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Complete waveform models able to account for arbitrary nonplanar orbits represent a holy grail in
current gravitational-wave astronomy. Here, we take a step toward this direction and present a simple yet
efficient prescription to obtain the evolution of the spin vectors and of the orbital angular momentum along
noncircularized orbits, that can be applied to any eccentric aligned-spins waveform model. The scheme
employed is motivated by insights gained from the post-Newtonian (PN) regime. We investigate the
phenomenology of the Euler angles characterizing the time-dependent rotation that connects the
coprecessing frame to the inertial one, gauging the importance of noncircular terms in the evolution of
the spins of a precessing binary. We demonstrate that such terms are largely negligible, irrespectively of the
details of the orbit. Such insights are confirmed by studying the radiation-frame of a few eccentric,
precessing numerical relativity (NR) simulations. Our investigations confirm that the usual “twisting”
technique employed for quasispherical systems can be safely applied to noncircularized binaries. By then
augmenting a state-of-the-art effective-one-body (EOB) model for noncircular planar orbits with the
prescription discussed, we obtain an inspiral-merger-ringdown (IMR) model for eccentric, precessing
binary black holes (BBHs). We validate the model in the quasispherical limit via mismatches and present
one phasing comparison against a precessing, eccentric simulation from the RIT catalog.
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I. INTRODUCTION

Ever since the first historic binary black hole (BBH)
detection, the field of gravitational-wave (GW) astronomy
has attracted much interest from the broader physics
community. The wealth of information that can be
garnered from the detection and analysis of compact
binary coalescences (CBCs) has been proven time and
time again [1–13], with the growth in the number of
observed events being accompanied by detection of
exceptional systems, each characterized by peculiar fea-
tures such as very unequal masses [14,15], hints of spins
precession [14,16,17], large total mass [18,19], the pres-
ence of one or more neutron stars (NSs) [2,20–22] and
more. One such exceptional event, GW190521 [18,19],
has been the center of attention for many groups, with a
large number of possible astrophysical interpretations
having been suggested [23–28]. Reference [23], in par-
ticular, suggested that GW190521 could be interpreted as
the merger of two precessing black holes (BHs) coalesc-
ing along highly eccentric orbits. While successive studies
have shown that the effects of precession and noncircu-
larity on the detected signal are mostly degenerate for
binaries with large total mass [25,29] and that prior

choices strongly affect the outcome of the analysis itself
[30], it is nonetheless of paramount importance for the
GWmodeling community to be able to deliver models that
can quickly and reliably generate waveforms for these
kinds of binaries, thus covering a portion of the parameter
space that has been up to now largely ignored. In fact, only
by relying on complete models one can hope to fully
understand the interplay between the two effects, and
break the degeneracies discussed.
The history of the development of models containing

precession is rather rich [31–36]. Most models now employ
a “twist” technique [33–36], coupled with a way of
obtaining the evolution of the so-called “coprecessing
frame,” in which waveforms appear as if they were emitted
by a quasialigned system [32,37]. While many nontrivial
effects have just started to be properly understood and
modeled, such as mode asymmetries or the merger-
ringdown emission [38–40], it is safe to say that GW
models of precessing binaries have reached a mature
state [41–50], and they are now routinely employed in
parameter estimation (PE) of GW data.
The inclusion of eccentricity, instead, is much more

recent—and largely limited to the EOB [51–57] family of
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models1 that can rely on a Hamiltonian formulation of the
dynamics not restricted to quasicircular or quasispherical
systems [61,62]. Three main families of models exist: the
SEOBNRE [63–65], TEOBResumS-Dalì [66–69] and
SEOBNRv4EHM [70] models. All differ in the way eccen-
tricity is incorporated into the equations of motion—and in
particular, in the radiation reaction driving the dissipative
dynamics. While the SEOBNRE models include noncircular
effects in the radiation reaction up to 2PN as an additive
correction to the circular terms in the energy-balance
equation, theTEOBResumS-Dalìmodels employ a differ-
ent strategy, and include thenoncircular terms in the radiation
reaction as a multiplicative Newtonian correction to the
factorized EOBwaveform. TheSEOBNRv4EHMmodel does
not include any explicit noncircular terms in the radiation
reaction, which is driven by the circular terms only, but a-
posteriori includes 2PN order corrections in the computation
of the waveform [71]. Comparisons of the validity of these
approaches have been carried out in the test-mass limit [72],
showing that for particles moving in Schwarzschild space-
times the waveforms obtained with the TEOBResumS-
Dalì prescription are in excellent agreement with the exact
numerical waveforms obtained solving the Regge-Wheeler-
Zerilli (RWZ) and Teukolsky equations [73], and on average
closer to the numerical results than the ones obtained by
including explicit 2PN expressions.
The inclusion of both eccentricity and precession is a

regime that is still mostly unexplored. A few studies have
recently investigated the interplay between the two effects
[74–79], but the considerations are typically (i) limited to
purely PN (and at times Newtonian) arguments, (ii) based
on orbit-averaged PN expressions, (iii) not immediately
applicable to the full IMR regimes or (iv) not validated
against full-fledged NR simulations. The lack of such
simulations spanning a large number of orbital cycles
and covering the parameter space of interest has so far
limited the development of models for these systems. The
only exception is the recent work of [80], who have
extended the SEOBNRE model to include the evolution
of the spins along noncircular orbits. In this work, the
authors solve the full EOB equations, with a spherical
(rather than planar) EOB Hamiltonian (borrowed from the
SEOBNRv4 model [81,82]), augmenting the spins equa-
tions of motions with explicit noncircular terms. While
general, this approach is computationally expensive, and it
is not clear whether it is truly necessary to solve the full
spins equations of motion together with the EOB dynamics
to obtain a faithful model for the precessing, eccentric
regime.
In this paper, we present a simple yet efficient scheme to

obtain waveforms from generic nonplanar orbits, that can
be applied to any eccentric aligned-spins waveform model.

Section II is dedicated to a brief review of the PN equations
of motion for noncircularized precessing binaries. Starting
from the full 3PN equations of motion, we apply successive
approximations to gauge the importance of noncircular
terms in the evolutions of the spins. Section III tests the
intuitions gained in the PN sector by identifying and
inspecting the coprecessing (radiation) frame of a few
chosen reference NR simulations [83]. We show that the
evolution in this frame resembles that of an aligned-spin
system, as expected. We also compare two simulations
having same initial conditions but different eccentricities,
corroborating the findings of Sec. II. Section IV presents
the extension of the TEOBResumS-Dalì model to
include the evolution of the spins along noncircular orbits.
Putting together the insights gained from the PN regime
and the NR simulations, we show that the scheme
employed is able to capture the main features of eccentric
precessing waveforms. Section V is dedicated to the
validation of the model in the quasicircular, precessing
limit against the same simulations considered in [84]. We
also present one phasing comparison against a precessing,
eccentric simulation from the RIT catalog. Finally, Sec. VI
summarizes the main results and discusses the implications
of this work as well as avenues for future developments.
Throughout the paper we use geometrized units, setting

G ¼ c ¼ 1. We denote the component masses of a binary
system as m1, m2, and the total mass as M ¼ m1 þm2; the
mass fractions are X1;2 ¼ m1;2=M, the mass ratio is
q ¼ m1=m2 ≥ 1, and the symmetric mass ratio is
ν ¼ q=ð1þ qÞ2, with the reduced mass given by μ ¼ Mν.
The spin vectors are S1, S2, and they are related to the
dimensionless spins χ 1;2 by S1 ¼ m2

1χ 1, S2 ¼ m2
2χ 2. The

total spin is given byS ¼ S1 þ S2, and the spin difference by
Σ ¼ S2=X2 − S1=X1; the effective spin variable is
χeff ¼ X1χ1;z þ X2χ2;z, while the orthogonal spin parameter
is χp ¼ max fjχ 1;⊥j; 4þ3q

4q2þ3q jχ 2;⊥jg [45].

