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Utilizing the electric Harrison transformation developed in five-dimensional minimal supergravity,
we construct an exact solution characterizing non-BPS (Bogomol'nyi-Prasad-Sommerfield) charged rotating
black holes with a horizon cross section of a lens space L(n;1). Among these solutions, only the ones
corresponding to n = 0 and n = 1 do not have any curvature singularities, conical singularities, Dirac-Misner
string singularities, and orbifold singularities both on and outside the horizon; additionally, they are free from
closed timelike curves. The solution for n = 0 corresponds to the charged dipole black ring that we
constructed in the previous paper. The specific solution for n = 1, referred to as the “capped black hole,” was
introduced in our previous article. This provides the first example of a non-BPS exact solution, representing
an asymptotically flat, stationary spherical black hole with a domain of outer communication (DOC) having a
nontrivial topology in five-dimensional minimal supergravity. We demonstrate that the DOC on a time slice
has the topology of [R*#CIP?]\B*. Differing from the well-known Myers-Perry and Cveti¢-Youm black holes
describing a spherical horizon topology and a DOC with a trivial topology of R*\B* on a timeslice, the
capped black hole’s horizon is capped by a disk-shaped bubble. We explicitly demonstrate that the capped
black hole carries mass, two angular momenta, an electric charge, and a magnetic flux, with only three of
these quantities being independent. Furthermore, we reveal that this black hole can possess identical
conserved charges as the Cveti¢-Youm black hole. The existence of this solution challenges black hole
uniqueness beyond both the black ring and the BPS spherical black hole. Moreover, within specific parameter

regions, the capped black hole can exhibit larger entropy than the Cveti¢-Youm black hole.

DOI: 10.1103/PhysRevD.110.024026

I. INTRODUCTION

In the domain of string theory and its associated
disciplines, higher-dimensional black holes and other
extended black objects have played a pivotal role in our
comprehension of these higher-dimensional theories over
the past two decades [1,2]. Of particular interest is the
physics of black holes within the framework of five-
dimensional minimal supergravity, which is recognized
as a low-energy approximation of string theory. This theory
shares similarities with eleven-dimensional supergravity,
particularly in terms of its Lagrangians, where the three-
form field in eleven-dimensional supergravity is replaced
by Maxwell’s U(1) gauge field. The correspondence
between five-dimensional minimal supergravity and
eleven-dimensional supergravity has been previously
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investigated [3,4]. Furthermore, the formulation of five-
dimensional supergravity can be derived through a trun-
cated toroidal compactification of eleven-dimensional
supergravity by identifying three vector fields and freezing
out the moduli [5,6]. This highlights the significance of
discovering and classifying all exact solutions of black
holes within the framework of five-dimensional minimal
supergravity, as it contributes significantly to our under-
standing of string theory. Despite ongoing efforts, achiev-
ing this goal remains elusive, although various exact
solutions of black holes within this theory have been
generated through recent advancements in solution-
generation techniques [7-14].

It is now well-established that even within vacuum
Einstein gravity, there exists a diverse kind of black hole
solutions in higher dimensions [15,16]. However, the
classification of asymptotically flat and stationary black
holes remains a significant open problem. For instance,
according to the topology theorem of a stationary black
hole in five dimensions [17], the allowed topology of the
cross section of the event horizon is restricted to either a
sphere S, aring S' x S2, or lens spaces L(n; m), given the
spacetime is asymptotically flat and allows two commuting
axial Killing vector fields. Emparan and Reall [16] first
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showed that five-dimensional vacuum Einstein theory allows
for the existence of a S'-rotating spherical black hole and
two rotating black rings with identical conserved charges,
thus explicitly illustrating the nonuniqueness property in
higher dimensions. The S?-rotating black ring was initially
derived independently by Mishima and Iguchi [18] and
Figueras [19], although it exhibited conical singularities.
Subsequently, Pomerasnky and Sen’kov [20] succeeded in
constructing the general black ring solution with rotations in
both S' and S?. Numerous efforts have been made by various
authors to discover an asymptotically flat black lens solution
to the five-dimensional vacuum Einstein equations.
However, regrettably, all such endeavors have ended in
failure [21-24]. The main obstacle lies in the fact that the
resulting solutions obtained are always marred by naked
singularities. Several black objects have been extensively
studied within the context of asymptotically flat supersym-
metric solutions in five-dimensional minimal supergravity,
leveraging techniques pioneered by Gauntlett et al. [25].
Reall demonstrated that the possible topologies of these
supersymmetric black holes are limited to 3, S! x §2, T3, or
quotients thereof [26]. For the S° case, Breckenridge et al.
[27] constructed a black hole solution with spherical top-
ology featuring equal angular momenta, commonly referred
to as the Breckenridge-Myers-Peet-Vafa (BMPV) black hole.
Elvang et al. discovered a black ring solution in the S' x §?
case [28]. The black ring exhibits only U(1) x U(1) spatial
symmetry and does not allow for a configuration with equal
angular momenta, distinguishing it from the BMPV black
hole. Furthermore, Kunduri and Lucietti constructed an
asymptotically flat supersymmetric black lens solution with
topology L(2;1) = §%/7Z, [29], which was later extended to
more general black lens solutions with topology L(n;1) =
§3/7, (n > 3) in Refs. [30,31]. So far, exact solutions for
biaxisymmetric Bogomol’nyi-Prasad-Sommerfield (BPS)
black holes have been classified [31], but ones for non-
BPS black holes with a single U(1) symmetry, or even
U(1) x U(1), remain elusive.

In recent years, many researchers have focused on
horizon topologies when constructing new exact solu-
tions of black holes. However, it has recently become
evident that different types of black holes can exist even
when the horizon topology is spherical. According to the
uniqueness theorem for charged rotating black holes in
the bosonic sector of five-dimensional minimal super-
gravity [32], assuming the existence of two commuting
axial isometries and a spherical topology of horizon cross
sections, an asymptotically flat, stationary charged rotat-
ing black hole with a nonextremal horizon is uniquely
characterized by its mass, charge, and two independent
angular momenta, and is therefore described by the five-
dimensional Cveti¢-Youm solution [33]. Consequently, it
appears that there are no other spherical black holes in the
class of asymptotically flat, regular solutions with no
closed timelike curves (CTCs).

However, the topological censorship theorem proved by
Friedman [34] gives us the possibility of another black
hole with spherical topology since in the uniqueness
theorem [32], the exterior region of a black hole is assumed
to have the trivial topology of R*\B*, where B* represents
the black hole region. This theorem asserts that under the
averaged null energy condition, the domain of outer
communication (DOC) in an asymptotically flat spacetime
must be simply connected. In four dimensions, this implies
that the topology of the intersection of a black hole’s
exterior region with a time slice X is limited to a trivial
structure of R¥\B?, where B* represents the black hole
region. However, in higher dimensions, the DOC can
exhibit nontrivial topologies, meaning that DOC N X
can possess homology groups with ranks higher than
one. Based on the topological censorship theorem, it
was shown in Ref. [35] that in five dimensions, the region
DOCNZX can have the nontrivial topology of
[R¥#n(S? x S?)#m(+CP?)]\B*. In static asymptotically
flat spacetimes, the uniqueness theorems [36,37] establish
that the higher-dimensional Schwarzschild and Reissner-
Nordstrom solutions [38] are the only vacuum and charged
black hole solutions, respectively. Consequently, any sol-
utions with a nontrivial DOC—if they exist—must belong
to a class of solutions that are not static rather stationary.
Kunduri and Lucietti [39] have constructed a four param-
eter family of supersymmetric black hole solutions with
spherical horizon topology and two two-cycles in the
exterior in five-dimensional minimal supergravity, which
indicates a charged spherical black hole such that DOC N X
has the topology of [R*#S? x S?]\B*. The presence of such
a solution indicates the existence of black holes within this
family that possess conserved charges identical to those of
the BMPV black hole [27], highlighting the violation of
uniqueness among black holes within a certain class of BPS
spherical black holes.

It is well known that dimensionally reduced gravity
theories and supergravity exhibit a global symmetry known
as “hidden symmetry,” which often proves to be a powerful
tool in discovering new solutions. New solutions can be
obtained by applying this group transformation to a known
solution within the same theory, referred to as a “seed
solution” (see Refs. [40-42] for four-dimensional Einstein
gravity). The dimensional reduction of five-dimensional
minimal supergravity to four dimensions, as explored in
Refs. [3,43], reveals precisely an SL(2,R) symmetry,
arising from the dimensional reduction of eleven-dimen-
sional supergravity [44]. The new solution-generation
technique utilizing this SL(2,R) symmetry [13] has
successfully produced the Kaluza-Klein black hole solu-
tions [45,46]. First explored by Mizoguchi and Ohta [3,4]
in five-dimensional minimal supergravity, the presence of
two commuting Killing vector fields reduces the theory to a
three-dimensional nonlinear sigma model with a Gy,

target space symmetry. With two spacelike commuting
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Killing vector fields, it is described by the G,1,)/SO(4)
sigma model coupled to gravity, while if one of the two
commuting Killing vector fields is timelike, the symmetry
becomes Gy5)/[SL(2,R) x SL(2, R)]. Utilizing this Gy,
symmetry, Bouchareb et al. [14] developed a solution-
generation technique involving an electric Harrison trans-
formation, capable of transforming a five-dimensional
vacuum solution into an electrically charged solution in
five-dimensional minimal supergravity. By representing the
coset in terms of a 7 x 7 matrix, this transformation applied
to the five-dimensional vacuum rotating black hole (the
Myers-Perry solution [15]) yields the five-dimensional
charged rotating black hole (the Cveti¢-Youm solution
[33]). However, applying this transformation to the vacuum
doubly rotating black ring (the Pomeransky-Sen’kov sol-
ution [20]) fails to produce a regular charged doubly
spinning black ring solution, as the resulting solution
inevitably suffers from a Dirac-Misner string singularity.
In Ref. [47], this transformation is also applied to the
Rasheed solution [48] producing the rotating generalization
of the static charged Kaluza-Klein black hole found by
Ishihara and Matsuno [49].

In our prior research [50], we employed the electric
Harrison transformation to derive an exact solution for a
non-BPS charged rotating black ring with a dipole charge
within the bosonic sector of five-dimensional minimal
supergravity. To achieve this solution, we employed a
vacuum solution of a rotating black ring that inherently
contained a Dirac-Misner string singularity as the seed
solution for the Harrison transformation. Subsequently,
we adjusted the parameters appropriately to eliminate the
Dirac-Misner string singularity inside the black ring. To
procure a vacuum seed solution having a Dirac-Misner
string singularity, the inverse scattering method (ISM)
proves invaluable. In Ref. [50], we successfully constructed
such a vacuum solution, which serves as the foundational
seed for the Harrison transformation. The ISM stands out as
one of the most valuable tools for obtaining exact solutions
of the vacuum Einstein equations with D —2 Killing
isometries (D: spacetime dimension). This method enables
the systematic derivation of new solutions with the same
isometries through the soliton transformation from a known
simple solution. While the original ISM, as formulated by
Belinski and Zakharov [51,52], typically yields singular
solutions when applied directly to higher dimensions,
Pomeransky modified the ISM to generate regular solutions
even in higher dimensions [53]. Notably, when combined
with the rod structure [54,55], this modified ISM has been
highly successful, particularly in the context of five-dimen-
sional vacuum black hole solutions [12,18,20-24,56-79].
The first example of this success was the rederivation of the
five-dimensional Myers-Perry black hole solution [53].
Subsequently, the S?-rotating black ring was rederived
from the Minkowski seed [58], though the generation of
the S'-rotating black ring presented a more delicate

problem due to the choice of seed leading to singular
solutions. The appropriate seed for deriving the black ring
with S' rotation was first considered in [56,57], culminat-
ing in the construction of the regular black ring solution
with both S' and S§? rotations by Pomeransky and
Sen’kov [20]. In attempts to construct asymptotically flat
black lens solutions in five-dimensional vacuum Einstein
equations, several authors have employed the ISM. For
instance, Evslin [21] attempted to construct a static black
lens with lens space topology L(n? + 1; 1), only to find that
while orbifold singularities could be eliminated, curvature
singularities remained unavoidable. Similarly, Chen and
Teo [22] constructed a black lens solution with horizon
topology L(n;1) = $3/Z, by the ISM, but encountered
either conical singularities or naked curvature singularities.
The primary obstacle in constructing black lens solutions
has thus been the presence of naked singularities. However,
breakthroughs in this regard have emerged from super-
symmetric solutions [29-31].

