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It was recently found that the optical field fluctuations in self-defocusing media can be described by
sound waves propagating in a two-dimensional photon fluid. This photon fluid is controlled by the driving
beam and serves as the background in which the sound waves can experience an effective curved
spacetime, such that it provides a new platform of studying analog black holes. In this paper, we are
interested in investigating the quasinormal modes of this analog black hole in the photon-fluid model.
Based on the master equation of motion of the optical field fluctuations, we calculate the frequencies of
quasinormal modes (QNF) with three different numerical methods to make sure the QNF we get are
reliable. Besides fundamental modes, we also try to calculate the overtones up to n ¼ 3 aiming to uncover
more properties of QNF. The effects of angular velocity ΩH of the black hole, the overtone number n and
the winding number m on the QNF are investigated. Under the m with opposite sign, we find that both the
real and imaginary part of the QNF will show strikingly contrasting behaviors when the QNF is plotted
against ΩH , and the similar contrast effects are also found when comparing the influences from winding
number and overtone number. We hope that this work may potentially contribute to the future detections of
quasinormal modes in experimental settings of photon fluid.
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I. INTRODUCTION

The black hole, as one of the mysterious celestial objects
predicted by general relativity, remains largely enigmatic
to this day. On the one hand, owing to breakthroughs in
observational techniques, astrophysics has made significant
strides in detecting black holes through both electromag-
netic and gravitational wave channels. Specifically, ground-
based gravitational wave detectors like LIGO-Virgo
collaboration have observed over a hundred black hole
binary merger events [1–3]. Concurrently, the Event
Horizon Telescope collaboration has mapped the shadow
of black holes at the centers of galaxies through electro-
magnetic observations [4–6]. Despite these advancements,
direct means to study the specific properties of black holes
on a finite timescale are still lacking. Therefore, on the
other hand, simulating black holes in laboratory environ-
ments has effectively addressed the urgent need to explore
their nature [7,8]. This endeavor is particularly remarkable
as it opens possibilities for simulating complex astrophysi-
cal environments on tabletop experiments, offering further

assistance in probing astrophysical and astronomical phe-
nomena that are otherwise inaccessible.
In 1981, Unruh first proposed the concept of an acoustic

black hole in normal nonrelativistic fluids and studied
its process of evaporation [7]. Analogous to astrophysical
black holes, acoustic black holes typically form when
sound waves are confined within supersonic regions of a
fluid. In such analog models of gravity, the motion
equations describe the propagation of sound wave modes.
Under certain specially engineered configurations of the
fluid, spherical regions where the fluid velocity exceeds
the local speed of sound are formed. Consequently, the
boundary where the fluid velocity equals the speed of
sound serves as an analog of the black hole event horizon
for sound wave modes. This innovative setup enables the
observation of relevant states of the system, facilitating the
study of black hole phenomena such as event horizons,
ergosphere, and Hawking radiation in laboratory settings.
So far, a diverse array of analog black hole models has

been meticulously developed, offering valuable insights
into complex phenomena. At earlier times, a series of
remarkable advances [9–11] in this field paved the way for
studying analog gravity in ultracold quantum gases set-
tings, followed by recent developments [12–15] in this
direction. Besides, a latest exciting advancement in [16]
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which reported observations of rotating curved spacetime
signatures from a giant quantum vortex and thus bringing
us more enthusiasm in analog gravity study. In 2009, the
first acoustic black hole was constructed in a rubidium
Bose-Einstein condensate [17]. More intriguingly, the
remarkable experiments [18,19] reported that the thermal
Hawking radiation and the corresponding temperature in
an analog black hole were observed. Additionally, recent
articles on analog Hawking radiation can be found in
[20–22]. The quasinormal modes (QNMs) of (2þ 1)-
dimensional and (3þ 1)-dimensional acoustic black
holes can be found in [23–25], followed by some recent
developments in [26–29]. The mechanism of black hole
superradiance has also received attention [30–33].
Simultaneously, ongoing discussions on black hole thermo-
dynamics, encompassing topics like black hole entropy still
persist [34–37]. Moreover, the thermodynamic description
of two-dimensional acoustic black holes was investigated
in [38], while [39] explores particle dynamics in acoustic
black hole spacetimes. In recent years, relativistic acoustic
black holes have also been constructed in Minkowski
spacetime through the Abel mechanism [40–43] and others
[44–47]. Furthermore, building on the discussion in [48],
acoustic black holes in curved spacetimes are explored,
including the Schwarzschild spacetime [49–52] and
Reissner-Nordström (RN) spacetime [53,54]. For a more
comprehensive understanding of analog gravity please refer
to the excellent review paper [55]. Therefore, the signifi-
cance of studying analog black holes is evident and cannot
be overstated, as they have furnished invaluable tools
for studying and comprehending the intricate properties
of real black holes.
Over the past decade, it was realized that rotating

acoustic black holes can be generated within a self-
defocusing optical cavity based on the fact that the fluid
dynamics are also applicable to nonlinear optics [56],
thereby establishing a new platform for analog black hole
research. The basic idea of this analogy posits that when
light beam propagates in the self-defocusing media, whose
refractive index is intensity dependent, such refractive
index must be affected by the light beam and then the
refractive index in return affects the light beam itself. From
the perspective at microscopic level, this interaction can be
perceived as a repulsive force mediated by atoms between
photons, which finally leads to the formation of a “photon-
fluid.” Leveraging the fluidlike characteristics of the optical
field within the cavity, an effective curved rotating black
hole spacetime can be constructed as what Unruh has done
several decades ago. The spin of the current analog black
hole can be achieved by introducing a driving light beam
with a vortex profile into the cavity. Based on the seminal
work of [56], acoustic superradiance of this analog black
hole was subsequently investigated in [57], followed by
research [58] as a natural extension to superradiance
instability (acoustic black-hole bombs). Intriguingly, it

has claimed in [59] that this analog black hole has been
experimentally constructed. Soon after, the negative energy
excitations generated by superradiance were also measured
in the laboratory [60]. In addition, the authors in [61]
discussed the potential applications of the fluids system in
the analog simulations of quantum gravity, which suggests
a promising future of making more profound advancements
in this field.
In the present paper, we aim at investigating the QNMs

of the analog rotating black hole in a two-dimensional
photon-fluid model. QNMs are of considerable impor-
tance in the field of black hole physics. Basically, QNMs
can essentially be regarded as the characteristic “sound”
of black holes [62] as it only depends on the properties of
black holes and the intrinsic properties of perturbation
field, the details of how the initial perturbations are
enforced are irrelevant to the QNMs. Accordingly,
QNMs provides a rather useful and natural way to uncover
the intrinsic properties of the black holes, including the
analog black holes in our current consideration. To add a
point, a related work discusses the QNMs of soliton
solutions in nonlinear optics [63]. To have a more
comprehensive understanding of QNMs, one can refer
to [64,65] for a nice review.
This work is organized as follows. In Sec. II, we derive

the master equation of the fluctuation field. In Sec. III, we
introduce the numerical methods employed in our calcu-
lations of QNF. In Sec. IV, the numerical results of QNF are
demonstrated and analyzed. Section V, as the last section, is
devoted to conclusions and discussions.