II. THE PN SANDBOX

While often unreliable from a quantitative point of view,
PN theory is a powerful tool to gain qualitative insights on
the dynamics of CBCs. In this section, we employ PN
equations of motion to gauge the importance of noncircular
terms in the evolution of the spins of a precessing binary,
and more generically review the effects that nonquasicir-
cular evolution has on the time-dependent rotation that
connects the coprecessing frame to the inertial one. Our
approach is often pedagogical, aiming to reinforce and
extend the intuitions that have been acquired over the years
during the development of quasispherical models for
precessing binaries.

A. Reference frames and equations of motion

Consider a BBH system with spins S1, S2 and total mass
M ¼ m1 þm2, moving in a nonplanar orbit. Following the

1Though note also the PN models of [58,59] and the non-
spinning, eccentric surrogate of [60].
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notation employed in, e.g., [85,86], we describe the system
in center of mass coordinates, and introduce the relative
position and velocity vectors r, v. We denote the unit vector
of the relative position as n ¼ r=r, and the unit vector
pointing along the (Newtonian) orbital angular momentum
L as l ¼ n × v=v. We choose an initial reference frame in
which the z-axis is aligned with l, and the x-axis is aligned
with n. The y axis is then chosen to complete a right-
handed triad.
The equations of motion at 3PN order in modified

harmonic coordinates have the form [85,86]:

dr
dt

¼ v; ð1aÞ

dv
dt

¼ −
Gm
r2

½ð1þAÞnþ Bv� þ dvS

dt
þO

�
1

c7

�
; ð1bÞ

dS
dt

¼ ðX1Ω1 þ X2Ω2Þ × Sþ νðΩ2 −Ω1Þ × Σ; ð1cÞ

dΣ
dt

¼ ðX2Ω1 þ X1Ω2Þ × Σþ ðΩ2 −Ω1Þ × S; ð1dÞ

with:

Ωi ¼ l
�
1

c2
αðiÞ1PN þ 1

c4
αðiÞ2PN þ 1

c6
αðiÞ3PN þO

�
1

c7

��
: ð2Þ

All coefficients listed in the equations above are functions
of r, v, S, Σ and of the symmetric mass ratio ν (or,
alternatively, the component masses m1 and m2), and can
be read from Eqs. (3.4a)–(3.7c) of [85] and Eqs. (355a)–
(355d), (356a)–(356d) of [86]. Notably, the dvS=dt com-
ponent of the acceleration contains a term parallel to l,
which is responsible for the precession of the orbital plane.
Following [49,84], we choose as our reference copre-

cessing frame fx0; y0; z0g the one in which the z0 axis is
aligned with the Newtonian angular momentum l at all
times. We parametrize the time-dependent rotation relating
the fx; y; zg and fx0; y0; z0g frames as a sequence of three
Euler angles αðtÞ, βðtÞ, γðtÞ:

α ¼ arctan

�
ly

lx

�
; ð3aÞ

β ¼ arccosðlzÞ: ð3bÞ

The third angle γ is obtained from α and β by

γ̇ ¼ α̇ cos β; ð4Þ

where the overdot denotes differentiation with respect to
time. Note that, by construction, at the initial time
βð0Þ ¼ 0, while αð0Þ and γð0Þ are undefined according
to the equations above. We resolve this ambiguity by

setting αð0Þ according to Appendix A of [84] and
γð0Þ ¼ αð0Þ. This is not the only possible choice of
coprecessing frame, as one could also specify the direction
of the x0 axis at t ¼ 0 to be aligned with the initial n.
We solve the equations of motion Eqs. (1) numerically,

terminating the integration when the binary reaches the
final peak of the orbital frequency Ω ¼ jv × rj=r2, sur-
passes a maximum threshold time or a minimum radial
separation of r ¼ 4M. As we will also be interested in the
evolution of systems along quasicircular orbits, in order to
perform direct comparisons with the results obtained in the
general case, we implement an eccentricity-reduction
scheme following [87,88].
We compute the dynamics of several systems with

characteristics spanning the parameter space, varying the
mass-ratio q∈ ½1; 9�, the component spins (with the initial
values of the spin parameters χeff ∈ ½−0.9; 0.9� and
χp ∈ ½0; 1�), and the orbit geometry. We consider both bound
orbits (defined by the initial eccentricity, e0 ∈ ½0.01; 0.9�, and
dimensionless semilatus rectum, p0) and unbound configu-
rations (scatterings, dynamical captures), where initial data is
parametrized by the starting energy Ê0 ¼ E0=μ and (orbital)
angular momentum L̂0 ¼ L0=μ (varied from just above the
separatrix to high values), at an initial defined separa-
tion r0 ¼ 10000M.
We neglect, for simplicity, any terms in the PN expres-

sions giving the initial velocities (see Appendix) that
depend on the spins S1, S2. For unbound orbits, because
of the very large initial separation, this leads to negligible
differences between the given initial energy and angular
momentum and the values recovered from the dynamics
using the spin-dependent expressions (< 10−5 for the
former, ≲10−2 for the latter). For bound configurations,
when the out-of-plane spin components are large and
aligned with the orbital angular momentum, this approxi-
mation can result in more important deviations in the
eccentricity and semilatus rectum as estimated from the
dynamics (a value of e0 ¼ 0.9 in input can result in a
recovered initial eccentricity of ∼0.93). However, since
eccentricity is not a gauge invariant parameter anyway, we
accept this (usually very) slight incongruence and treat the
nominal value of e0 as an approximate indicator of the
degree of noncircularity in the orbit.

B. Angular momentum vectors

We begin by reviewing the main results concerning the
dynamical properties of eccentric, precessing binaries in the
PN approximation, starting with a reminder of the effects of
precession on the angular momentum vectors of the system.
If one neglects radiation reaction terms, the equations of

motion for a generic precessing system admit two non-
trivial conserved integrals in the center-of-mass frame: the
energy and the total angular momentum vector, given by
the sum of the orbital and spin contributions:
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J ¼ Lþ S: ð5Þ

The evolution equations for the individual spins S1, S2

guarantee the conservation of their norm. Conversely, the
modulus of the orbital angular momentum decays under
radiation reaction, and with it J. The resulting phenom-
enology for these vectors has been studied in detail in the
literature (see, e.g., [31,89]), and our results are in line with
the findings of such works irrespectively of the shape of the
orbit. At 3PN order the total momentum J is characterized
by slowly decreasing magnitude and approximately con-
served direction (outside of the last few orbits). In contrast,
the orbital angular momentum L and the total spin S
precess around J0 on cones with increasing aperture.
Figure 1, representative of all configurations studied,2

shows the slowly outspiralling tracks of the unit vectors
of J, L and S, projected onto a plane orthogonal to J0, for a
system with mass ratio q ¼ 4, large eccentricity ðe0 ¼ 0.7Þ
and χ 1 ¼ ð0; 0.8; 0.1Þ, χ 2 ¼ ð0.4; 0; 0.2Þ. The long tail in
the track of J, where conservation is clearly broken,
corresponds to just the final cycles of the inspiral.

