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For a large class of black holes, we show that the sum of thermodynamic quantities over all the horizons
is determined by the asymptotic data at infinity. For the Kerr-Newman metric, this proves a recent
numerical observation by Hristov. We propose a new method to compute the sum of the entropies using a
generalized Smarr formula. The higher-curvature corrections in Gauss-Bonnet gravity are discussed.
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I. INTRODUCTION AND SUMMARY

Black holes typify the wondrous curved spacetime
structures predicted by Einstein’s theory of general rela-
tivity. They are asymptotic to maximally symmetric space-
times such as Minkowski, (anti–)de Sitter [(A)dS], but
with an event horizon in the middle, which is typically
determined as the largest positive root of the inverse radial
function. While the celebrated Schwarzschild black hole
has only one such root, many other examples including the
Kerr or Reissner-Nordström (RN) black holes may have
two positive roots, with the smaller one corresponding to
the inner horizon. In higher dimensions, and/or including
the cosmological constant, complex horizons associated
with the complex roots may arise. Conventionally, only the
event horizon, associated with the famous Hawking
radiation, has received the central attention, while the
inner horizon is usually ignored and the complex horizons
are treated as unphysical. Nevertheless, there are several
motivations to consider all the horizons. (1) Each horizon
formally satisfies the first law of black hole thermody-
namics [1]. (2) The wave equation depends on the poles at
all the horizons even if one focuses only on the outer
region. (3) In the Euclidean approach to black hole
thermodynamics, the metrics for rotating black holes are
necessarily complex. (4) There are also tantalizing con-
nections to the holography of left- and right-moving modes
in conformal field theories [2]. (5) Recent progress in
resolving the black hole information paradox requires the
knowledge of the inside of the black hole [3]. (6) For
asymptotically dS spacetimes, all the horizons can be real
and physically important as cosmological and black hole
horizons.
Following works on the product of the entropies over all

the horizons [4,5], the sum of the entropies was identified to
obey a universal formula that depends only on the cosmo-
logical constant and the horizon topology [6]. This universal

relation was tested for many examples and several works
were dedicated to its computation [7,8]. Other entropy
relations were explored [9,10]. More recently, a closely
related quantity, the sum of the Euclidean actions, was
found to satisfy the same universal relation. This was
observed numerically by Hristov for the Kerr-Newman-
AdS metric [11]. In the asymptotically flat spacetime, the
sum of the Euclidean actions is a simple function of the
mass and electric charge [12].
The Euclidean action is of independent interest from the

entropy as it is a quantummechanical quantity that is related
to the thermodynamic free energy via a quantum statistical
relation. It is also a useful order parameter for phase
transitions. The simplicity of the answer suggests that the
sum over horizons is a property of the asymptotically (A)dS
spacetimes, and an analytic proof would be desirable. In this
note, we present an elementary proof based on the residue
theorem. The main results are summarized as follows.
For a large class of black-hole solutions in Einstein

gravity with a cosmological constant Λ, we prove that the
sum of the inverse temperatures βh over all the horizons
vanishes. The sum of the Euclidean actions Ih is equal to
the negative of the sum of the entropies. We present a new
method to compute the sum of the entropies using a
generalized Smarr formula that simplifies previous com-
putations. We find

X
h

Ih ¼
(

ð−1ÞD=2AD−2
2

LD−2 for D even

0 for D odd
: ð1Þ

HereAD is the volume of the unitD sphere and L, the scale
of the (A)dS spacetime, is related to the cosmological
constant as Λ ¼ −ðD − 1ÞðD − 2Þ=2L2. Examples include
the Schwarzschild, RN, and Kerr metrics in D ≥ 4, the
Kerr-Newman metric in 4D, charged, rotating black holes
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inD ¼ 5, 6, 7 supergravities, and the Bañados-Teitelboim-
Zanelli (BTZ) black hole in 3D.
In the asymptotically flat case, the sums are determined

by the mass M and electric charge Q of the black hole as

X
h

βh ¼
�
8πM for D ¼ 4

0 for D ≠ 4
;

X
h

Ih ¼
�
4πM2 − 2πQ2 for D ¼ 4

0 for D ≠ 4
: ð2Þ

We also discuss the higher-curvature corrections in
Gauss-Bonnet gravity and obtain exact formulas for the
sum of the Euclidean actions in all dimensions.