II. BASIC FORMULAS

In this section, we briefly illustrate the basic parts of this
photon-fluid system. The more details regarding connect-
ing optical field to analog black hole spacetime are left in
the Appendix. In order to simulate a spacetime geometry
analogous to a rotating black hole metric, we choose the
following background optical field profile as driving beam
introduced in [56–58]

E0 ¼
ffiffiffiffiffi
ρ0

p
eiϕ0 ¼ ffiffiffiffiffi

ρ0
p

eiðjθ−2π
ffiffiffiffiffiffiffi
r=r0

p
Þ; ð1Þ

vr ¼ −
cπ

kn0
ffiffiffiffiffiffiffi
r0r

p ; vθ ¼
cj
kn0r

: ð2Þ

Considering a density perturbation ρ1 of optical field in this
background, it has been found that the propagation of the
perturbation in this photon-fluid model is governed by
Klein-Gordon equation [56–58]

□ρ1 ¼
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
gμν∂μρ1Þ ¼ 0; ð3Þ
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where g is the determinant of the effective metric associated
to Klein-Gordon equation. This rotating metric and some
relevant black hole parameters are given by [58]

ds2 ¼ −
�
1 −

rH
r
−
r4HΩ2

H

r2

�
dt2 þ

�
1 −

rH
r

�
−1
dr2

− 2r2HΩHdθdtþ r2dθ2; ð4Þ

rH ¼ ξ2

r0
; ΩH ¼ jξ

πr2H
; ξ ¼ λ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n2ρ0

p ; ð5Þ

rE ¼ rH
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2HΩ2

H

q �
; ð6Þ

where rH is the event horizon, ΩH represents the angular
velocity on the event horizon, ξ describes the healing
length, j is an integer representing the topological charge
of the optical vortices, and rE stands for the radius of
ergosphere. It is worthy noting that the angular velocityΩH
is not limited, which remarks a significant contrast to
the rotating black holes (e.g., Kerr black holes) in
general relativity, where ΩH is limited in order to avoid
naked singularity.
To obtain the radial wave equation of the perturbation

field, we decompose it as

ρ1ðt; r; θÞ ¼ RðrÞe−iðωt−mθÞ; ð7Þ

where integer m is called the winding number. We sub-
stitute Eq. (7) into Klein-Gordon equation and a differential
equation of RðrÞ can be obtained as

d2RðrÞ
dr2

þ PðrÞ dRðrÞ
dr

þQðrÞRðrÞ ¼ 0; ð8Þ

P1ðrÞ ¼
1

r − rH
; ð9Þ

Q1ðrÞ ¼
r4ω2 − 2mr2r2HωΩH −m2ðr2 − rrH − r4HΩ2

HÞ
r2ðr − rHÞ2

:

ð10Þ

Now we set

RðrÞ ¼ GðrÞΨðrÞ; ð11Þ

and then introduce a new coordinate r� defined by

dr�
dr

¼ ΔðrÞ; ΔðrÞ ¼
�
1 −

rH
r

�
−1
: ð12Þ

When working in this new coordinate, Eq. (8) will be
transformed into

GðrÞΔ2ðrÞ d
2Ψðr�Þ
dr2�

þ P2ðrÞ
dΨðr�Þ
dr�

þQ2ðrÞΨðr�Þ ¼ 0;

ð13Þ

where

P2ðrÞ ¼
GðrÞΔðrÞ
r − rH

þ 2ΔðrÞ dGðrÞ
dr

þGðrÞ dΔðrÞ
dr

; ð14Þ

Q2ðrÞ ¼
d2GðrÞ
dr2

þ P1ðrÞ
dGðrÞ
dr

þQ1ðrÞGðrÞ: ð15Þ

In order to obtain the Schrödinger-like equation, the
coefficient P2ðrÞ of dΨðr�Þ=dr� should be zero

GðrÞΔðrÞ
r − rH

þ 2ΔðrÞ dGðrÞ
dr

þ GðrÞ dΔðrÞ
dr

¼ 0: ð16Þ

This equation can be easily solved by following solution

GðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rHÞΔðrÞ
p : ð17Þ

Substituting GðrÞ into Eq. (13), we finally arrive at the
master equation of the perturbation field

d2Ψðr�Þ
dr2�

þ Uðω; rÞΨðr�Þ ¼ 0; ð18Þ

Uðω; rÞ ¼
�
ω −

mΩH

r2

�
2

−
�
1 −

1

r

��
m2

r2
þ 1

2r3
−

1

4r2

�
1 −

1

r

��
; ð19Þ

where we have set rH ¼ 1, which means that r is measured
in units of rH, and both ω and ΩH are measured in units of
r−1H . Furthermore, we may call

Uðω; rÞ ¼ ω2 − Vðω; rÞ ð20Þ

as generalized potential and regard Vðω; rÞ as the effective
potential, which is independent of ω in some black holes
spacetime with spherical symmetry.

III. THE METHODS

In this section, we would like to introduce three different
numerical methods for calculating QNF of this analog
black hole. The rationale behind employing multiple
numerical methods concurrently lies in the ability of these
methods to mutually verify our numerical outcomes.
This cross-validation approach significantly enhances the
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reliability of our numerical results. The black hole QNF is
determined by solving the eigenvalue problem defined by
Eq. (18) with the following boundary conditions for this
asymptotically flat analog black hole spacetime

Ψ ∼
�
e−iðω−mΩHÞr� ; r� → −∞ ðr → rH; rH ¼ 1Þ
eþiωr� ; r� → þ∞ ðr → þ∞Þ ; ð21Þ

which indicates that the perturbation field is ingoing at the
event horizon and outgoing at infinity. The eigenvalue ω is
known as the QNF, which is usually a complex value due
to the dissipative nature of boundary condition Eq. (21)
that makes the differential operator of this system non-
self-joint.

