and a ppE model to allow
for comparisons.

(3) Detecting high-PN-order deviations from GR. We
inject a ppE-like signal with high-PN-order correc-
tions to the leading-order ppE deviation, and attempt
to recover it with an npE model.

(4) Detecting non-PN-like deviations from GR. We
inject a non-PN-expandable signal and attempt to
extract it with an npE model.

Each of these studies will be elaborated in the next
subsections, once we have provided a description on the
general setup of the injection-recovery runs.

A. Injection-recovery setup

All injected signals will consist of GWs generated by
quasicircular, nonspinning BBH systems. In particular,
we will consider two prototypical systems: a heavy binary
with total mass Minj ¼ 35M⊙, and a lighter binary with
Minj ¼ 15M⊙, both with a mass ratio of qinj ¼ 2=3. These
signals will be assumed to have been detected by a
Hanford-Livingston-Virgo network, with an O5 design
sensitivity [27].7 We do not inject the signals into specific
realizations of noise because we wish to study the averaged
outcome of parameter estimation, which is independent of a
given noise artifact. The signals are analyzed in a frequency
range between 10 Hz and 0.018=Minj, the latter of which is
chosen so that only the inspiral part of the signal is taken
into account. For each signal, we scale the luminosity

FIG. 6. Pseudo-PN expansion across the polar angle θ in the
latent space learned by the VAE. The blue (orange) curve shows
the effective PN order of the leading (subleading) pseudo-PN
term, which refers to the left y-axis. The green curve shows the
ratio between the two effective PN coefficients, with the sub-
leading one divided by the leading one, which refers to the right
y-axis. The gray dashed lines correspond to the angles of those
ppE theories shown in Fig. 5(a). Observe that blue curve and the
orange curve do not cross, and the coefficient ratio is ≳1 for most
of the polar angles between the ppE lines, which means that the
two terms in the expansion are not degenerate. Also the
coefficient ratio is ≫ 1 approaching the gaps between ppE-dense
regions, suggesting that non-PN behavior may be included in
these gaps.

7https://dcc.ligo.org/LIGO-T2000012/public.
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distance such that the network SNR is always fixed at 40
for the frequency range specified above.
The signals and models we consider here are constructed

as follows. All GR signals are built directly from the
IMRPhenomD waveform model h̃GR. Non-GR signals are
constructed as deformations of the IMRPhenomD model,
either through leading-PN-order (ppE) deviations, high-
PN-order (ppE-like) deviations, or non-PN-like deviations
of the waveform phase. These modifications Φmod are
added to the IMRPhenomD phase in the inspiral region, as
explained in Eq. (12), up to the inspiral frequency cutoff at
Mf ¼ 0.018. Therefore, the injected signals do not contain
any information in the intermediate or merger-ringdown
regimes (Mf > 0.018). The non-GR models we use to
recover these signals are built in exactly the same way, with
the exception that they are allowed to include the inter-
mediate andmerger-ringdown regimes (these regimeswill be
needed in case the sampler explores a region of parameter
space where M > Minj.) We do not introduce explicit non-
GR effects in these regimes, although some do trickle down
from the inspiral regime through the continuity and differ-
entiability matching conditions at the interphases.
The injected signals are then recovered using Bayesian

statistical theory, using BILBY [106] and the likelihood
nested sampler DYNESTY [107] to perform parameter
estimation. For simplicity, we only sample those model
parameters that enter the GW phase of the recovery model,
including the masses, the spins, the time and phase of
coalescence, and any modified-gravity parameters. The
other parameters, such as the distance and the sky location,
are fixed to the injected values. Sampling over all amplitude
and phase parameters simultaneously would increase the
computational cost and the correlations in the posterior,
which we leave for future studies.
The prior for sampling the parameters in the phase

of the recovery model are chosen as follows. The prior for
the masses is uniform in Mc and q. The range of Mc is
½10; 20�M⊙ for the heavier BBH and ½5; 8�M⊙ for the
lighter BBH, whereas the range of q is always [0.125, 1].
The prior for each dimensionless spin χ1;2 ∈ ½−1; 1� is
proportional to ln jχ1;2j, which can be derived as the
aligned-spin counterpart of the precessing, uniform spin
magnitude prior by marginalizing the latter over all
angular degrees of freedom [78]. The phase and time of
coalescence each take a uniform prior, with the former
bound by ½0; 2π�, and the latter bound by a �0.1 s range
around the injected value. For the ppE recovery, we choose
the prior for βppE to be uniform in a sufficiently wide range,
½−100; 100�βppE;max;inj, where βppE;max;inj is Eq. (17) evalu-
ated with the injected source parameters and bppE;inj.
The prior choice for the npE recovery raises some

complexity. Following the discussion of Sec. III B,
ðz1; z2Þ should take a “flat prior” in the unit circle.
The most straightforward implementation is a uniform prior
in ðz1; z2Þ, but doing so leads to an unsatisfactory prior in the

magnitude kzik, in particular excluding GR due to the
divergence of the Jacobian at zi ¼ 0. A uniform prior in
ðz1; z2Þ would therefore artificially disfavor GR in the
marginalized posterior of kzik. For this reason, we will also
consider a prior that is uniform in kzik and θ, or equivalently,
uniform in zb and φ. We will present results obtained
choosing both types of priors in the following subsections.

B. Constraining deviations from GR

Let us begin by considering GR injections and an npE
model for recovery. Figure 7 shows the npE posteriors in
the ðz1; z2Þ and the ðzb;φÞ parametrizations for both the
heavy and the light BBHs. For comparison, this figure also
shows the ppE posteriors for a fixed set of ppE indices bppE,
which are the same as those used in the npE training set. For
each fixed value of bppE, the βppE posterior is transformed to
the latent ðz1; z2Þ representation using the npE encoder to
allow for direct comparisons.
Let us first look at the joint posterior of npE parameters

[ðz1; z2Þ or ðzb;φÞ] in the main plot of each panel. Each
point on the 90% credible contour (CC) can be interpreted
as a constraint on the corresponding type of modification.
Thus, we confirm that the npE framework can be used to
constrain modifications to GR.
Onemayobserve, however, that the constraint is tighter for

modifications at lower (and especially at negative) PN orders
and for the source with smaller masses. The same pattern is
also presentedby theppE90%credible intervals (CIs),which
is expected because lower-PN corrections are detected with
more effective cycles [108,109]. For the low-mass binary, the
difference is furthermagnified asmore early-inspiral signal is
captured in the detector band. As a side effect, the margin-
alized posteriors of the npE deviation parameters ðz1; z2; zbÞ
fail to give any useful information and are simply over-
whelmed by the unconstrained 2PN modifications in the
latent space. Thus, the npE joint posterior is necessarily
needed when constraining modifications to GR.
We may further compare the constraining power of the

npE 90% CC to that of the ppE 90% CIs. At first glance, the
former is tangent to the latter, except for those negative-PN
modifications whose ppE constraints are much tighter.
However, we note that the npE 90% CC at negative-PN
angles are not sufficiently resolved in themain plots of Fig. 7.
In order to numerically generate theCC, the posterior sample
has to be binned, and the resolution of the resulting CC is
bottlenecked by the finite size of the bins. This is particularly
an issue at those negative-PN angles, because the CC in that
region is too narrow to cover a sufficient number of bins.
We note that the number of bins is ultimately limited by