In this paper, we derive an exact solution representing an
asymptotically flat, stationary, non-BPS black hole char-
acterized by a horizon cross section with trivial topology S°
and a DOC exhibiting nontrivial topology, within the
bosonic sector of five-dimensional minimal supergravity.
To begin, we employ the ISM to construct a vacuum
black lens harboring a Dirac-Misner string singularity.
Subsequently, employing the electric Harrison transforma-
tion on this vacuum solution, we derive a charged rotating
black lens solution characterized by a horizon topology of
lens space L(n; 1), still retaining the Dirac-Misner string
singularity. Finally, we adjust the solution’s parameters to
eliminate the Dirac-Misner string singularity, ensuring its
regularity. Among these solutions, only those correspond-
ing to n = 0 and n = 1 exhibit regularity, the absence of
curvature, conical, Dirac-Misner string, or orbifold singu-
larities both inside and outside the horizon, and additionally
CTCs. The n =0 solution corresponds to the charged
dipole black ring previously constructed in our earlier work
[50]. Specifically, the n = 1 solution, termed the “capped
black hole,” was introduced in our preceding work [79].
This presents the first instance of a non-BPS exact solution,
delineating an asymptotically flat, stationary spherical
black hole with a nontrivially topological DOC within
five-dimensional minimal supergravity. In contrast to the
familiar Cvetic-Youm solution with a spherical horizon
topology, the capped black hole’s horizon is capped by a
disk-shaped bubble. Additionally, we demonstrate the
existence of spherical black holes possessing the same
conserved charges as the Cvetic-Youm solution, which
implies the violation of the uniqueness for a spherical
black hole.

The remainder of this paper is structured as follows: In
Sec. II, we provide an overview of the setup and formalism
employed in our analysis. Section III is dedicated to the
construction of the neutral metric using the soliton
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transformation. Following this, in Sec. IV, we detail the
application of the electric Harrison transformation to the
neutral metric, resulting in the derivation of the charged
metric and gauge field. Furthermore, we demonstrate that
the only regular charged solution corresponds to a black
ring and a black hole with a disklike bubble. Subsequently,
in Sec. V, we delve into an examination of the physical
properties of the regular black hole solution. Finally, we
encapsulate our findings and conclusions in Sec. VL

II. PRELIMINARY

Let us start by explaining the fundamental framework for
asymptotically flat, stationary, and biaxisymmetric solu-
tions within the bosonic sector of five-dimensional minimal
ungauged supergravity (Einstein-Maxwell-Chern-Simons
theory). The action governing this theory is given by

5= 1671rG5 U dsx‘/_—g(R_al_tF2>
—%/F/\F/\A}, (1)

where F' = dA. The field equations governing the dynam-
ics of the system consist of the Einstein equation and the
Maxwell equation with a Chern-Simons term. They are
expressed as

1 1 Ll )
R/u/ - ERg/u/ = E F/MFI/ - ngwFngp s (2)
and

1
d*xF+—F AN F =0. (3)

V3

A. Five-dimensional minimal supergravity
with symmetry

By assuming the presence of one timelike Killing vector
&y = d/0r and one spacelike axial Killing vector £, =9/ dy,
the theory reduces to the Gy;)/SL(2,R) x SL(2,R) non-
linear sigma models coupled to three-dimensional gravity
[3,4]. Further, the assumption of the existence of a third
spacelike axial Killing vector &, = d/0¢, implying the
presence of three mutually commuting Killing vectors,
reduces the theory to a two-dimensional nonlinear sigma
model, and additionally ensures the integrability conditions
discussed in Ref. [54,55]; as a result, the metric can be
expressed in the Weyl-Papapetrou form:

ds? = dup(dx® + a® 4dep)(dx" + a® ,dp) + 7' p*dep?
+ 7712 (dp? + dZ?), (4)

and the gauge potential is given by
A =3y, dx* + Aydg, (5)

where the coordinates x* = (¢,y) (a = 0, 1) represent the
Killing coordinates, and thus all functions A,,, 7:=
—det(4), a, 6, and (y,,Ay) are independent of ¢ and
x?. Additionally, as shown in the Appendix of Ref. [32],
one can always set A, = A, =0, using the gauge trans-
formation. It is important to note that the coordinates (p, z),
spanning a two-dimensional base space £ = {(p,z)|p >
0, -0 < z < o0}, are globally well defined, harmonic, and
mutually conjugate on X.

The magnetic potential 4 and twist potentials @, can be
introduced using Eqgs. (2) and (3), as discussed in Ref. [32],
expressed as

1
dpu = —=x(& N & A F) = ey dy,, (6)

V3

dw, = * (8o A & A dEy) +w,(3du + eydy.),  (7)
where €' = —¢!® =1, and &, (a =0, 1) are written as
Killing one-forms. Thus, as a consequence of the existence
of isometries &,, we have eight scalar fields 4,,,®,,
W, 4, which we denote collectively by coordinates @4 =
(Aap> @4, W, i) (@ =0, 1) and then, the action (1) reduces
to the following nonlinear sigma model for the eight scalar
functions @4 invariant under the G() transformation:

5= / dpdzp[G (00" (00P))

1 1 3
= / dpdzp {Z Tr(A~'0A4~'04) + 11_2072 + an/T,l—lay/

1 3
_ET_]UT/'{,_]U —ET_l(aﬂ + €abl//aall/b)2 ’ (8)

where v = dw — y(30u + €”y,0p.). In this coordinate
system, ®* = (1,5, ®,,y,, u) are determined by the equa-
tions of motion

A" + Ty [@LEO] + O] = 0, 9)

where A, is the Laplacian with respect to the abstract three-
dimensional metric y = dp* + dz*> + p*de?, and T4, is
the Christoffel symbol with respect to the target space
metric G,p.

On the other hand, once ®* are given, one can
completely determine o, a’,, a’ 4, A;. In fact, the function
o is determined by

1
;G,p:GAB[QgQg_(Dé(Dg]? ;O"Z:GAB(D‘;‘)(D’B;. (10)
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The integrability ¢ ,, = ¢, is assured by Eq. (9). From
Eq. (7), the metric functions a“, are determined by

a‘y, = —pt ' A (0 = Bwpp . — ey ),
ay, = pr 2 (0, = 3Wpp, — WHe W W4, (11)
where we have set

€012/)Z =1. (12)

Therefore it follows from Eq. (6) that the gauge potential
Ay is determined by

App = V3a o, —pt (. + e ypp.)),  (13)

A(/).z = \/g[aa(/)l//a,z +p7_1 (/’l,p + ebcl//bl//c,p)}' (14)
|

lor

Ty T]

Thus, once ®* = (A, w4, 4, 1) are determined, one can
determine the solutions of the system given by the
action (1).

Following Ref. [14], we introduce the G,()/[SL(2, R) x
SL(2,R)] coset matrix, M, which is defined by

A B \V2U
M= B c Vv |, (15)
V20T V2T 8

where A and C are symmetric 3 X 3 matrices, Bisa3x3
matrix, U and V are three-component column matrices, and
S is a scalar, defined, respectively, by

[(1=)A4+ 2+ x)yy! —c'od" + ulyy™ 27T = T2 yy™)] '@

G
: )

(" —p)A = tay™ T [(=(1+ y)AT = @+ x)p +y 2 @)y + (2 = pIa ™))

27V — Tz — pda My >

& T (24 ud DT @A o = 2uyp"A @ — (1 4+ x = 2y — xy + 22))]

N ( (1+x)A7 =2ty T2t
1

with
= —puy, (16)

x=y A Ny, y=t? z=y-twJa, (17)

and the 2 x 2 matrix,

J:(_Ol (1)) (18)

We note that this 7 x 7 matrix M is symmetric, M7 = M,
and unimodular, det(M) = 1. We define a current matrix as

J;=M"o;M, (19)

which is conserved if the scalar fields are the solutions
of the equation of motion derived by the action (8).
Then, the action (8) can be written in terms of J or M
as follows:

1 )
S = Z/dpdzptr(],-]’)

1 )
:Z/dpdzptr(M_l()l-MM_lalM). (20)

Thus, the matrix M completely specifies the solutions to
our system. In terms of this, one can find that the equation
of motion (9) can be written as

0,(po,MM™") + 0_(po.MM~") = 0. (21)

The action (20) is invariant under the G,5) transformation.
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B. Electric Harrison transformation
In particular, utilizing the Gy symmetry, Ref. [14]
constructed the electric Harrison transformation preserving

asymptotic flatness that transforms a five-dimensional
|

Moo = D0,

D (03/1()1 + s3a)0100)2

X ==
! /100 DZ/IOO

wh = D72[c3(c?
o) = w; + D72s%[—
wo=D"lse(l+A0). v
W = D7 lsc(cawy — shy),

with
D = C2 + Szlo() =1 + S2(1 +ﬂr()0)a (23)

where the new parameter « in (c, s) := (cosh @, sinh a) is
related to the electric charge. The functions a’“¢ (a=0,1)
and the component A:ﬁ for the charged solution are
determined by the eight scalar functions {1/, /.y, u'}
from Egs. (6) and (7) after the replacement of {4,,,w,,
wa.p} with {2, 0.y, pu'}: First, the functions o',
(a =0, 1) are determined by

= 3you — llfbeall///cazl//d)

P
a/)a/a{/) — _ ?A/ah (asz

a p a C
0.d ¢ = ?ﬁ/ b(apr - 3‘/’;76/7/4/ - ‘//be dl/’/capl//d) (24)
We can show from Eq. (22) that Eq. (24) can be written as
ap(a’1¢ - Cll¢) = O, az(a'1¢ — al¢) =0. (25)

Hence, a'! ¢4 can be obtained up to a constant as

0,(A} = V3" ) = V3(~v,
_ \/gp’r/_l M/abll/;

apa/a¢ _p,l./—l

/
azwh -

+ S2 + 252/’{00)600 - S3 (202 + (Cz

03/1%1 + 5(2¢% = Agg) A1 — c3w6],

vacuum  solution ®* = {4, w,,y, = 0,4 =0} into a
charged solution @4 = {1, o), vy, 4} in five-
dimensional minimal supergravity, which is given by

/161 = D_Z(C3/101 + 53/100600),

+ 5%)200)A01)

