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The Rezzolla-Zhidenko (RZ) and Konoplya-Rezzolla-Zhidenko (KRZ) frameworks provide an efficient
approach to characterize agnostically spherically symmetric or stationary black-hole spacetimes in arbitrary
metric theories. In their original construction, these metrics were defined only in the spacetime region
outside of the event horizon, where they can reproduce any black-hole metric with percent precision and a
few parameters only. At the same time, numerical simulations of accreting black holes often require metric
functions that are regular across the horizon, so that the inner boundary of the computational domain can be
placed in a region that is causally disconnected from the exterior. We present a novel formulation of the RZ/
KRZ parametrized metrics in coordinate systems that are regular at the horizon and defined everywhere in
the interior. We compare the horizon-penetrating form of the KRZ and RZ metrics with the corresponding
forms of the Kerr metric in Kerr-Schild coordinates and of the Schwarzschild metric in Eddington-
Finkelstein coordinates, noting the similarities and differences. We expect the horizon-penetrating
formulations of the RZ/KRZ metrics to represent new tools to study via simulations the physical
processes that occur near the horizon of an arbitrary black hole.
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I. INTRODUCTION

The past few years have provided compelling evidence
that black holes as predicted by Einstein’s general relativity
are perfectly compatible with gravitational-wave [1] and
electromagnetic [2,3] observations. Yet, because of the
uncertainties accompanying these observations, there is
still plenty of room for alternative interpretations within
other theories of gravity (see, e.g., Refs. [4–8]).
Because of thewidevariety of existing alternative theories

of gravity, and to avoid the impractical approach in which a
validation of observations is made on a case-by-casemanner
for every single theory, model-independent representations
of generic black-hole spacetime have been proposed to
measure the deviation from general relativity of alternative
theories of gravity. In this way, it is in principle possible to
invoke astronomical observations to constrain possible
deviations between different black-hole geometries [9]. A
first attempt in this direction is the parametrization of
rotating black holes by Johannsen and Psaltis [10] and
Johannsen [11], who expanded the deviation from the Kerr
metric in terms of a Taylor series of the dimensionless
compactness parameter M=r, where M is the black-hole
mass and r is a generic radial coordinate. Despite some of its
expansion coefficients being observationally constrained,

such an approach requires an infinite number of parameters
with equal importance and is only able to reproduce small
deviations from general relativity [12].
These shortcomings were addressed first for nonrota-

ting black holes by the Rezzolla-Zhidenko (RZ) paramet-
rization [13], which expresses the deviation of a generic
spherically symmetric metric from the Schwarzschild
metric in terms of a Padé expansion of a compactified radial
coordinate.1 The superior convergence properties of the
continued-fraction expansion allows one to approximate
arbitrary blackholes in alternative theories reaching a percent
precisionwith only a few expansion coefficients [14,15]. The
extension of this approach to stationary black-hole space-
times was later obtained with the Konoplya-Rezzolla-
Zhidenko (KRZ) parametrization [16]. The KRZ metric
adopts the same continued fraction expansion in the radial
direction, and a Taylor expansion in the polar direction,
providing excellent convergence to various black-hole met-
rics [17]. Since these parametrized metrics are not the result
of a generic parametrized action, no field equations can be
associated with the RZ/KRZ metrics, which thus cannot be
employed in scenarios or simulations where the spacetime
is dynamical.
Although the RZ/KRZ parametrizations have been

successful in describing an arbitrary black-hole metric in
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1The general formulation of the parametrized metric makes it
applicable also to nonvacuum spacetimes, such as those involving
a compact star or a boson star [14].
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a theory-independent manner, they are constructed only for
the exterior portion of the spacetime, that is, for the part of
the spacetime between the event horizon and spatial infinity
in the case of vacuum spacetimes, or for the part of the
spacetime between the surface of the compact star and
spatial infinity in the case of nonvacuum spacetimes. The
interior region, despite not being necessarily undefined, is
disconnected from the exterior by virtue of the coordinate
singularity at the horizon. Numerical simulations, on the
other hand, traditionally make use of “horizon-penetrating”
(HP) coordinates, that is, coordinate systems that are
regular across the horizon, so that the inner boundary of
the computational domain can be placed in a region that is
causally disconnected from the exterior and hence does not
require special or sophisticated boundary conditions. In the
case of Kerr spacetimes, the most commonly simulated
spacetimes for rotating black holes [18], this is accom-
plished by expressing the Kerr metric not in Boyer-
Lindquist coordinates (that are singular at the horizon),
but in terms of Kerr-Schild coordinates, hence obtaining a
coordinate mapping that is regular everywhere in the
interior with the obvious exception of the ring singularity.
Clearly, it would be useful to have RZ/KRZ parametriza-
tions that have similar features, that is, that are regular at the
event horizon and in the interior.
A first attempt to derive a version of the KRZ para-

metrization that is regular on the event horizon was
proposed by Konoplya, Kunz, and Zhidenko [19].
Although HP in principle, the KRZ formulation in
Ref. [19] is not useful in practice. This is because they
used a coordinate transformation that alters the curvature
invariants, leading to a Kerr reduction that is not Ricci flat.
The metric form in Ref. [19] also has a zero grr component
and hence a zero determinant of the three-metric, incom-
patible with a 3þ 1 split of spacetime normally employed
in numerical simulation codes. We here present a different
HP formulation of the RZ/KRZ parametrizations with an
invariant Ricci scalar and nonzero three-metric determi-
nant. As such, they can be used in numerical simulations
modeling; for instance, the accretion flows onto arbitrary
black holes in alternative theories of gravity. In such
scenarios, in fact, the gravitational mass of the accreting
material is many orders of magnitude smaller than that of
the black hole, and the spacetime is therefore determined by
the black hole to a very good approximation.2 Hence, given
a specific physical scenario where the background space-
time is not influenced by the dynamics of matter or fields to
be evolved (baryonic matter, electromagnetic fields, radi-
ation fields, scalar fields, etc.), the use of our HP KRZ
metric allows one to simulate black-hole accretion

processes by evolving the corresponding conservation
equations of energy, momentum, and rest-mass from large
distances down to the black-hole interior without encoun-
tering any coordinate singularity.
The structure of the paper is as follows. In Sec. II we

review the basic aspects of the KRZ parametrization for
general rotating black holes. Section III reports instead the
main steps needed for the derivation of our HP versions of
the KRZ parametrization in spherical coordinates. We also
offer an alternative Cartesian formulation of the HP KRZ
metric in Sec. IV. Section Vapplies our HP coordinates to a
couple of examples of rotating black holes. Section VI
provides a reduction of the HP KRZ metric to nonrotating
black holes. Finally, a brief discussion of our results is
presented in Sec. VII. Hereafter, we adopt a set of units in
which c ¼ 1 ¼ G, with c and G being the speed of light
and the gravitational constant, respectively. Furthermore, as
usual, we adopt Greek letters for indices running from 0 to
3 and Latin letters for indices running from 1 to 3.