A. Asymptotic iteration method

Asymptotic iteration method (AIM) has been widely
used to calculate QNF in literature. In order to employ this
method, we should move back to radial coordinate r under
which the master equation takes the form

ðr − 1Þ2
r2

Ψ00ðrÞ þ ðr − 1Þ
r3

Ψ0ðrÞ þ UðrÞΨðrÞ ¼ 0: ð22Þ

Then for simplicity of numerical procedure, we would like
to move to a new coordinate ξ ¼ 1

r. In this coordinate, the
boundary conditions Eq. (21) behave as

Ψ ∼
� ð1 − ξÞ−iðω−mΩHÞ; ξ → 1

e
iω
ξ ξ−iω; ξ → 0

: ð23Þ

Therefore we reformulate the perturbation field ΨðξÞ as

ΨðξÞ ¼ e
iω
ξ ξ−iωð1 − ξÞ−iðω−mΩHÞχðξÞ: ð24Þ

By the master equation, we can get

χ00ðξÞ ¼ λ0ðξÞχ0ðξÞ þ s0ðξÞχðξÞ; ð25Þ

where λ0 and s0 are given by

λ0 ¼ −
ξð−2þ ξð2imΩH − 4iωþ 3ÞÞ þ 2iω

ðξ − 1Þξ2 ; ð26Þ

s0 ¼ −
4mð4ðξþ 1ÞωΩH þ 2iξΩH þmÞ þ ξð3 − 16ωðωþ iÞÞ − 16ω2 − 1

4ðξ − 1Þξ2 : ð27Þ

Now the main derivations have been completed for employ-
ing AIM in numerical code, and one can refer to Ref. [66]
for more technical details of this method.

B. Leaver’s continued fraction method (CFM)

Leaver [67,68] found that QNF can be obtained by
numerically solving a three-term recurrence relation and
the so-called Leaver’s method was built from then on,
which is well known for its excellent performance in QNF
calculation. To learn more about this method please refer
to [64,67,68] where a comprehensive introduction can be
found. According to the asymptotic behavior [boundary
condition Eq. (21)] of the perturbation field Ψ, to which we
can carry out the Frobenius series expansion around
horizon as

ΨðrÞ ¼ eiωrriωþiðω−mΩHÞðr − 1Þ−iðω−mΩHÞ
X∞
n¼0

an

�
r − 1

r

�
n
:

ð28Þ

The next step is to derive the recurrence relation of the
expansion coefficients an. To this end, we just need to
substitute Eq. (28) into Eq. (22), but before we do this, it
seems necessary to work in a new coordinate z ¼ r−1

r .

Within this coordinate, we can get the following four-term
recurrence relation

α0a1 þ β0a0 ¼ 0;

αnanþ1 þ βnan þ γnan−1 ¼ 0; n ≥ 1; ð29Þ

where

αn ¼ 4ðnþ 1Þð2imΩH þ n − 2iωþ 1Þ;
βn ¼ −2 × ð2mðmþ 2ΩHð2inþ 4ωþ iÞÞ

þ ð2n − 4iωþ 1Þ2Þ;
γn ¼ −1þ 4ðn − 2iωÞðnþ 2iðmΩH − ωÞÞ: ð30Þ

We have shown that the expansion coefficients an are
determined by a three-term recurrence relation as above.
With this three-term recurrence relation, the QNF can be
found by the condition under which the series in Eq. (28) is
convergent for r ≥ rH. By employing the recurrence
relation, eventually the QNF can be numerically deter-
mined by following infinite continued faction [67,69]

β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

…≡ β0 −
α0γ1

β1 −
α1γ2

β2−
α2γ3
β3−…

¼ 0: ð31Þ
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Hence the QNF we are searching for are just the roots
of Eq. (31).

C. WKB approximation method

As a semianalytical formula, Wentzel-Kramers-Brillouin
(WKB) approximation method is also a powerful approach
for searching QNF. With the WKB method, for a potential
expressed as Uðω; rÞ ¼ ω2 − Vðω; rÞ, the QNF can be
determined by solving following equation [70]:

ω2 ¼ V0ðωÞ þ A2ðK2;ωÞ þ A4ðK2;ωÞ þ A6ðK2;ωÞ þ � � �
− iK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V2ðωÞ

p
ð1þ A3ðK2;ωÞ þ A5ðK2;ωÞ

þ A7ðK2;ωÞ…Þ; ð32Þ

where V0 is the value of effective potential at its maximum
V0 ¼ Vðω; r�oÞ in which r�o represents the location of the
peak of Vðω; r�Þ, and V2 stands for the value of second
order derivative of Vðω; r�Þ respect to tortoise coordinate r�
at the potential peak r�o. Specifically, the terms on the right
hand of Eq. (32) is free of ω dependence in some cases of
spherically symmetry black holes spacetime. We simply

denote the mth order derivative of Vðω; r�Þ at r�o as Vm
given by

Vm ¼ dmVðω; r�Þ
drm�

����
r�¼r�o

; m ≥ 2: ð33Þ

It is direct that V1 ¼ 0, and AkðK2;ωÞ are polynomials of
V2; V3;…V2k, and each AkðK2;ωÞ should be considered as
the kth order corrections to the eikonal formula

K ¼ i
ω2 − V0ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p ; ð34Þ

which provides an unique solution for K with a given ω.
With the boundary conditions of QNMs, it is found that K
has to be constrained as

K ¼ nþ 1

2
; n∈N; ð35Þ

in which n is the overtone number.

With these formulas in hand, we are going to calculate QNF with sixth order WKB approximation method. Here we list
the second and third order corrections as follows:

A2ðK2;ωÞ ¼ −60ðnþ 1
2
Þ2V2

3 þ 36ðnþ 1
2
Þ2V2V4 − 7V2

3 þ 9V2V4

288V2
2

; ð36Þ

A3ðK2;ωÞ ¼ 1

13824V5
2

�
−940

�
nþ 1

2

�
2

V4
3 þ 1800

�
nþ 1

2

�
2

V2V4V2
3 − 672

�
nþ 1

2

�
2

V2
2V5V3 − 204

�
nþ 1

2

�
2

V2
2V

2
4

þ 96

�
nþ 1

2

�
2

V3
2V6 − 385V4

3 þ 918V2V4V2
3 − 456V2

2V5V3 − 201V2
2V

2
4 þ 120V3

2V6

�
: ð37Þ

For the remaining higher order corrections A4, A5, and A6, which are too complex to be demonstrated explicitly, one can
refer to [70] and references therein for explicit expressions.

TABLE I. The first four overtones n ¼ 0, 1, 2, 3 of QNF at m ¼ 1 for different ΩH . The numerical results obtained by AIM and CFM
are presented together for comparison to verify the validity of the calculation methods.

m ¼ 1

n Method ΩH ¼ 0 ΩH ¼ 0.5 ΩH ¼ 1 ΩH ¼ 5 ΩH ¼ 10

0 AIM 0.365926 − 0.193965i 0.676790 − 0.222215i 1.10290 − 0.237129i 5.02182 − 0.249306i 10.0109 − 0.249825i
CFM 0.365932 − 0.193959i 0.676776 − 0.222225i 1.10290 − 0.237130i 5.02182 − 0.249306i 10.0109 − 0.249825i

1 AIM 0.295643 − 0.633857i 0.646675 − 0.684320i 1.09101 − 0.716744i 5.02161 − 0.747943i 10.0109 − 0.749476i
CFM 0.295391 − 0.636114i 0.647186 − 0.684593i 1.09107 − 0.716704i 5.02161 − 0.747943i 10.0109 − 0.749476i