= D7 'sc(chy — swy),

Furthermore, Eq. (24) for a = 0 can be written as

53 (=wgd,a' y+pr'e“ 0.0 204),
s3(—a)001a (/,—pr_le“dlocd/,/l()d), (27)

0,(a"y—c*a’y) =
az (a/O[/) _ c3a0{/,) —

where we have used Eq. (11) corresponding to the vacuum
seed solution before the Harrison transformation:

5] Cla¢

p
P = _;iabazwb’

a p a
0Za @ = ;i b()pa)b. (28)
Similarly, the gauge potential A’; is determined by

9,Al, = V/3(a' 0,
9,A], =

PN 04 + ePyio.p),)),
f(a/a¢azWa +PT ( p/‘ + eabl//izapl//b)) (29)

One can rewrite the first equation of (29) as follows:

(az/'t + eab / zwb))
(14 32yl Yo' — (14 Xyl e lyLo ). (30)

where we have used Eq. (24) to eliminate d,a’, in the second line. The similar expression is obtained for the second
equation in Eq. (29). Moreover, substituting Eq. (22) into the right-hand sides, this is expressed only in terms of the

quantities of the vacuum seed solution

0/) (Ai/; - \/ga/“(ﬁy/;)

V3[es?(y0,a' 5 — pr=" €™ 20,0, 20) — ¢*59,a° 4],

0.(Ay — \/§a/“¢y/;) = \/g[csz(woazalq; + pt 1€ 20,0,Ap0) — ¢*50.a%), (31)
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where we used Eq. (28) to eliminate the derivatives of w,
on the right-hand side. Comparing with the right-hand side
in Eq. (27), one can write this in the total derivative form,
which results in

C 02
A;/) = \/g(alad)l//; — ;alolﬁ + :(loqg) . (32)

Hence, integrating Eq. (27) is the only nontrivial task to
obtain the charged metric. As will be seen later, this can be
easily integrated in the C-metric, as in Ref. [14].

Therefore, one can derive the new metric and gauge
potential describing the charged solution from Egs. (2)
and (3). This transformation adds an electric charge to a
vacuum solution while preserving asymptotic flatness and
Killing isometries. However, as noted in Ref. [14], per-
forming the Harrison transformation on a regular vacuum
black ring, such as the Pomeransky-Sen’kov solution,
unavoidably leads to a Dirac-Misner string singularity
appearing on the disk inside the ring. Conversely, the
transformation can produce the regular Cveti¢-Youm
charged black hole from the vacuum black hole, such as
the Myers-Perry solution. In our previous work [50], we
solved this problem by utilizing a vacuum rotating black
ring with a Dirac-Misner string singularity as the seed for
the Harrison transformation and subsequently eliminating
it appropriately by controlling the post-transformation
parameters. As a result, we have obtained a regular exact
solution for a non-BPS charged rotating black ring with a
dipole charge. In the subsequent section, we will detail
the procedure for utilizing a vacuum seed that includes a
Dirac-Misner string singularity to derive a capped black
hole solution.

III. CONSTRUCTION OF VACUUM SEED FOR
HARRISON TRANSFORMATION

Pomeransky’s pioneering work [53] marked the beginning
of utilizing the inverse scattering method (ISM) [51,52] for
constructing diverse vacuum solutions of five-dimensional
black holes. This approach has since been employed in
numerous studies [12,18,20-24,56-79], by using the rod
structure [54,55]. In this section, we employ the ISM to craft
the five-dimensional vacuum seed solution utilized for the
electric Harrison transformation detailed in the subsequent
section. This solution describes a vacuum rotating black lens
with a Dirac-Misner string singularity, comprising a rotating
black ring and a rotating black hole, with a horizon cross
section of L(n;1) = $3/Z,, topology.

A. ISM construction of the vacuum seed

As a vacuum seed for the Harrison transformation,
we choose the vacuum rotating black lens with a horizon
cross section of lens space L(n; 1) (n =0,1,2,...), which
initially possesses a Dirac-Misner string singularity. This

singularity will be eliminated by appropriately adjusting the
parameters of the solution after the Harrison transforma-
tion. To construct this vacuum solution, we follow the
procedure outlined for the vacuum rotating black lens by
Chen and Teo [22]. The key distinction lies in the treatment
of the Dirac-Misner string singularity: while they remove it,
we retain it in our solution.

To use the ISM, we rewrite the Weyl-Papapetrou
form (4) as

dS2 = Gijdxidxj +f(d,02 + dZZ), (33)

where (x') = (t,y,¢) (i =0, 1, 2), and a 3 x 3 matrix G;;
and f are the functions of p and z, with the constraint
det(G,;) = —p*. We begin with the diagonal metric given by

_di ( Ho paks pm)
iag
Hz K1 HoHM3

Cuau3Ro1 Ry R12R,
#1RRo3R11 R Ry Ry

fo= (34)

where y; = \/p? + (2= 2;)* — 2+ z; and R;j = p* + ;.
The rod structure is displayed in Fig. 1, and the constant
Cy is consistently set to 1 throughout this paper. The yy
component of the metric diverges as g,,,, ~ O(p™2) as p — 0
for z; < z < z,. This divergence indicates naked curvature
singularities on the negative rod p =0,z; <z < 2z, as
discussed in Ref. [55].

Then, following Pomeransky’s procedure [22,53], we
first remove three trivial solitons from the points z =
20, 22, 23 With vectors (0, 0, 1), (1, 0, 0), and (0, O, 1),
respectively. Next, we add back three nontrivial solitons at
the same points z =z, z,,z3 With vectors mg o = (Cy,0, 1),
myo = (1,C,,0), and m;3, = (0, C3, 1), respectively. For
the diagonal metric, removing a trivial soliton corresponds
to multiplying —u3 /p? to the kk component of G,, where k
is the index of the nonzero component in the vector.

12
GO:diag< 2,1,M0M;)G0
P pp

— diag <ﬂoﬂ2 HaH3 ﬂoﬂ1ﬂ3>

T2
—dlag<'0 P

2

oy /41> (35)

Hi P
HoH2 ﬂlﬂzﬂs MOM3

FIG. 1. Rod structure of the diagonal seed for the ISM.
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where i; := —\/p? + (z — z;)*> — 7 + z; and we used y;ji; =
—p? in the last line for the later use. The three-soliton

solution is obtained from the modified metric G, and the
vectors m; as

G; =Gy - Z = (miGo) ® (ijo), (36)

i.j=02.3 Hil

p* =20z — A

(p* =24z = 2%)?

where the 3 x 3 matrix [';; is given by

miGOmJ»

Fij'_ R

, mp=m VYo (A=p;p.2), (i,j=0.2,3),
ij

(37)

with the generating matrix made from G, by the replace-
ment p; = p; — A iy = fi; = A, p* = p* =22z = X

Po(4,p,2) = diag(

The metric function f can be obtained as

det(I;;)

N det(T';;)|c,.c,.c5-0

VE fo- (39)

To remove the divergence of the metric on p =0,
Zl <z < ZZs we set

2259

22, (40)
221432

where z;; := z; — z;. Under this condition (40), the rod
vectors on two rods {(p.z)|lp=0,z; <z<z} and
{(p,2)|p = 0,2z, < z < z3} become parallel, merging these
rods into a single rod. Note that under this condition, the
point (p,z) = (0,z,) no longer becomes an endpoint of
the rods but a mere regular point, often referred to as a
phantom point.

For later convenience, we introduce the following

parameters:
2
bhi=C 210 2220232 -C 231 C 210 [2220221
— 07 — —_— 37— 07 .
230 221 <3430 230 232
(41)

The resulting solution becomes asymptotically flat at

Vp* + 22 = o if and only if
-l<a<l, (42)

or otherwise the spacetime is not Lorentzian, since the
spatial metric (Gs),; (I,J =y, ¢) approaches a semipos-
itive definite metric multiplied by the factor (1 — a?)~! at
infinity. Together with this condition, the solution turns
out to asymptote to the standard Minkowski metric

(A=fo) (A= f2) (y = A) (i = A) (i = 2)

(38)

(A=) (p* =242 = 2?)
(A= fg)(4 —fi3) .

under the global rotation, which is expressed as the
coordinate change:

xt— Al xd, (43)
where
1 -I'|T, b\, | ;
A=|0 T, =—ar, |, T,= s [y em | 2220521
— z
O —aFl F] 4 32
(44)

B. Vacuum seed solution for Harrison transformation
Under the condition (40), the metric can be written in the

simpler form without square root terms if we introduce the

C-metric coordinates (x,y) [55], which are defined as

_ 27%,/—-G(x)G(y)

2(1=xy)2+v(x+Yy))

(x=y? 7 (x = y)? ’
(45)

with the cubic function
G(u) = (1 =u?)(1 +vu). (46)

The endpoints z; (i = 0, 1, 2, 3) of the rods are replaced by
the new parameters &, v,y
a=r% n=£% (47)

o=—vl? z=vl?,

where
¢ >0, v<y<l. (48)

From the definition of the C-metric coordinates (x, y), it
appears that there is an invariance under the exchange
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(x,y) = (y,x). However, the functions y; (i = 0, 1, 3)—which contribute to the metric—do not exhibit such symmetry due
to the differences in their ranges, as indicated in Eq. (58) below. Consequently the functions including nasty square roots are
written as rational functions of x and y,

221 = x)(1 +y)(1 +vy) 2221 =) (1 +wx)(1+y) 2% (14 wx)(y2 = 1)
(x—y)? M 2 BT (x—y)? '

Ho = — =) (49)

By the use of Eq. (40), the square root \/p? + (z — z,)? in p, can be removed from the metric, and hence the point z = z, is
referred to as a phantom point.
Finally, the metric of the vacuum solution in the C-metric form can be written as

. F(y.x) 2J(x,y) F(x.y)
(dt + Q, (x, y)dy + Qy(x, y)dp)* + H(y.x) dy* - .0 Y " Hyx) “w

£2H(x,y) dx*  dy’
TS g el g g <G<x> G<y>) 50)

where

Hx,y)=2di(1-y) 1 -0v)2+v(l+x+y—xy)y(1+y)(1 +vx) =2 —v@Bx+ v+ y2 +x + v+ 2xv)))
+dyc3(1+v)(y +yvx —v(x +0v) (1 +x)(1+y)?
+ (1= =v)P(x+y+v+exy)2((1 =) (1 =)y +v) = 2d,) (2 +v(1 + x +y = xy))

FRO =2+ (090 + (1 =0)( =2+ 71 +2) = (1= + D) x= )] (51)
207
F(x,y) S U= =y? 4(1=-a®P(y = (1 =y)*(1 =)’ = di(1 + y)|(1 + vy)G(x)
+4[(1 =v)ea = (1 —ab)(y —v)(1 +v)e ]2 (1 + vx)(1 + x)G(y)
FI1 =) = (1 = F)G0) - 1 )G()
[ GGV = )0 =7)s = (o551 =1ty e+ sty el v, )
2 X
) =2 (0= )1 =l =01 ) = ad) (1 01 +03)
—dhes(1 =2 =) = 0)(1 ) = (= B)(y ~V)eaferes — b ) (1 =) (1 =91 +ex)(1 +2)]. (53
0 (x.9) = X E=D e = b )1 =01 4+ 001+ 13)
— (1 =v)2dye3(1 = x) + (1 + xv)d, (2v(1 —ab)(1 —y)(1 +v)(1 + x) + (1 = 3v = x(1 +v))c3)], (54)
0y(5.3) = D (1 )y 01+ )1 +09) + ves(1 =31 =)
 2a=0)(1 =2 (1) + ) = (1= 0Py =)oy 4 vt )] 55