the finite size of the posterior sample, so a solution is to ask
the sampler to generate more sample during parameter
estimation. However, this solution would not be computa-
tionally affordable, as we probably need to increase the
sample size by an order of magnitude to see any significant
improvement. Here, we take a different route. Instead of
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FIG. 7. Predicted constraints on non-GR modifications with the npE framework. GR injections of a heavy BBH [panels (a) and (b)]
and a light BBH [panels (c) and (d)] are recovered with an npE model in the ðz1; z2Þ parametrization [panels (a) and (c)] and the ðzb;φÞ
parametrization [panels (b) and (d)]. The posterior distributions are shown in blue, where the light and dark blue boundaries represent a
90% and 50% credible contours respectively. For reference, ppE models (i.e., with fixed ppE indices) are represented in this figure with
gray dotted lines, while regions in the parameter space that are outside of the npE prior are shaded in gray. In order to allow for
comparisons between the npE analysis and an independent ppE analysis, we also present the 90% credible region of the βppE posterior,
mapped to the ðz1; z2Þ or ðzb;φÞ latent parameter space with solid orange lines. The insets in each panel shows the npE recovery with a
prior range that is smaller than the standard one given by the EFT prior boundary, which is indicated by the limit of the inset axis. Each
panel is also accompanied by 1D marginalized posteriors, where the dashed lines mark the 90% credible intervals. Observe that the npE
model is able to constrain a wide range of the latent parameter space, with the constraints becoming more stringent in the direction of
negative PN order deviations, i.e. the white regions in the panels are excluded at 90% confidence. Higher PN order deviations, however,
are constrained less well, as expected. Finally, observe that the npE 90% credible contours are comparable to the ppE 90% credible
intervals, when the prior range is properly chosen to resolve the npE contours near the origin. This indicates that the npE model is as
good as the ppE one at constraining deviations from GR, with the advantage of being able to explore a wider region of theory
parameter space.

NEURAL POST-EINSTEINIAN FRAMEWORK FOR EFFICIENT … PHYS. REV. D 110, 024036 (2024)

024036-15



enlarging the entire posterior sample, we reduce the EFT
prior boundary and run parameter estimation one more time
with the same posterior sample size. This effectively
“zooms” into the previously under-resolved region, and
we show the additional posterior with finer bins in the inset
of each panel of Fig. 7. This allows us to see that the npE
90% CC still follows the width of each ppE 90% CI at
negative-PN angles, and hence, we conclude that the npE

90% CC is as powerful as the ppE 90% CIs at constraining
non-GR theories.

C. Detecting leading-PN-order deviations from GR

Next, we consider injections with ppE modifications that
only have a leading-PN-order term, and recover with an
npE model. This way, we use the npE framework to detect

FIG. 8. Posteriors recovering a ppE modification with the npE framework. The injected signal is generated with the heavy BBH source
in a theory that modifies the GR waveform only at the 0PN order. The magnitude of modification chooses from βppE;inj=βppE;max ¼ 50%
[panels (a) and (b)] and βppE;inj=βppE;max ¼ 20% [panels (c) and (d)], and the npE recovery is made with the z1-z2 parametrization [panels
(a) and (c)] and the zb-φ parametrization [panels (b) and (d)]. The plots follow the same format as in Fig. 7. In addition, an up-pointing
triangle is added to each panel to mark the npE representation of the injected phase modification, using the npE encoder. Observe that,
when βppE;inj is sufficiently large, the npE test detects the modification as effectively as the ppE one, plus that the npE posterior selects
the correct type of theory. When βppE;inj is small, however, the npE test is less sensitive than the ppE one, with correlation built up in the
posterior.
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non-GR modifications that are of the same type as those
appearing in the npE training set. Figure 8 shows an
example, in which the injected signals are generated with
0PN modifications at two different magnitudes. Again, we
overlay the ppE results, but this time we only include
the ppE posteriors obtained from the same ppE index as in
the injection.
Figure 8 allows us to make several observations. First,

observe that for βppE;inj=βppE;max ¼ 50%, the npE frame-
work successfully detects the modification, because the
90% CCs of the joint posteriors exclude GR at z ¼ 0. This
is consistently suggested by the 90% CIs of the npE
deviation parameters ðz1; z2; zbÞ, and the results are com-
parable with the ppE posterior. Furthermore, the type of
modification is also correctly resolved, as the 90% CCs of
the joint posterior and the 90% CI of the theory angle φ
exclude all other PN orders. This outperforms the ppE
framework, which requires running parameter estimation
multiple times and combining results from all possible ppE
indices. We also note that this is a case in which the zb-φ
parametrization becomes useful and allows us straightfor-
wardly read-off of the magnitude and type of the modifi-
cation through the marginalized posteriors.
For βppE;inj=βppE;max ¼ 20%, however, the npE posterior

fails to detect the modification, either with the 90% CCs of
the joint posteriors or with the 90% CIs of the marginalized
posteriors. This is a case in which the ppE framework is
better, as the ppE 90% CI still successfully excludes GR.
The underlying difference is that the npE latent space
contains multiple theories that may correlate with each
other and worsen the posterior. Such ambiguity between
theories is activated when the injected modification is
small and everything returns to GR. This explains why
the same issue does not occur in the previous case with a
larger βppE;inj.
Given the findings above, it may be interesting to find the

critical level of modification which, when used for injec-
tion, allows the npE test to detect the existence, or resolve
the type, of the modification. For convenience, let us refer
to these critical values as the detection boundary and the
resolution boundary, respectively. We carry out the follow-
ing procedure to determine these boundaries:
(1) For each bppE, begin with βppE;inj=βppE;max ¼ 100%

and run the npE test.
(2) If the result suggests detection or resolution, reduce

βppE;inj by a factor of 2 and rerun the npE test.
(3) Repeat step 2 until the detection or resolution is lost,

and obtain an interval within which the correspond-
ing boundary lies.

In this procedure, each npE test is done with the zb-φ
parametrization. A detection is claimed when the 90%CI of
zb excludes GR, and a resolution is claimed when 90% CI
of φ excludes angles of any other PN orders.
The resulting boundary locations are summarized in

Fig. 9. For comparison, the ppE constraints from Sec. IV B

are added to the plots. We have checked that the ppE 90%
CIs of βppE critically touch 0 when the modifications are
injected at the same level of these constraints. Therefore,
we may think of the ppE constraints as an approximation to
the ppE detection boundary. Due to the correlation across
the npE latent space, the npE detection boundary is always
above the ppE one, and the npE resolution boundary is
always above the npE detection boundary (if not over-
lapping). We note that, although the npE test is not as good
as the ppE test at detecting a modification, it facilitates
resolution of the theory type, which is impossible with a