II. THE SUM OVER HORIZONS AS A RESIDUE
AT INFINITY

In the path-integral approach to quantum gravity,
the partition function over fields that are periodic in the
imaginary time is identified with the thermal partition
function of the grand canonical ensemble [13]. The
dominating contribution to the thermodynamic potential
is given by the Euclidean action evaluated at the solutions
of the classical field equations. Since the thermodynamic
potential is defined at each horizon, the following relation
is expected to hold in leading order:

IðrhÞ ¼ βH − S − β
X
i

μiCijr¼rh : ð3Þ

Here H is the enthalpy for the Gibbs free energy, S is the
entropy, μi are the chemical potentials such as the angular
velocity Ω and electric potential Φ, and Ci are the
conserved charges such as the angular momentum J and
the electric charge Q.
We denote the thermodynamic quantities at each horizon

as βh ≡ βðrhÞ, Ωh ≡ΩðrhÞ, etc. The goal is to bring the
inverse temperature and the chemical potentials to the form

βh ¼
tðrhÞ
Δ0ðrhÞ

; βhμi;h ¼
siðrhÞ
Δ0ðrhÞ

; ð4Þ

for some holomorphic functions t; si that are usually
polynomials and a discriminant polynomial Δ. The hori-
zons are located at the roots of Δ. We consider the case
where Δ contains only simple roots. The sum over all the
horizons may be expressed as a contour integral encircling
all the simple poles. The contour may be inverted to receive
a contribution only from the pole at infinity. By the residue
theorem applied to a ratio of two holomorphic functions
F, G, which has only simple poles,

X
h

FðrhÞ
G0ðrhÞ

¼ −Resz¼∞
FðzÞ
GðzÞ : ð5Þ

It follows that the residue at infinity determines the sum. If
they vanish, as in spacetimes with a cosmological constant,
then the sum of the Euclidean actions is reduced to the sum
of the entropies.
We may prove that the inverse temperature takes this

form for a large class of metrics, while the chemical
potentials will be examined case by case in examples.
Consider a stationary, axisymmetric spacetime whose
metric is of the form

ds2 ¼ −hðr; θÞdt2 þ fðr; θÞ−1dr2 þ � � � : ð6Þ

h may differ from f, but we require h ¼ f on θ ¼ 0. The
horizons are defined by the roots of the metric radial
function fðr; θÞ ¼ g−1rr . We consider the case where fðr; 0Þ
contains only simple roots and no branch point. This
includes the Kerr-Newman solution as well as a large class
of charged, rotating black holes with scalar hairs and/or in
higher dimensions.
By the zeroth law of black hole thermodynamics,

the temperature is constant on the horizon. We may
evaluate it at θ ¼ 0. Expanding the metric around
ðr; θÞ ¼ ðrh; 0Þ as r ¼ rh þ ρ2, the metric is conformal
to ð∂rfðr; 0ÞÞ2ρ2dτ2 þ dρ2. To eliminate the deficit an-
gle, the time coordinate must be periodic with period
t ∼ tþ iβ. The deficit-angle argument shows that

β ¼ 4π

∂rfðr; 0Þ
: ð7Þ

Since the zeroes of fðr; 0Þ are encoded in Δ, βh must be of
the form (4).
We will show that the chemical potential terms βhμi;h

are also of this form. Their sums over the horizons vanish
in all the examples with a cosmological constant. The sum
of the Euclidean actions is then equal to the negative of the
sum of the entropies. The calculation of the sum of the
entropies requires additional technicalities, especially
when rotation is turned on. We present a simpler method
using a generalized Smarr formula [14]

D − 3

D − 2
M ¼ TSþΩJ þD − 3

D − 2
ΦQ −

2

D − 2
VP: ð8Þ

For spacetimes with a cosmological constant, P ¼ −Λ=8π is
interpreted as the pressure that is conjugate to the thermo-
dynamic volume V of the black hole. Note that the black
hole mass is identified with the enthalpy of the system
when Λ is allowed to vary.
The thermodynamic volume coincides with the geo-

metric volume for static black holes but receives correc-
tions due to rotation. If the sum of all the other
thermodynamic quantities vanishes, then the sum of the
entropies may be evaluated from the thermodynamic
volume as
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X
h

Sh ¼
D − 1

8πL2

X
h

βhVh; ð9Þ

which may then be converted into a contour integral and
evaluated at the pole at infinity.

III. EXAMPLES

A. Kerr-ðAÞdSD

There are N ¼ bD−1
2
c rotation variables ai. The inverse

temperature [15–17] may be written as

βðrhÞ ¼
4π

Δ0ðrhÞ
YN
i¼1

ðr2h þ a2i Þ; ð10Þ

where

ΔðrÞ ¼
�
r2

L2
þ 1

�YN
i¼1

ðr2 þ a2i Þ − 2mr2−ϵ: ð11Þ

Here ϵ ¼ 0 in odd dimensions and ϵ ¼ 1 in even dimen-
sions. The angular velocity is

ΩiðrhÞ ¼
�
r2h
L2

þ 1

�
ai

r2h þ a2i
: ð12Þ

We see that both βh and βhΩi;h are of the form (4). It
follows by counting polynomial degrees that the residues at
infinity vanish and

P
h βh ¼

P
h βhΩi;h ¼ 0.