II. GENERAL STATIONARY
BLACK-HOLE METRICS

In our construction of HP coordinates of parametrized
black-hole metrics, it is more convenient to start from the
case of stationary black holes and reduce the resulting
expressions to the nonrotating case. Hence, we start from
the standard KRZ parametrization [16], where the space-
time around a general rotating black hole in an arbitrary
metric theory of gravity is stationary and axisymmetric,
described by a metric in the form

ds2 ¼ −
N2 −W2sin2θ

K2
dt2 − 2Wrsin2θdtdϕ

þ Σ
�
B2

N2
dr2 þ r2dθ2

�
þ K2r2sin2θdϕ2; ð1Þ

where the coordinates t and ϕ are associated with the
timelike and spacelike (azimuthal) Killing vectors marking
the spacetime symmetry, while r and θ are along the radial
and angular directions perpendicular to ϕ, so that ðt; r; θ;ϕÞ
form a set of coordinates that are spherical asymptotically.3

In the metric (1), the functions B ¼ Bðr; θÞ, N ¼ Nðr; θÞ,
K ¼ Kðr; θÞ, W ¼ Wðr; θÞ, and Σ ¼ Σðr; θÞ are functions
of r and θ only, with the latter being defined as

Σ ≔ 1þ a2� cos2 θ
r2

; ð2Þ

with a� ≔ J=M being the rotation parameter of the black
hole, while M and J are the black-hole mass and angular
momentum, respectively.

2Taking for example the case of the accretion flows onto the
supermassive black holes M87* [2] or Sgr A* [3], the mass of a
typical accretion disk with the external edge at 104 gravitational
radii is only 10−12 (10−6) that of the central black-hole M87* [20]
(Sgr A* [21]). Similar small ratios can be computed in the case of
accretion onto x-ray binaries [22].

3In the case of the Kerr metric, such coordinates are repre-
sented by the Boyer-Lindquist coordinates.
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As a result, the determinant of the KRZ metric (1) is then
given by

g ≔ detðgμνÞ ¼ −Σ2B2r4 sin2 θ; ð3Þ

while the inverse metric can be found by using the identity
δμν ¼ gμλgλν, with the nonzero components being

gtt ¼ −
gϕϕ

g2tϕ − gttgϕϕ
¼ −

K2

N2
; ð4Þ

gtϕ ¼ gtϕ
g2tϕ − gttgϕϕ

¼ −
W
N2r

; ð5Þ

grr ¼ 1

grr
¼ N2

ΣB2
; ð6Þ

gθθ ¼ 1

gθθ
¼ 1

Σr2
; ð7Þ

gϕϕ ¼ −
gtt

g2tϕ − gttgϕϕ
¼ N2 −W2 sin2 θ

N2K2r2 sin2 θ
: ð8Þ

The event horizon of the black hole in the KRZ metric is
located at a surface where the metric component grr
diverges (or grr vanishes), that is,

N2ðr; θÞ ¼ 0: ð9Þ

In particular, r0 is the horizon radius in the equatorial plane
(i.e., at θ ¼ π=2), so that N2ðr0; π=2Þ ¼ 0. The other
important surface of a stationary black hole is represented
by the “static limit” and is defined as the surface at which
the metric component gtt vanishes:

N2 ¼ W2 sin2 θ: ð10Þ

The region between these two surfaces is the ergosphere,
and hence it is characterized by the condition

0 < N2 < W2 sin2 θ; ð11Þ

and, within the Kerr metric, it represents the region where
energy and angular momentum can be extracted from the
black hole via the Penrose process (see, e.g., Ref. [23] for a
very comprehensive overview).
The geometry of such axisymmetric spacetime depends

on five quantities: one constant parameter a�, and four
functions B, N, K, W, that can be parametrized in terms of
expansions in the r and θ directions. An essential aspect of
the RZ, and therefore of the KRZ framework, is the
introduction of a compactified radial coordinate

x̃ ≔ 1 −
r0
r
; ð12Þ

which maps the black-hole exterior r∈ ½r0;∞Þ to x̃∈ ½0; 1Þ
and hence allows one to impose rather trivially the
asymptotic properties of the spacetime. Similarly, one
can introduce the new angular coordinate

ỹ ≔ cos θ; ð13Þ

which maps the polar angle θ∈ ½0; π=2� to ỹ∈ ½1; 0�.
Adopting these new variables, the metric functions in
terms of ðx̃; ỹÞ of the KRZ metric are expressed after a
variable separation in a product of functions of x̃ and a
Taylor series of ỹ

N2ðx̃; ỹÞ ¼ x̃A0ðx̃Þ þ
X∞
i¼1

Aiðx̃Þỹi; ð14Þ

Bðx̃; ỹÞ ¼ 1þ
X∞
i¼0

Biðx̃Þỹi; ð15Þ

Wðx̃; ỹÞ ¼ 1

Σ

X∞
i¼0

Wiðx̃Þỹi; ð16Þ

K2ðx̃; ỹÞ ¼ 1þ a�W
r

þ 1

Σ

X∞
i¼0

Kiðx̃Þỹi; ð17Þ

and then the functions of only x̃ are expressed as

Biðx̃Þ ≔ bi0ð1 − x̃Þ þ B̃iðx̃Þð1 − x̃Þ2; ð18Þ

Wiðx̃Þ ≔ wi0ð1 − x̃Þ2 þ W̃iðx̃Þð1 − x̃Þ3; ð19Þ

Kiðx̃Þ ≔ ki0ð1 − x̃Þ2 þ K̃iðx̃Þð1 − x̃Þ3; ð20Þ

A0ðx̃Þ ≔ 1 − ϵ0ð1 − x̃Þ þ ða00 þ k00 − ϵ0Þð1 − x̃Þ2
þ Ã0ðx̃Þð1 − x̃Þ3; ð21Þ

Ai≥1ðx̃Þ ≔ Kiðx̃Þ þ ϵið1 − x̃Þ2 þ ai0ð1 − x̃Þ3
þ Ãiðx̃Þð1 − x̃Þ4; ð22Þ

where the tilded functions Ãi; B̃i; K̃i, and W̃i are expressed
as Padé series in terms of continued fractions of x̃

Ãiðx̃Þ ≔
ai1

1þ ai2x̃
1þai3 x̃

1þ���

; ð23Þ

B̃iðx̃Þ ≔
bi1

1þ bi2x̃

1þbi3 x̃
1þ���

; ð24Þ

K̃iðx̃Þ ≔
ki1

1þ ki2x̃

1þki3 x̃
1þ���

; ð25Þ

W̃iðx̃Þ ≔
wi1

1þ wi2x̃

1þwi3 x̃
1þ���

: ð26Þ
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Thanks to the superior convergence properties offered by
continued fractions, the expanded metric can approximate
deviations from a Schwarzschild spacetime with the same
mass or a Kerr spacetime with the same spin in terms of a
few parameters only. A detailed discussion of the properties
of the expansion in a variety of spacetimes can be found in a
number of recent works [5,14,15,24–28].