C. Phenomenolgy of the Euler angles

We now move on to highlighting the relevant features of
the evolution of the Euler angles, focusing on β, which is
most directly tied to the precession of the orbital plane.
Figure 2 shows the evolution of the orbital frequency Ω

and of the Euler angle β for one exemplary systemwithmass
ratio q ¼ 4, spins χ 1 ¼ ð0; 0.2; 0.1Þ, χ 2 ¼ ð0.4; 0; 0.2Þ,
initial eccentricity e0 ¼ 0.1 and semilatus rectum p0 ¼ 30
(see Sec. II D for the meaning of the different curves). As is
the case for all systems we consider, β starts from 0 (by
construction), and over the course of the binary evolution
undergoes a series of slow, but accelerating oscillations. It is
immediately evident that the precession timescale character-
izing these oscillations is much larger than the orbital period:
the system completes ≃55 orbits during the first β cycle in
this example. This separation of timescales remains true for
most of the configurations studied, as evidenced in Fig. 3,
which shows two orbits with larger initial eccentricity
(e0 ¼ 0.4 and e0 ¼ 0.9) but same initial spin vectors.
Effects on β on the orbital timescale are present, at low
eccentricities, exclusively in the form of small nutations
around the overall, slower evolution. As eccentricity grows
and the orbits part from quasicircularity, physical quantities
such as the energy and the angular momentum vectors (and
thus the Euler angles) undergo long stretches of stasis—
rather than slow, secular changes—interspersed with short
but intense bursts of activity, coinciding with periastron
passages (see the bottom panel of Fig. 3).
While our focus has been on one single representative

configuration of mass ratio and spins, the main character-
istic features of the evolution of β do not change signifi-
cantly when varying the initial conditions. Generally
speaking, larger eccentricities and/or spin components in
the direction of the orbital angular momentum lead to fewer
oscillations, the first very stretched out (this is especially
true when the z-components of the spins are antialigned
with the initial l). The maximum value of β is only mildly
influenced by the eccentricity, but depends strongly on the
mass ratio and on the in-plane spin components (it is well
known that larger q and χp typically imply stronger
precession).
The behavior that characterizes highly noncircular orbits

is maximally evident for scatterings and captures, where
each encounter is accompanied by a sudden change in the
direction of l and of the binary properties (energy, absolute
value of the orbital angular momentum, directions of the
spins) which then remain constant until the next encounter
(if there is one). This is illustrated in Fig. 4, which shows
the evolution of β for a series of scattering events with fixed
q ¼ 4, spins χ 1 ¼ ð0; 0.8; 0.1Þ, χ 2 ¼ ð0.4; 0; 0.2Þ, initial
energy Ê0 ¼ 0.02, and L̂0 growing from just above the
threshold between bound and unbound orbits to L̂0 ¼ 7.
The shift in the orbital plane is more pronounced for
systems with a smaller distance of closest approach (and
L̂0) as well as for systems with larger mass-ratio and/or

FIG. 1. Tracks of the evolving angular momentum (total and
orbital) and (total) spin unit vectors, projected onto the plane
perpendicular to the initial value J0. The mass ratio is q ¼ 4, the
initial eccentricity is e0 ¼ 0.7, the semilatus rectum p0 ¼ 30, and
the dimensionless spins χ 1 ¼ ð0; 0.8; 0.1Þ, χ 2 ¼ ð0.4; 0; 0.2Þ.

2With the exception of some rather extreme ones with q ¼ 9
and large, negative initial z-components in the spins. In this
regime, the initial total spin and orbital angular momentum
partially cancel out, but while the norm of S does not change
much during the inspiral, L decays due to radiation reaction, and
this can lead to a peculiar increase in the norm of J, as well as
deviations from the phenomenology described in the text.
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FIG. 2. Evolution of the orbital frequency Ω (top) and the Euler angle β (bottom) for an orbit with q ¼ 4, initial dimensionless spins
χ 1 ¼ ð0; 0.2; 0.1Þ and χ 2 ¼ ð0.4; 0; 0.2Þ, initial eccentricity e0 ¼ 0.1 and semilatus rectum p0 ¼ 30, using different prescriptions for the
orbital and spin dynamics. Also shown are two wholly QC orbits: one with initial separation equal to p0; one with initial separation
chosen so the length of the orbit is the same as the NC case. Notice how the QC evolution of β with suitable initial conditions almost
exactly matches what is found in the NC orbits, with only small oscillating deviations on the orbital timescale.

FIG. 3. Evolution of the orbital frequency Ω and the Euler angle β using different prescriptions for the orbital and spins dynamics, for
two eccentric orbits, both with q ¼ 4, (initial) χ 1 ¼ ð0; 0.2; 0.1Þ and χ 2 ¼ ð0.4; 0; 0.2Þ: e0 ¼ 0.4, p0 ¼ 30 (top), and e0 ¼ 0.9, p0 ¼ 30
(bottom). In both cases an entirely QC orbit with same total duration is also shown. As the eccentricity increases, the slow variation of β
on the precession timescale is no longer faithfully reproduced by the QC orbit; the difference between the orbit with full NC spin and
orbital evolution and that with QC spin dynamics remains notably small even at high eccentricities.
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orthogonal spin parameter χp
3 (see Fig. 4). A curious

feature is the inflection in the β curve at periastron: initially
suspected to be a spurious effect due to the application of
PN expansions in the strong field regime for the closest
encounters, it appears to be a feature common to all cases
considered, only becoming smoother and slower for
larger L̂0.

D. The importance of noncircular terms

In order to better understand the importance of in-plane
spins and noncircular terms in the system of Eqs. (1), we

solve the equations of motion and compare the results
obtained in four different scenarios:

(i) with complete noncircular corrections fully ac-
counted for in the evolution of the spins and the
orbital dynamics (orange in Figs. 2 and 3);

(ii) with noncircular corrections explicitly accounted for
in dv=dt, but not in Ṡ1; Ṡ2 (green). This is done by
setting Ω1;2 to its quasicircular reduction ΩQC

1;2 in the
evolution equations of Ṡ1; Ṡ2, as given by Eq. (4.5)
of Ref. [85]. Note that some generic-orbit effects
are nonetheless present, as the parameter x ¼ Ω2=3

appearing inΩQC
1;2 is inherited from the evolution of r

and v;
(iii) with the dynamics of a quasispherical system (blue);
(iv) with the dynamics of a planar noncircularized

system (dotted red).
Figures 2 and 3 show the evolution ofΩðtÞ (top) and βðtÞ

(bottom) in the four scenarios above for the systems
mentioned in the previous subsection. A few things can
be immediately observed: (i) first, the impact of the

FIG. 4. On the left, the orbital frequency Ω ¼ jv × rj=r2 (top) and Euler angle β (absolute, middle, and normalized by its asymptotic
value, bottom) around the time of closest approach (corresponding to 0 on the horizontal axis, marked by a vertical dashed line) for a
series of hyperbolic encounters with mass-ratio q ¼ 4, initial spins χ 1 ¼ ð0; 0.8; 0.1Þ and χ 2 ¼ ð0.4; 0; 0.2Þ (so χp;0 ¼ 0.8), initial
energy Ê0 ¼ 0.02 and varying initial orbital angular momentum L̂0. Smaller values of L̂0 lead to closer encounters and to more
pronounced and more sudden shifts in the orientation of the orbital plane. On the right: asymptotic value of β for scatterings with energy
Ê0 ¼ 0.02, mass-ratio q∈ ½1; 9�, varying L̂0 and spins; comparison between βf as calculated with the full noncircular model and
neglecting noncircular terms in the spins evolution. The in-plane initial spin components are varied in norm (but keeping their directions
fixed), while χ1z;0 ¼ 0.1 and χ2z;0 ¼ 0.2 for all cases, yielding χeff;0 ∈ ½0.11; 0.15�. After L̂0, βf is most strongly determined by the in-
plane spin parameter, as can be expected; a secondary effect is a general increase in the asymptotic value of the Euler angle with the
mass-ratio.