The Bekenstein-Hawking entropy is Sh ¼ Ah=4 with

Ah ¼
AD−2

r1−ϵh

YN
i¼1

r2h þ a2i
1 − a2i =L

2
: ð13Þ

The sum of the entropies has been computed using Vieta’s
formulas [8]. A slick method is to apply the Smarr formula.
The thermodynamic volume is [18]

Vh ¼
rh

D − 1
Ah þ

8π

ðD − 1ÞðD − 2Þ
XN
i¼1

aiJi: ð14Þ

The sum of the entropies vanishes for odd D because the
entropy is an odd function of r. For even D,

X
h

Sh ¼ −
AD−2

2L2
Resr¼∞

r
ΔðrÞ

YN
i¼1

ðr2 þ a2i Þ2
1 − a2i =L

2
; ð15Þ

and we recover the formula (1).
In the flat-spacetime limit when L → ∞, two horizons

are sent to infinity because the degree of Δ is reduced by
two. We may show that

X
h

βh ¼ −Resr¼∞
4π

ΔðrÞ
YN
i¼1

ðr2 þ a2i Þ; ð16Þ

which evaluates to (2). Similarly,
P

h βhΩh ¼ 0. The sum
of the entropies may be evaluated by the Smarr formula and
we obtain the desired result for the sum of the Euclidean
actions (2) with Q ¼ 0.

B. Kerr-Newman-(A)dS

For simplicity, we only consider a spherical horizon.
The inverse temperature may be written in the same form
as (10), where now

ΔðrÞ ¼
�
r2

L2
þ 1

�
ðr2 þ a2Þ − 2mrþ q2: ð17Þ

The expressions for the angular velocity and entropy are
identical to Kerr-ðAÞdS4. The electric potential is [19]

Φh ¼
qrh

r2h þ a2
: ð18Þ

The general argument implies that the sum of βhΦh also
vanishes. The sum of the entropies may be computed from
the Smarr formula, or since D ¼ 4, directly from the
coefficients of Δ using the Girard-Newton formulas, and
the desired result (1) follows.
In the flat-spacetime limit, only two horizons r� remain.

We find from the residue at infinity that

βþ þ β− ¼ 8πM;

βþΦþ þ β−Φ− ¼ 4πQ: ð19Þ

Hence the sum of the Euclidean actions follows the
formula (2).
We comment on the independence of the result on the

angular momentum. Using the Smarr formula (8), the
Gibbs free energy may be written as

F ¼ 1

D − 2
ðM þΦQ − 2VPÞ: ð20Þ

In an asymptotically flat spacetime, the free energy and the
Euclidean action do not depend on the angular momentum.
The above methods may be extended to the D-

dimensional RN metric straightforwardly.

C. Charged, rotating black hole in D= 5 supergravity

This is the example considered in [20]. The inverse
temperature is

βh ¼
4π

Δ0ðrhÞ
½ðr2h þ a2Þðr2h þ b2Þ þ abq�; ð21Þ

NOTES ON SUMS OVER HORIZONS PHYS. REV. D 110, 024028 (2024)

024028-3



where

ΔðrÞ ¼
�
r2

L2
þ 1

�
ðr2 þ a2Þðr2 þ b2Þ− 2mr2 þ 2abqþ q2:

ð22Þ

The other thermodynamic quantities are

βhΩa;h ¼
4π

Δ0ðrhÞ
�
a

�
r2h
L2

þ 1

�
ðr2h þ b2Þ þ bq

�
;

βhΩb;h ¼
4π

Δ0ðrhÞ
�
b

�
r2h
L2

þ 1

�
ðr2h þ a2Þ þ aq

�
;

βhΦh ¼
4π

Δ0ðrhÞ
ð

ffiffiffi
3

p
qr2hÞ;

Sh ¼
π2

2rh

ðr2h þ a2Þðr2h þ b2Þ þ abq
ð1 − a2=L2Þð1 − b2=L2Þ : ð23Þ

Once written into this form, one may follow the pre-
vious arguments to show that

P
h βh ¼

P
h βhΦh ¼P

h βhΩi;h ¼ 0 in asymptotically (A)dS and flat spacetimes
alike. The sum of the entropies and the sum of the
Euclidean action vanish because the entropy is an odd
function of r.
Similar calculations apply to the D ¼ 6 and D ¼ 7

supergravities considered in [21,22].