2 AIM 0.240786 − 1.12826i 0.614894 − 1.17116i 1.07548 − 1.20601i 5.02123 − 1.24665i 10.0109 − 1.24913i
CFM 0.246357 − 1.11459i 0.617152 − 1.16650i 1.07511 − 1.20540i 5.02123 − 1.24665i 10.0109 − 1.24913i

3 AIM 0.206897 − 1.63312i 0.591555 − 1.66908i 1.06181 − 1.70195i 5.02068 − 1.74547i 10.0108 − 1.74880i
CFM 0.21751 − 1.66256i 0.596942 − 1.64467i 1.06083 − 1.69653i 5.02068 − 1.74547i 10.0108 − 1.74880i
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IV. NUMERICAL RESULTS OF QNF

In this section we demonstrate and discuss the numerical
results of QNF. As at the beginning of this section, we
should point out that for the winding m ¼ 0 and m < 0
with small magnitude, the capability of all numerical
methods to obtain reliable results is highly limited. For
this reason, we only focus on the QNF with m ¼ −10;−5,
1, 5, and 10 in our following discussions in order to have
accurate descriptions for the characteristics of QNF.
In Table I, we list the QNF with m ¼ 1 for different

angular velocity ΩH. For each angular velocity, we calcu-
lated the first four overtones up to n ¼ 3, meanwhile the
numerical results obtained by AIM and CFM are presented
together in order to verify the accuracy of our QNF
calculations. It is satisfying to observe that the data in
the table show a high degree of concordance between
the numerical results derived from these two methods.
From this table, one can observe that for a given overtone
number, the real part ωR of QNF grows rapidly with the
increase of angular velocity, manifesting a sensitive
response to the change of ΩH. On the other hand, since

ωR stands for the oscillation frequency of QNMs, it
suggests that the black holes with higher spin will support
QNMs which oscillate more rapidly in this analog black
hole background. Conversely, for a fixed ΩH, the obser-
vation is that higher overtone corresponds to a lower ωR.
This indicates that changes in the overtone number result in
a more moderate variation of ωR compared to the variations
induced by changes in ΩH. For the imaginary part ωI of
QNF, which characterizes the damping rate of QNMs, it
behaves drastically different from the ωR. On the contrary
to the real part, ωI is sensitive to the change of overtone
number while it is weakly dependent on ΩH. By increasing
the angular velocity, the magnitude of the negative ωI will
become bigger, which means that the QNMs will fade away
more rapidly in a higher spin analog black hole back-
ground. For higher overtones, ωI naturally possess a larger
magnitude, indicating a much shorter life for QNMs. This
underscores why the n ¼ 0 mode is often referred to as the
fundamental mode, simply because it exhibits a much
longer duration compared to the higher overtones. It is also
interesting to note that for larger ΩH, the difference in ωR

n=0

n=1

n=2

n=3

0.01 0.10 1 10 100

0.5

1

5

10

50

100

n=0 n=1

n=2 n=3

0.01 0.10 1 10 100

–1.5

–1.0

–0.5

0.0

FIG. 1. The dependence of real part ωR (left plot) and imaginary part ωI (right plot) of QNF on ΩH for m ¼ 1. In each plot, we
demonstrate four overtones from n ¼ 0 to n ¼ 3.

TABLE II. The first four overtones n ¼ 0, 1, 2, 3 of QNF atm ¼ 5 for differentΩH. The numerical results obtained by AIM and CFM.

m ¼ 5

n Method ΩH ¼ 0 ΩH ¼ 0.5 ΩH ¼ 1 ΩH ¼ 5 ΩH ¼ 10

0 AIM 1.92059 − 0.192507i 3.45759 − 0.223514i 5.57214 − 0.238330i 25.1239 − 0.249380i 50.0621 − 0.249844i
CFM 1.92059 − 0.192507i 3.45759 − 0.223514i 5.57214 − 0.238330i 25.1239 − 0.249380i 50.0621 − 0.249844i

1 AIM 1.89952 − 0.580296i 3.44961 − 0.671489i 5.56945 − 0.715239i 25.1239 − 0.748142i 50.0621 − 0.749531i
CFM 1.89952 − 0.580296i 3.44961 − 0.671489i 5.56945 − 0.715239i 25.1239 − 0.748142i 50.0621 − 0.749531i

2 AIM 1.85899 − 0.976231i 3.43424 − 1.12220i 5.56421 − 1.19288i 25.1238 − 1.24691i 50.0621 − 1.24922i
CFM 1.85899 − 0.976232i 3.43424 − 1.12219i 5.56421 − 1.19288i 25.1238 − 1.24691i 50.0621 − 1.24922i

3 AIM 1.80226 − 1.38504i 3.41251 − 1.57715i 5.55664 − 1.67167i 25.1237 − 1.74568i 50.0621 − 1.74891i
CFM 1.80226 − 1.38505i 3.41251 − 1.57716i 5.55664 − 1.67167i 25.1237 − 1.74568i 50.0621 − 1.74891i
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between the overtones becomes less pronounced, sug-
gesting an asymptotically linear relationship with ΩH.
While, for ωI, sufficiently high angular velocity seems
to render the disparities between adjacent ωI approach to a
constant around ∼0.5, and for each overtone it appears to
approach to a constant value.
To provide a direct demonstration of the properties of the

QNF, we plot the QNF data from Table I as a function of
ΩH in Fig. 1, where the left and right plots depict the
behavior of ωR and ωI under the change of ΩR, respec-
tively. In the plots, the range of angular velocity has been
extended to ΩH ¼ 100 with the purpose to illustrate the
characteristics of the QNF as clear as possible. All the
features of the QNF data in Table I are directly presented in
the figure, which additionally shows that the imaginary part
of fundamental mode is the most insensitive to the angular
velocity variation.
We demonstrate the numerical results of QNF for m ¼ 5

in Table II and Fig. 2, and for m ¼ 10 in Table III and
Fig. 3. The behaviors of the QNF in these two cases are
qualitatively similar to that of case m ¼ 1, except that for

these higher values of m, ωR is much more sensitive to the
changes in ΩH, which also leads to a slightly larger
amplitude of variation in ωI . While for the fundamental
mode, the imaginary part still remains as the least suscep-
tible to the changes in angular velocity. Interestingly, from
the tables, we can observe that the differences in ΩI
between adjacent overtones get close to ΔωI ≈ 0.5 as what
we have found in case of m ¼ 1. By summarizing the QNF
in the three specific cases of positive m, we may conclude
that the qualitative features of QNF discovered presently
are consistent across all positive values of m.
After discussing the properties of QNF with positive m,

now we turn to the case of negative m. However, in this
scenario, our numerical methods limit us to sufficiently
large jmj and small ΩH (we take 0 ≤ ΩH ≤ 10), otherwise
we can not obtain reliable numerical results for overtones,
although the QNF of fundamental modes (n ¼ 0) are still
available. Therefore, we take m ¼ −5 and m ¼ −10 as
examples to illustrate the characteristics of QNF for a
negative winding number. In the case of m ¼ −5, the AIM
does not work well so here we adopt a sixth order WKB
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FIG. 2. The dependence of real part ωR (left plot) and imaginary part ωI (right plot) of QNF on ΩH for m ¼ 5. In each plot, we
demonstrate four overtones from n ¼ 0 to n ¼ 3.