1+v
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and the coefficients are given by

e | 2P
TV a-a)(1 -y

cr=(l=y)a+(r-v)b,
cy=2a(l =y)v+b(y —v)(1+v),
c3=2(1 =+ b (r —v)(1 +v),

dy =+ 1)ci = (1=p)(1-v)

dy = b(v+ ey(y —v) + 26(1 =y)(1 - v),

dy = (@ = Dby = 1)(v + 1) - acs.

dy =0y =v)[(v+ 1) (=31 =p)v=1* +1) = (1 = p)(1 —=v)*(2v + 1)]
+ (1 =p)[((1 =v)ey = 20%¢))* =423 (=y(v + 2) + 32 + 1)]. (56)

We assume the ranges of the coordinates as
-0 <1t < 00,
and

-1<x<1,

0 <y <2n,

0<¢<2n, (57)

<y <1, (58)

where the boundary of the coordinate (x,y) corresponds to the rods plus infinity:
(i) ¢-rotational axis: 0%, = {(x,y)|x = =1, =1 <y < —1/v} with the rod vector v := (0,0, 1), where in the choice of
C; = 1, the periodicity ¢ ~ ¢ + 2z from the coordinate ranges (57) ensures the absence of the conical singularities,
(i) Horizon: 0Xy = {(x,y)| — 1 <x <1,y = —1/v} with the rod vector vy, == (1, 0}, w}’°), where

vac __

vo(l = a?)(1 = 7)

v = 2£(y +v)(1 —a* + ala—b)y — (1 —ab)v)’

Dy

e _ 2001 =7y = (L= a)b(1 = y)(1 +) + ab’(y =1)(1 +)

(iii) Inner axis: 9%, = {(x,y)x=1,-1 <y < —1/v}
with the rod vector

vy = (vf(a—b),n, 1), (60)
with

ad, + (1 =y)(1 +v)(1 = a?®)c,
n:= y ,
1

(61)

where we note that the presence of the t component
denotes the existence of the Dirac-Misner string
singularity [80],

(iv) w-rotational axis: 0%, = {(x.y)| -1 <x<1,y=-1}
with the rod vector v,, := (0, 1,0), where the perio-
dicity w ~ v + 2z from the coordinate ranges (57)
also ensures the absence of the conical singularities,

(v) Infinity: 02 = {(p,2)|V/p* + 22 = o with
z/\/p* + 2 finite} = {(x,y)|x = y = —1}.

v 20—y +b*(y—-v)(1 +v) ’

(59)

As studied earlier in Ref. [22], setting a = b and imposing
regularity conditions, in which the obtained metric exactly
describes the rotating black lens in [22], allows us to remove
the Dirac-Misner string singularity [80] on the inner axis 0%;,,.
However, similar to the approach taken for the charged dipole
black ring in Ref. [50], we choose to use the vacuum black
lens possessing a Dirac-Misner string singularity as the seed
for the Harrison transformation. Hence, we do not assume its
absence (a # b) before the Harrison transformation. In the
following section, we will eliminate it after the transformation
by appropriately adjusting the solution’s parameters.

IV. CHARGED SOLUTION FROM HARRISON
TRANSFORMATION

Now, let us utilize the electric Harrison transformation
(22) on the vacuum solution (50) derived in the previous
section. The procedure to obtain the charged solution
follows a similar approach to that used for the charged
black ring [14,50]. First, we express the vacuum
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solution (50) in terms of eight scalar potentials ®* = (1, @,, ¥, ). Since the vacuum solution possesses two axial

Killing vectors d/dy and d/d¢, there are two possible ways to express the solution in terms of the potentials, depending on

the following choice of the Killing vectors: (i) §, = 9/0t, & = d/ow, &, = 0/d¢ and (ii) & = d/0t, &, = 9/ 0, &, = 9/ dw.
In case (i), from the metric (50), we can extract 4,5, a®, and 7, expressed as

__H(y.x) H(y, x) _ F(y.x) H(y.x)
W) T T O TG T ey )
a, :Q¢(x,y)+;((§:);)>9w(x,y), aly, = _IC(())C)’,):C;’ T:fl(();:i)) (62)

The twist potential @, can be obtained by directly integrating Eq. (28). This yields

wy = —Qy(y. x). (63)
_ Jxy) +K(x,y)
T Hy) )

where K(x,y) is a polynomial of x and y:

2
K(r.y) = S (@)1 4 3) (101 = )1 00) + (1= 914 )1+ )

+h(x—y)(wlxy—x=y—1)=2) + k(1 -x)(1 =y)(v(x-y—-1)+1)
+ks(1=x)(1=y) +ke{(v+ 1)>(x + 1)(y + 1) =4(1 +vx)(1 +vy)} + ks (1 +vx)(1 +vy)],  (65)

in which the coefficients k; (i = 1, ..., 7) are given in Appendix A. In case (ii), we denote the corresponding quantities with
“hats,” which can be expressed as

N H(y,x N H(y,x A F(x,y H(y,x
Ago = — ( )7 Aor = ( )Q¢(x,y), A= — ( )— ( )Qi(XY)
H(x,y) H(x,y) H(y,x) H(x.y)
J 9 J 9 A F b
&OW_Q'V/( , )_ (x y) Q¢(x,y), all//: (X y)’ P=_ (x y)’ (66)
F(x,y) F(x,y) H(x,y)
which yields
&)0 = ‘Q'I//(ys-x)s (67)
J(x,y) + K(x,
o, =10y +Kxy) (68)
H(x,y)
where K(x,y) can be expressed, in terms of K(x,y), as
A 202c3d, (1= v)(x + 1*(r + v)(2a(1 = y)(1 —v) + 2(y + 1))
|
When deriving the metric and gauge potential after the W0, = 30 (x,y) + 3a, (. x) (71)
2 AN P\ X)s

Harrison transformation, the most nontrivial aspect lies in
determining a”, or @'°,, through the integration of Eq. (27),

o which also has the same form as that of the vacuum doubly
resulting in

rotating black ring. The metric functions a°; and @°, in

o 3 0 30 cases (1) and (ii) are intertwined in the transformed metric.
a%y = cdy(x,y) = 5700, (y, %), (70) " This highlights that the two Harrison transformations of (i)
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and (ii) are connected through sign flips: s — —s, t - —f,
v — —y, and ¢ — —¢. Therefore, in what follows, we
consider only the Harrison transformation in case (i).
Since Eq. (10) is invariant under the transformation, the
function o is also invariant. Then, from the change of 7 in
Eq. (22), one can see that the two-dimensional conformal
factor in Eq. (4) is multiplied by D, which leads to
|

ggcx = Dgxm g;y = Dgyy- (72)

A. Charged solution

In case (i), the metric and gauge potential for a charged
solution in five-dimensional minimal supergravity after the
electric Harrison transformation can be written as

2 H(y,x) o F(y,x) ., 2J(x,y) _F(xy)
a5 = D*H(x,y) (di+ ) +D[H(y,X) H(y,x) wdp H(y.x) @
£*DH(x,y) dx*  dy’
TP =02 - )=y \G) G<y>>’ 73)
VB3 e y) = Hy.x))di = (cH (3. 1)y (x.y) = sH(x, )22 (y.3) )y
A= DH{.y)
~ (cH(y. 1)@ (x. ) — sH(x. )2, (3. x))dd). (74)

where the functions D, Q,, and €, are given by

?H(x,y) — s*H(y,x)

D= Hixy) (75)
Q' = (*Qy (x.y) = $°Qy(y. x))dy
+(Qy(x.y) = 5°Q, (v.x))dp.  (76)

The Harrison transformation (22) changes the rod
structure of the vacuum solution as follows (see Fig. 2
about the rod diagram):

(i) ¢-rotational axis: 0%, = {(x,y)]x = -1.-1/v <

y < —1} with the rod vector v, = (0,0,1). The
periodicity of ¢ ~ ¢ + 27 still leaves the absence of
conical singularities.

E(l' w1$c , w%zc) E I
E (vof(a —b),n,1 )E 0,1,0)

—V—lf 2 vt’lz {’ 2

Harrison transformation

R‘

(0,n,1) (0,1,0)

(1, (l)w ,0)¢)

0,01) |

—v‘{’Z ve? P2

FIG. 2. The rod structures before and after applying the
Harrison transformation, with the condition (79) imposed on
the latter.

(i) Horizon: 0%y, = {(x,y)|-1<x<1l,y=-1/v}
with the rod vector vy, = (1, ®,,, w,), with

o wo(1=a)(17)
" 2(r+y)e(l—v—ac)) s} (a=b)(y-v)]’
d30)v,

(1)¢:— cs . (77)

(iii) Inner axis: Xy, = {(x,y)x=1,-1/v <y < -1}
with the rod vector

vin = (v9Z(c*(a = b) — s*(1 —ab)),n, 1), (78)

where n is given by Eq. (61).

(iv) w-rotational axis: 0%, = {(x,y)| -1 <x<1l,y=-1}
with the rod vector v, = (0,1,0). The periodicity
of w ~y + 2x still leaves the absence of conical
singularities,

(v) Infinity: 0X,, = {(x,y)[x =y - —1}.

One can see that the Harrison transformation preserves
both the positions and the regularity of the ¢- and
y-rotational axes at x = —1 and y = —1, respectively.
The event horizon remains at y =—1/v but the
horizon velocities are changed. The rod vector of the
inner axis 0%, changes from (vy£(a—b),n,1) to
(vo?(c*(a—b) — s3(1 —ab)),n, 1), which enables one
to eliminate the Dirac-Misner string singularity by setting

a—>b
tanh® o = ,
“ 1—ab

(79)

where the vacuum case corresponds to a = b. As seen in
Ref. [50], the Dirac-Misner string singularity is unavoid-
able if we transform the vacuum seed not possessing the
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Dirac-Misner string singularity (the vacuum seed corre-
sponding to a = b). From the range (42) of a and
—1 < tanh a < 1, the parameter b runs the range

-1<b<l (80)

Under the condition (79) for the absence of the Dirac-
Misner string singularity, the rod vector on 0Z;, becomes
dy = 0y + na,,, and the absence of conical singularities
requires

A N\ 2 d2
7Y — K - =1.  (81)
2z (I=a*)*(1=y)(1 =v)*(1 +v)
The topology condition for 0%, requires

1—7)(1 1—a?
det(dy,, D ):ad1+( 7)(d+V)( a’)ey
1

b, =neZ, (82)

where each hatted vector » denotes a two-dimensional
vector made from yw and ¢ components of each rod
vector v. As proved in Ref. [17], the horizon cross section
has the topology of $? x S' for n =0, $° for n = +1 and
L(n; 1) for |n| > 2. To study all possibilities, we do not fix
the value of n here.
To summarize, the charged solution has six parameters
(Z,a,b,y,v,a), with the following ranges:
¢ >0,

-1<a<l, -1<b<l,

O<v<y<l, —00 < a < 00. (83)
The regularity of the metric at each boundary imposes the
conditions (79), (81), and (82), which reduce the indepen-
dent parameters of the solution from six to three. Moreover,
the solution and the conditions are invariant under trans-
formations n - —n,a - —a, b - —b,a — —a, and hence
we may assume n > 0 without loss of generality. In the
following, under the conditions (79), (81), and (82), we
investigate whether the charged solution has curvature
singularities and CTCs for each value of n.