III. HORIZON-PENETRATING COORDINATES

Since the rr component of the metric (1) diverges at the
event horizon, we need to find a coordinate system that is
HP, namely, where this function is regular at the event
horizon and hence allows one to smoothly join the interior
with the exterior.

A. A first Ansatz

As mentioned in the Introduction, as a first attempt to
derive a version of the KRZ parametrization that is regular
on the event horizon, Konoplya, Kunz, and Zhidenko [19]
introduced a new time and azimuthal variable in an
Eddington-Finkelstein–like form

dt̂ ¼ dtþ Cðr; θÞdr; ð27Þ

dϕ̂ ¼ dϕþDðr; θÞdr; ð28Þ

where C and D are smooth functions of r and θ. The new
coordinates t̂ and ϕ̂ defined have now a dependence on the
coordinates r and θ, so that the KRZ metric (1) in these
coordinates becomes

ds2 ¼ −
N2 −W2 sin2 θ

K2
dt̂2 − 2Wr sin2 θdt̂dϕ̂

þ K2r2 sin2 θdϕ̂2 þ Σr2dθ2 þ grrdr2

þ 2grt̂drdt̂þ 2grϕ̂drdϕ̂; ð29Þ

where

grr ¼
�
ΣB2

N2
−
N2

K2
C2

�
þ
�

W
K2r

C−D

�
2

K2r2 sin2 θ; ð30Þ

grt̂ ¼
N2

K2
C −

�
W
K2r

C −D

�
Wr sin2 θ; ð31Þ

grϕ̂ ¼
�

W
K2r

C −D

�
K2r2 sin2 θ: ð32Þ

Since the functions C and D are arbitrary, they mini-
mized the number of new terms by imposing a relation

D ¼ W
K2r

C: ð33Þ

As a result, all the associated brackets in Eqs. (30)–(32)
vanish. To specify the transformation function C, those
authors proposed

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣB2K2

p

N2
; ð34Þ

so that the two terms in grr cancel out exactly

grr ¼
ΣB2

N2
−
N2

K2
C2 ¼ 0; ð35Þ

and thus the only new metric component is

grt̂ ¼
N2

K2
C ¼

ffiffiffiffiffiffiffiffiffi
ΣB2

K2

r
: ð36Þ

In summary, adopting this new set of variables, and
dropping the hat symbol for the t̂ and ϕ̂ coordinates, the
KRZ metric (1) is transformed into

ds2¼−
N2−W2 sin2 θ

K2
dt2þ2

ffiffiffiffiffiffiffiffiffi
ΣB2

K2

r
dtdr

−2Wrsin2 θdtdϕþΣr2dθ2þK2r2 sin2 θdϕ2: ð37Þ

Despite taking a simple form, with five nonzero com-
ponents as in the original Boyer-Lindquist–like coordinates
and as is regular at the horizon, the KRZ metric in these
coordinates (37) is problematic. It is easy to realize this by
considering the metric (37) when reduced to the case of a
Kerr spacetime. We recall that the Kerr metric in Boyer-
Lindquist coordinates takes the form

ds2 ¼ −
�
1 −

2Mr
ΣK

�
dt2 −

4Mr
ΣK

a�sin2θdtdϕþ ΣK

Δ
dr2

þ ΣKdθ2 þ
A
ΣK

sin2θdϕ2; ð38Þ

where the functions

ΣK ≔ r2 þ a2� cos2 θ; ð39Þ

Δ ≔ r2 − 2Mrþ a2�; ð40Þ

A ≔ ðr2 þ a2�Þ2 − a2�Δ sin2 θ; ð41Þ

and where it should be noted that the function ΣK differs by
a quadratic term in the radial coordinate from the corre-
sponding KRZ function, i.e., ΣK ¼ Σr2 (Σ is dimensionless
while ΣK has the dimensions of a squared length).
A direct comparison between the Kerr metric (38) and

the original KRZ metric presented in Eq. (1) implies that
the free metric functions in the metric (37) for the case of a
Kerr spacetime are given by
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B2 ¼ 1; ð42Þ

N2 ¼ Δ
r2
; ð43Þ

K2 ¼ A
ΣKr2

; ð44Þ

W ¼ 2Ma�
ΣK

: ð45Þ

Substituting the relations (42)–(45) in the transformed HP
metric (37) yields the KRZ metric reduced to a Kerr
spacetime in the HP coordinates

ds2 ¼ −
�
1 −

2Mr
ΣK

�
dt2 þ 2ΣKffiffiffiffi

A
p dtdr −

4Mr
ΣK

a�sin2θdtdϕ

þ ΣKdθ2 þ
A
ΣK

sin2θdϕ2: ð46Þ

The Ricci scalar of such a metric does not vanish
everywhere, but is instead given by

R ≔ gμνRμν ¼
a4�Δ sin2 θ cos2 θ

Σ3
KA

2
F1ðr; θÞ; ð47Þ

where the function F1 has the radial dependence F1ðr; θÞ ∝
rn with n ≤ 6. In other words, the metric is flat only at the
horizon, the polar axis, and the equatorial plane. Because a
well-posed coordinate transformation cannot change the
Ricci-flatness property of the Kerr solution, this is an
indication that the initial coordinate transformations (27)
and (28) are not adequate and alternative approaches need
to be found.
Besides leading to a Kerr reduction that is not Ricci flat,

the metric in Eq. (37) also suffers from an additional
drawback when it needs to be implemented in numerical
simulations (see Refs. [4,29] for some examples of numeri-
cal simulations of accretion onto black holes in different
theories of gravity). This is because numerical codes
solving the equations of general-relativistic hydrodynamics
or magnetohydrodynamics systematically adopt a 3þ 1
split of spacetime where the metric and its inverse have
components given by (see, e.g., [30,31])

gμν ¼

0
B@

−α2 þ βkβk βj

βi γij

1
CA; ð48Þ

gμν ¼

0
B@

−1=α2 βj=α2

βi=α2 γij − βiβj=α2

1
CA; ð49Þ

where α is the (scalar) lapse function, β is the shift
vector, and γ is the spatial three-metric. In the 3þ 1 split,

the determinant of the four-metric g ≔ detðgμνÞ and that of
the three-metric γ ≔ detðγijÞ are related by the simple
expression

ffiffiffiffiffiffi
−g

p ¼ α
ffiffiffi
γ

p
: ð50Þ

Since the metric in Eq. (37) has grr ¼ γrr ¼ 0, the deter-
minant of the three-metric is zero (γ ¼ 0), but that of the
four-metric is nonzero as in Eq. (3), thus leaving the lapse
function divergent. Overall, therefore, the coordinate trans-
formation in Eqs. (27) and (28) leads to aKRZ form (37) that
is not useful in practice. In view of these drawbacks, in the
following section we present a KRZ form in HP coordinates
that is regular at the horizon and that can be implemented in
numerical simulations. [See Appendix B for a discussion
about the coordinate transformation leading to the KRZ
formulation in Eq. (37).]