FIG. 9. Sensitivity of the npE tests, for (a) the heavy BBH
and (b) the light BBH. The sensitivity is characterized by the
detection boundary (minimal kzik of injection with which the
modification can be detected) in blue and the resolution boundary
(minimal kzik of injection with which the type of the modifi-
cation can be resolved) in orange. Each boundary is determined
with a range of uncertainty, which is represented by a shade of the
corresponding color. The orange curve is the mapped ppE
constraints when GR is injected. As explained in the main text,
these ppE constraints are roughly the same as a detection
boundary of the ppE test. Observe that across the ppE-dense
region of the latent space, the npE test is less sensitive than the
ppE test in terms of detection. However, the npE test has the
additional ability of resolving the type of modifications in one
parameter estimation run.
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ppE test. Moreover, the boundaries in Fig. 9 are not
constant limits as they should scale by 1=SNR. With that
in mind, future observation of high-SNR events will make
it possible to detect smaller non-GR deviations.
We note that the Bayesian parameter estimation runs

above only involve odd bppE’s in the npE training set. One
may certainly add even bppE’s to the training set, retrain
the networks, and expect the augmented npE framework to
detect these even-bppE modifications following the same
trend as given in Fig. 9. However, the current training
set does not necessarily limit the capability of the npE
framework to detect and resolve these even-bppE modifi-
cations. In Appendix D, we show that our npE frame-
work can properly resolve (detect) an injected −1.5PN
(0.5PN) modification given that the magnitude of the
injected modification is above the interpolated resolution
(detection) boundary in Fig. 9. This means that the npE
generalization of the ppE framework is robust under our
prescription, and the interpolation lines between those
markers in Fig. 9 has the actual meaning of detecting
and resolving modified gravity theories of the associated
φ angle.

D. Detecting high-PN-order deviations from GR

In this subsection, let us consider injections with
modifications expressed in a PN expansion. Compared
to Sec. IV C, the modifications here not only adopt a ppE
term as the leading PN order effect, but they also contain
corrections from higher PN order terms. We will then
study whether the npE framework can detect modifica-
tions to GR that are different from those in the npE
training set. Because the npE latent space continuously
extends the ppE parametrization, we expect these PN-like
differences to be still captured by the npE framework.
We take predictions from EdGB theory as an example,

where the phase has been computed in a PN expansion
up to the next-to-next-to-leading order [61,110]. For the
EdGB coupling strength, we choose ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αEdGB;inj
p ¼ 2.5 km,

which is comparable to observational constraints from
single BBH events [44,111–113]. We focus on the light
BBH source for better resolution of the inspiral. We have
checked that the EdGB correction never exceeds the
small-coupling limit, when normalized with either com-
ponent mass. We investigate the performance of the npE
test in this particular setting, and summarize the results
in Fig. 10.
Let us first take a look at how the npE framework

models such a modification. The npE representation of
the given EdGB modification, found using the encoder
mapping, is shown by the black up-pointing triangles in
Figs. 10(a) and 10(b). Observe that the npE representa-
tion is shifted toward −0.5PN order in response to the
higher PN-order terms. This is to be compared to the
leading-PN order, ppE counterpart, which is shown with

down-pointing triangles on the −1PN line. Let us then
use the npE up-pointing triangle to reconstruct the phase
and compare this with the original EdGB injection. The
difference, namely the modeling error, is shown by the
blue solid curve in Fig. 10(d). In comparison, the ppE
counterpart, obtained with the ppE down-pointing tri-
angle, is shown by the orange solid curve. We note that
the npE modeling error is significantly smaller than the
ppE one in the entire frequency range, confirming that
the npE parametrization captures the higher-PN-order
corrections in the EdGB modification much better than
the ppE model.
The difference in modeling also causes some difference

in the signal recovery. In Figs. 10(a) and 10(b), the npE
posterior spans a range of angles, extending from roughly
−1PN to roughly −0.5PN. On the contrary, the ppE
posterior has to stick to the −1PN line, given its fixed
ppE index. Interestingly, although the ppE posterior
seems to be farther away from the true theory under
the latent representation, its recovery of the signal is as
successful as the npE one. This is suggested by the
dashed curves in Fig. 10(d), which are generated based
on the medians of the npE and ppE posterior, respec-
tively. At frequencies that weigh the most for the
calculation of the total SNR, both dashed curves indicate
small phase recovery error. The reason for such incon-
sistency between modeling and recovery is revealed in
Fig. 10(c), where we plot the posterior of the masses
(in the chirp mass-mass ratio space). Observe that the
ppE posterior of the chirp mass is significantly more
biased, compensating the greater modeling error in the
Φmod sector of the full waveform. Thus, the less biased
recovery of the source parameters is also an advantage of
the npE framework.

E. Detecting non-PN-like deviations from GR

Let us finally consider injections with modifications
that cannot be described as ΦppE plus higher-PN-order
corrections, i.e. that do not admit a polynomial repre-
sentation. We thus wish to determine whether we can use
the npE framework to detect non-GR modifications that
are completely different from those in the npE training
set, and which simply cannot be modeled with a simple
ppE model.
We take the dark-photon interactions theory [49] as an

example, in which the phase modification to the inspiral is
given by

ΦDP ¼
3

128η
ðπMfÞ−5=3

�
20αDP
3

F3

�
M
λDP

ðπMfÞ−2=3
�

−
5γDP
84

ðπMfÞ−2=3ΘðπλDPf − 1Þ
�
; ð34Þ

where Θð·Þ is the Heaviside step function, and
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(a)

(c)

(b)

(d)

FIG. 10. Recovering an EdGB modification with the npE framework. The injected signal is generated with the light BBH, and the
EdGB modification is computed to next-to-next-to-leading order with ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αEdGB;inj
p ¼ 2.5 km. Panels (a) and (b) show the posterior in the

non-GR sector with the z1-z2 parametrization and the zb-φ parametrization, respectively. The up-pointing (down-pointing) triangle
marks the npE representation of the EdGB phase modification calculated to next-to-next-to-leading (leading) order, using the npE
encoder. Panel (c) shows the posterior of the mass parameters with the z1-z2 parametrization. The square dot at the intersection of solid
black lines marks the injected values. Other aspects of panels (a)–(c) follow the same format as in Fig. 7. Panel (d) shows the
reconstruction error of the total phase (GR plus modification) as a function of frequency. The solid blue (orange) curve is the error of the
npE (ppE) reconstruction taking source parameters as given in the injection, and non-GR parameters as given by the up-pointing (down-
pointing) triangle in panels (a) and (b). The dashed blue (orange) curve is the error of the npE (ppE) reconstruction taking the median of
the npE (ppE) marginalized posterior of each parameter, where the npE posterior is obtained with the z1-z2 parametrization. The
background shading in panel (d) shows the weight of each frequency point in the SNR integral, proportional to fAðfÞ2=SnðfÞ. Observe
that the npE posterior in the non-GR sector finds the theory type as slightly deviated from the leading −1PN order, and the npE recovery
of the masses is less biased than the ppE one. Although the ppE estimate of the masses is more precise, it is also less accurate because it
is completely biased, whereas our npE framework provides a much more accurate result, albeit it less precise.
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F3ðxÞ ¼
�
180þ 180xþ 69x2 þ 16x3 þ 2x4

x4

�
e−x

þ 21
ffiffiffi
π

p
2x5=2

erfð ffiffiffi
x

p Þ; ð35Þ

with erfð·Þ the error function. This dark-photon modifica-
tion is characterized by αDP, γDP, and λDP, which are

non-GR parameters. In particular, αDP and γDP are related
to the distribution of dark matter in the source binary,
and λDP is the Compton wavelength of the dark photon
that mediates the interactions between those dark-
matter particles. Observe that the term proportional to
the Heaviside function features a dipole activation at a
frequency controlled by λDP. On the other hand, when