B. Regularity at the coordinate boundaries

Curvature singularities on and outside the horizon may
arise at points where the metric and its inverse appear to
diverge in the range (58). This occurs on the surfaces
H(x,y) = 0and D = 0, as well as on the boundary of the
C-metric coordinates at x = +1 and y = —1/v, —1, where
G(x) =0 or G(y) =0. From H(=1,-1) = 8(1 —y)3(1 -
v)*(1 —a*) > 0and D = 1 atinfinity x - y — —1. Hence,
the necessary and sufficient condition for the absence of
surfaces H(x,y) =0 and D = 0 is that H(x,y) and D are
positive everywhere in the range (58). Since the discussion
regarding H(x,y) > 0 and D > 0 depends on the value of
n, we will address this in the next subsection. Here, we

demonstrate the absence of curvature singularities at the
coordinate boundaries, x = +1, y = —1, —1/v, by assum-
ing H(x,y) > 0 and D > 0. Additionally, we notice that
despite its appearance in the metric (73), the surface
H(y,x) =0 does not cause a divergence in the metric
and its inverse. This is because the factor H~!(y, x) does
not appear in each component of g,, and ¢g**.
(1) The limit x -y — —1 corresponds to the asymptotic
infinity. In terms of the standard spherical coordi-
nates (r, ) defined as

x=—1+4(1-0v)?r?cos* 0,
y=—1-4(1 —v)*r2sin20, (84)

we find that the metric at r > o0 (x >y - —1)
behaves as the Minkowski metric:

ds*~—dr* +dr* + r*(d6* + sin Ody?* + cos> 0d¢?).
(85)

Hence, the charged metric (73) describes an asymp-
totically flat spacetime.

(2) The point (x,y) = (1,—1) corresponds to a center
of the spacetime, i.e., the intersection of the
y-rotational axis and inner rotational axis. Using
the coordinates (r, ) introduced by

(1+2)(1=y)*(1 —a*)r*cos* @
|di|2(1 + v+ s%y)
(1 =v)(1 =y)*(1 = a®)r?sin’ 0

=-1- , 86
Y d,|2(1 + v+ ) (86)

we can show that the metric at r - 0 [(x,y) —
(1,—1)] behaves as the origin of the Minkowski
spacetime written in the spherical coordinates if
dl <0,

ds* ~—dt? + (—d,/|d,|)[dr?* + r*(d6* + sin® Ody"
+ cos? 0dg?)], (87)

where ¢ :=
v =y —ne.

If d; > 0, the metric is not Lorentzian around this
point but the negativity of d; is ensured by the
positivity of H(x,y) at this point, since

(1 —y)(1 +v)t/(1 + *v + s%y) and

H(1,-1)==8d,(1-y)(1-v)(1-1*)>0&d, <O0.
(88)

Under this condition, the point (x,y) = (1,-1) is
regular.
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(3) The boundaries x = —1 and x = 1 correspond to the ¢-rotational axis and inner rotational axes, respectively.

“

&)

Introducing the radial coordinate r by x = &1 F C, r* with positive constants C for x = &1, we can see that, with
the use of Egs. (82) and (81), the metric at »r — 0 (x — +£1) behaves as

ds* =y (y)drt 4 2y, (v)dtdy s + vy, (V) dy + as(y)(dr* + rdgs — G (y)dy?), (89)
where
yE = _D|_ H(y, £1) v _H(y, £1)[Qy(£1,y) = $°Qy (v, £1)]
: H(:I:l,y) , v D2|x:i1H(i17y) ’
. _ Dl F(y.£1) HQ. £D[EQ, (£1,y) — s’Qy(y, £1)]?
o =Ry £) D?| L H(+1.y) ’
Cif2D|x:i1H(:t1’y)
aL = , 90
£ =30 20— 21— (TP e
and
W_.¢)=(w.¢), (wi.¢,)=(—ng.p) (91)
Under the assumptions H(x,y) > 0 and D > 0, we can also show that a, > 0, and
162%d%(1 1 1
(1 —a )(1 _y)Dlx:lH(Ly)
1622(1 = )3 (1 = )*(1 —a®) (1 —y)(1
R L7 (e ) (e M [ LR B 03)

(1+y)D|,—_ H(=1,y)

hence y* is a nonsingular and nondegenerate matrix for —1/v <y < —1. Thus, the metric is regular at x = +1.

The boundary y = —1 corresponds to the y-rotational axis. Introducing the radial coordinate r by y = —1 — Cyr?
with a positive constant Cj,, we can see that the metric at »r — 0 (y - —1) behaves as
ds® =y (x)dr* + 2yp, (x)drde + 15, (x)d?* + ag(x)(dr* + r*dy® + G (x)dx?), (94)
where
y :_D|y:_1H(—1,x) y __H(-lx) [AQy(x,—1) = 5°Q, (—1,x)]
i H(x,-1) =~ ' D?|,__H(x,—1) ’
0 :_D|y:_1F(x,—1)_H(—l,x)[c3£2¢(x,—1)—SSQV,(—l,x)P o Co?*D|,__H(x,—1) o 99)
4 H(-1,x) D*|,__ H(x,—1) ’ 2(1-y)*(1-v)3(1—a?)(1+x)?
Under the assumptions of H(x,y) > 0 and D > 0, we can also show that o > 0 and
1622(1 —y)3(1 —v)*(1 = a®)(1 — x)(1
det(}/o):_ ( }/) ( l/) ( a )( x)( +l/'x) <0’ (96)

(1 + D, H(x.~1)

and hence y° is a nonsingular and nondegenerate matrix for —1 < x < 1. Therefore, the metric is also regular
aty = —1.
The boundary y = —1/v corresponds to a Killing horizon with the surface gravity

@R Pl T G )
(Pl —v—ac)) +s*(b-a)(y—v))’ 97)
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(6)

and the null generator is denoted by vy, = 9/0t + w,,0/dy + w40/ d¢p with

S y—v
@y, @y) = (1-a?) \/21/(1 -7+ 1/)<C3’ ). %8)

We can show that both the metric and gauge potential are regular at y = —1/v, introducing the ingoing/outgoing
Eddington-Finkelstein coordinates by

(1-17)
2ukG(y) v

dx' = dx'" + v, (99)

where (x') = (t,y,¢) (i =0, 1, 2) and the metric near y = —1/v behaves as

ds® ~ dr* + dt'dy + ——
* “H(x)<(1—u2)2 — 2750

+ 78, (x)(dy' — w,dr')* + 2y$¢(x)(dy/ —w,dt")(dd) — wudt') + yg¢ (x)(d¢' — wydt')?,  (100)

4°°G(y) 4vk dx? >

with

Dl F(=1/v,x)  H(=1/v,x)[*Q, (x, =1/v) = $’Qy(=1/v,x)]?

WS T H(C i) D, H(x,—1/v) ’

Ho_ _D|y=_1/DJ(x, —1/v) _ H(-1/v, x)[c3QV,(x, —1/v) - s3Q¢,(—1/1/, x)}[c3Q[/,(x, —1/v) - s3QV,(—1/1/, x)]
vt H(=1/v.x) D,y H(x,~1/0) ’

0 o_ _D|),:_1/DF(x, -1/v) _ H(—1/v,x)[c*Qy(x, =1/v) = s°Q, (=1/v,x)]
" H(=1/v,) D[,y H(x.=1/0) ’

. 2D\, H(x,~1/v) (101)

740 =)0 =) (1 =) (1 + )
and hence, under the assumptions H(x,y) > 0 and D > 0, we can show ay > 0 and

46421 =) (w+ 1)(1 — 22 3 —1)=s*(b—a)(y —v)
ety = AU D=2 40l e =) =SB0 g

(1-a*)?*(1 - y)D|y—_yv(wx + 1)H(x,~1/v)

and thus ¥ is a nonsingular and nondegenerate matrix for —1 < x < 1. Hence, the metric is smoothly continued to

—oo0 <y < —1/v across the horizon y = —1/v. Moreover, in the Eddington-Finkelstein coordinate, the gauge
potential also remains regular at the horizon y = —1/v under the gauge transformation
1 -1)® d
A=Az a1z / Y ). (103)
2uk G(y)

where @, is the electric potential defined by

_V3es((r = D)W+ Ds(b = a)(y —v) + c(d) = dy))
(r =D+ D)’ (b=a)y —v) + ¢*(d - dy)

@, = —(A + Ayo, + Apwy)l,—y = (104)

The points (x,y) = (£1,—1/v) correspond to the intersecting points of the rotational axes and the horizon. By
introducing the coordinates (r, ) for (x,y) = (+1,—1/v) as
1 1
x ==+1 F cor’sin’, y=-- <1 - % r2c0s26>, . . positive constants, (105)
v
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and with the use of Egs. (81) and (82), the metric at r — 0 ((x,y) —

ds* ~ dr* + r’d6* + r* sin®> 0(d¢p,. —

+ — —
where Wy, = W, — Wy, O, =

@y, and (y+, @) are defined in Bq. (O1). R = /Gyl ()=

(£1,-1/v)) behaves as

wydt)? = r’* cos? Od* + R% (dy . — widr)?, (106)

(+£1,-1/y) are given by

r =) =)y +0)(Pdy + b5 (dy = (r = 1w = D) (r + 1)) (107)

! (@ =1y - 1)y —v) + 2ws*(dy - (y = (v = 1)y +1))?)
Zf\/v(}/—kv Ndy—dy) = s (y —1)(u+1)(b—a)(y—z/)). (108)
(1= =a®)(w+ 1)+ 1)s*(y —v) =23y = 1))

We also set ¢ as

I a®)x((1=7)(v+1))°?R,
T 2(—d, )vt? ’
k(1 —v)R_
3+ )

Note that the negativity (88) of d; ensures that
the metric is Lorentzian at (x,y) = (1,—1/v). In
the Cartesian coordinates (7,X,Y,Z, W) = (kt
rcos @, rsin@cos(p — wyt), rsinfsin(¢y — w,t),
R.(y.—w,1)), the above asymptotic metric
becomes

ds? ~ =X?dT? + dX* + dY? + dZ* + dW?, (110)

where the Rindler horizon lies at X = 0. Therefore,
the metric is regular at (x,y) = (+1,—-1/v).

C. Parameter regions for regularity

Since in the previous subsection, we have shown
that there are no curvature singularities at the boundaries
x==xl,y=—-1,y=—1/v of the C-metric coordinates
under the assumptions of H(x,y) >0 and D > 0 in the
coordinate ranges (58), now we investigate whether they
can indeed be positive in the ranges (58). If H(x,y) > 0
and D > 0 everywhere in the ranges (58), curvature
singularities do not appear on and outside the horizon.
This depends on the value of n, and hence we classify the
analysis into the following three cases: (i) n = 0 (a black
ring), (ii) n = 1 (a black hole), (iii) n > 2 (a black lens). For
this purpose, instead of using H(x, y), it is more convenient
to use the condition (88), which can be expressed from
Egs. (81) and (82) as
d =1

-1 =v)2n-1-a)(n+1-a)<0. (111)

This provides a necessary condition for the absence of the
surface H(x, y) = 0, and curvature singularities exist if this
condition is violated.