D. BTZ black hole

Although the BTZ metric, in its original form, does not
fall into the class (6), it may be converted into the Kerr-
AdS3 form by a coordinate transform [15]. The thermo-
dynamic quantities, in the convention of [23] where
8GN ¼ 1, may be written as

βh ¼
4πr2h
Δ0ðrhÞ

; βhΩh ¼
2πJ

Δ0ðrhÞ
; Sh ¼ 4πrh; ð24Þ

where

ΔðrÞ ¼ r4

L2
−Mr2 þ J2

4
: ð25Þ

The Euclidean action may be directly evaluated to be

Ih ¼ −2πrh; ð26Þ

which is equivalent to a Smarr-type formula

M ¼ 1

2
TSþΩJ: ð27Þ

E. Gauss-Bonnet black hole

It is known that higher-curvature terms lead to correc-
tions to a seemingly universal quantity in Einstein gravity.
Here we study the Gauss-Bonnet black hole with a
spherical horizon [24]. The inverse temperature [25] may
be rewritten in our form as

βh ¼
4π

Δ0ðrhÞ
rD−5
h ðr2h þ 2α̃Þ: ð28Þ

Here α̃ is the Gauss-Bonnet coupling. Δ does not appear in
the metric radial function but is given by

ΔðrÞ ¼ rD−1

L2
þ rD−3 þ α̃rD−5 − 2m: ð29Þ

The entropy is

Sh ¼
AD−2rD−2

h

4

�
1þ 2ðD − 2Þ

ðD − 4Þ
α̃

r2h

�
: ð30Þ

Here again, the sum of the Euclidean actions may be
reduced to the sum of the entropies, which may be directly
evaluated using the Girard-Newton formulas. In D ¼ 6,
this was computed in [7]. We have calculated the correc-
tions in higher dimensions, which allows us to conjecture a
closed form for even D > 4,

X
h

Ih ¼
ð−1ÞD=2AD−2

2

XbD=4c

n¼0

cnα̃nLD−2−2n; ð31Þ

where

cn ¼
ð−1Þn
ð2nÞ!!

Q
2n
i¼1ðDþ 2 − 2iÞQ
n
i¼1ðD − 2 − 2iÞ : ð32Þ

Note that we have not used the Smarr formula because the
chemical potential conjugate to α̃ contains a term propor-
tional to the temperature [26], which cancels with βh and
the residue argument cannot be applied. It would be an
interesting problem to prove (31). The series may be
resummed using Mathematica as

X
h

Ih ¼
ð−1ÞD=2AD−2

2
LD−2

2F1

�
1

2
−
D
4
;−

D
4
; 2−

D
2
;
4α

L2

�
:

ð33Þ

In flat spacetime, the sum of the inverse temperatures
vanishes whereas the sum of the Euclidean actions is
corrected as
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X
h

Ih ¼
ð−1ÞD=2AD−2

2

D
D − 4

α̃
D−2
2 : ð34Þ

It may be obtained from the relation of power sumsP
h r

k
h ¼ −α̃

P
h r

k−2
h that follows from applying the

Girard-Newton formulas to (29).

IV. DISCUSSION

In this work, we have rigorously derived a universal
result that applies to a large class of black-hole spacetimes.
Individually on each “unphysical” horizon, the thermody-
namic quantities such as temperature and entropy may be
negative or even complex and can only be interpreted
formally at present. The point is that it can be physically
relevant when all the horizons are taken in account.
As we have pointed out in the introduction, in the scalar

wave equation, which is an important probe of a black
hole, all the inner roots, real or complex, has effect on
the equation even if we only examine the outer region. This
and our results suggest that in order to understand the
properties of black holes completely, it is necessary to
complexify the metrics and take into account of all the
special points in the complex space.
For asymptotically (A)dS spacetimes, the dependence of

the sum of the Euclidean actions only on Λ is suggestive of
the property of the global AdS vacuum. Indeed, consider a
pure (A)dS spacetime, with the metric

ds2D ¼ −
�
r2

L2
þ k

�
dt2 þ

�
r2

L2
þ k

�−1
dr2 þ r2dΩ2

D−2;k;

ð35Þ

where dΩD−2;k is the volume element on a space with
constant curvature and k ¼ 1; 0;−1 corresponds to a
sphere, Ricci flat, and hyperbolic topology, respectively.
L2 is positive for AdS and negative for dS. The generalized
horizons are at r� ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
−kL2

p
, with

β� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
−kL2

p

2πL2
: ð36Þ

Since the vacua have zero mass, we conclude that

X
h

Ih ¼ −
X
h

Sh

¼ −
AD−2;k

4

h� ffiffiffiffiffiffiffiffiffiffiffi
−kL2

p 	
D−2 þ

�
−

ffiffiffiffiffiffiffiffiffiffiffi
−kL2

p 	
D−2

i
:

ð37Þ

Here AD;k is the volume of the constant-curvature space.
For black holes, the topologies change, but the sum of the
Euclidean actions over all the horizons remains the same.
This indicates that the outer region of a black hole is
insufficient to address the spacetime properties and a new
symmetry may emerge to extend the metric into the
complex regions [27].
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