(a)

(c)

(b)

(d)

FIG. 11. Using the npE framework to detect a dark-photon modification featured by a dipole activation. The injected signal is
generated with the light BBH and λinj ¼ 1400 km. The npE results in panels (a)–(d) follow the same format as in Fig. 10. For the ppE
test, we show in panels (a) and (b) the 90% credible region of the βppE posterior from a selection of bppE ’s, like those in Fig. 7. However,
the insets of panels (a) and (b) now purely zoom in the central regions to show the ppE results better, and should not be interpreted as
rerunning the npE test with a narrower prior range. Observe that, although the modification is not covered by the npE parametrization,
the majority of the npE posterior in the non-GR sector favors neither GR nor any of the ppE theories, indicating a non-PN-expandable
modification in the signal.
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ðM=λDPÞðπMfÞ−2=3 ≳ 1, the F3 term is nonvanishing and
an attempt to PN expand this term will not result in
convergent behavior [49].
Although Eq. (34) is developed for binary neutron stars,

we apply it to the BBHs that we study in this paper,
as a proof of principle. Again, we focus on the light BBH
source for better resolution of the inspiral. We assume
the dark charge is distributed such that αDP;inj ¼ 0.05 and
γDP;inj ¼ 0.02, which is within the range of validity of

Eq. (34) [49]. For the dark photon, we consider two injected
Compton wavelengths, λDP;inj ¼ 1400 km and 300 km. In
the first case, the dipole emission is activated at 64 Hz. We
have seen in Fig. 10(d) that this is roughly where most of
the SNR is aggregated. In the second case, the dipole
emission is activated at 273 Hz (or 0.020=Minj), which is
not within the frequency range of the injected signal; in this
case, the dark-photon modification is proportional to the F3

function in Eq. (34). Moreover, the λDP;inj value is chosen

(a)

(c)

(b)

(d)

FIG. 12. Using the npE framework to detect a dark-photon modification featured by the non-PN-expandable F3 function. The injected
signal is generated with the light BBH and λinj ¼ 300 km. Panels (a)–(d) follow the same format as in Fig. 11. Similar to the observation
in Fig. 12, although the modification is not covered by the npE parametrization, the majority of the npE posterior in the GR sector favors
neither GR nor any of the ppE theories, indicating a non-PN-expandable modification in the signal.

NEURAL POST-EINSTEINIAN FRAMEWORK FOR EFFICIENT … PHYS. REV. D 110, 024036 (2024)

024036-21



such that the argument of F3 is slightly above unity around
64 Hz. Thus, this scenario features nonperturbative behav-
ior that is encoded by F3. We could further reduce λDP;inj to
make F3 even more nonperturbative, but doing so would
also reduce the overall magnitude of F3, which would
eventually bring us back to a GR injection.
Figures 11 and 12 show the npE results of the above

two injection cases, respectively and allow us to make
several observations. First, observe that for both injec-
tions, the npE posteriors recover zi very differently from
the npE representation of the injected ΦDP (the black
up-pointing triangles). For the first injection, Fig. 11(d)
indicates that the npE latent space does not cover
anything like a dipole activation, as the step function
in Eq. (34) is not eliminated in errors reconstructed from
either the representation point or the posterior median.
For the second injection, Fig. 12(d) suggests that the npE
model covers the nonperturbative F3 by the same criteria
in Sec. IV D, as the shape and magnitude of the phase
reconstruction errors resemble those in Fig. 10(d) for
EdGB. However, this is incorrect. For the injection, the
npE representation point lies right on the 0.5PN line, so
if ppE had been considered and all indices had been
explored, the same reconstruction could be reproduced.
For the recovery, the npE posterior differs a lot from the
representation point, with a majority disfavoring all ppE
theories included by the latent space. Moreover, the
posterior recovery of the chirp mass fails, as shown in
Figs. 11(c) and 12(c), leading to a strong bias in chirp
mass. All these observations suggest that the npE
framework cannot model those non-PN-expandable modi-
fied signals more correctly than what the ppE framework
can achieve.
Despite the above conclusions, an npE analysis has very

powerful and important advantages over a ppE analysis.
First, for both injections, the 90% CC in the z1-z2 plane
excludes the GR region at the center. This means that the
npE analysis can signal that the injection is not consistent
with GR. Second, the majority of the z1-z2 and zb-φ
posterior disfavors all ppE theories included by the latent
space. Therefore, with the npE framework, not only can we
still detect the modification to GR, but we can even say that
it did not admit a PN expansion. Third, these conclusions
can be arrived at by carrying out parameter estimation only
once for each signal injected. In a ppE analysis, however,
one would have to repeat the parameter estimation for every
possible bppE [see results from example runs in panels (a)
and (b) of Figs. 11 and 12 with odd bppE’s between −13 and
−1]. Although some of these ppE subtests can alert of a
deviation from GR, they always suggest a PN-type modi-
fication by construction and miss the fact that the actual
modification is not PN-expandable. We thus conclude that,
even though the npE framework is not perfect, it is still
preferred over the ppE framework, since it is more general
and computationally efficient.

V. CONCLUSIONS

In this work, we introduced the npE framework for
efficient theory-agnostic GW tests of GR, using a deep-
learning parametrization of non-GR theories extended
from the ppE framework. The key component of the
npE framework is a VAE. When trained with waveforms
from a list of ppE theories, the VAE encoder finds a
continuous representation for these waveforms in a dimen-
sionally-reduced latent space. Then, the VAE decoder
reconstructs similar waveforms using points in the latent
space as parameters. For GW test of GR, the decoder can
be used as a waveform model, with the latent space
providing the non-GR parameters. Because the latent space
unifies many non-GR theories that fit within the ppE
framework, one only needs to run parameter estimation
once to test all of them, which makes the npE framework
more efficient than the ppE one. Moreover, because the
gaps between ppE theories in the latent space are filled
continuously with non-ppE modifications, the npE test of
GR is more theory-agnostic.
In order to test the npE framework and reach the above

conclusions, we focused on a parametrized modification to
the inspiral GW phase of the IMRPhenomD waveform, and
created a modified gravity dataset with ΦppE in a variety of
ppE theories and from a population of BBHs. We equipped
the npE framework with a two-dimensional latent space
z1;2, in which GR sits at the center (zi ¼ 0) and the npE
phase modification ΦnpE is proportional to the polar radius
kzik. We decomposed ΦnpE as the product of kzik, a shape
function S, and a scale function T. We trained the VAE
network to find a representation for S with the polar angle
in the latent space. After training, we found that ppE
theories map to radial lines that are separated and ordered in
the latent space. Gaps between those ppE lines continu-
ously extend the ppE parametrization. We then trained a
secondary network to emulate T, so thatΦnpE maps the unit
circle kzik ¼ 1 to modifications that are comparable with
GR terms, regardless of the BBH source properties. For
parametrized tests of GR with GW data, we appliedΦnpE as
a phase modification to the IMRPhenomD model, and ran
Bayesian parameter estimation to recover the latent param-
eters zi. The prior for zi was chosen to be flat within
kzik ¼ 1, which we referred to as the EFT prior boundary.
A deviation from GR is then detected if the zi posterior
excludes zi ¼ 0, and this posterior then can identify and
resolve the type of non-GR modification that is best
supported by the data in the latent space. We note that
our VAE is customized with additional features added to
the vanilla formulation, including the separation of the
latent angle and radius, the symmetrization of the latent
representation, and the pseudo-PN expansion embedded in
the decoder to better fit the physical mission.
To demonstrate our prescription, we performed Bayesian