B. A new Ansatz for a subclass
of the KRZ metric

As anticipated in the previous section, a different
approach to find a form of the KRZ metric that is HP
and leads to a Ricci-flat Kerr reduction is to start from a
formulation of the KRZ expansion where the metric
functions that are themselves separable. Fortunately, this
problem has already been solved by Konoplya, Stuchlík,
and Zhidenko [32], who have derived a subclass of the
KRZ metric that allows for separation of variables. In such
a subclass, the KRZ functions can be written as

Bðr; θÞ≕RBðrÞ; ð51Þ

N2ðr; θÞ≕ 1 −
RMðrÞ

r
þ a2�

r2
; ð52Þ

Wðr; θÞ ¼ 1

Σðr; θÞ
a�RMðrÞ

r2
; ð53Þ

K2ðr;θÞ¼ 1

Σðr;θÞ
�
1þa2�

r2
þa2�cos2θ

r2
N2ðrÞ

�
þa�Wðr;θÞ

r

¼ 1

Σðr;θÞ
�
1þa2�

r2
þa2�
r2
RMðrÞ

r
þa2�cos2θ

r2

×

�
1−

RMðrÞ
r

þa2�
r2

��

¼Σðr;θÞþ
�
1þ RMðrÞ

Σðr;θÞr
�
a2�sin2θ

r2
; ð54Þ

where Eq. (52) can be taken as the implicit definition of the
function RMðrÞ. Note that in this way, four free KRZ
functions: B and N depend on r alone, while the functions
W and K have also a θ-dependence, but only in terms of
Σðr; θÞ and sin2 θ.
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We can now proceed with a coordinate transformation
that will guarantee regularity across the horizon by requir-
ing that the transformation functions Ĉ and D̂ are inde-
pendent of θ, i.e., Ĉ ¼ ĈðrÞ, D̂ ¼ D̂ðrÞ. The differential
form is then reduced to

dt̂ ¼ dtþ CðrÞdr; ð55Þ

dϕ̂ ¼ dϕþDðrÞdr; ð56Þ

so that the transformed metric remains as in Eqs. (29)–(32).
Note that when choosing the transformation functions
CðrÞ and DðrÞ to regularize the metric components in
Eqs. (30)–(32), we can no longer force the relation (33),
because the factor W=ðK2rÞ is dependent on θ. Thus,
none of the brackets in Eqs. (30)–(32) vanish, but each of
them has to be regular at the horizon; i.e., they cannot
contain a factor N2 in the denominator. To this scope
we set

CðrÞ ¼ RBRM

N2r
; ð57Þ

DðrÞ ¼ RBa�
N2r2

; ð58Þ

which results in the condition

W
K2r

C −D ¼ RBa�
N2r2

�
1

ΣK2

R2
M

r2
− 1

�

¼ −
RBa�
K2r2

�
1þ RM

Σr

�
: ð59Þ

The corresponding modified metric components are then
simplified as

grr ¼
R2
B

N2K2

�
ΣK2 −

R2
M

r2

�
þ R2

Ba
2�

K2r2

�
1þ RM

Σr

�
2

sin2θ

¼ ΣR2
B

K2

�
1þ RM

Σr

�
þ R2

B

K2

�
1þ RM

Σr

�
2 a2�sin2θ

r2

¼
�
1þ RM

Σr

�
R2
B; ð60Þ

grt̂¼
RBRM

K2r
þRBRM

K2r

�
1þRM

Σr

�
a2� sin2 θ
Σr2

¼RBRM

Σr
; ð61Þ

grϕ̂ ¼ −
�
1þ RM

Σr

�
RBa� sin2 θ; ð62Þ

leading to the following form of the separable KRZ metric
in HP coordinates (where we drop the hat on the t and ϕ
coordinates)

ds2¼−
�
1−

RM

Σr

�
dt2þ2

RM

Σr
RBdtdr−2

RM

Σr
a� sin2 θdtdϕ

þ
�
1þRM

Σr

�
R2
Bdr

2−2

�
1þRM

Σr

�
RBa� sin2 θdrdϕ

þΣr2dθ2þK2r2 sin2 θdϕ2: ð63Þ

We note that, as already remarked in Ref. [32], it is in
principle possible to introduce a new radial coordinate
defined through the differential dr̂ ¼ RBdr, such that the
function RBðrÞ is absorbed into the differential and hence
the function Bðr̂Þ ¼ 1. While this choice does produce an
apparent simplification of the metric form (63), it does at
the cost of introducing more complex expressions for
the radial functions Σ, N2, and K2, which have to adopt
a definition different from those given in Eqs. (2), (52),
and (54), and hence containing an additional radial
function RΣðr̂Þ. In practice, therefore, the new radial
coordinate r̂ does not lead to a significant (or effective)
simplification to the metric (63); for this reason, we will
not consider it further in the following sections.
To calculate the inverse of the metric in Eq. (63), it is

useful to first use the following identity:

gttg2rϕ−gtrgtϕgrϕþg2trgϕϕ−gttgrrgϕϕ¼ΣR2
Br

2 sin2 θ; ð64Þ

which, in turn, simplifies the expressions of the inverse
metric, whose nonzero components are

gtt ¼ g2rϕ−grrgϕϕ
gttg2rϕ−gtrgtϕgrϕþg2trgϕϕ−gttgrrgϕϕ

¼−
�
1þRM

Σr

�
;

ð65Þ

gtr ¼ gtrgϕϕ−gtϕgrϕ
gttg2rϕ−gtrgtϕgrϕþg2trgϕϕ−gttgrrgϕϕ

¼ RM

ΣRBr
; ð66Þ

grr ¼ g2tϕ−gttgϕϕ
gttg2rϕ−gtrgtϕgrϕþg2trgϕϕ−gttgrrgϕϕ

¼ N2

ΣR2
B
; ð67Þ

grϕ¼ gttgrϕ−gtrgtϕ
gttg2rϕ−gtrgtϕgrϕþg2trgϕϕ−gttgrrgϕϕ

¼ a�
ΣRBr2

; ð68Þ

gϕϕ ¼ g2tr−gttgrr
gttg2rϕ−gtrgtϕgrϕþg2trgϕϕ−gttgrrgϕϕ

¼ 1

Σr2 sin2 θ
;

ð69Þ

gθθ ¼ 1

gθθ
¼ 1

Σr2
: ð70Þ

Note that none of the metric components in Eqs. (63)
and (65)–(70) contain the singular term 1=N2, thus man-
ifesting the HP nature of such a form of the separable
KRZ metric.
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With the HP KRZ metric (63), it is important to check
whether it yields a Ricci-flat Kerr reduction. We manage to
obtain an expression for the Ricci scalar while keeping
RBðrÞ and RMðrÞ unspecified,