TABLE III. The first four overtones n ¼ 0, 1, 2, 3 of QNF at m ¼ 10 for different ΩH. The numerical results obtained by AIM
and CFM.

m ¼ 10

n Method ΩH ¼ 0 ΩH ¼ 0.5 ΩH ¼ 1 ΩH ¼ 5 ΩH ¼ 10

0 AIM 3.84704 − 0.192464i 6.92012 − 0.223568i 11.1480 − 0.238370i 50.2488 − 0.249383i 100.125 − 0.249844i
CFM 3.84704 − 0.192464i 6.92012 − 0.223568i 11.1480 − 0.238370i 50.2488 − 0.249383i 100.125 − 0.249844i

1 AIM 3.83639 − 0.578090i 6.91609 − 0.670944i 11.1467 − 0.715172i 50.2487 − 0.748148i 100.125 − 0.749532i
CFM 3.83639 − 0.578090i 6.91609 − 0.670944i 11.1467 − 0.715172i 50.2487 − 0.748148i 100.125 − 0.749532i

2 AIM 3.81528 − 0.965797i 6.90811 − 1.11903i 11.1440 − 1.19216i 50.2487 − 1.24691i 100.125 − 1.24922i
CFM 3.81528 − 0.965797i 6.90811 − 1.11903i 11.1440 − 1.19216i 50.2487 − 1.24691i 100.125 − 1.24922i

3 AIM 3.78412 − 1.35694i 6.89632 − 1.56828i 11.1400 − 1.66946i 50.2486 − 1.74568i 100.125 − 1.74891i
CFM 3.78412 − 1.35694i 6.89632 − 1.56828i 11.1400 − 1.66946i 50.2486 − 1.74568i 100.125 − 1.74891i
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approximation method, which turns out to yield credible
values of QNF, in association with CFM to calculate QNF
already presented in Table IV. When m ¼ −10, the AIM is
now capable of calculating QNF accurately, so this time we
use AIM together with a sixth order WKB approximation
method to obtain QNF which are demonstrated in Table V.
The QNF for bothm ¼ −5 andm ¼ −10 are also displayed
by pictures in Fig. 4, which shows a qualitatively similar
behavior for these two negative winding number.
Interestingly, a remarkably different QNF behaviors from
what we have discussed for positivem cases can be directly
observed in the plots, although some common character-
istics remain untouched, such as for a fixed ΩH, ωR is only
mildly decreased by increasing overtone number n, while
ωI suffers a considerable change. On the contrary to the
QNF withm > 0, where ωR grows with angular velocity, in
present case, ωR rapidly drops off when increasing ΩH. For
ωI , it is now sensitive to the changes in ΩH, rather than
being insensitive as in positive m case. With the increase of

ΩH, the ωI of all overtones grows and appears to converge
to a small constant instead of approaching jΔωIj ≈ 0.5
between two adjacent overtones in the m > 0 case. This
result may suggest the existence of arbitrarily long-lived
QNMs which is also called quasiresonances [71–73] when
angular velocity is large enough.
It is natural and necessary to investigate how the QNF is

affected by the winding number m. To this end, we
separately compare ωR and ωI between different values
of m in Figs. 5 and 6, respectively. First of all, we observe
that the four plots corresponding to four overtones in Fig. 5
appear almost identical, this is attributed to the fact that ωR
is weakly dependent on overtone number. Among the
positive values of m, it is shown that for any given ΩH,
a larger m is always associated with a higher ωR, indicating
a higher oscillation frequency of QNMs. At low values
of ΩH, ωR remains almost constant over a small range and
then starts to increase slowly. After a certain value of ΩH
(looks like this value is lightly influenced bym), the rate of
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FIG. 3. The dependence of real part ωR (left plot) and imaginary part ωI (right plot) of QNF on ΩH for m ¼ 10. In each plot, we
demonstrate four overtones from n ¼ 0 to n ¼ 3.

TABLE IV. The first four overtones n ¼ 0, 1, 2, 3 of QNF atm ¼ −5 for differentΩH . The numerical results are obtained by CFM and
WKB. The nonconvergence in the table means that we can not get convergent numerical results for n ¼ 3 by CFM at ΩH ¼ 5 and
ΩH ¼ 10, and also WKB failed to yield credible results for n ¼ 3 at ΩH ¼ 10.

m ¼ −5

n Method ΩH ¼ 0 ΩH ¼ 0.5 ΩH ¼ 1 ΩH ¼ 5 ΩH ¼ 10

0 CFM 1.92059 − 0.192507i 1.15837 − 0.154622i 0.803536 − 0.123037i 0.224911 − 0.042365i 0.117898 − 0.0230009i
WKB 1.92059 − 0.192508i 1.15837 − 0.154622i 0.803536 − 0.123037i 0.224911 − 0.0423649i 0.117898 − 0.0230008i

1 CFM 1.89952 − 0.580296i 1.12353 − 0.467438i 0.764354 − 0.371602i 0.202946 − 0.126386i 0.105041 − 0.0683294i
WKB 1.89952 − 0.580297i 1.12352 − 0.467302i 0.764257 − 0.371738i 0.202962 − 0.126324i 0.105024 − 0.0682192i

2 CFM 1.85899 − 0.976231i 1.05457 − 0.79145i 0.684919 − 0.628419i 0.157842 − 0.208351i 0.0785752 − 0.112125i
WKB 1.85898 − 0.976227i 1.0543 − 0.785219i 0.678659 − 0.631877i 0.157978 − 0.206956i 0.0723417 − 0.11576i

3 CFM 1.80226 − 1.38504i 0.953952 − 1.13541i 0.563948 − 0.90167i nonconvergence nonconvergence
WKB 1.80214 − 1.38502i 0.958815 − 1.06584i 0.494471 − 0.896412i 0.0867096 − 0.284379i unreliable
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increase in ωR becomes much more pronounced, showing a
roughly linear relationship on these log-log plots, which
implies a power law dependence of ωR on ΩH. Note that all
the curves are almost parallel to each other, which suggests

that the slope is approximately free of m. As illustrated in
Fig. 5, the slope corresponding to any given overtone
number n at high ΩH can be determined using linear
regression
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FIG. 4. The dependence of real part ωR (left plots) and imaginary part ωI (right plots) of QNF on ΩH for m ¼ −5 (upper panel) and
m ¼ −10 (bottom panel). In each plot, we demonstrate four overtones from n ¼ 0 to n ¼ 3. Note that for m ¼ −5, all the numerical
methods failed to output reliable results for overtone n ¼ 3 at ΩH ¼ 10, we narrow down the range of ΩH to (0, 9) in the plots to
guarantee accuracy.