parameter estimation on simulated BBH GW signals
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observed by a detector network with O5 designed sensi-
tivity, and studied the npE recovery of potential non-GR
modifications. We verified that the npE framework can be
used to detect non-GR modifications in the GW signal and
resolve the type of non-GR theory that is encoded in the
data, provided the non-GR modification is large enough.
Although the npE framework cannot dig as deep as the ppE
framework to detect non-GR modifications (due to corre-
lation between theories across the latent space), the npE
framework can not only detect modifications, it can also
classify the type of deviation detected and it can do so
with a single parameter estimation run. The same task in the
ppE framewrk would require many runs for many different
ppE indices.
The fact that npE tests of GR are more theory-agnostic

than ppE tests is particularly showcased with signals
simulated in EdGB gravity with higher PN order cor-
rection and signals in a theory with dark-photon inter-
actions. In the first case, the EdGB modification to the
signal can be detected by the npE framework, with the
npE zi posterior correctly recovering a trend that suggests
higher-PN order corrections in the signal. Moreover,
the mass recovery using ΦnpE as the model also returns
significantly less bias in comparison to recovery with
ΦppE. In the second case, the non-PN dark-photon
modifications can still be detected with the npE frame-
work with the npE zi posteriors selecting a region of the
latent space far from the GR region. These observations
suggest that the npE tests of GR can handle theories
beyond the ppE description in a reasonable way.
Our results have various direct applications to GW tests

of GR in the upcoming LVK O5 run, and perhaps, even for
O1-O4 observations. The efficiency of npE tests will be
especially desirable, once the number of signals increases
as expected in O5 and with next-generation detectors. For
signals detected at potentially higher SNRs, the npE
framework offers less biased recovery, assuming that GR
is tested against modifications that deviate slightly from the
standard ppE form. In addition, the npE posterior can also
raise an alarm when an observed non-GR effect cannot be
modeled by a PN expansion.
The npE framework uses the VAE and the latent space

to address both the need of being computationally
efficient and the need of being theory-agnostic, while
previous work, like [50,51], focused on either one or the
other problem. In particular, in [51], the efficiency of
a ppE-like test of GR was improved by a hybridized
sampling method that reduces the number of likelihood
evaluations. This procedure starts with a parameter
estimation run assuming GR, which is then followed
by a set of cheaper estimation runs with ppE-like
modifications included. In comparison, the npE test runs
parameter estimation only once with GR plus only two
npE latent parameters. The number of likelihood evalu-
ations of both schemes should be comparable to that of a

standard GR parameter estimation run. With that being
said, one could think that the npE test could be slowed
down in each likelihood evaluation step, due to the
use of neural networks in the waveform model.
However, in this work, we observed no significant slow-
down of waveform evaluation using the npE template.
Therefore, we expect our prescription to not cost sig-
nificantly more computational time in comparison to that
proposed in [51]. Moreover, the computational procedure
of the npE test is easier to manage as there will be only
one parameter estimation run involved.
In [50], the authors worked on an upgraded ppE

framework with higher-PN-order terms, and proposed a
way to regularize the prior for those higher-PN-order
coefficients in order to obtain informative posteriors. This
results in a more theory-agnostic version of the ppE
framework that can be used for practical purposes. In
comparison, our npE framework can also recover signals
with higher-PN-order corrections at gaps between ppE
lines in the latent space, and the EFT prior boundary
serves similarly as the regularization on the prior. Apart
from that, there are also regions in the latent space that
are far from any ppE lines, allowing the npE test to raise
an alarm when the GW signal contains a non-GR effect
that cannot be modeled by any PN expansion. This
features the flexibility of the neural networks, which is
new in the npE framework.
Our npE framework is built on a training set composed

of ppE modifications to the GW phase of the inspiral of
BBHs. This training set can be augmented to suit the npE
framework for more general purposes. For example, NSs
can be included in the training set, provided that f̄min of
the frequency grid is reduced accordingly to cover flow of
the detector with NS masses. One may also teach the
VAE to learn beyond-ppE theories or modifications to
the merger and the ringdown, possibly with amplitude
modifications included as well. Doing so may require the
shape model to be redesigned, and the dimension of the
latent space to be increased. With additional effects
properly modeled beyond the inspiral phase, the boun-
daries in Fig. 9 can be lowered for detection of smaller
non-GR deviations.
The npE framework we developed here was imple-

mented on an IMRPhenomD model for simplicity, but in
principle, the same idea can be applied to any base GR
model, especially those including precession and higher
harmonics that may appear more frequently in future
observations. The performance of the npE framework was
demonstrated with injection-recovery runs in which the
signals were not injected in any noise realization, and
the results were presented as the averaged outcome. The
actual impact from specific noise realizations (like those
in the real GW data) may be of interest for future studies.
In our current prescription, the npE test adopts an EFT

prior boundary, at which the modifications are comparable
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to the corresponding effects in GR. If an alternative
boundary for the current most stringent constraints is
wanted, one may rescale the training set and retrain the
secondary network. This also applies to updates to the
boundary for any other reason. On the other hand, further
studies may benefit from fixing the prior for multiple events
across a certain observation period, so that the npE
posterior of each single event can be stacked to further
improve resolution (and hierarchical inference [114] still
applies). In this way, the npE framework opens the door to
physics-informed machine-learning in the development of
GW tests of GR for current and future ground- and space-
based detectors.
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APPENDIX A: COMPUTATIONAL COST
OF THE NPE TEMPLATE

In Sec. III F, one may be concerned about the evaluation
time of the npE template, which one could imagine could
be significantly long for a sufficiently complicated neural-
network implementation. With the computational settings
described in Sec. IVA, we tested the evaluation of the npE
template (IMRPhenomD plus npE phase modification)
versus the ppE template (IMRPhenomD plus ppE phase
modification), on a single core of an Intel Xeon Platinum
8358 CPU. For the heavy source, the npE evaluation time is
about τnpE ¼ 3.3 ms, while the ppE evaluation takes about
τppE ¼ 1.5 ms. For the light source, the results are τnpE ¼
14.6 ms and τppE ¼ 11.7 ms. Thus, we conclude that for

the cases studied here, the npE implementation at most
doubles the evaluation time of the template.
The mass of the BBH source impacts the waveform

evaluation time through the length of the signal: lighter
sources have longer signals, and hence it takes a longer
time to evaluate the corresponding waveforms. In the case
of the ppE template, the time complexity scales almost
linearly with the signal length. In comparison, the addi-
tional time complexity of the npE template resides mostly
in the forward propagation of DU , DV , and T , which is
rather constant (observe that the difference between τnpE
and τppE is not much affected by the source). Such an npE
overhead is only significant for the heavy source because
the signal is short and the non-neural part of the template
is fast.