3We mention in passing that χp is known [90] to be an
imperfect measure of the strength of spin precession. Configu-
rations with initial in-plane spin components that are large in size,
but oriented such that they cancel out in the total S⊥, have large
χp, but exhibit little to no precession if the mass ratio is close to 1.
This is a consequence of the spin evolution equations in our PN
study, and can also be seen in NR simulations as will be remarked
later.
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explicitly noncircular terms in Ṡ1; Ṡ2 appears to be largely
subdominant; (ii) second, the planar, noncircularized evo-
lution of ΩðtÞ provides a good approximation of the full
evolution; (iii) third, the shape of βðtÞ (i.e., the number and
height of β peaks) in the case of the quasispherical
evolution matches that of the eccentric evolution, but it
is “stretched” over time, similar to the evolution of ΩðtÞ. In
fact, if the initial conditions for the quasispherical evolution
are slightly varied to generate orbital dynamics of approx-
imately the same time length as the eccentric, precessing
system, we find that β is almost perfectly overlayed with
the target one. Points (i) and (ii) hold for every orbital and
spin configuration considered, up to high eccentricity
(e0 ¼ 0.9) and in-plane spin components (χp ¼ 1.0). The
nonprecessing evolution at most accumulates a phase
difference with respect to the precessing ones of one cycle
in cases of very long, eccentric orbits.4 The validity of point
(iii) is more limited, as can be seen in the figures. Increasing
the eccentricity (e0 ≳ 0.2), the evolutions of β as computed
using quasicircular and noncircular dynamics become less
and less comparable, with different characteristic time-
scales, shapes, and numbers of cycles.
Our analysis thus seems to indicate that, so long as an

“eccentric” prescription for ΩðtÞ is employed, the quasi-
circular expressions for the spins may be sufficient to
describe the precession of the orbital angular momentum up
to large values of eccentricity e0 ≤ 0.9. Conversely, the
worsening comparison between fully generic and quasi-
circular evolutions as the eccentricity grows suggests that
the cumulative effect of the “bursts” observed at e0 ≥ 0.6
cannot be fully captured by an orbit-averaging procedure.
Indeed, Ref. [78] has shown that the multitimescale
approach cannot be straightforwardly applied to highly
eccentric systems, even at large separations. Nonetheless, it
would be interesting to investigate whether it is possible to
systematically map the noncircular dynamics to that of a
circularized precessing system in the range e0 ∈ ½0.2; 0.6�,
perhaps by focusing on matching orbit-averaged frequen-
cies rather than the time-length of the orbits themselves.

E. Scatterings

Given the importance of scatterings in the context of
theoretical developments in GW physics [61,91–93], and in
particular in the post-Minkowskian (PM) expansion [94–
107], we dedicate a brief discussion to scatterings of
nonplanar BBHs.
We consider a series of hyperbolic encounters with mass-

ratios q∈ ½1; 9�, varying initial spins (χeff ∈ ½−0.9; 0.9� and
χp ∈ ½0; 1�), and initial energy Ê0 ¼ 0.02. Increasing the
initial orbital angular momentum L̂0 from just above the

separatrix between bound and unbound orbits to high
values, we evolve the system from an initial separation
r0 ¼ 10 000M, through the encounter, and out to the same
final distance.
The outcome of a nonplanar encounter cannot be

adequately described by a single scattering angle.We instead
introduce two separate angles: Φ ¼ φf − φ0 − π ¼ φf − π,
encoding the deflection in the original equatorial plane
(perpendicular to l0) and defined as the total variation in
the azimuthal angular coordinate φ tied to the initial inertial
frame; and Θ ¼ θf − θ0 ¼ θf − π=2, describing the out-of-
plane component and similarly defined in terms of the polar
angle θ.
Figure 5 displays the results for Φ as a function of L̂0, q

and of the initial value of the spin parameter χeff, for a
collection of systems with χp;0 ¼ 0.4. After the obvious
dependence on L̂0 (which determines the distance of closest
approach and impact parameter), we see that Φ is most
correlated with the effective spin parameter χeff : the scatter-
ing angle grows as χeff decreases from positive (indicative of
spin components initially aligned with the orbital angular
momentum) to negative values (z-components initially anti-
aligned with L0). This effect is known, and can be intuitively

FIG. 5. Top panel: the azimuthal scattering angle ΦNC, in
degrees, as a function of the initial orbital angular momentum L̂0;
color indicates the starting value of the effective spin parameter
χeff , while the marker corresponds to the mass-ratio q. The
orthogonal spin parameter χp is fixed at 0.4 for this plot. Bottom
panel: relative differences between ΦNC and the scattering angle
ΦNP computed neglecting spin precession.

4See also the bottom panel of Fig. 4, which highlights the small
impact of the noncircular terms in Ṡ1; Ṡ2 on the asymptotic value
of the Euler angle β for scattering events.
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understood as a consequence of the spin-orbit interaction,
which affects the effective radial potential [93]. Overlayed
with this is a positive correlation with the mass-ratio,
although this seems to be a somewhat sub-leading effect
[note however that the two variables are not independent:
recall that χeff ¼X1χ1;zþX2χ2;z¼ðqχ1;zþχ2;zÞ=ð1þqÞ].
The polar scattering angle Θ is tied to the asymptotic

value of the Euler angle β, and they display similar
dependence on the system parameters. In fact, Θ is
geometrically bound to the interval ½−β; β�; its exact value
(and in particular its sign, which corresponds to deviation
either above or below the original equatorial plane)
depends on the orientation of the in-plane spin components.
In the configurations studied we found that jΘj remains
close to 0 in most cases, with deviations from the original
equatorial plane rarely exceeding 5°, and at most reaching
15° in cases of close encounters with high χp.
The orthogonal spin variable χp, encoding the strength of

the precession effect, has a small impact on the orbital
dynamics. Fixing the other parameters and increasing its
magnitude from 0 to 1 leads to a decrease in Φ of the order
of ∼1°, or ≲1%, in most cases (see Fig. 6), with only the
very closest encounters exhibiting stronger dependence on
S⊥; this suggests that the in-plane spin components have a
slightly repulsive effect in the binary interaction.

III. THE STRONG FIELD REGIME

A comprehensive understanding of the strong field
regime is pivotal for advancing the development of
waveform models. Recently, simulations featuring both

eccentricity and precession have started to be made publicly
available, with 7 new simulations from theMAYA catalog and
115 from the RIT catalog produced and shared over the past
2 years [83,108,109]. Unfortunately, most of these simu-
lations exhibit a rather limited number of orbits before
merger. For instance, the longest MAYA simulation available
lasts only about 1000M (approximately 5 orbits) before
merger, while only 8 simulations from the RIT catalog
surpass this duration. Furthermore, among these longer
simulations, 3 feature a zero value for the in-plane compo-
nent of the total spin S⊥ ¼ ðSx; Sy; 0Þ. This, combined with
the fact that all of these systems are equal mass, implies
that the orientation of the orbital angular momentum
throughout the inspiral does not evolve.5 Consequently,
the majority of existing simulations are unsuitable for
studying the inspiral phase, with the few exceptions being
limited to equal mass configurations and lacking multiple
resolutions.6 In light of the limitations discussed, we con-
centrate on the two longest RIT simulations exhibiting clear
precession effects, aiming to assess the validity of the
physical intuition derived from the PN sector. Clearly, this
focus does not constitute a comprehensive exploration of
the strong field regime, but rather serves as an initial step in
this direction.
Past works [33–36,111] have shown how it is possible to

identify a coprecessing, noninertial frame from simulations
of quasispherical inspiralling binaries in which the mod-
ulations induced by the spins precession appear decoupled
from the orbital dynamics. Here, we extend the analysis to
nonspherical orbits, showing that similar conclusions
appear to hold also for eccentric systems. Given the lack
of the full 3D information for the simulations that we
consider, we extract the coprecessing frame following
Appendix of [111] directly from the waveform multipoles
hlm or the Weyl scalar ψ4

lm. We identify the preferred
radiation axis V̂ with the direction aligned with the
principal direction of the hLðaLbÞi tensor [36,112]. After
rotating the multipoles hlm and ψ4

lm to an inertial frame
aligned with the initial direction of the orbital angular
momentum l, we compute the Euler angles α, β, γ
connecting the inertial “source” frame with the coprecess-
ing frame (similar to what we did in the previous section),
such that at each moment in time

V̂ ¼ ðcos α sin β; sin α sin β; cos βÞ; ð6Þ

and the rotated multipoles read:

wR
lm ¼

X
m0

Dl
mm0 ðRðα; β; γÞ−1Þwlm; ð7Þ

FIG. 6. Relative difference in the azimuthal scattering angle
between fully NC and nonprecessing (NP) dynamics, for various
mass ratios and initial angular momenta, as a function of the
orthogonal spin parameter χp; the z-components of the initial
dimensionless spins are fixed, χ1;z ¼ 0.1; χ2;z ¼ 0.2. Smaller Φ
signifies weaker interaction at closest approach; these results
suggest that, everything else held equal, increasing in-plane spins
has a slightly repulsive effect on the dynamics.