R ≔ gμνRμν ¼
1

Σ3R3
Br

6
½RBðR2

B − 1ÞF2ðr; θÞ

þ RBð2R0
M þ R00

MrÞF3ðr; θÞ þ R0
BrF4ðr; θÞ�; ð71Þ

where the radial dependence in the functions Fi with i ¼ 2,
3, 4 is given by Fiðr; θÞ ∝ rn with n ≤ 4 and a prime
indicates a radial derivative. Clearly, under the conditions
that RB ¼ 1 and RM ¼ const (see Sec. V), the Ricci scalar
vanishes, as expected for the Kerr metric. Moreover,
expression (71) does not change if evaluated in the original
coordinates, i.e., the standard KRZ metric (1) with sepa-
rability constraints in Eqs. (51)–(54), thus proving that the
coordinate transformation chosen in Eqs. (55) and (56) has
the desired properties of providing an HP form of the KRZ
metric that is Ricci flat when reduced to a Kerr black hole.
To facilitate a direct implementation in numerical

codes, we report here explicitly the 3þ 1 metric compo-
nents of (63) and (65)–(70):

γrr ¼
�
1þ RM

Σr

�
R2
B; ð72Þ

γrϕ ¼ −
�
1þ RM

Σr

�
RBa� sin2 θ; ð73Þ

γθθ ¼ Σr2; ð74Þ

γϕϕ ¼ K2r2 sin2 θ; ð75Þ

βr ¼
RBRM

Σr
; ð76Þ

βϕ ¼ −
RM

Σr
a� sin2 θ; ð77Þ

α2 ¼ 1

1þ RM=ðΣrÞ
; ð78Þ

while the corresponding inverse is

γrr ¼ K2

ΣR2
B

1

1þ RM=ðΣrÞ
; ð79Þ

γrϕ ¼ a�
ΣRBr2

; ð80Þ

γθθ ¼ 1

Σr2
; ð81Þ

γϕϕ ¼ 1

Σr2 sin2 θ
; ð82Þ

βr ¼ RM

ΣRBr
1

1þ RM=ðΣrÞ
; ð83Þ

βϕ ¼ 0; ð84Þ

βkβk ¼
R2
M=ðΣ2r2Þ

1þ RM=ðΣrÞ
: ð85Þ

IV. CARTESIAN FORM OF THE KRZ METRIC
IN HP COORDINATES

It is not unusual that general-relativistic codes implement
black-hole metrics in Cartesian coordinates as these, by
construction, remove possible coordinate singularities at
the polar axis and are generally easier to handle in fully
numerical-relativity codes (see, e.g., [18] for a comparison
of different codes). Hence, it is convenient to derive
expressions of the KRZ metric in HP coordinates also in
Cartesian coordinates, and to this scope, we take inspiration
by the mathematical path followed when expressing the
Kerr metric in Cartesian Kerr-Schild coordinates. More
specifically, we start with a “Kerr-Schild decomposition”
where the metric is split into two parts,

gμν ¼ ̊gμν þ flμlν; ð86Þ

where ̊gμν is a reference metric with a particularly simple
form, f is a scalar function, and lμ is a null vector with
respect to the full metric, i.e.,

gμνlμlν ¼ 0: ð87Þ

The decomposition (86) is totally generic and hence
employable in any coordinate system. However, it is easier
for us to try a Kerr-Schild form starting from spherical
coordinates and then transform over to Cartesian ones.
Inspired by what was done for the Kerr solution in Kerr-
Schild coordinates, we fix the scalar function f in Eq. (86)
to be

f ≔
RM

Σr
: ð88Þ

From the relevant metric functions

grr ¼
�
1þ RM

Σr

�
R2
B; ð89Þ

grθ ¼ 0; ð90Þ

grϕ ¼ −
�
1þ RM

Σr

�
RBa� sin2 θ; ð91Þ

the null vector is assumed to have components
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lr ¼RB; lθ ¼ 0; lϕ ¼−a�sin2θ: ð92Þ

As a result, we can solve Eq. (87) to obtain the component
lt, namely,

gμνlμlν ¼ gttltlt þ 2gtrltlr þ grrlrlr

þ 2grϕlrlϕ þ gϕϕlϕlϕ

¼ −
�
1þ RM

Σr

�
ltlt þ

2RM

Σr
lt þ

�
1 −

RM

Σr

�
¼ 0;

ð93Þ

with the solutions being

lt ¼ 1 and lt ¼ −
Σr − RM

Σrþ RM
: ð94Þ

For simplicity, hereafter we will consider the simpler
solution lt ¼ 1. The remaining part of the metric has then
the following form:

̊gtt ¼ −1; ð95Þ

̊gtr ¼ 0; ð96Þ

̊gtϕ ¼ 0; ð97Þ

̊grr ¼ R2
B; ð98Þ

̊grϕ ¼ −RBa� sin2 θ; ð99Þ

̊gθθ ¼ Σr2; ð100Þ

̊gϕϕ ¼ ðr2 þ a2�Þ sin2 θ: ð101Þ

Next, when wishing to express the Kerr metric in
Cartesian Kerr-Schild coordinates we can adopt a set of
coordinates defined as

x ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2�

q
sin θ cos

�
ϕþ arctan

a�
r

�
; ð102Þ

y ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2�

q
sin θ sin

�
ϕþ arctan

a�
r

�
; ð103Þ

z ≔ r cos θ: ð104Þ

Employing the Kerr-Schild decomposition (86) and the
Cartesian coordinates (102)–(104), we can obtain the
separable KRZ metric in Cartesian HP coordinates. In
particular, the corresponding null vector lμ will have
spatial components

lx ¼
x
Σr

�
RB −

a2�ðx2 þ y2Þ
ðr2 þ a2�Þ2

�
þ a�y
r2 þ a2�

; ð105Þ

ly ¼
y
Σr

�
RB −

a2�ðx2 þ y2Þ
ðr2 þ a2�Þ2

�
−

a�x
r2 þ a2�

; ð106Þ

lz ¼
z
Σr

�
r2 þ a2�

r2
RB −

a2�ðx2 þ y2Þ
r2ðr2 þ a2�Þ

�
; ð107Þ

where Σ is now expressed as

Σ ¼ 1þ a2�z2

r4
ð108Þ

and r is implicitly determined by the relation

x2 þ y2

r2 þ a2�
þ z2

r2
¼ 1; ð109Þ

which marks the ring singularity when z ¼ 0.
Similarly, the components of the reference metric ̊gμν

will be given by

̊gtx ¼ ̊gty ¼ ̊gtz ¼ 0; ð110Þ

g̊xx ¼
x2

Σ2r2

�
R2
B−

a2�ðx2þy2Þ
ðr2þa2�Þ2

ð2RB−1ÞþΣ
z2ðr2þa2�Þ
r2ðx2þy2Þ

�

þ y2

x2þy2
−
a�
Σr

2xy
r2þa2�

ðRB−1Þ; ð111Þ

g̊yy ¼
y2

Σ2r2

�
R2
B−

a2�ðx2þy2Þ
ðr2þa2�Þ2

ð2RB−1ÞþΣ
z2ðr2þa2�Þ
r2ðx2þy2Þ

�

þ x2

x2þy2
−
a�
Σr

2xy
r2þa2�

ðRB−1Þ; ð112Þ

g̊zz ¼
z2

Σ2r2

��
r2þa2�
r2

�
2

R2
B−

a2�ðx2þy2Þ
r4

ð2RB−1Þ

þΣ
r2ðx2þy2Þ
z2ðr2þa2�Þ

�
; ð113Þ

g̊xy ¼
xy
Σ2r2

�
R2
B−

a2�ðx2þy2Þ
ðr2þa2�Þ2

ð2RB−1ÞþΣ
z2ðr2þa2�Þ
r2ðx2þy2Þ

�

−
xy

x2þy2
−
a�
Σr

x2−y2

r2þa2�
ðRB−1Þ; ð114Þ

g̊xz ¼
xz
Σ2r2

�
r2þa2�
r2

R2
B−

a2�ðx2þy2Þ
r2ðr2þa2�Þ

ð2RB−1Þ−Σ
�

þ a�
Σr

yz
r2
ðRB−1Þ; ð115Þ
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̊gyz ¼
yz
Σ2r2