TABLE V. The first four overtones n ¼ 0, 1, 2, 3 of QNF at m ¼ −10 for different ΩH . The numerical results are obtained by AIM
and WKB.

m ¼ −10

n Method ΩH ¼ 0 ΩH ¼ 0.5 ΩH ¼ 1 ΩH ¼ 5 ΩH ¼ 10

0 AIM 3.84704 − 0.192464i 2.32298 − 0.154473i 1.61296 − 0.122871i 0.452634 − 0.0422895i 0.237420 − 0.0229599i
WKB 3.84704 − 0.192464i 2.32298 − 0.154473i 1.61296 − 0.122871i 0.452634 − 0.0422895i 0.237419 − 0.0229592i

1 AIM 3.83639 − 0.578090i 2.30553 − 0.464301i 1.59347 − 0.369216i 0.441756 − 0.126690i 0.231175 − 0.0687129i
WKB 3.83639 − 0.57809i 2.30553 − 0.464299i 1.59347 − 0.369218i 0.441726 − 0.126693i 0.231032 − 0.0687109i

2 AIM 3.81528 − 0.965797i 2.27068 − 0.776801i 1.55434 − 0.617420i 0.419853 − 0.210568i 0.221032 − 0.114104i
WKB 3.81528 − 0.965797i 2.27068 − 0.776713i 1.55429 − 0.617518i 0.419159 − 0.21071i 0.217909 − 0.114019i

3 AIM 3.78412 − 1.35694i 2.21860 − 1.09386i 1.49528 − 0.868883i 0.384825 − 0.294278i 0.214708 − 0.164592i
WKB 3.78412 − 1.35694i 2.2185 − 1.09286i 1.49451 − 0.869833i 0.381929 − 0.295194i 0.19664 − 0.159081i
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Δ lnωR

Δ lnΩH
≈ 1; ð38Þ

which directly leads to

lnωR ⋍ lnΩH þ lnCm: ð39Þ

By taking ΩH ¼ 1, the m dependent constant Cm is
determined to be Cm ≈m, such that we have

ωR ⋍ mΩH; m > 0 and ΩH → þ∞: ð40Þ

For a negative winding number, the behavior of QNF
diverges significantly from that observed with a positive m,
as the corresponding ωR monotonically decreases whenΩH
grows and manifests an opposite development to positive
winding number case, which indicates a pronounced
dependence of ωR on both the sign and magnitude of
winding number m. At a specified value of m, ωR for −jmj
keeps to be smaller than that for jmj while they start off at
the same value related to ΩH ¼ 0, at which the generalized
potential Uðω; rÞ depends on m2 such that �m will give
rise to identical QNF. On the other hand, we can observe
that ωR for m ¼ −5 keeps to be lower than that for

m ¼ −10 indicating that QNMs with higher jmj always
have faster oscillation frequency, which serves as a
common feature separately shared by ωR for both negative
and positive m.
We now turn our attention to Fig. 6, which exhibits the

comparisons of ωI between differentm. One can see thatωI
for all positive m follows a consistent trend. As with the
increase of ΩH, ωI for m > 0 starts to decrease and
eventually converges to a certain value determined by
the overtone number n. Naturally, a higher n always gives
rise to a greater magnitude of this asymptotic value of ωI .
Before the convergence, some other distinctions arising
from different n are identified. For the fundamental modes
(n ¼ 0), all the curves of ωI for positive m coincide with
each other and this poses a striking contrast with the other
plots of higher overtones. This alignment implies that
changes in m within the region of m > 0 have ignorable
impacts on ωI for fundamental modes. However, for higher
overtones, the impacts of positive m show up in the way of
inducing deviations of ωI among varying m at low values
ofΩH. The most significant effects ofm is that the curves of
m ¼ 1 is noticeably departed from the curves for m ¼ 5
and m ¼ 10. For the latter two m, a divergence is also
formed, just the scale is markedly smaller than the previous
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FIG. 5. The separate comparison of real part ωR of overtones from n ¼ 0 to 3 between different m.
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one. Generally, all the deviations in ωI arising from m are
amplified by increasing n. This accentuation reveals that
among positivem, at low values ofΩH, a highermwill lead
to a negative ωI with smaller magnitude, indicating a longer
life for QNMs, although this distinction will be eventually
eliminated when ΩH becomes large. The behaviors of
curves for m < 0 presents a striking contrast compared to
the case of positive m, while the same effect of positive m
on ωI is also observed in this negativem case among which
the ωI is only slightly affected by m and this kind of effect
can be just mildly amplified for higher overtones. When
raising ΩH, it is observed that the curves for m > 0 have a
downward trend, while, for m < 0, the curves have an
upward trend. Recall that a similar opposite behavior of
curves between positive and negative m has also been
revealed for ωR in Fig. 5. The contrary behaviors of ωI
between positive and negativem, together with the fact that
the generalized potential Uðω; rÞ is an even function in
terms of m at ΩH ¼ 0, such that �m has exactly the same
QNF and a larger positive m corresponds to a larger ωI, all
these facts finally help us predict that ωI for m ¼ −10
could be the mode that remains the highest value among all
the values of m considered here in the whole range of ΩH,

as depicted in our figures. This result suggests that
employing a perturbation optical field with a negative
winding number m is preferable for maximizing the life-
span of QNMs.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have performed an investigation of the
dynamical characteristics of the analog rotating black
hole in the photon-fluid model. Naturally, these dynamical
properties manifest themselves through QNMs, prompting
us to calculate the QNF accordingly. To ensure the
reliability of our results, we employed three numerical
methods for calculating the QNFs. Besides the fundamental
modes, the overtones are also calculated up to n ¼ 3 with
the intention of acquiring more information of the QNMs.
We separately discussed the QNF for m > 0 and m < 0.
For m > 0, we find that the real part ωR of QNF for all

the overtone number is sensitive to the angular velocity ΩH
and increases monotonically with the grow of ΩH, indicat-
ing a black hole spinning faster can support QNMs with
higher oscillation frequencies. Conversely, for the imagi-
nary part ωI of QNF, its behavior diverges from that of ωR.
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number n.
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With an increase in ΩH, we find that ωI is insensitive to ΩH
and it monotonically decreases for a while and then
eventually approaches a certain negative constant whose
value is n dependent. Note that a concern arises due to the
unlimited angular velocity may cause positive ωI implying
unstable QNMs, our numerical results suggest this issue is
likely unwarranted as ωI decreases from a negative value
and tends to a negative constant when ΩH is sufficiently
large. Additionally, while ωR is found to be weakly
dependent on the overtone number n, ωI exhibits a strong
correlation on n. With a higher n, ωR only mildly drops off
and ωI experiences a notable reduction. When ΩH is large,
ωR displays a approximately linear dependence on mΩH,
and for neighboring two ωI we have jΔωIj ≈ 0.5. Further
more, we find that a larger winding number can increase
both ωR and ωI , as ωR ⋍ mΩH for m > 0 and ΩH → þ∞.
However, ωR is notably improved by m, whose impacts on
ωI is slight especially for the fundamental mode. An
interesting observation is that the winding number m has
noticeable effects on ωR but only tiny impacts on ωI ,
whereas the overtone number n can only cause mild
modifications to ωR but notable effects on ωI. This
illustrates that m and n exert opposite influences to QNF.
Form < 0, strikingly contrasting behaviors of QNF have