5Notably, this is true for about 30% of the entirety of the RIT
catalog of eccentric and precessing simulations.

6Such simulations can nonetheless be employed for the study
of the merger-ringdown phase, see, e.g., [110].
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where wR
lm ¼ fhRlm;ψ4;R

lmg and R denotes the rotation
matrix associated with the Euler angles.
An example of h22 in the radiation and inertial frames

can be inspected from Fig. 7 for the RIT:eBBH:1632
simulation. This simulation is characterized by the follow-
ing intrinsic parameters: q ¼ 1, χ 1 ¼ ð−0.7; 0; 0Þ, χ 2 ¼
ð−0.7; 0; 0Þ and initial eccentricity of 0.28 at an initial
radial separation of r0 ∼ 25M. While subtle, the modula-
tions due to precession in the inertial frame are clearly
visible, especially in the mode’s amplitude close to the
time of merger and around 3000M before this time.

Predictably, these moments correspond to the times at
which the β angle is significantly different from zero, as can
be seen from the top panel of the same figure. The
frequency evolution of the (2, 2) mode, shown in the
bottom panel, instead does not appear to be significantly
affected by the precession of the spins, although large
numerical error seems to be present. We then compare the
amplitude and frequency evolutions of the waveform in
these two frames with those obtained with the aligned-spin
EOB model of [113], that will be discussed in more
detail in later sections (see Sec. IV). We fix the intrinsic

FIG. 7. Comparison between amplitude and frequency evolutions in the inertial and coprecessing frames. Aligned spins waveforms
correctly capture the amplitude and frequency evolution of the coprecessing frame waveforms. Clear modulations, mimicking the
oscillations in β, are visible in the inertial frame due to the precession of the spins.

FIG. 8. Evolution (left) and hierarchy (right) of ψ4
lm modes for the RIT:eBBH:1632 simulation in the coprecessing and inertial

frames. In the right panel, the amplitudes are evaluated ad a reference time tref corresponding to the last periastron before merger, and
shown as a function ofm for a fixed value of l, up to l ¼ 4. The modes with l > 2, with the exception of the (4, 4) mode, are affected by
large numerical noise. Nonetheless, it is possible to appreciate that odd-mmodes in the coprecessing frame have typically lower average
amplitude than the even-m ones. This is expected, as the system considered is an equal mass binary.
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parameters of the EOB model (mass ratio, z-component of
the spins) to the initial values specified in the simulation’s
metadata, and choose initial values of orbit-averaged
frequency, eccentricity and true anomaly such that the
frequency peaks of the EOB waveform approximately
match the ones of the NR waveform, and the lengths of
the waveforms are comparable. Remarkably, the amplitude
and frequency evolutions thus obtained match the ones
observed in the coprecessing frame, indicating that the
simplification upon which the twisting procedure applied in
the quasicircular scenario is based holds also for eccentric
systems.
Additional evidence that this is the case is provided by an

inspection of the hierarchy of the waveform modes in the
coprecessing and inertial frames. We show the results of
this analysis in Fig. 8, where we display the evolution of the
amplitudes of the ψ4

lm modes during the inspiral (left
panel), and their values at a reference point corresponding
to the last periastron before merger (right panel). The latter
are shown as a function of m for a fixed value of l, up to
l ¼ 4. In spite of the large numerical noise that affects the
modes with l > 2, with the exception of the (4, 4) mode, it
is nonetheless possible to appreciate that odd-m modes in
the coprecessing frame have typically lower average ampli-
tude than the even-m ones, as one would expect from an
aligned-spin, equal mass simulation. This is especially
visible for m ¼ 1 modes, whose amplitudes in the inertial
frame are at least one order of magnitude larger than the ones
in the coprecessing frame. While not the case for the system
consdered, we remind the reader that for more eccentric
simulations (e ≥ 0.8), e.g., RIT:eBBH:1199 or RIT:
eBBH:1132, the amplitude at merger of the (2, 0) mode
is not negligible, but rather can be comparable to that of the

(2, 2) mode, or larger. This is in contrast to the quasicircular
case, where the (2, 0) mode is approximately zero up until
merger.
We conclude this section by observing that the Euler

angles extracted from the simulation considered above are
morphologically very similar to the ones computed from
the RIT:eBBH:1631 data. The latter is characterized by
the same intrinsic parameters as RIT:eBBh:1632, but by
a smaller initial eccentricity of e ∼ 0.19 at approximately
the same initial separation. This fact is demonstrated in
Fig. 9, which shows the evolution of the components
V̂x; V̂y; V̂z of the radiation frame vector V̂ for the two
simulations. The two evolutions are clearly characterized
by different timescales (reprensented in the two x-axes of
the plots), due to their different orbital eccentricity, but—
once appropriately rescaled—appear rather close to one
another. This fact is consistent with the studies performed
in the previous section, and suggests that the Euler angles
are in general weakly affected by the eccentricity of the
orbit even in the strong field regime, up to merger.

IV. AN EFFICIENT DESCRIPTION OF
ECCENTRICITY AND PRECESSION

After discussing the phenomenology of eccentric, pre-
cessing dynamics in both the PN and NR regimes, it is
finally time to move to the construction of a model that is
able to quantitatively capture the waveforms emitted by
such systems, wielding the insights obtained through our
previous studies. In particular, we will first review the main
features of the EOB model employed to obtain the
coprecessing waveforms, recall the simplifications that
are made to obtain the quasispherical, precessing wave-
forms, and finally discuss the generalization of the spin
dynamics of Refs. [49,84] to the noncircular case.

A. Coprecessing waveform model

The baseline model that we employ for the description
of the coprecessing motion is the TEOBResumS-Dalì
approximant of [67,113]. Within the framework of this
model, the dynamics of the system is obtained from the
EOB equations of motion implied by the Hamiltonian
HEOB. Assuming planar orbits, the latter is a function of
the variables fr; pr�; pφ;S;S�g, where r is the radial
separation, pr�; pφ are the conjugate momenta to r� ¼R
drðA=BÞ−1=2;φ, with A, B being the EOB potentials, and

Ŝ ¼ ðS1 þ S2Þ=M2; Ŝ� ¼ ð1=qS1 þ qS2Þ=M2 are dimen-
sionless combinations of the spins of the binary compo-
nents. Explicitly, the EOB Hamiltonian is given by

ĤEOB ¼ 1

ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
ð8Þ

where Ĥeff is the effective Hamiltonian

FIG. 9. Comparison of the evolution of the radiation frame
components V̂x; V̂y; V̂z of the V̂ vector for the RIT:
eBBH:1631 and RIT:eBBH:1632 simulations. The two
simulations are characterized by the same intrinsic parameters,
but by different initial eccentricities. The Euler angles are weakly
affected by the eccentricity of the orbit, and are morphologically
very similar in the two cases.
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Ĥeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1þ p2

φu2c þQÞ þ p2
r�

q
þ pφðGŜŜþGŜ�Ŝ�Þ:

ð9Þ

The EOB potentials A, D, Q are considered at local
5PN order [114], and resummed according to [68]. The
gyro-gravitomagnetic functions GS;GS�, which encode
spin-orbit contributions, are instead taken at next-to-next-
toleading order (NNLO) [68,115], and inverse-resummed
following usual EOB prescriptions [116]. Even in spin
effects are accounted for by the centrifugal radius uc
[68,115], here considered up to next-to-leading order
(NLO). Two NR-informed parameters, a6 and c3, complete
the conservative sector of the model and ensure robustness
up to merger [113]. The motion of the system is then
obtained by evolving the set of equations

dr
dt

¼
�
A
B

�
1=2 ∂ĤEOB

∂pr�
ðr; pr�; pφÞ ð10aÞ

dφ
dt

¼ Ω ¼ ∂ĤEOB

∂pφ
ðr; pr�; pφÞ ð10bÞ

dpr�
dt

¼
�
A
B

�
1=2

�
−
∂ĤEOB

∂r
ðr; pr�; pφÞ þ F̂ r

�
; ð10cÞ

dpφ

dt
¼ F̂φðr; pr�; pφÞ ð10dÞ

which replace the equivalent equations for the PN dynamics
given by Eq. (1). The radial and azimuthal back-reaction
forces F̂φ and F̂ r are computed from the EOB waveform,
and contain noncircular corrections via the leading order
Newtonian prefactor f̂ncφ [66]:

F̂EOB
φ ¼ −

32

5
νr4ωΩ5f̂ncφ f̂ðΩÞ: ð11Þ

Themodel was recently shown to be more than 99% faithful
to both quasicircular and eccentric [113] NR simulations
up to merger and beyond. The model has also been
tested against 15 nonspinning scattering simulations from
Refs. [61,91], 21 spinning scattering systems from Ref. [93],
multiple dynamical captures simulations fromRefs. [28,117]
as well as a large number of test-mass Regge-Wheeler-
Zerilli and Teukolsky waveforms [73,118]. More details
and an in-depth discussion of the model can be found
in Ref. [113].

B. Quasispherical precessing orbits

Most state-of-the-art EOB models for precessing, quasi-
spherical BBHs do not directly solve a fully coupled PN
system of ordinary differential equations (ODEs) describ-
ing the spins and orbital dynamics, such as Eq. (1). Instead,

they employ a scheme which relies on a split between
precessing and orbital evolutions, the former typically
considered in PN form, the latter from the planar,
resummed EOB dynamics. This scheme, inspired by
phenomenological models, was first introduced in the
context of the EOB framework by Ref. [49] and then
further improved upon and refined in Refs. [50,84]. The
ODEs system considered by the TEOBResumS family for
the spins evolution is of the form

Ṡ1 ¼ f1ðΩ; η;l;S1;S2Þ; ð12aÞ

Ṡ2 ¼ f2ðΩ; η;l;S1;S2Þ; ð12bÞ

l̇ ¼ fLðΩ; η; Ṡ1; Ṡ2Þ; ð12cÞ

Ω̇ ¼ Ω̇PNðΩ; η;l;S1;S2Þ; ð12dÞ

where f1; f2; fL and Ω̇PN can be read from [49].
Critically, independently evolving the spins and the

orbital dynamics allows for a significant reduction in the
computational cost of the model, which—in the quasicir-
cular limit—can rely on analytical acceleration techniques
such as the postadiabatic (PA) [119] and stationary-phase
approximation (SPA) [120] to obtain the waveform. The
matching between the two evolutions of Eqs. (10) and (12d)
represents the most delicate point in the scheme, and is
typically performed by interpolating the Euler angles α, β, γ
obtained from the precessing dynamics to the orbital (PN)
frequency, and then identifying ΩPN with the orbital EOB
frequency φ̇ ¼ ∂ĤEOB=∂pφ or the waveform frequency
∼ω22=2 to obtain the map to EOB time; see Sec. II C of
Ref. [84] for more details.Models based on this schemewere
shown to be faithful to a large number of precessing,
quasispherical NR simulations from the Simulating
eXtreme Spacetimes (SXS) catalog. The TEOBResumS-
GIOTTO model in its first IMR precessing iteration, in
particular, was validated against 99 NR simulations in the
lvcnr catalog, and 20 additional simulations with mass
ratios q ≤ 4 and χp ≤ 0.49 with more than 70 cycles. Its
median unfaithfulness against these sets was found to
be 7 × 10−3 and 5 × 10−3 respectively, for an inclination
ι ¼ π=3 [84].

C. Generalized spins dynamics

We now aim to extend the procedure summarized in the
previous section to noncircular orbits. There are a few
obvious ways to do so. We list them below in order of
growing complexity:

(i) Use the evolution of ΩðtÞ given by TEOBResumS-
Dalì in place of Ω̇PN. This immediately allows
for the inclusion of eccentricity-related effects
and—since no interpolation or orbit averaging is
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required—this strategy can be applied to all kinds of
systems, including scatterings and captures. While
no contributions of (explicit) “noncircularity” to
Ṡ1; Ṡ2; l̇ are considered, the results of Sec. II
indicate that this does not represent a significant
issue for eccentric systems. A bigger drawback is
represented by the fact that the evolution of the spins
requires the EOB dynamics to be evolved first,
making it not straightforward to account for time-
varying contributions to the orbital dynamics.

(ii) Solve the quasicircular PN spin precessing equations
and use them to obtain the Euler angles α, β, γ.
Interpolate the angles in the frequency domain, and
map them to an orbit-averaged EOB (orbital) fre-
quency (see, e.g., Sec. II D of [121]). This method
has the advantage of allowing for the inclusion of
time-varying contributions to the orbital dynamics,
so long as one is able to compute—at each moment
of the EOB dynamics evolution—an orbit-averaged
frequency. Once more, thanks to the difference in the
orbital and precession timescales, this simple tech-
nique is expected to work well for mildly eccentric
binaries. It however cannot be applied to, e.g.,
scatterings or captures, and neglects all contributions
of “noncircularity” to the spins dynamics.

(iii) Solve the quasicircular PN spin precessing equations
together with the generic EOB orbital dynamics.
This method allows for the inclusion of time-varying
spins contributions while retaining both the ability to
account for generic orbital configurations beyond
eccentric systems and the theoretical simplifications
that come with employing a coprecessing orbital

dynamics description.7 Its main limitation is repre-
sented by its increased computational cost with
respect to the previous options, as it requires the
solution of a coupled system of 12 ODEs.

(iv) Solve the spins dynamics equations of [76,78,122],
together with orbital dynamics explicitly parame-
trized in terms of (quasi-Keplerian) eccentricity,
anomaly and orbit-averaged frequency. This method
extends the previous one by including the effects of
eccentricity on the spins dynamics, while still
allowing for the inclusion of time-varying contribu-
tions to the orbital dynamics and being applicable to
larger values of eccentricity. However, it retains the
limitation of not being applicable to all kinds of
systems, as it assumes a parametrization of the
orbital dynamics where eccentricity is explicitly
present.

For the time being, we choose to adopt the first strategy,
as it is the simplest to implement and—at the same time—
represents a good compromise between accuracy, computa-
tional cost and generality.
The chosen method is then implemented following

these steps:
(i) We first obtain the evolution of the system in the

coprecessing frame, assuming that waveforms
can be well approximated by those given by the
TEOBResumS-Dalì aligned-spins model.

FIG. 10. Quadrupolar waveform mode (left) and coprecessing orbit (right) for a dynamically captured system with mass ratio q ¼ 3,
spins χ 1 ¼ ð0.7; 0; 0Þ, χ 2 ¼ ð0; 0; 0Þ and initial energy, angular momentum and EOB radial separation 1.002, 4.2 and 10000. We
compare the precessing waveform to its aligned spin counterpart. The portion of the waveform shown in the left panel is highlighted in
the orbit plot on the right with a dark red line. Noticeable modulations, due to the mixing between l ¼ 2 coprecessing modes, can be
observed at each periastron passage and at the time of merger.

7By this we mean that the EOB Hamiltonian and radiation
reaction forces employed are those used for planar orbits, which
are better studied than their nonplanar counterparts.
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(ii) From the coprecessing frame EOB dynamics we
extract the orbital frequency evolution ΩðtÞ (or,
alternatively, the waveform frequency evolution
ωðtÞ ∼ ω22ðtÞ=28).