�
r2 þ a2�

r2
R2
B −

a2�ðx2 þ y2Þ
r2ðr2 þ a2�Þ

ð2RB − 1Þ − Σ
�

−
a�
Σr

xz
r2

ðRB − 1Þ: ð116Þ

It is then not difficult to verify that the null condition (87)
still holds in terms of the full metric (86). In particular, in
the case of RBðrÞ ¼ 1, the null vector is reduced to

lx ¼
rxþ a�y
r2 þ a2�

; ð117Þ

ly ¼
ry − a�x
r2 þ a2�

; ð118Þ

lz ¼
z
r
; ð119Þ

and the reference metric can be dramatically simplified
since ̊gμν ¼ ημν, the Minkowski metric for flat spacetime.
For compactness, we will not present here the 3þ 1
expressions for the KRZ metric in Cartesian HP coordi-
nates, which we, however, report in Appendix A.

V. REDUCTION TO KNOWN STATIONARY
BLACK HOLES

We next show how various known metrics describing
stationary black holes can be represented within the
framework of the KRZ metric in HP coordinates by
suitably choosing specific expressions for the metric
functions RBðrÞ and RMðrÞ.

A. Kerr metric

Starting from the generic metric (63), the reduction to the
Kerr spacetime is obtained when fixing

RBðrÞ ¼ 1; ð120Þ

RMðrÞ ¼ 2M; ð121Þ

so that Eqs. (51)–(54) reduce to Eqs. (42)–(45). Under the
conditions (120) and (121), the HP KRZ metric (63)
becomes

ds2 ¼ −
�
1 −

2Mr
ΣK

�
dt2 þ 4Mr

ΣK
dtdr −

4Mr
ΣK

a� sin2 θdtdϕ

þ
�
1þ 2Mr

ΣK

�
dr2 − 2

�
1þ 2Mr

ΣK

�
a� sin2 θdrdϕ

þ ΣKdθ2 þ
A
ΣK

sin2 θdϕ2; ð122Þ

which is precisely the Kerr-Schild form of the Kerr metric
and hence Ricci flat. The fact that the reduction of the KRZ
metric in HP coordinates (63) leads to the Kerr-Schild

metric in the case of the Kerr solution represents a very
important feature, as it considerably simplifies the com-
parison between Kerr black holes and other, non-Kerr but
stationary, black holes described by the KRZ metric (63).
The Cartesian HP form of the metric satisfies the relation

gμν ¼ ημν þ
2Mr
ΣK

lμlν; ð123Þ

with the null four-vector having components

lμ ¼
�
1;
rxþ a�y
r2 þ a2�

;
ry − a�x
r2 þ a2�

;
z
r

�
: ð124Þ

B. Kerr-Newman metric

Similarly, the Kerr-Newman metric in HP coordinates
can be obtained from the generic HP KRZ metric (63) after
setting

RBðrÞ ¼ 1; ð125Þ

RMðrÞ ¼ 2M −
Q2

r
; ð126Þ

where Q is the electric charge of the black hole. The KRZ
functions are then modified as

B2 ¼ 1; ð127Þ

N2 ¼ Δ
r2

þQ2

r2
; ð128Þ

K2 ¼ A
ΣKr2

−
Q2a2�
ΣKr4

; ð129Þ

W ¼ 2Ma�
ΣK

−
Q2a�
ΣKr

: ð130Þ

As a result, the reduction of the HP KRZ metric (63) in the
case of the Kerr-Newman solution is

ds2¼−
�
1−

2Mr−Q2

ΣK

�
dt2þ2

2Mr−Q2

ΣK
dtdr

−2
2Mr−Q2

ΣK
a� sin2 θdtdϕ

þ
�
1þ2Mr−Q2

ΣK

�
dr2−2

�
1þ2Mr−Q2

ΣK

�

×a� sin2 θdrdϕþΣKdθ2þ
Ar2−Q2a2�

ΣKr2
sin2 θdϕ2;

ð131Þ
which, to the best of our knowledge, has not been
presented before in the literature (an HP formulation of
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the Kerr-Newmann solution in Cartesian coordinates can
be found in Ref. [33], while a version in null coordinates
has been presented in Ref. [34]). The corresponding
Cartesian HP form is then

gμν ¼ ημν þ
2Mr −Q2

ΣK
lμlν; ð132Þ

with the null vector (124) unchanged.

C. Rotating dilaton metric

For a rotating dilaton black hole characterized by
rotation parameter a� and dilaton parameter b�, the KRZ
functions have the following form:

B2 ¼ r2

r2 þ b2�
; ð133Þ

N2 ¼ 1 −
2Mρ

r2
þ a2�

r2
≕

Δd

r2
; ð134Þ

K2 ¼ ΣK

r2
þ
�
1þ 2Mρ

ΣK

�
a2� sin2 θ

r2
≕

Ad

ΣKr2
; ð135Þ

W ¼ 2Mρa�
ΣKr

; ð136Þ

which imply

RBðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2

r2 þ b2�

s
; ð137Þ

RMðrÞ ¼
2Mρ

r
; ð138Þ

where

ρ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2�

q
− b�: ð139Þ

Therefore, the corresponding HP KRZ metric (63) describ-
ing a rotating dilaton black hole is

ds2 ¼ −
�
1 −

2Mρ

ΣK

�
dt2 þ 4Mρ

ΣK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2 þ b2�

s
dtdr

−
4Mρ

ΣK
a� sin2 θdtdϕþ

�
1þ 2Mρ

ΣK

�
r2

r2 þ b2�
dr2

− 2

�
1þ 2Mρ

ΣK

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2 þ b2�

s
a� sin2 θdrdϕ

þ ΣKdθ2 þ
Ad

ΣK
sin2 θdϕ2: ð140Þ

The Cartesian HP form again satisfies the decomposition

gμν ¼ ̊gμν þ
2Mρ

ΣK
lμlν; ð141Þ

with the null vector and reference metric as expressed in
Eqs. (105)–(107) and Eqs. (110)–(116).