APPENDIX B: NPE RECONSTRUCTION
OF PHASE MODIFICATIONS
IN SPECIFIC PPE THEORIES

In this appendix, we check whether the npE frame-
work trained in Sec. III F reproduces the ppE modeling of
non-GR theories. We consider EdGB gravity and dCS
gravity as two examples, compute their phase modification
in the ppE framework, and use the npE framework to
reconstruct the phase modification. In the EdGB case,
we consider the same settings as in Sec. IV D, i.e., we
assume a nonspinning BBH source with component masses
m1 ¼ 9M⊙ andm2 ¼ 6M⊙, and take the EdGB coupling to
be

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p ¼ 2.5 km, except that here we only compute
the phase modification to leading PN order. In the dCS
case, we again choose a BBH source with m1 ¼ 9M⊙
and m2 ¼ 6M⊙, and take the dCS coupling to beffiffiffiffiffiffiffiffiffi
αdCS

p ¼ 8.5 km, which saturates the 90% constraint
using mass and equatorial plane measurements of an
isolated neutron star [115]. The leading PN order dCS
phase modification is computed following [13]. We note
that the resulting dCS phase modification vanishes for
nonspinning BBHs, and therefore, in this case, we con-
sider the source to have anti-aligned spins χ1 ¼ −0.5
and χ2 ¼ 0.5.
The npE reconstruction of the phase modifications

follows the same procedure as described in Sec. IV D.
That is, given the ppE (leading PN order) prediction
of the EdGB/dCS phase modification, we first find its
npE representation in the latent space using the encoder
mean, and then we compute ΦnpE at this representa-
tion point. We compare the ppE prediction to the npE
reconstruction, and show the results in Fig. 13. Observe
that the npE reconstruction error is always ≪ π despite
the fact that both examples are as large as possible, since
we have saturated the current observational constraints.
This means that our npE framework has been well-trained
to accurately reproduce the ppE modeling of non-GR
theories.
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APPENDIX C: REFERENCE ANGLE
FOR THE zb-φ PARAMETRIZATION

In Sec. III F, we defined the zb-φ parametrization based
on a reference polar angle θref in the latent space. This
reference angle should be placed in a ppE-sparse region,
and should be related to the place where the shape
reconstruction varies the most rapidly. Here, we define

θref ¼ arg max
0≤θ<π

����dŜdθ
����
2

: ðC1Þ

The maximum is taken only for the angle range ½0; πÞ
because the latent representation is designed to be sym-
metric. In Fig. 14, we visualize the magnitude of the
derivative in Eq. (C1). The maximum can be easily located
at the two peaks, and, as expected, these peaks occur in the
gaps between the ppE-dense regions. The first peak, within

the range of ½0; πÞ, is where we define the reference angle,
and we find

θref ¼ 1.88: ðC2Þ

APPENDIX D: DETECTING LEADING-PN-
ORDER DEVIATIONS NOT COVERED

BY THE NPE TRAINING SET

In Sec. IV C, we investigated the use of the npE
framework for detecting a modification of the form
ΦppE, i.e. containing only the leading-PN-order term.
The results shown in Figs. 8 and 9 cover the odd bppE’s
provided by the npE training set. For even bppE’s, one may
certainly add them to the training set, retrain the networks,
and expect the augmented npE framework to detect these
even-bppE modifications following the same trend as given
in Fig. 9. Here, however, let us try to detect these even-bppE
modifications without augmenting our npE framework.
In this way, we can investigate how robustly our npE
framework generalizes the ppE parametrization.
Figure 15 shows examples using the npE framework to

recover injections with −1.5PN (bppE;inj ¼ −8) and 0.5PN
(bppE;inj ¼ −4) modifications. These choices allow us to
cover modifications at both negative and positive PN
orders. For each case, we choose βppE;inj in reference to
the boundaries shown in Fig. 9 and check whether a
detection or resolution is achieved as expected. For the
−1.5PN modification, we choose βppE;inj to be right above
the interpolated resolution boundary, and we confirm that
the resolution is achieved as the zb posterior excludes zero,
and the φ posterior excludes both neighboring ppE lines.

FIG. 13. NpE reconstruction of ppE phase modifications.
Panels (a) and (b) [(c) and (d)] show an example in the EdGB
(dCS) gravity. In the EdGB case, the source is a nonspinning
BBH withm1 ¼ 9M⊙ andm2 ¼ 6M⊙, and the EdGB coupling isffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p ¼ 2.5 km. In the dCS case, the source is a BBH with
m1 ¼ 9M⊙, m2 ¼ 6M⊙ and aligned spins χ1 ¼ −0.5, χ2 ¼ 0.5.
The dCS coupling is

ffiffiffiffiffiffiffiffiffi
αdCS

p ¼ 8.5 km. In panels (a) and (c), we
show the ppE (leading PN order) prediction of the phase
modification and its npE reconstruction, in the frequency range
from 10 Hz to the inspiral cutoff Mf ¼ 0.018. Panels (b) and
(d) further shows the difference between the ppE and npE results,
namely the npE reconstruction error, in panels (a) and (c),
respectively. The y-axis in panels (b) and (d) ranges from −π
to π, and we observe that the npE reconstruction error is ≪ π,
suggesting that the npE framework can accurately reproduce the
ppE modeling of these two example theories.

FIG. 14. Variation of the reference angle, in order to locate the
reference angle for the zb-φ parametrization. The blue curve
shows the rate of shape variation with polar angle. Observe that
the rate of variation presents two clear peaks, each taking place in
one of the two ppE-sparse regions. The first peak, marked by the
black vertical line at θref ¼ 1.88, is the one used in this paper to
define the reference angle.
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For the 0.5PN modification, the resolution boundary is
undetermined by Fig. 9, so we choose βppE;inj=βppE;max ¼
100% at maximum, which is at least above the interpolated
detection boundary. In this case, we find that detection
is indeed successful, as the zb posterior excludes zero.
Although a resolution of the theory type is not expected, the

npE posterior at least covers the 0.5PN line in both the z1-z2
parametrization and the zb-φ parametrization. These obser-
vations suggest that the npE framework performs well
when recovering those ppE modifications with bppE’s not
included in the training set, which proves the robustness of
our npE prescription for generalizing the ppE framework.

FIG. 15. Posteriors recovering ppE modifications not included by the npE training set. The injected signals are generated with the
heavy BBH source. The modification chooses from two cases. One is a −1.5PN-order term with βppE;inj=βppE;max ¼ 25% [panels (a) and
(b)], which is right above the interpolated npE resolution boundary in Fig. 8(a). The other is a 0.5PN-order term with βppE;inj=βppE;max ¼
100% [panels (c) and (d)], which is above the interpolated npE detection boundary, but not necessarily above the resolution boundary in
Fig. 8(a). Results are obtained with both the z1-z2 parametrization [panels (a) and (c)] and the zb-φ parametrization [panels (b) and (d)].
The plots follow the same format as in Fig. 7. Observe that the npE recovery resolves the injected −1.5PN modification and detects the
injected 0.5PN modification, as expected.
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Jiménez Forteza, and A. Bohé, Frequency-domain gravi-
tational waves from nonprecessing black-hole binaries. II.
A phenomenological model for the advanced detector era,
Phys. Rev. D 93, 044007 (2016).