(iii) We employ this EOB evolution of the frequency to
drive the evolution of the spins in the coprecessing
frame, utilizing the orbit-averaged PN expressions
for Ṡ1; Ṡ2; l̇ of [49].

(iv) With the evolution of the spins at hand, we compute
the Euler angles and rotate the coprecessing
waveforms to the inertial frame as described in,
e.g., [49,84].

(v) We extend α, β, γ beyond merger by fixing them to
their merger values.

This scheme is computationally cheaper than a full
evolution of the 3D EOB dynamics, with no additional
ODEs to solve and no need for a new Hamiltonian with
respect to the quasispherical case. It largely relies on the
assumption that noncircular terms in the spins dynamics are
negligible and that the evolution of the orbital dynamics is
not strongly affected by time-varying spins contributions.
Both assumptions were shown to be approximately true in
Sec. II, and can be expected to hold up even close to
merger, where the system circularizes. The twisting pro-
cedure, too, does not appear to require modifications with
respect to the quasicircular case, as was empirically
demonstrated in Sec. III. Beyond the mildly eccentric case,
this scheme can be applied also to unbound systems,
scatterings and captures (see Fig. 10), although the validity
of the orbit-averaged expressions for the spins dynamics is
uncertain in these regimes.

V. VALIDATION

We conclude the results presented in this work by
validating the model in the quasicircular, precessing limit,
comparing its performance to that of the TEOBResumS-
GIOTTO model of Ref. [84]. We then move on to compare
the model to one mildly eccentric, precessing waveform
from the RIT database. This comparison is performed in
the time domain, focusing mainly on the (2,2) and (2,1)
modes. Given the lack of availability of multiple resolu-
tions, as well as the fact that most other eccentric and
precessing waveforms are either not very eccentric or not
very long, we leave a more in-depth validation of the model
in this regime to future works, where we will also present
new eccentric and precessing simulations of BBHs [123].

A. Quasicircular, precessing limit

Following the same procedure detailed in Sec. III of
Ref. [84], we compare the model presented in this work to
99 NR simulations from the lvcnr catalog, spanning mass

ratios q ≤ 6, χp ≤ 0.89 and χeff ∈ ½−0.45; 0.65�, and 21
“long” simulations of BBHs with mass ratios q ≤ 4 and
spins χp ≤ 0.49 and χeff ∈ ½−0.2; 0.3�. We quantify the
goodness of our model in terms of the sky-maximized
unfaithfulness [47,124,125], which is defined as:

F̄ SM ¼ 1 − max
th
0
;φh

0
;κh;ξ0

ðs; hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs; sÞðh; hÞp ; ð13Þ

where s is the target (NR) waveform, h is the model
waveform and themaximization is performed over reference
time th0 , reference phase φ

h
0 , effective polarization angle κh

and over an initial rotation of the in-plane spins ξ0. This
quantity is then signal-to-noise ratio (SNR) weighted, and
averaged over the sky, the polarization and the initial phase of

FIG. 11. Mismatches of the model for the 99 NR simulations of
the lvcnr catalog (gray) and the 20 “long” simulations (red)
discussed in the text, for different total masses and two different
fixed values of inclination: ι ¼ 0 (top) and ι ¼ π=3 (bottom). We
highlight with colored lines all simulations which at any total
mass value cross the 3% threshold. Between inclinations, the
more problematic simulations are the same, but the overall
performance of the model worsens for increasing ι, as expected.
We find median unfaithfulnesses of 0.003þ0.009

−0.001 and 0.006þ0.010
−0.003

for ι ¼ 0 and ι ¼ π=3 respectively.

8Notably, this relation is only approximately valid for low
eccentricities.
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the target waveform: we choose four different values for the
effective polarization, κs ¼ f0; π=4; π=2; 3π=4g, and six
values for the target reference phase, φs

0 ¼ f0; 2π=5; 4π=5;
6π=5; 8π=5g, to average over. We fix the power spectral
density of the detector to the zero-detuned high-power
advanced LIGO design sensitivity [126], and compute
mismatches from 20 to 2048 Hz using the ðl; jmjÞ ¼
ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ modes.
Results are displayed in Fig. 11, where we show the

mismatches of the model for the simulations considered as a
function of the total mass of the system for two target
inclinations ι ¼ 0 and ι ¼ π=3. Global distributions of the
mismatches are also shown as histograms in the right panel of
the same figure. We find that for the majority of the
simulations the model is able to maintain an unfaithfulness
below 3%, with the notable exceptions of the SXS:
BBH:0165, SXS:BBH:0062, SXS:BBH:0628 and
SXS:BBH:0057 simulations. These systems are charac-
terized by either very asymmetric mass ratios (q ≥ 5), strong
precession (χp > 0.7) or both, and are known to be chal-
lenging for GWmodels in general (see Table 2 of [127]). The
global unfaithfulness found for the set considered with ι ¼ 0

is 0.003þ0.009
−0.001 , where the we employ the standard notation of

quoting the median and the 90% confidence interval of the
distribution. As inclination is increased from ι ¼ 0 to
ι ¼ π=3, the model becomes overall less faithful, especially
for the merger-ringdown portion of the waveform. Once
more, this is not surprising, given that for more face-on
systems the importance of higher modes increases, and they
are both (i) more affected by the precession of the spins and

(ii) less well modeled in the aligned-spin limit. In this case,
the global unfaithfulness is 0.006þ0.010

−0.003 , with the same
notation as before. Overall, we find the performance of
the model in the quasicircular precessing limit to be com-
parable to that of other state of the art models, by indirectly
comparing to the results of Refs. [84,127].

B. RIT:eBBH:1632

The performance of the model in the eccentric, precess-
ing regime is tested via a time-domain comparison against
the RIT simulation RIT:eBBH:1632, already discussed
in Sec. III when considering the behavior of radiation-
frame waveforms. Directly comparing waveforms in the
inertial frame is not straightforward, as precessing wave-
forms are characterized by one additional degree of free-
dom with respect to the aligned-spin case: an initial angle ξ
that determines the orientation of the in-plane spins.
Therefore, comparing waveforms in the inertial frame
would require devising a method to align them while
varying three different parameters at the same time: initial
eccentricity, initial anomaly and ξ (assuming a fixed initial
orbit-averaged frequency). This can in principle be per-
formed by, e.g., minimizing mismatches over a certain
frequency range via either multi-dimensional numerical
minimization or a simpler grid search [50]. Given the
complex functional dependence of the waveform on the
parameters, these methods are not expected to be particu-
larly efficient, and typically require a large number of
waveform evaluations to be performed to succeed.
Therefore, rather than employing such a procedure, we

FIG. 12. Comparison between RIT NR waveform multipoles hlm ¼ ð2; 2Þ and (2, 1) (black and orange lines) and the EOB model (red
line) presented in this work. While the (2, 2) EOB and NR modes do not display large precession-induced modulations, the (2, 1) mode
is clearly affected by the precession of the spins. For this mode, it is possible to observe large EOB/NR differences during the early
inspiral (t ∼ −5500 to t ∼ −3000). It is not clear whether these differences are due to real inaccuracies of the EOBmodel, or rather can be
reconduced to unphysical features of the simulation itself. Overall, our EOB model is able to capture the main features of the NR data in
terms of both amplitude and phase evolution up to merger and beyond.
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choose to focus on the (2, 2) mode and first find the
eccentricity and anomaly e0 and ζ0 that align the EOB
waveform with the NR one in the coprecessing frame. Then
—keeping these fixed—we vary ξ to obtain the Δt22, Δϕ22

values that provide the best alignment in the inertial frame.
The initial conditions and shifts so obtained are used to also
align the (2, 1) mode, recalling that Δϕlm ¼ m=2Δϕ22.
The results of this procedure are displayed in Fig. 12. The

model correctly reproduces the amplitude peaks of the (2, 2)
mode, as well as the less pronounced modulations due to the
precession of the orbital plane. The (2, 1) mode in the inertial
frame is computed entirely from the ð2; j2jÞ coprecessing
mode, and therefore it is more informative—in principle—
regarding the performance of the model. We find that the
EOB prediction is qualitatively consistent with the NR data,
especially close tomerger where themodel approximates the
amplitude modulations with remarkable accuracy (t ∼ −400
to−200), and overall captures the envelope of the waveform
amplitude. Gauging the quantitative performance of the
model across the inspiral is more challenging, as unusual
features appear in the NR waveform. Indeed, between the
times of t ∼ −5500 and t ∼ −3000 the (2, 1) NR mode
displays zeroes in the amplitude, which are not present in the