VI. REDUCTION TO STATIC BLACK HOLES

The KRZ framework describing generic stationary black
holes [16] inherited much of the mathematical properties
that make it so efficient from the previous RZ approach
describing generic static black holes [13]. We complete our
treatment of the HP formulation of the KRZ metric by
considering also the simpler, but often more transparent,
case of nonrotating spacetimes. To this scope, we recall that
the RZ metric, to which the KRZ metric reduces in the case
of spherically symmetric spacetimes, takes the form [13]

ds2 ¼ −N2dt2 þ B2

N2
dr2 þ r2dθ2 þ r2 sin2 θdϕ2: ð142Þ

A rapid comparison with the KRZ metric (1) indicates that
the two are equivalent if

a� ¼ 0; ð143Þ

Σ ¼ 1; ð144Þ

W ¼ 0; ð145Þ

K2 ¼ 1; ð146Þ

and thus the remaining metric functions become

BðrÞ≕RBðrÞ; ð147Þ

N2ðrÞ≕ 1 −
RMðrÞ

r
; ð148Þ

so that the HP KRZ metric (63) reduces to the RZ metric in
HP coordinates

ds2¼−
�
1−

RM

r

�
dt2þ2RBRM

r
dtdrþ

�
1þRM

r

�
R2
Bdr

2

þ r2dθ2þ r2sin2θdϕ2

¼−N2dt2þ2ð1−N2ÞBdtdrþð2−N2ÞB2dr2

þ r2dθ2þ r2sin2θdϕ2: ð149Þ

Note that the HP RZ metric (149) has nontrivial inverse
metric components given by

gtt ¼ −ð2 − N2Þ; ð150Þ
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gtr ¼ 1 − N2

B
; ð151Þ

grr ¼ N2

B2
; ð152Þ

gθθ ¼ 1

r2
; ð153Þ

gϕϕ ¼ 1

r2 sin2 θ
: ð154Þ

It is interesting to note that the metric (149) effectively
represents the generalization to arbitrary static spacetimes
of the well-known Eddington-Finkelstein coordinates
employed for a Schwarzschild black hole [30,35,36]. In
the case of a Schwarzschild black hole, in fact, the RZ
metric functions are fixed to be

B2 ¼ 1; ð155Þ

N2 ¼ 1 −
2M
r

; ð156Þ

so that the metric (149) takes the form

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 4M

r
dtdrþ

�
1þ 2M

r

�
dr2

þ r2dθ2 þ r2 sin2 θdϕ2; ð157Þ

which indeed corresponds to the Schwarzschild solution in
(ingoing) Eddington-Finkelstein coordinates.
Finally, and in analogy with what was done with the

KRZ metric in HP coordinates, we provide below explicit
expressions for the corresponding components when the
metric is written in a 3þ 1 split:

γij ¼ diagðB2ð2 − N2Þ; r2; r2 sin2 θÞ; ð158Þ

γij ¼ diag

�
1

B2ð2 − N2Þ ;
1

r2
;

1

r2 sin2 θ

�
; ð159Þ

βr ¼ Bð1 − N2Þ; ð160Þ

βr ¼ 1 − N2

Bð2 − N2Þ ; ð161Þ

βkβk ¼
ð1 − N2Þ2
2 − N2

; ð162Þ

α2 ¼ 1

2 − N2
: ð163Þ

VII. CONCLUSION

As new and unprecedented observations of stellar-mass
and supermassive black holes are now becoming available,
and as the number of new alternative theories of gravity is
increasing steadily, it is clear that parametrized approaches
to describe the metric of static and stationary black holes
represent a very effective approach to extract agnostically
information from such observations.
In this spirit, we have here considered the family of the

Rezzolla-Zhidenko and Konoplya-Rezzolla-Zhidenko par-
ametrizations of black-hole spacetimes—which are able to
reproduce arbitrary black-hole spacetimes with percent
precision and only a few coefficients—as a reference
approach to study the phenomenology of matter near black
holes. These parametrizations, however, have been con-
structed only for the exterior portion of the spacetime that,
in the case of black holes, spans the region between the
event horizon and spatial infinity. For this reason, they are
not optimal for actual numerical simulations as those
studying the accretion onto supermassive black holes,
which instead make use of horizon-penetrating coordinates
that are well defined in the black-hole interior and up to the
physical singularity.
We have therefore discussed two different Ansaetze for

the derivation of an HP form of the KRZ metric. The first
approach leads to a regular version of the KRZ metric, but
suffers from having a nonzero Ricci scalar when reduced
to the Kerr limit. The violation of this constraint is to be
found in the coordinate transformations employed that are
too general and unrestricted to provide at the same time
regularity and a Ricci-flat Kerr reduction. To compensate
for these shortcomings, we have considered an alternative
Ansatz which starts from a subclass of the KRZ metric
that already allows for separation of variables of the
Hamilton-Jacobi equations. We then show that in such a
subclass, the KRZ metric can be written in an HP form
that shares many similarities with the Kerr-Schild decom-
position. To facilitate the use of this HP form of the KRZ
metric, we have derived the corresponding expressions in
3þ 1 decompositions of the spacetime when employing
either spherical or Cartesian coordinates. Finally, we have
shown that when reduced to the case of Kerr and
Schwarzschild black holes, the HP form of the KRZ
metric reduces, respectively, to the Kerr-Schild represen-
tation of the Kerr spacetime and to the Eddington-
Finkelstein formulation of the Schwarzschild spacetime.
This highlights that in the relevant limit, the HP KRZ
formulation leads to Ricci-flat spacetimes.
Because these parametrized metrics will allow one to

model accretion flows onto arbitrary black holes in
alternative theories of gravity, they have the potential
of being a very effective tool to extract important
information from the astronomical observations of black
holes.
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APPENDIX A: THE 3+ 1 FORM OF THE KRZ
METRIC IN CARTESIAN HP COORDINATES

Here we report the 3þ 1 expressions for the KRZ metric
in Cartesian HP coordinates. According to Sec. IV and
Eqs. (48) and (49), the three-metric in the Cartesian HP
coordinates has components