been observed in comparison to the case of m > 0.
Specifically, as ΩH increases, ωR will be monotonically
decreased while ωI exhibits a continuous increase. The ωR
for different overtones decreases with almost the same rate,
but for ωI a higher overtone demonstrates a notable larger
rate of increase, as illustrated in the corresponding semilog
plot. At high value of ΩH, all the overtones of ωI seem to
have trend to converge towards a common certain constant
which is close to zero, deviating the relation of jΔωIj ≈ 0.5
for m > 0, but instead converting to jΔωIj ≈ 0. This trend
towards zero for ωI suggests the possible existence of
arbitrarily long-lived QNMs, also referred to as quasir-
esonances. Considering that when ΩH ¼ 0, the generalized
potential Uðω; rÞ is an even function in terms of m, such
that QNF for �jmj is expected to be identical at ΩH ¼ 0.
On the other hand, we have known that when ΩH becomes
larger the ωR will decrease. Considering these two obser-
vations together, one can easily predict a relation ωR;−jmj <
ωR;jmj for m ≠ 0, and the same reasoning can also be
applied to ωI to get ωI;−jmj > ωI;jmj. This simple prediction
has been demonstrated in Figs. 5 and 6, respectively.
Consequently, to achieve longer-lived QNMs which brings
some convenience for observing, the fluctuating optical
field used for generating QNMs should ideally possess a
negative winding number m < 0.
Black hole physics is indisputably important in the

modern physics, especially in the attempts of advancing
our understanding of quantum gravity theory. Over the past
century, black holes have attracted significant attentions,
but almost all the researches are limited in theoretical side,
due to the extreme hardship of observing the actual black

holes in astrophysical environments. Even if we have
detected astrophysical black holes through gravitational
waves, some intriguing effects of black holes, such as
Hawking radiation, may still be too faint to be directly
detected by current cutting-edge technology of human
beings. In light of this, simulating analog black holes in
laboratory settings seems like a concession to practical
limitations, it indeed has proven useful and enlightening in
enhancing our comprehension of black hole physics, even
including aspects of quantum gravity [61]. Particularly, it is
worth noting that the recent exciting advancements in [16],
which reported observations of bound states and distinctive
analog black hole ringdown signatures in an analog rotating
curved spacetime from a giant quantum vortex, indeed
brings us a more promising future of studying physics in
the black holes spacetime by analogy.
Furthermore, the development of analog gravity has

substantially benefited from the extensive application of
the Klein-Golden (KG) regime analogy. This connection is
evident in both theoretical research [74] and experimental
exploration [75], underscoring the integral role that the KG
regime plays in the emergence and progression of analog
gravity models. However, on the other hand, deviations
from the KG regime are increasingly recognized as crucial
for advancing our understanding and experimental valida-
tion of analog gravity concepts. The limitations of the KG
equation Eq. (3) are apparent when it comes to the physics
beyond Planck scale where the effects of quantum gravity
become significant. Importantly, phenomena beyond the
Planck scale can be effectively explored using microscale
models of analog gravity, underscoring the profound
significance and motivation behind the study of this field.
In terms of experimental detection of QNMs within the
analogous KG framework, established analyses exist [27].
Nonetheless, pioneering efforts to move beyond this
framework have achieved notable advancements [28].
These endeavors introduce a compelling and challenging
direction for future research, inviting further exploration
into the rich dynamics of analog gravity models outside the
conventional KG regime.
So at the moment it is worth having a further perspective

on the photon-fluid system in the study of analog gravity.
Ever since the seminal work of [56], this new analog
gravity system has attracted much attentions in community,
including research works on acoustic superradiance and
superradiant instability [57,58], experimental construction
of this analog rotating black hole [59], measurement of
superradiance in laboratory [60], and the potential appli-
cations of the fluids system in the analog simulations of
quantum gravity [61]. In addition, a recent paper [76]
provided exciting insights about employing photon-fluid
system to help resolve long-standing problems related to
quantum gravity, including the black hole information-loss
paradox and the removal of spacetime singularities. All of
these advancements have proven that photon-fluid system
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is a versatile and promising platform which has great
potentials to promote our understanding of gravity by
analogy. As for our present work, we analyzed the proper-
ties of QNMs for analog black holes in a photon-fluid
model, which has been experimentally constructed [59].
With these experimental advancements, we are optimistic
that the QNMs we have investigated here will soon be
observable in apparatus of this photon-fluid model by
which provides a novel testbed to black hole physics
and theories of gravitation. As a potential extension, one
approach to deviating from the KG regime is to consider the
vacuum quantum fluctuations in a photon-fluid model.
According to Refs. [28,77], the generation of quantum
fluctuations is closely related to the quantum excitations
of black hole QNMs. At the same time, examining the
quantum perturbations of acoustic modes could further
our understanding of the quantum effects in microscopic
black holes and verify their connections with QNMs.
Additionally, the distinctive characteristics of photon-fluid
models offer numerous intriguing questions for future
research, as discussed in [61,76]. For instance, investigat-
ing how the breakdown of Lorentz invariance at micro-
scopic scales impacts spacetime could provide valuable
insights. Quantum Hawking radiation in association with
superradiance [78] at microscales are particularly signifi-
cant, as they underscore the importance of analog gravity
research for quantum field theory in curved spacetime.
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APPENDIX: THE CONNECTION BETWEEN
PHOTON FLUID AND ANALOG BLACK HOLES

We give a sketch of how to derive the black hole metric
in nonlinear optical system. As we have mentioned
previously, this derivation has been discussed in [56,58],
while, in this Appendix, our purpose is to make a more
detailed and concrete discussion on the construction of
the analog rotating black hole spacetime in this optical
field system.
To understand how the analog black hole spacetime is

constructed, the starting point is to see what we can get
from the hydromechanics. An insightful discovery by

Unruh [7,8] is that an analog black hole spacetime can
be built from the following fundamental equations:

∂tρþ∇ · ðρvÞ ¼ 0; Equation of continuity; ðA1aÞ

ρ
dv
dt

≡ ρ½∂tv þ ðv ·∇Þv� ¼ f; Euler’s equation; ðA1bÞ

which describe the dynamics of fluids. In this equation,
ρ is the density of the fluids and we have used boldface to
denote the fluids velocity vector v and the force vector f
acted on the fluids. So the Euler equation is just equivalent
to Newton’s second law f ¼ m a with f being the force
applied to a small lumps of the fluid.
We now focus on the Euler’s equation. From the

knowledge of the vector analysis, we have the identity

v × ð∇ × vÞ ¼ 1

2
∇v2 − ðv ·∇Þv; ðA2Þ

where v2 ¼ v · v. By assuming the fluid to be inviscid (zero
viscosity) which means that the only forces present being
those due to pressure p. Then for the force density, we have

f ¼ −∇p: ðA3Þ

With these conditions, we have the following Euler’s
equation

∂tv ¼ v × ð∇ × vÞ − 1

2
∇v2 −

∇p
ρ

: ðA4Þ

Furthermore, we assume that the fluids is locally irrota-
tional which directly leads to ∇ × v ¼ 0 (vorticity free),
and it implies that the velocity vector is the gradient of
some scalar ϕ, i.e., v ¼ −∇ϕ. On the other hand, we also
require the fluid to be barotropic, which means that the
density ρ is a function of pressure p only, such that it is
possible to define a function hðpÞ as

hðpÞ ¼
Z

p

0

dp0

ρðp0Þ ¼
Z

xðpÞ

xð0Þ

∇p0 · dx
ρðp0Þ ¼

Z
xðpÞ

xð0Þ
∇hðp0Þ · dx;

ðA5Þ

which shows that

∇h ¼ ∇p
ρ

: ðA6Þ

For more details, one can refer to [55] to have a compre-
hensive understanding on analog gravity and the proce-
dures of the derivation of black hole metric from Eq. (A1).
The starting point of finding a black hole metric in

optical system is from the equation which describes the
slowly varying envelope of the optical field. The dynamics
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of the photon fluid in our consideration is governed by the
nonlinear Schrödinger equation

∂E
∂z

¼ i
2k

∇2E − i
kn2
n0

EjEj2; ðA7Þ

where z is the propagation direction, jEj2 is the optical field
intensity and ∇2E is defined with respect to the transverse
coordinates ðx; yÞ, i is the imaginary unit, k ¼ 2πn0=λ is
the wave number, λ is the laser wavelength in vacuum, n0 is
the linear refractive index, n2 > 0 is the material nonlinear
coefficient which characterizes the intensity dependent
refractive index n ¼ n0 − n2jEj2 of the self-defocusing
media. As a consequence, light propagating in a self-
defocusing medium induces a local negative bending of the
refractive index which, in turn, affects the light beam itself.
At a microscopic level this can be described in terms of an
atom-mediated repulsive interaction between photons
which leads to the formation of a “photon fluid,” such
that we get a flavor of fluids in optical system here.
We now start to reveal the hidden links between Eq. (A7)

describing optical field and Eq. (A1) describing fluids
dynamics. The first step in this task is to apply the
Madelung transformation to write the complex electromag-
netic field E in terms of its amplitude and phase

E ¼ ρ
1
2eiϕ; ðA8Þ

and by this formula of E, we would like to investigate
Eq. (A7) term by term. The term on the left-hand side is
expressed as

∂zE ¼ ∂zðρ1
2eiϕÞ ¼ iρ

1
2eiϕ∂zϕþ 1

2
ρ−

1
2eiϕ∂zρ: ðA9Þ

The first term on the right-hand side is

∇2E ¼ ∇2ðρ1
2eiϕÞ ¼ ρ

1
2∇2eiϕ þ 2∇ρ

1
2 · ∇eiϕ þ eiϕ∇2ρ

1
2;

¼ ρ
1
2eiϕði∇2ϕ − ð∇ϕÞ2Þ þ iρ−

1
2eiϕ∇ρ · ∇ϕþ eiϕ∇2ρ

1
2;

¼ 1

α
ieiϕρ−

1
2½∇ρ · ∇ðαϕÞ þ ρ∇2ðαϕÞ�

−
1

α2
ρ

1
2eiϕð∇ðαϕÞÞ2 þ eiϕ∇2ρ

1
2;

¼ 1

α
ieiϕρ−

1
2∇ · ðρvÞ − 1

α2
ρ

1
2eiϕv2 þ eiϕ∇2ρ

1
2; ðA10Þ

where we have defined “fluids” velocity v ¼ α∇ϕ≡∇ψ
and α ¼ c

kn0
(here c is the speed of the light). The last term

on right-hand side is

EjEj2 ¼ ρ
3
2eiϕ: ðA11Þ

We substitute these obtained equations in Eq. (A7) and we
get a pair of equations

1

2
ρ−

1
2eiϕ∂zρ ¼ −

1

2αk
ρ−

1
2eiϕ∇ · ðρvÞ; ðA12Þ

iρ
1
2eiϕ∂zϕ ¼ i

2k

�
−

1

α2
ρ
1
2eiϕv2 þ eiϕ∇2ρ

1
2

�
− i

kn2
n0

ρ
3
2eiϕ:

ðA13Þ

Equation (A12) leads to

kα
∂ρ

∂z
þ∇ · ðρvÞ ¼ c

n0

∂ρ

∂z
þ∇ · ðρvÞ ¼ 0: ðA14Þ

Equation (A13) leads to

c
n0

∂ðαϕÞ
∂z

þ 1

2
v2 −

α2

2

∇2ρ
1
2

ρ
1
2

þ k2α2n2
n0

ρ ¼ 0: ðA15Þ

We define t ¼ n0
c z and note that ψ ¼ αϕ, which results in

∂ρ

∂t
þ∇ · ðρvÞ ¼ 0; ðA16Þ

∂ψ

∂t
þ 1

2
v2 þ c2n2

n30
ρ −

1

2

c2

k2n20

∇2ρ
1
2

ρ
1
2

¼ 0: ðA17Þ

Equation (A16) is just the equation of continuity which is
in exact the same form as that in fluids dynamics, and
Eq. (A17) is the Euler’s equation. The last term in
Eq. (A17) represents quantum pressure which has no
analogy in classical fluid dynamics. In optics, it is a direct
consequence of the wave nature of light (it arises from the
diffraction term ∇2E) and is significant in rapidly varying
and/or low-intensity regions such as dark-soliton cores and
close to boundaries.
When the quantum pressure is negligible, then Eq. (A17)

has the exact same form of the Euler’s equation for fluid
dynamics. By comparison, it is clear to see that

hðpðρÞÞ≡ c2n2
n3
0

ρ, and take Eq. (A6) into consideration,

we can get the relation between p and ρ,

P ¼ c2n2ρ2

2n30
; ðA18Þ

such that the speed of sound cs can be obtained as

c2s ¼
∂P
∂ρ

����
ρ¼ρ0

¼ c2n2ρ0
n30

: ðA19Þ

As we have obtained the same equation of continuity and
Euler’s equation in optical system as that in hydromechan-
ics, the connections between the photon-fluid and the
analog gravity is clear now, since these two fundamental
equations are the starting point of constructing analog
gravity in fluids.
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