1. n=0 (a black ring with S* x S'-horizon topology)

For n = 0, the horizon cross section has the topology
of §2 x S'. In this case, we can show from Eq. (111)
that d; = —(1 —y)(1 —v)?(1 — @?) < 0 is always satisfied
in the ranges of y, v, a (83). Moreover, we can solve
Egs. (79), (81), and (82) as

v(3-v)

b =0,
14+v

, tanh’ a = a,

v = (112)

which describes the charged dipole black ring as a two-
soliton solution obtained in Ref. [50]. Further details
regarding the solution generation and analysis can be found
in the reference. Therefore, we do not explore this case
further in this paper.

2. n=1 (a capped black hole with S3-horizon topology)

The n =1 case describes a regular solution called a
“capped black hole,” characterized by a horizon cross
section with a trivial topology of S® but the domain
of outer communication with a nontrivial topology [79].
In this case, we can show from Eq. (111) that under the
condition (83),
d=—(1-y)1-0v)?a2-a)<0&e0<a<1. (113)
For this range of a, Egs. (81) and (82) can be solved in
terms of v and y as

2b(1 — a?)?
g b2a(a— 172+ 1) +a((a—1)7—1)’
y=ys—Ulza+a) (114)

1—(1+2b)a+ (1+ b)a?
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from which we can show

ala—2)(1—a+ a*)
(1=2a)(1 +2a —2a°)
-1<b<0

<b<0

0O<a<a,)

O<v<y<le®e , (115)

(a, <a<1)

where a, = 0.347... is a root of a®> —3a + 1 = 0. From Eq. (79), this also restricts the range of a to be positive.
From Eq. (114), it is straightforward to show H(x,y) > 0 in the coordinate ranges (58) and in the parameter range (115)
by writing H(x,y) in the following form [79]:
H(x,y) =[{vb*ct(1+v)*(y =) (1 =7)(1 = x?) + (1 = 7)(r =) (b(1 —v)*(1 = x) = 2¢, (1 + wx))?
+ 0231+ 0) (x4 1)y =)} (1 + 3] + {ds(1 =) + do(1 = %) + da(1 4+ ) (1 +02)} (=1 = y)]

+@(1=-a) A=y =v)*A —x)+23(1=y)(1 =v)*(1 =x*) —4d, (1 —y)(1 =v)*(1 +v)(1 + x)], (116)
with three extra auxiliary parameters:
ds = (1=7)(1 =v)’[(y = 30)(B*(v = 1)(r = v) = ¢]) = 2bc; Bv = 1) (y —v)],
o e (1-1)(1 =) ea = (1= )a = b)y =), (117)

It is evident that the first and third square brackets in Eq. (116) are non-negative. It can be shown from Appendix B
that ds, dg, and d; in the second square bracket are positive, hence as a result, the second square bracket is also
non-negative. Thus, we can show that all three terms enclosed in a square bracket in Eq. (116) are non-negative, and
hence H(x,y) is non-negative. Moreover, we can prove a stronger statement, H(x,y) > 0, because the three square
brackets cannot be zero simultaneously. Having shown H(x,y) > 0, we can see that the positivity of D follows from

D =1+ s’(H(x,y) = H(y,x))/H(x,y) and

(1-v)(y +v)(x—y)
1+v

H(x,y)—H(y,x) =

where ¢3 > 0 is obvious from the definition (56).

Moreover, we can demonstrate that this regular solution
does not permit the presence of CTCs both on and outside
the horizon. To show this explicitly, we need to ensure that
the two-dimensional part g;; (where I,J =y, ¢) of the
metric (73) is positive definite on and outside the horizon,
except on the axes at x = +1 and y = —1, i.e., det(g;;) > 0
and tr(g;;) >0 for -1 <x<1 and —1/v<y<-I.
Following the same reasoning as in the case of the charged
dipole black ring discussed in Ref. [50], it suffices to
demonstrate det(g;;) > 0 for the ranges —1 < x < 1 and
—1/v <y < —1. This can be reduced to proving the
positivity of A(x,y) defined by

43(1 - (1 +1)(r +v)(ac +v—1) =5 (b —a)(y —v))

(e3(1=p)(1=2)’(1=x)(1-y)

+cA(1+v)?(1+x) (-1 =y)+2(=d)) (1 —y)(1 =v)[(1 +v)(1 +x) + (1 +vx)(1 —x)]) >0,

(118)

(1 +vx)DH(x,y)

A=A i1 y)

det(gy;).  (119)

One can easily observe the positivity of this quantity at
infinity (x,y) = (—1,—1) since the spacetime approaches
the Minkowski metric in that limit. Additionally, around
(x,y) = (1,—1), one can show the positivity from the
condition d; < 0, as expressed by

A(l,=1) = =4d, (1 —=v)*(1 +v)(1 + c*v + s%y)3, (120)

where we have also used Eq. (79). The positivity on the
horizon follows from

A(x,-1/v) =

(1-a*)?(1-y)

2
> 0. (121)

For other regions, proving the positivity analytically is challenging. Instead, we have numerically verified the positivity for

several values in the parameter region (115) (Fig. 4).
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3. n > 2 (a black lens with L(n;1)-horizon topology)

For n > 2, we find d; > 0 in the range (83), which is
contrary to the condition (88). Therefore, at least, within the
solution obtained from the seed (50) through the Harrison
transformation, this excludes the possibility of a black lens
with a horizon cross section of L(n;1) for n>2 as a
regular solution not possessing CTCs. However, if we relax
the condition (81) and allow for a conical singularity at
x =1, we can find parameter ranges without curvature
singularities and CTCs, resembling the vacuum case dis-
cussed in Ref. [22].

V. CAPPED BLACK HOLE

For n = 1, we obtain the spherical black hole in [79]
that has a nontrivial DOC in the parameter range (115). In
Fig. 5, we illustrate the orbit spaces of our spherical black
hole and known spherical black hole (Cveti¢-Youm black
hole). The inner axis at x =1 for —1/v <y < —1 has a
disk topology since a S! generated by 0/dy shrinks to zero
at y = —1 but not at y = —1/v. Hence, the horizon is
capped by a disk-shaped bubble at a pole and the solution
is called the capped black hole. Below, we study the
physical properties of the capped black hole.

As one can see from Fig. 3, besides the scale parameter
¢, the regular solution is characterized by two independent
parameters (v, tanh ) € (0, 1) x (0, 1). We will see that v
controls the relative size of the disk-shaped bubble and
horizon and tanh a indicates the amount of the electric
charge. Note that the metric is no longer Lorentzian on the
boundary of the parameter region.

FIG. 3. The parameter region for a regular capped black hole
(n=1) given in Eq. (115). The thick and dashed curves
correspond to v = constant and tanh a = constant, respec-
tively. There is no regular black hole in the blue-colored region
below v = 0.

A (x,y) for (a,b)=(0.5,-0.5)

—-1.0y .
/ /
-1.2
20
-14
0
00

~ 5
-1.6 /
1 /
-1.8 / / 200
-2.0- / -
-1.0 -0.5 0.0 0.5 1.0
X

FIG. 4. Profile of det(g;;) for parameters given by Egs. (79) and
(114) with (a, b) = (0.5,-0.5). One can obtain similar profiles
for other sets of (a, b) in the range (115).

A. Physical quantities

As shown previously in Eq. (85), the spacetime is
asymptotically flat, and hence the Arnowitt-Deser-Misner
(ADM) mass M and two ADM angular momenta JI,,,J 7
can be read off from the asymptotic of the metric at r — oo
in the coordinates (84),

.
ds? — _(1 B 8G5M>dt2 _ 8GsJ,, sin Qd

td
3712 r? v

8GsJ 4 cos? 0
zr?
+ 12 cos? Od¢p? + r*do?,

dtde + dr* + r? sin® Ody?

(122)

0y

Horizon

(b)

FIG. 5. The orbit space M4 /[R x U(1) x U(1)] of (a) the
capped black hole and (b) the Cveti¢-Youm black hole. In each
panel, the bold curves—excluding the event horizon—represent
the rotational axes, which serve as fixed points for the action of
the U(1) isometries along the corresponding Killing vector fields.
The intersection of a rotational axis with a horizon denotes a set
of fixed points for the U(1) action, forming the topology of a
circle in a given time slice. In panel (a), the intersection of two
distinct rotational axes, associated with the fixed points of the
U(1) actions along the Killing vector fields d; + 9, and 9,,
constitutes a common fixed point for the two different U(1)
actions, which topologically is a point.
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with

_3x2(1428)(y +v)(es(1 —v) — dy)

123

4G5 =) (1 =) (1 +2) (123)

JV’ = C3J1 + S3J2, (124)
J¢:C3J2+S3J1, (125)

where J; and J, correspond to the angular momenta in the
neutral case around the y-rotational axis and ¢-rotational
axis, respectively, given by

J, = ﬂf%o(C}dz —c1cye3 = (c3 = bey)dy)
b= 4Gs(1 —a®)(1 —y)’v ’

(126)

_ wlv(a = b)(2¢c3v + dy)
C2Gs(1=a)(1=p)(1 +v)

I (127)

Additionally, the electric charge is defined by the integra-
tion over a three-dimensional closed surface S surrounding
a horizon and a bubble or spatial infinity S:

1 1
Q:: 8ﬂG5/S <*F+\/§F/\A>

1
o
87TG5 Se

2 tanh
el VS (128)
V3

where in the second equality, we have used the fact that the
Chern-Simons term falls much faster at the asymptotic
limit. This obviously follows the Bogomol’'nyi bound

M > ? |Q|, which is saturated at the limit a — .

It is worth emphasizing that the electric charge evaluated
over the three-dimensional surface S, at infinity does not
coincide with one evaluated over the spatial cross section
of the horizon Sy . The rest of the contribution comes from
the three-dimensional surface surrounding the disk-shaped
bubble D. By direct computation, one can confirm that

1 1
= *xF+—FAA 129
¢ 8”G5Ao< V3 ) (129)
_ /(*F—FLF/\A)
~ 87Gs Js, V3
1 1
+ *F+—FANA], 130
SﬂGSA/:A()( \/g > ( )

where D, denotes the three-dimensional surface at x=1—¢
for —1/v <y < —1. This is same as the electric charge for
the charged dipole black ring [50].

In addition to these conserved charges, one can define
the magnetic flux (this is not a conserved charge) over the
disk-shaped bubble D at x =1 as

1 1

B V3¢tscd vy(bdys(y —v) = 2cvd,)
- 2(c2d5(y — v) + 2vs’d3

(131)

where dy :=d, — (y = 1)(v=1)(y +v). The area of a
constant time slice through the horizon is written as

Ay = 8n* vk, (132)
where the surface gravity « is given by Eq. (97).

In Ref. [81], it is shown that the black hole with a disk-
shaped bubble must follow the first law

|
SM = 8£5AH +Vydly + Vybly + 5 @60 + QpdPp,
T

(133)
and the Smarr formula
3kAy 3 3 1 1
M:W-s-iijw+§V¢J¢+§®HQ+§QDCDD, (134)

where @ is the electric potential (104), ®p and Qp are the
magnetic potential and another type of a magnetic flux on
the bubble D, which are defined as

®p = —(Ay +nA, )|

= —\VBestvg(c(a—b) —s(1 — ab)), (135)
1 1
QD :=Z/D luH(*F)_ﬁ((D_(DH)F
\/§n'(1 —a®)bed, £svy (136)

- des(Plac +v—=1)=s*(b—a)(y —v))’

As depicted in Fig. 6, the two magnetic fluxes ¢ and Op
differ in general. Specifically, ¢ can vanish even with the
existence of the bubble, while Qp is negative definite.
When considering the horizon velocities in Eq. (98),
one can verify that the capped black hole adheres to the
aforementioned first law and Smarr formula by expressing
each variable as a function of (¢, a,b) using Egs. (79)
and (114).