EOB prediction, as well as an overall “drift” (see Fig. 13).
This effect was initially thought to be related to the presence
of a nonzero (2, 0) coprecessing mode. However, after
computing the NR radiation-frame modes, removing the
(2, 0) and rotating back to the inertial frame, the presence of
such zeroes does not appear to be significantly affected. The
physical reality of this feature is therefore uncertain, and
given that the merger-ringdown portion of the waveform
appears significantly affected by errors in the simulation
itself, the differences observed in the inspiral may be due to
limitations in the NR data rather than in the EOB model.

VI. CONCLUSIONS

In this work we discussed the phenomenology of
eccentric, precessing BBHs in both the PN and NR
regimes. After a brief review of the PN equations of
motion for these kind of systems, we studied the morphol-
ogy of the Euler angles α, β, γ that connect the coprecess-
ing, l-aligned frame with the inertial frame for various kind
of noncircular binaries (bound systems, eccentric and
quasicircular, scatterings, captures), highlighting common
features and differences. In view of the development of our
noncircular, precessing model, we have assessed the
importance of the explicitly noncircular contributions to
the spin dynamics of the system, finding that they are
largely negligible, even up to high values of e ∼ 0.9. This
result is in line with previous studies [77,78], and suggests
that our model can be expected to be accurate up to such
eccentricities. We have also briefly discussed the impact of
precession on the scattering angle of low-energy BBH
systems, finding again that spin precession does not signifi-
cantly affect aspects of the orbital dynamics. Indeed, it
contributes ≲1% to the azimuthal scattering angle, which
displays a much stronger dependence on the mass ratio and
the out-of-plane spin components, while generating usually
only a modest deviation from the original orbital plane.
We then performed a preliminary study of eccentric,

precessing numerical relativity simulations. We highlighted
that the radiation-frame waveforms obtained by finding the
direction of the tensor hLðaLbÞi are well approximated by
aligned spins waveforms, and that the hierarchy of the
modes in the coprecessing frame is consistent with that of
aligned-spin systems. This is in line with the expectations
from the quasicircular limit, and indicates that the twisting
procedure routinely employed for these scenarios can be
straightforwardly extended to the eccentric case. We also
showed that, consistently with the PN results, the details of
the orbit do not significantly affect the radiation-frame
evolution, as one would expect from the separation of
timescales between orbit, precession and backreaction.
Finally, we presented a model that is able to quantita-

tively describe the (2, 2) mode of the waveforms emitted by
noncircularized systems. We discussed the different ave-
nues that can be easily followed to extend any time domain
eccentric waveform model to the precessing case, and

FIG. 13. Top: evolution of the Euler angle β extracted from the
RIT:eBBH:1632 simulation (black) and the EOB prediction
(red). Bottom: real part (black) and amplitude (gray) of the
inertial-frame (2,1) mode of the same NR simulation. We high-
light with dashed vertical lines the minima of the amplitude of the
(2,1) mode between −5500M and −1000M, which are not
present in the EOB prediction: they correspond to the times
when the β angle extracted from the NR simulation is closest to 0.
These spikes in β do not, however, clearly correspond to
periastron or apastron passages, or other reference points in
the orbit. A noticeable “drift” can be observed from the real part
of the NR waveform, which does not oscillate around y ¼ 0.
Recalling that the NR Euler angles are extracted by identifying
the radiation frame from the waveform modes, it apparent that
this drift is closely related to the behavior of the NR β. What
remains unclear is whether it is due to a real physical effect,
which induces oscillations in β reflected in the inertial-frame
waveform, or rather to inaccuracies in the NR data itself, which
are then reflected in the calculation of Euler angles.
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chose to adopt the simplest one, which is based on the orbit-
averaged expressions for the spin dynamics of Ref. [49].
We then presented the first results of this model, showing
that it is faithful to NR simulations in the quasicircular
limit, and performing one EOB/NR comparison for the
largest eccentricity simulation (with precession) in the RIT
database with more than 10 orbital cycles. While the model
appears to be accurate up to merger and beyond in the (2, 2)
mode, the behavior of the (2, 1) mode is only qualitatively
captured during the inspiral. It is unclear whether this is due
to limitations of the EOB model or inaccuracies of the NR
data itself.
As the community slowly undertakes the endeavor of

producing new highly accurate, eccentric, precessing NR
simulations, the EOB model presented in this work should
be considered as a predictive tool, a posteriori confirmed
(or falsified) by NR. Along these lines, in future works we
will perform a more in-depth NR validation of the model
within this challenging regime. This will allow us to clearly
identify its limitations and define its current range of
applicability, indicating avenues for future improvements.
At the same time, we also aim to incorporate the description
of the (2, 0) mode, known to be significant for highly
eccentric systems, and—more ambitiously—to build a full
IMR model accounting for noncircularity and precession
also beyond merger. In doing so, we anticipate refining our
understanding of eccentric, nonplanar coalescing CBCs,
ultimately enriching our comprehension of these complex
systems.
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APPENDIX: PN INITIAL CONDITIONS

Section II of this work relies on the integration of the PN
equations of motion (Eqs. (1)) for different kinds of orbital
dynamics: quasicircular, eccentric and hyperbolic (or cap-
ture). Orbits corresponding to these three main faimilies are
realized by choosing appropriate initial conditions, i.e.,
values of the initial radial separation and velocity. In this
Appendix we provide expressions for computing the initial
conditions for eccentric and hyperbolic orbits in terms of
more convenient sets of parameters: eccentricity and semi-
latus rectum for the former, and energy and angular
momentum for the latter. As already mentioned in the
main text, we neglect spin-orbit terms in the expressions for
the energy and angular momentum that we use to set up the
initial conditions (they are included in the equations of
motion); their impact is expected to be small, and this
approximation does not invalidate the conclusions of our
study of the PN dynamics.
In the expressions in this Appendix we include explicit

powers of 1=c to keep track of PN order.

1. Eccentric orbits

We define the eccentricity e and semilatus rectum p by
their relation to the periastron and apastron radii rp;a, as in
Newtonian gravity:

rp ¼ p
1þ e

; ra ¼
p

1 − e
: ðA1Þ

To calculate the velocities vp;a at the extremes of the orbit
we use the 3PN expressions for the energy and angular
momentum as functions of r, v and ṙ given in Eq. (23) of
[129]: we require that both Ê ¼ E=μ and L̂ ¼ L=μ have the
same value when evaluated at periastron and apastron, and
solve the resulting system of equations for the PN-
expanded vp;aðe; pÞ

Êðrp; vp; ṙ ¼ 0Þ ¼ Êðra; va; ṙ ¼ 0Þ ðA2Þ

L̂ðrp; vp; ṙ ¼ 0Þ ¼ L̂ðra; va; ṙ ¼ 0Þ: ðA3Þ

We show here the result for the periastron velocity vpðe; pÞ,
where we start our eccentric orbits
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vp ¼ 1þ effiffiffiffi
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2. Hyperbolic orbits

For hyperbolic orbits, we choose the initial values of the energy Ê0 and orbital angular momentum L̂0, as well as the
starting orbital separation r. We then invert the PN-expanded expressions of the energy and angular momentum (Eq. 23 of
[129]) to find the radial and azimuthal components of the velocity vector
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