[64] P. Canizares, S. E. Field, J. Gair, V. Raymond, R. Smith,
and M. Tiglio, Accelerated gravitational-wave parameter
estimation with reduced order modeling, Phys. Rev. Lett.
114, 071104 (2015).

[65] R. Smith, S. E. Field, K. Blackburn, C.-J. Haster, M.
Pürrer, V. Raymond, and P. Schmidt, Fast and accurate
inference on gravitational waves from precessing compact
binaries, Phys. Rev. D 94, 044031 (2016).

[66] B. Zackay, L. Dai, and T. Venumadhav, Relative binning
and fast likelihood evaluation for gravitational wave
parameter estimation, arXiv:1806.08792.

[67] S. Morisaki, Accelerating parameter estimation of gravi-
tational waves from compact binary coalescence using

XIE, CHATTERJEE, NARAYAN, and YUNES PHYS. REV. D 110, 024036 (2024)

024036-28

https://doi.org/10.1103/PhysRevD.85.082003
https://doi.org/10.1103/PhysRevD.89.082001
https://doi.org/10.1103/PhysRevD.97.044033
https://doi.org/10.1103/PhysRevD.97.044033
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.107.044020
https://doi.org/10.1103/PhysRevLett.74.3515
https://doi.org/10.1103/PhysRevLett.74.3515
https://doi.org/10.1103/PhysRevD.98.084042
https://doi.org/10.1103/PhysRevD.101.109902
https://doi.org/10.1103/PhysRevD.101.109902
https://doi.org/10.1103/PhysRevD.103.044024
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.85.122005
https://doi.org/10.1103/PhysRevD.102.124035
https://doi.org/10.1103/PhysRevD.102.124035
https://doi.org/10.1088/1361-6382/aaeb5c
https://doi.org/10.1088/1361-6382/aaeb5c
https://doi.org/10.1103/PhysRevD.105.124047
https://doi.org/10.1103/PhysRevD.105.124047
https://doi.org/10.1103/PhysRevD.107.104056
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1103/PhysRevD.105.084062
https://doi.org/10.1007/s10714-023-03100-z
https://doi.org/10.1088/0264-9381/30/2/025011
https://doi.org/10.1088/0264-9381/30/2/025011
https://arXiv.org/abs/1312.6114
https://arXiv.org/abs/2107.10667
https://doi.org/10.1103/PhysRevD.103.124051
https://doi.org/10.1103/PhysRevD.105.124021
https://doi.org/10.1103/PhysRevD.105.124021
https://doi.org/10.1038/s41567-021-01425-7
https://doi.org/10.1088/1361-6382/ac4196
https://doi.org/10.1088/1361-6382/ac4196
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevLett.114.071104
https://doi.org/10.1103/PhysRevLett.114.071104
https://doi.org/10.1103/PhysRevD.94.044031
https://arXiv.org/abs/1806.08792


adaptive frequency resolutions, Phys. Rev. D 104, 044062
(2021).

[68] M. J. Williams, J. Veitch, and C. Messenger, Nested
sampling with normalizing flows for gravitational-wave
inference, Phys. Rev. D 103, 103006 (2021).

[69] M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno,
and B. Schölkopf, Real-time gravitational wave science
with neural posterior estimation, Phys. Rev. Lett. 127,
241103 (2021).

[70] M. Dax, S. R. Green, J. Gair, M. Pürrer, J. Wildberger, J. H.
Macke, A. Buonanno, and B. Schölkopf, Neural impor-
tance sampling for rapid and reliable gravitational-wave
inference, Phys. Rev. Lett. 130, 171403 (2023).

[71] K.W. K. Wong, M. Isi, and T. D. P. Edwards, Fast
gravitational-wave parameter estimation without com-
promises, Astrophys. J. 958, 129 (2023).

[72] J. Veitch et al., Parameter estimation for compact binaries
with ground-based gravitational-wave observations using
the LALInference software library, Phys. Rev. D 91,
042003 (2015).

[73] G. Ashton and C. Talbot, B ilby-MCMC: An MCMC
sampler for gravitational-wave inference, Mon. Not. R.
Astron. Soc. 507, 2037 (2021).

[74] N. J. Cornish, Rapid and robust parameter inference for
binary mergers, Phys. Rev. D 103, 104057 (2021).

[75] T. Islam, J. Roulet, and T. Venumadhav, Factorized
parameter estimation for real-time gravitational wave
inference, arXiv:2210.16278.

[76] J. Roulet, S. Olsen, J. Mushkin, T. Islam, T. Venumadhav,
B. Zackay, and M. Zaldarriaga, Removing degeneracy and
multimodality in gravitational wave source parameters,
Phys. Rev. D 106, 123015 (2022).

[77] E. Lee, S. Morisaki, and H. Tagoshi, Mass-spin repar-
ametrization for a rapid parameter estimation of inspiral
gravitational-wave signals, Phys. Rev. D 105, 124057
(2022).

[78] J. Lange, R. O’Shaughnessy, and M. Rizzo, Rapid and
accurate parameter inference for coalescing, precessing
compact binaries, arXiv:1805.10457.

[79] J. Wofford et al., Expanding RIFT: Improving performance
for GW parameter inference, Phys. Rev. D 107, 024040
(2023).

[80] Z. Carson and K. Yagi, Parameterized and consistency tests
of gravity with gravitational waves: Current and future,
MDPI Proc. 17, 5 (2019).

[81] L. Randall and R. Sundrum, A large mass hierarchy from a
small extra dimension, Phys. Rev. Lett. 83, 3370 (1999).

[82] L. Randall and R. Sundrum, An alternative to compacti-
fication, Phys. Rev. Lett. 83, 4690 (1999).

[83] P. A. M. Dirac, The Cosmological constants, Nature
(London) 139, 323 (1937).

[84] N. Yunes, F. Pretorius, and D. Spergel, Constraining the
evolutionary history of Newton’s constant with gravita-
tional wave observations, Phys. Rev. D 81, 064018 (2010).

[85] R. R. Metsaev and A. A. Tseytlin, Order alpha-prime (two
loop) equivalence of the string equations of motion and the
sigma model Weyl invariance conditions: Dependence on
the dilaton and the antisymmetric tensor, Nucl. Phys.
B293, 385 (1987).

[86] K.-i. Maeda, N. Ohta, and Y. Sasagawa, Black hole
solutions in string theory with Gauss-Bonnet curvature
correction, Phys. Rev. D 80, 104032 (2009).

[87] N. Yunes and L. C. Stein, Non-spinning black holes in
alternative theories of gravity, Phys. Rev. D 83, 104002
(2011).

[88] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Post-
Newtonian, quasi-circular binary inspirals in quadratic
modified gravity, Phys. Rev. D 85, 064022 (2012); 93,
029902(E) (2016).

[89] T. Jacobson, Primordial black hole evolution in tensor
scalar cosmology, Phys. Rev. Lett. 83, 2699 (1999).

[90] M.W. Horbatsch and C. P. Burgess, Cosmic black-hole
hair growth and quasar OJ287, J. Cosmol. Astropart. Phys.
05 (2012) 010.