To discuss the phase space of the capped black hole,
let us introduce the angular momenta and horizon area

normalized by the mass scale ry = \/8GsM/3x as

. 4Gs 4G V2
=—=J =—J,, =——Ay. 137
Ju frr?w v o ﬂr?u ¢ aH ﬂzr;”v, " ( )
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q/rm Op/ru
1.0 e e 1.0 e ———
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FIG. 6. Profiles for magnetic fluxes ¢ and Qp in the (v, tanh a) plane.
0352 i ) 0.355 ,
A\ ]w%:ﬁ 0.0008
030\ v
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025 _ 0.0006
0.20 £
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0.10 “ 0.340
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FIG. 7. The allowed region for j, and j, and curves of constant tanh « are displayed in the (j, . j,) plane. The allowed region is
illustrated by the colored region. Each curve of constant tanh « starts at the v = 0 curve (blue dot-dashed) and ends at the v = 1
curve (red dotted). In the middle panel, we show a closeup of the phases for tanh a ~ 1. At the limit a« — 0, the curves of constant
tanh a = const converge around (j, . j,) = (1.0), and the allowed region exists in a very narrow range. From the right panel, one can
observe that this range becomes narrower and narrower as j,, approaches 1. The plot depicts two angular momenta and several curves of

constant tanh @ accompanied by the value of tanh a.

Figure 7 provides insight into the allowed region for the
angular momenta in the (ji,. j;) plane. This figure reveals
several important physical characteristics of the capped
black hole:

(i) The allowed range for angular momenta is con-
strained such that 0 < j, < 1/(2v2) = 0.353...
and 0.347... < j, < 1. Compared to the Cvetic-
Youm black hole [82], this region is notably
narrower.

(i) The solid curves represent different values of tanh o
(the electric charge), with each curve having end-
points at v =0 and v = 1.

(iii) The allowed region is bounded by the dashed line
Jy = Jg» which can only be reached at the BPS limit

M =+/3|Q|/2 as @ — co. However, it is important

to note that the metric is not Lorentzian at the BPS
limit. Therefore, the capped black hole does not
admit equal angular momenta j, = j,.

(iv) Since each tanh a = const curve, as seen in the
middle panel, is not closed, the capped black hole is
uniquely specified by the conserved charges of its
mass, two angular momenta, and electric charge.
This implies that there is no continuous family of
solutions parametrized by the magnetic flux g,
highlighting the uniqueness of the capped black
hole configuration.

B. Nonuniqueness of spherical black holes

Now, we compare the capped black hole with the
Cveti¢-Youm black hole [33,82] having the same conserved
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charges, the mass, angular momenta, and electric charge. The normalized angular momenta and the normalized horizon area

for the Cveti¢-Youm solution are give by, respectively,

_\/E[\/l—(JH'Jz (A +5) +/ 1= =)

CY _ C3jl + S3j2 jCY _ C3j2 +S3jl aCY —
Yoo (282 T (14252 T

where a in (¢, s) = (cosh a, sinh a) is the same parameter
as in the capped black hole, and j;, j, are the dimensionless
parameters for the angular momenta. To match the angular
momenta of the Cveti¢-Youm black hole with those of the
capped black hole in Eq. (137), we set

4GsJ, 4GsJ,
ﬂT’ :(1+2S2)3/2ET.
M M

= (142522 (139)

Here we note that the Cveti¢-Youm black hole reaches
the extremal limit, which does not coincide with the BPS
limit when |j; + j,| = 1 or |j; — j»| = 1 [82]. Hence, the

cy
ag—ay
1.0 e
-0.0001 -0.001
0.8 /o ]
/ // -0.01
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0.6+ \ [ ( s
= ‘\ \ L —0.02
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0.2+ 0001 / /0 03—\ |
Vext
00 ey --vy 7”7//X///////—/
0.0 0.2 1.0
tanh a

FIG. 8. The area of the horizon cross section of the capped
black hole compared with that of the Cveti¢-Youm black hole of
the same (j,, j,) in the (v, tanh ).

0.250

(1+2s%): - (138)

|

Cvetic-Youm black hole cannot match the capped black

hole if j; and j, in Eq. (139) excess the bound |j; + j,| <1

or [ji —jo| £ L.

Here are the observations from Fig. 8 regarding the
difference in the horizon area of the two phases in the
(v,tanh a)-plane:

(a) For a fixed a, the corresponding Cveti¢-Youm black
hole becomes extremal at v =, () for |j; + j,| =0,
and has the same horizon area at v = v (a).

(b) For 0 < v < vg(a) (the shaded region) and a fixed a,
there is no Cveti¢-Youm black hole corresponding to
the capped black hole with the same angular momenta
because of |j; + jo| > 1,

(¢) For vey(a) <v <vgy(a) and a fixed a (tanh a <
0.940...), the capped black hole has larger entropy and
hence is thermodynamically more stable than the
Cveti¢-Youm black hole, and for v > v (a), on the
other hand, the Cveti¢-Youm black hole is more stable.

As depicted in Fig. 9, for tanh a < 0.940..., each
curve of constant tanh a can be segmented into three
parts: (i) 0 < v < vg(@), (il) ey (@) < v < veg(a), and
(iii) veie(@) < v < 1, while for tanh a > 0.940..., there are
only two segments without the range ve, (@) < v < veg(@).

C. Size of horizon and bubble

As one might expect from the rod structure depicted in
Fig. 2, the parameter v indicates the size of the bubble, with
smaller values of v indicating larger bubbles. The horizon
disappears as v approaches 0, while the bubble disappears
as v tends to 1. To illustrate this characteristic, we introduce

, tanha=0.8 0335 tanha=0.95 -
0.248 ]
[ . 0.330
0.246 - V=Vrit °~.
,\'S N ,\'9 [ V_l
0.244 = I -
oV 1 0.325- V=Vext
0.242 V=Vext "
y:() =
0320" =0
0.240 - ] |
0465 0470 0475 0480  0.485 0365 0370 0375 038  0.385
Ju Ju

FIG. 9. The area of the horizon cross section of the capped black hole compared with that of the Cveti¢-Youm black hole on the
contour in ( Jyrs j¢) plane for some fixed  (tanh a = 0.8, 0.95). The Cveti¢-Youm black hole is favored on the thick curve, while ours is
favored on the dashed. On the dotted curve, the Cveti¢-Youm black hole does not exist.
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two scales that represent the sizes of the horizon and the
bubble. Analogous to the horizon area, one can calculate
the two-dimensional area of the bubble as

ap = —5= 2 2 / vV gyygl/nlllx 1dy, (140)
M M

where ap is the mass-normalized bubble area. As shown
in the top panels of Fig. 10, the horizon area vanishes
as v — 0, while the bubble area remains finite. Although
both areas vanish as v —>1 a comparison of the area
scales defined by £y := aH and 7p = aD/ ? reveals that
the bubble scale decreases more rapldly, with £y/¢p ~
(1 —v)7'/3 (see also the bottom left panel in Fig. 10).

To investigate the distortion of the S° horizon, we
also compare R defined in Eqgs. (107) and (108), which
estimate the radial scales of the horizon at each pole. From
the bottom right panel of Fig. 10, it is evident that the ratio
between R, and R_ remains finite even as v — 1, indicat-
ing that the horizon shape does not collapse in the limit.
If the electric charge is sufficiently small, we observe
R, /R_ — 0, suggesting that the horizon shape becomes
elongated along the y-rotation plane.

D. Ergoregion

The ergoregion of the capped black hole (50) is deter-
mined by the condition H(y,x) < 0. To comprehend the
presence of the ergoregion, it is convenient to use the

ag
0.25F
0.20f
0.15}
0.10f

0.05

{y/tp
4,

0 1 1 1 1 J V
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10.
curves correspond to the limit curve at tanh a — 1.

following properties for the parameters within the range
(115) together with Eq. (114) (refer to Appendix C for
the proof):

(@ Hy=-1,x==1) >0,

(b) Hly =-1/v,x) <0 for xe[-1,1],

(¢c) #H(y =-1,x) > 0 for xe[ 1,1],

(d) 0}H(y.x) <O for (x,y)e[-1,1] x [-1/v,-1],

(e) 0,H(y=-1,x)+H(y = -1 x) >0 for xe[-1,1].
(a) indicates that both the asymptotic infinity and the
intersection of the inner rotational axis and the y-rotational
axis always lie outside the ergoregion, while (b) illustrates
that the horizon is invariably situated inside the ergoregion.
(c) demonstrates that H(y = —1, x) is a concave function of
x, which, combined with (a), leads to the following two
potential behaviors on the y-rotational axis at y = —1:

(i) H(y=-1,x)>0forxe|[-1,1],

(i) Hly=-1,x) >0 forxe[-1,x;) U (x,,1]  and
H(y =—1,x) <0 for x € (x, x5),

where x; and x, are certain constants such that —1 < x; <
X, < 1. Moreover, (d) and (e) ensure that for a given

e[-1,1]:

(i) H(y,x) =0 has a single root for ye(—1/v,—1]
if Hy=-1,x) >0,

(i) o,H(y =-1,x) =-H(y=-1,x) >0 and then
H (y,x) is a monotonically increasing function of
yif Hy =-1,x) <0,

which excludes the case where H(y,x) >0 for Jye
(=1/v,—1) but H(y=-1,x)<0 and H(y=-1/v,x) <0.
Therefore, we find that the capped black hole admits two

ap
0.4f
03f

0.2F

0.1

02 04 06 08 10 7

v dependence of horizon and bubble scales for each tanh a. The value of tanh « is shown with each curve. The red dashed
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0y

S3
Bubble

64’ Horizon

(i) v > v, (@)

(i) v < v(a)

FIG. 11. Possible shapes for the ergoregion: The ergoregions
are illustrated by the blue hatched pattern in the orbit space for
two cases, (a) v < v,(a) and (b) v > v, (a).

types of ergosurfaces, whose topology changes across a
value v = v, (a) where a quadratic function H(y = —1, x)
exhibits a double root within the range —1 <x <1 (Fig. 11):

(i) 0 <v<v,(a): a single S* surface around the
horizon,

(ii) v,(a) <v < 1:an outer $? surface that encompasses
both the horizon and bubble, and an inner S surface
around the flat center at (x,y) = (1,-1).

In case (ii), the ergoregion extends to the rotation axis of y,
while the ball region around the center at (x,y) = (1,—1) is
excluded from the ergoregion due to being the fixed point
of two rotations. In Fig. 12, we illustrate the threshold
curve v = v, (a) and the topology of the ergosurface in the
phase diagram.