γxx¼
x2

Σ2r2

�
R2
B−

a2�ðx2þy2Þ
ðr2þa2�Þ2

ð2RB−1ÞþΣ
z2ðr2þa2�Þ
r2ðx2þy2Þ

�

þ y2

x2þy2
−
a�
Σr

2xy
r2þa2�

ðRB−1ÞþRM

Σr
l2
x; ðA1Þ

γyy¼
y2

Σ2r2

�
R2
B−

a2�ðx2þy2Þ
ðr2þa2�Þ2

ð2RB−1ÞþΣ
z2ðr2þa2�Þ
r2ðx2þy2Þ

�

þ x2

x2þy2
−
a�
Σr

2xy
r2þa2�

ðRB−1ÞþRM

Σr
l2
y; ðA2Þ

γzz ¼
z2

Σ2r2

��
r2 þ a2�

r2

�
2

R2
B −

a2�ðx2 þ y2Þ
r4

ð2RB − 1Þ

þ Σ
r2ðx2 þ y2Þ
z2ðr2 þ a2�Þ

�
þ RM

Σr
l2
z ; ðA3Þ

γxy¼
xy
Σ2r2

�
R2
B−

a2�ðx2þy2Þ
ðr2þa2�Þ2

ð2RB−1ÞþΣ
z2ðr2þa2�Þ
r2ðx2þy2Þ

�

−
xy

x2þy2
−
a�
Σr

x2−y2

r2þa2�
ðRB−1ÞþRM

Σr
lxly; ðA4Þ

γxz ¼
xz
Σ2r2

�
r2 þ a2�

r2
R2
B −

a2�ðx2 þ y2Þ
r2ðr2 þ a2�Þ

ð2RB − 1Þ − Σ
�

þ a�
Σr

yz
r2

ðRB − 1Þ þ RM

Σr
lxlz; ðA5Þ

γyz ¼
yz
Σ2r2

�
r2 þ a2�

r2
R2
B −

a2�ðx2 þ y2Þ
r2ðr2 þ a2�Þ

ð2RB − 1Þ − Σ
�

−
a�
Σr

xz
r2

ðRB − 1Þ þ RM

Σr
lylz; ðA6Þ

the shift vector βi is proportional to li, the spatial part of the
null vector

βx ¼
RM

Σr
lx ¼

RMx
Σ2r2

�
RB−

a2�ðx2þy2Þ
ðr2þa2�Þ2

�
þRM

Σr
a�y

r2þa2�
;

ðA7Þ

βy¼
RM

Σr
ly¼

RMy
Σ2r2

�
RB−

a2�ðx2þy2Þ
ðr2þa2�Þ2

�
−
RM

Σr
a�x

r2þa2�
; ðA8Þ

βz ¼
RM

Σr
lz ¼

RMz
Σ2r2

�
r2 þ a2�

r2
RB −

a2�ðx2 þ y2Þ
r2ðr2 þ a2�Þ

�
; ðA9Þ

the lapse function remains as

α2 ¼ 1

1þ RM=ðΣrÞ
: ðA10Þ

APPENDIX B: A DIFFERENT ANSATZ

For completeness, and setting aside the problematic
aspects related to the 3þ 1 decomposition of the KRZ
form (37), we here provide a potential explanation about
why it leads to a Kerr reduction that is not Ricci flat. We
believe the origin of this behavior is to be found in the
incomplete coordinate transformation in Eqs. (27) and (28).
To see this, it is sufficient to integrate them and obtain

t̂ ¼ tþ Ĉðr; θÞ; ðB1Þ
ϕ̂ ¼ ϕþ D̂ðr; θÞ; ðB2Þ

where

Ĉðr; θÞ ≔
Z

Cðr; θÞdr; ðB3Þ

D̂ðr; θÞ ≔
Z

Dðr; θÞdr: ðB4Þ

Taking again the differential of Eqs. (B3) and (B4) we
obtain

dt̂ ¼ dtþ Crðr; θÞdrþ Cθðr; θÞdθ; ðB5Þ
dϕ̂ ¼ dϕþDrðr; θÞdrþDθðr; θÞdθ; ðB6Þ

where

Cr ≔
∂Ĉ
∂r

; Cθ ≔
∂Ĉ
∂θ

; ðB7Þ

Dr ≔
∂D̂
∂r

; Dθ ≔
∂D̂
∂θ

: ðB8Þ

Clearly, Eqs. (B5) and (B6) are different from the
original ansatz (27) and (28) because of the additional
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dθ term, thus indicating that such an ansatz is not general
enough. This consideration motivates us to use the full
transformation in Eqs. (B5) and (B6) to obtain a novel
form, to the best of our knowledge, of the KRZ metric in
HP coordinates. After some algebra, the transformed KRZ
metric has the form

ds2¼−
N2−W2 sin2 θ

K2
dt̂2−2Wrsin2 θdt̂dϕ̂

þK2r2 sin2 θdϕ̂2þgrrdr2þ2grt̂drdt̂þ2grϕ̂drdϕ̂

þ2grθdrdθþgθθdθ2þ2gθt̂dθdt̂þ2gθϕ̂dθdϕ̂; ðB9Þ

where

grr ¼
�
ΣB2

N2
−
N2

K2
C2
r

�
þ
�

W
K2r

Cr −Dr

�
2

K2r2 sin2 θ;

ðB10Þ

grt̂ ¼
N2

K2
Cr −

�
W
K2r

Cr −Dr

�
Wr sin2 θ; ðB11Þ

grϕ̂ ¼
�

W
K2r

Cr −Dr

�
K2r2 sin2 θ; ðB12Þ

grθ ¼ −
N2

K2
CrCθ þ

�
W
K2r

Cr −Dr

�

×

�
W
K2r

Cθ −Dθ

�
K2r2 sin2 θ; ðB13Þ

gθθ ¼
�
Σr2 −

N2

K2
C2
θ

�
þ
�

W
K2r

Cθ −Dθ

�
2

K2r2 sin2 θ;

ðB14Þ

gθt̂ ¼
N2

K2
Cθ −

�
W
K2r

Cθ −Dθ

�
Wr sin2 θ; ðB15Þ

gθϕ̂ ¼
�

W
K2r

Cθ −Dθ

�
K2r2 sin2 θ: ðB16Þ

Using now the same relation between Cr andDr adopted in
Eq. (33), the transformed metric components (B10)–(B16)
become

grr ¼
ΣB2

N2
−
N2

K2
C2
r ; ðB17Þ

grt̂ ¼
N2

K2
Cr; ðB18Þ

grϕ̂ ¼ 0; ðB19Þ

grθ ¼ −
N2

K2
CrCθ; ðB20Þ

gθθ ¼
�
Σr2 −

N2

K2
C2
θ

�
þ
�

W
K2r

Cθ −Dθ

�
2

K2r2 sin2 θ;

ðB21Þ

gθt̂ ¼
N2

K2
Cθ −

�
W
K2r

Cθ −Dθ

�
Wr sin2 θ; ðB22Þ

gθϕ̂ ¼
�

W
K2r

Cθ −Dθ

�
K2r2 sin2 θ: ðB23Þ

The exact form of the functions Cθ and Dθ is still
unknown, but could be uniquely determined by the choices
made for the functions Cr and Dr to guarantee the
regularity of the metric at the event horizon. For instance,
we could fix the function Cr, integrate it in the radial
direction to obtain Ĉðr; θÞ, and then get Cθ after differ-
entiating in the polar direction. However, this is possible in
practice only for the special class of functions for which
Ĉðr; θÞ is separable, i.e., for Ĉðr; θÞ ¼ ΦðrÞΨðθÞ. While it
is in principle possible to proceed in this manner, and this
may be explored in the future, the Ansatz made in Sec. III B
to restrict the KRZ to metric functions that are themselves
separable has turned out to be the simplest and most
effective in practice.
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