[91] T. Jacobson and D. Mattingly, Gravity with a dynamical
preferred frame, Phys. Rev. D 64, 024028 (2001).

[92] T. Jacobson, Einstein-aether gravity: A status report,
Proc. Sci., QG-PH2007 (2007) 020 [arXiv:0801.1547].

[93] D. Blas, O. Pujolas, and S. Sibiryakov, Consistent exten-
sion of Horava gravity, Phys. Rev. Lett. 104, 181302
(2010).

[94] D. Blas, O. Pujolas, and S. Sibiryakov, Models of non-
relativistic quantum gravity: The good, the bad and the
healthy, J. High Energy Phys. 04 (2011) 018.

[95] C. M. Will, Bounding the mass of the graviton using
gravitational wave observations of inspiralling compact
binaries, Phys. Rev. D 57, 2061 (1998).

[96] V. A. Rubakov and P. G. Tinyakov, Infrared-modified
gravities and massive gravitons, Phys. Usp. 51, 759
(2008).

[97] K. Hinterbichler, Theoretical aspects of massive gravity,
Rev. Mod. Phys. 84, 671 (2012).

[98] C. de Rham, Massive gravity, Living Rev. Relativity 17, 7
(2014).

[99] S. Alexander and N. Yunes, Chern-Simons modified
general relativity, Phys. Rep. 480, 1 (2009).

[100] G. Cybenko, Approximation by superpositions of a sig-
moidal function, Math. Control Signals Syst. 2, 303
(1989).

[101] I. Goodfellow, Y. Bengio, and A. Courville,Deep Learning
(MIT Press, Cambridege, MA, 2016), http://www
.deeplearningbook.org.

[102] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J.
Douglas, and H. S. Seung, Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit,
Nature (London) 405, 947 (2000).

[103] A. Paszke et al., PyTorch: An imperative style, high-
performance deep learning library, arXiv:1912.01703.

[104] I. Loshchilov and F. Hutter, Decoupled weight decay
regularization, arXiv:1711.05101.

[105] J. Lu, Gradient descent, stochastic optimization, and other
tales, arXiv:2205.00832.

[106] G. Ashton et al., BILBY: A user-friendly Bayesian
inference library for gravitational-wave astronomy,
Astrophys. J. Suppl. Ser. 241, 27 (2019).

[107] J. S. Speagle, dynesty: A dynamic nested sampling pack-
age for estimating Bayesian posteriors and evidences,
Mon. Not. R. Astron. Soc. 493, 3132 (2020).

NEURAL POST-EINSTEINIAN FRAMEWORK FOR EFFICIENT … PHYS. REV. D 110, 024036 (2024)

024036-29

https://doi.org/10.1103/PhysRevD.104.044062
https://doi.org/10.1103/PhysRevD.104.044062
https://doi.org/10.1103/PhysRevD.103.103006
https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.3847/1538-4357/acf5cd
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1093/mnras/stab2236
https://doi.org/10.1093/mnras/stab2236
https://doi.org/10.1103/PhysRevD.103.104057
https://arXiv.org/abs/2210.16278
https://doi.org/10.1103/PhysRevD.106.123015
https://doi.org/10.1103/PhysRevD.105.124057
https://doi.org/10.1103/PhysRevD.105.124057
https://arXiv.org/abs/1805.10457
https://doi.org/10.1103/PhysRevD.107.024040
https://doi.org/10.1103/PhysRevD.107.024040
https://doi.org/10.3390/proceedings2019017005
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1038/139323a0
https://doi.org/10.1038/139323a0
https://doi.org/10.1103/PhysRevD.81.064018
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1103/PhysRevD.80.104032
https://doi.org/10.1103/PhysRevD.83.104002
https://doi.org/10.1103/PhysRevD.83.104002
https://doi.org/10.1103/PhysRevD.85.064022
https://doi.org/10.1103/PhysRevD.93.029902
https://doi.org/10.1103/PhysRevD.93.029902
https://doi.org/10.1103/PhysRevLett.83.2699
https://doi.org/10.1088/1475-7516/2012/05/010
https://doi.org/10.1088/1475-7516/2012/05/010
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.22323/1.043.0020
https://arXiv.org/abs/0801.1547
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.1103/PhysRevD.57.2061
https://doi.org/10.1070/PU2008v051n08ABEH006600
https://doi.org/10.1070/PU2008v051n08ABEH006600
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/35016072
https://arXiv.org/abs/1912.01703
https://arXiv.org/abs/1711.05101
https://arXiv.org/abs/2205.00832
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.1093/mnras/staa278


[108] K. Chamberlain and N. Yunes, Theoretical physics im-
plications of gravitational wave observation with future
detectors, Phys. Rev. D 96, 084039 (2017).

[109] L. Sampson, N. Yunes, N. Cornish, M. Ponce, E. Barausse,
A. Klein, C. Palenzuela, and L. Lehner, Projected con-
straints on scalarization with gravitational waves from
neutron star binaries, Phys. Rev. D 90, 124091 (2014).

[110] Z. Lyu, N. Jiang, and K. Yagi, Constraints on Einstein-
dilation-Gauss-Bonnet gravity from black hole-neutron
star gravitational wave events, Phys. Rev. D 105,
064001 (2022); 106, 069901(E) (2022).

[111] R. Nair, S. Perkins, H. O. Silva, and N. Yunes, Funda-
mental physics implications for higher-curvature theories
from binary black hole signals in the LIGO-Virgo catalog
GWTC-1, Phys. Rev. Lett. 123, 191101 (2019).

[112] K. Yamada, T. Narikawa, and T. Tanaka, Testing massive-
field modifications of gravity via gravitational waves,
Prog. Theor. Exp. Phys. 2019, 103E01 (2019).

[113] S. E. Perkins, R. Nair, H. O. Silva, and N. Yunes,
Improved gravitational-wave constraints on higher-order
curvature theories of gravity, Phys. Rev. D 104, 024060
(2021).

[114] M. Isi, K. Chatziioannou, and W.M. Farr, Hierarchical test
of general relativity with gravitational waves, Phys. Rev.
Lett. 123, 121101 (2019).

[115] H. O. Silva, A. M. Holgado, A. Cárdenas-Avendaño,
and N. Yunes, Astrophysical and theoretical physics
implications from multimessenger neutron star observa-
tions, Phys. Rev. Lett. 126, 181101 (2021).

XIE, CHATTERJEE, NARAYAN, and YUNES PHYS. REV. D 110, 024036 (2024)

024036-30

https://doi.org/10.1103/PhysRevD.96.084039
https://doi.org/10.1103/PhysRevD.90.124091
https://doi.org/10.1103/PhysRevD.105.064001
https://doi.org/10.1103/PhysRevD.105.064001
https://doi.org/10.1103/PhysRevD.106.069901
https://doi.org/10.1103/PhysRevLett.123.191101
https://doi.org/10.1093/ptep/ptz103
https://doi.org/10.1103/PhysRevD.104.024060
https://doi.org/10.1103/PhysRevD.104.024060
https://doi.org/10.1103/PhysRevLett.123.121101
https://doi.org/10.1103/PhysRevLett.123.121101
https://doi.org/10.1103/PhysRevLett.126.181101