One might understand the topology change of the
ergoregion from the change in the bubble size discussed
in the previous section. For small enough v, the bubble is
sufficiently large compared to the horizon scale, and hence
it protrudes out of the ergoregion as in case (i). As v
increases, the bubble becomes smaller, and for v = v, (a),
it is completely engulfed by the ergoregion. The inner
ergosurface exists for v, (a) < v < 1, but it vanishes as v
approaches 1, since the bubble shrinks to a point in the limit
and the spacetime approaches the extremal (non-BPS)
Cvetic-Youm black hole. Note that in both cases,
there does not exist a so-called evanescent ergosurface,

0.8
0.6
0.4

0.2

0.0¢
00 02 04 06 08

tanh «

FIG. 12. The topology change of the ergoregion in the phase
diagram.

which is a timelike surface outside the horizon where the
timelike Killing vector field at infinity becomes null on
the surface but remains timelike both inside and outside
the surface [30].

VI. SUMMARY AND DISCUSSION

In this paper, applying the electric Harrison transforma-
tion to the vacuum black lens solutions possessing a Dirac-
Misner string singularity, we have constructed asymptoti-
cally flat, stationary, biaxisymmetric black hole solutions
within the bosonic sector of five-dimensional minimal
supergravity. Initially, we have obtained the vacuum black
lens solutions, which inherently contained Dirac-Misner
string singularities, using the inverse scattering method.
Then, by implementing the Harrison transformation on the
vacuum solution, we successfully eliminated the Dirac-
Misner string singularities by appropriately adjusting the
parameters involved. The resulting black hole solutions
exhibit horizon topologies of lens space L(n; 1), including
the n =0 and n = 1 cases. It has been demonstrated that
these black hole solutions are singular for n > 2, but regular
for n = 0, 1. The n = 0 case describes the charged rotating
black ring with a dipole charge constructed in Ref. [50],
and the n =1 case describes the capped black hole
constructed in Ref. [79]. In particular, the n = 1 case is
interesting because this solution describes an asymptoti-
cally flat, stationary, non-BPS black hole with a horizon
cross section of trivial topology S, while the domain of
outer communication (DOC) exhibits a nontrivial topology.
This solution remains regular without any curvature sin-
gularities, conical singularities, Dirac-Misner string singu-
larities, and orbifold singularities both on and outside the
horizon. It describes a charged rotating black hole capped
by a disk-shaped bubble, which we call a capped black
hole. We have demonstrated that the spherical black hole
carries mass, two angular momenta, an electric charge, and
a magnetic flux, where only three of these quantities are
independent. Moreover, we have shown that this black hole
can have identical conserved charges as the spherical black
hole found by Cveti¢-Youm, thus indicating a violation of
black hole uniqueness even when assuming that the top-
ology of the horizon cross section is $°. Additionally, we
have found that the capped black hole can possess larger
entropy compared to the Cveti¢-Youm black hole, estab-
lishing the spherical black hole with a significant bubble as
thermodynamically more stable.

We would like to comment on the intersection of the
horizon 0%y = {(x,y)|ly =—-1/v,—-1 <x <1} and the
bubble 0%, = {(x,y)|x =1,-1/v <y < —1}. Each point
on {(x,y)lx=1,-1/v <y < -1}, a fixed point of the
Killing vector vy, corresponds to a circle generated by
another Killing vector v, := d,,. Furthermore, v,, vanishes
at (x,y)=(1,—1) but does not vanish at (x, y) = (1,—1/v).
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Consequently, since 0%, is topologically D?, this two-
dimensional disk-shaped bubble intersects with the
horizon at the one-dimensional circle (x,y) = (1,-1/v).
Therefore, the horizon appears to be capped by the disk-
shaped bubble. However, it should be noted that the term
“capped” does not imply that a part of the S* horizon is cut
out and replaced with another structure; rather, the horizon
itself truly is S°. This can be seen as follows: Each point
on {(x,y)ly=-1/v,—1 <x <1} represents a two-
dimensional torus generated by the two Killing vectors,
U¢ = a¢: (0,1>T and U¢r::d¢/:6v,+0¢:(l,l)T.
Moreover, since these vectors vanish at the endpoints
x =-—1 and x = 1, respectively, the endpoints (x,y) =
(-1,-1/v) and (x,y) = (1,—1/v) form circles generated
by vy and vy, respectively. Therefore, since the segment
0%y = {(x,y)|y = —1/v,—1 < x < 1} can be regarded as
the union of two solid tori, along with det(v,ﬁ, v,ﬁ/) =—1,it
turns out that 0%y, is actually S°. Hence, a part of the S°
horizon is not cut out by the bubble rather, the horizon itself
is complete S°.

The topology of the DOC on a timeslice X can easily be
read off from the rod structure, as described in Ref. [35].
According to the topology censorship theorem [34], the
intersection X = DOC N X in an asymptotically flat space-
time must be simply connected. Therefore, in a biaxisym-
metric spacetime, the orbit space X = X/U(1)? reduced to
two dimensions by two U(1) isometries is also simply
connected. This results in the rod diagram representing
the upper half-plane in R?, as depicted in Fig. 13. For
simplicity, we assign only the spacial components of the
rod vector to each rod, and the rod vectors on the semi-
infinite rods are set to be (0, 1)” and (1,0)7, respectively.
Note that, to match the orientation in Ref. [35], we assign
the rod vector m40,, + m,,0,, to (m,, m,,)" so that the semi-
infinite rod with (1,0)7 corresponds to the left side.
Following the procedure in Ref. [35], to know the

>

e i~

Xy

DinL_,l
(Lo’

@’

FIG. 13.

topological structure of X = DOC N X on a timeslice X
for the capped black hole, let us consider a sufficiently large
outer sphere S, and a sphere S;, sufficiently close to the
horizon, which divide X into three regions: the asymptotic
region X, outside S, including spatial infinity, the inner
region X;, between S, and S;,, and the near-horizon
region Xy between S;, and the horizon. We denote the
corresponding counterparts in the orbit space with hats. As
depicted in Fig. 13, the curve S,,,, represented by the blue
dashed curve, terminates at the two rods with (1,0)7 and
(0,1)7, and the curve Sin, represented by the red dotted
curve, terminates at the two rods with (1,0)7 and (1,1)7,
where as shown Ref. [17], it is ensured from the orienta-
tions of these rod vectors that S, and S, are topologically
S3. The procedure in Ref. [35] is as follows: (i) First, by
gluing X,, and a half-disk D,,, which is such that
D, = B*, along a semicircle S’Om, one can obtain a upper
half-plane [in other words, by gluing X, and D, along
S,u» ONE can obtain R*], (ii) next, by gluing a half-disk D/,
(DL, = B*) along a semicircle S'Ol,t, and (iii) finally, by
gluing another half-disk D;, (D;, = B*) along a semicircle
S’in, one can obtain a compact two-dimensional space
bounded by a closed curve with three endpoints (similarly,
by gluing D, along S, and Dj, along S;, to X;,, one can
obtain a compact, simply connected four-manifold).
According to the classification in Ref. [83], the topology
of the four-dimensional space with this type of rod diagram
turns out to be CP?. Thus, we find X, U X,, U D;, &
R*#CP2. Since X = X, U X;,, we can conclude that the
capped black hole constructed in this paper has the DOC
such that DOC n T = [R*CP?]\B*.

The capped black hole derived in this paper is charac-
terized by four conserved charges: the mass, two angular
momenta, and an electric charge, along with a magnetic
flux. However, these quantities are not all independent. It is
expected that there may exist a more general capped black

= R*/U(1)?

(CEDLEN (A0

(0,1)7
= CP?/U(1)?

@’

The topology of the DOC can be seen from the rod diagram.
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hole with five independent quantities. The construction of
such a solution deserves further investigation. Additionally,
so far, an exact solution of a non-BPS black lens, even a
vacuum solution, has not been found. In this paper, we also
attempted the construction of black lenses applying the
electric Harrison transformation on the Chen-Teo type
configuration as described in Ref. [22]. However, though
we could obtain the capped black hole solution and charged
dipole black ring solution as a by-product, our work does
not yield any regular solutions for black lenses. Exploring
this avenue is part of our future work. It is conceivable that
applying the Harrison transformation to the four-soliton
solution referenced in Ref. [23] might enable us to uncover
a regular charged black lens solution. Recently, a regular
static black lens immersed in the external magnetic field—
which is not asymptotically flat—was produced by com-
bining the Harrison transformation and another type of

transformation in the context of the five-dimensional
Einstein-Maxwell theory [84]. Hence, the presence of
the magnetic field plays a significant role in the support
of a black lens horizon, as suggested previously for
supersymmetric black lenses [30]. In our forthcoming
paper, we will discuss another construction of a non-
BPS charged black lens solution in five-dimensional
minimal supergravity.
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APPENDIX A: COEFFICIENTS FOR K(x.y)

The coefficients in Eq. (65) are given by

ki =2cicocav(v+1)(a = b)(y —v), ky = —cy(1 =v)(a = b)(y —v)(cic3 — bd,),
p = @ (1=v)(res — v —dy) r _ (I =pPeoa-v)*((1-y)(1 =)y +v) +d —dy)
’ (I-NE+1) o (1= w+1) ’
_ aa(P=17+y(w=1)P=-2d) - v-1)(d + (= 1)) +d,(3v - 1))
k5—203d3<1—’/)3(7—1/>7 ke = 23 (1=79)(1+v) : : ’

PR 1 (U 9 Ul i

V)(b(v=1) + 1) +2¢163(y —v) = erda(1 — 1))

(I-r+1)

APPENDIX B: PROOF OF H|x,

(A1)

y)>0AND D > 0 FOR n=1

Here we show the positivity of each term in Eq. (116). With the negativity of d; (88), it suffices to show the positivity
of ds, dg, d; defined in Eq. (117). For this, it is convenient to clarify the signature of c¢; by rewriting it with Egs. (82)

and (81) as

—(1 =71 =d)*(=d))

This also imply ¢, < 0 due to the identity

c,=ci(14+v)-

—y)(1-v)a <D0.

1-a)(1-d%) <0. (B1)

(B2)

With ¢, ¢, < 0, the positivity of dg and d; is obvious from the definition. The positivity of ds is a little less trivial. First, we

consider the following quantity:

-~ ab*(2—-a)(1-a*)?
== ¢

s=(2-

+ ab?*(2a® — 14@° + 22a* — 17a* + 16a*> —8a + 2) + (2a — 1)b*(a®> —a + 1)(2a* = 2a - 1),

a)a*(a* —a+1)* + b(a* —a+1)(8¢° - 13a* +2a° — a* +2a - 1)

(B3)
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where we used Eq. (114). One can see the positivity of ds by writing ds as the sum of positive definite terms
5 3.3 232 3 2 N 4 9 5 2V 4
d5:(2—a)a(1—a+a)(1+b‘)+(—b)(1—b)(1—a+a)E—l-i(l—a) +t519 =5 +8a*(1-a)

2
+b*(1+b)a [2(1 —a)* +6a? <a —%) +§a2 +2a8 + 14a*(1 - a)] +(=b)*a*(1+a)*(1+a*>—-a*)>0. (B4)

APPENDIX C: PROPERTIES OF H(yx) FOR n=1

Here we prove several properties of H(y, x) that are used to determine the topology of the ergoregion for the capped black
hole in Sec. V D. We use the following conditions proved in Sec. IV C and Appendix. B

dl < O, C < O, C3 > 0 (Cl)

(1) Proof of (a)H(y = —1,x = £1) > 0 and (¢)d2H(y = —1,x) > 0 for x€[-1,1].
These can be shown directly from

H(y=-1,x=1)=-8(1 —y)%d;(1 —v)> > 0, (C2)
H(y=-1,x=-1)=8(1-y)*(1 =v)*(1 - a?) > 0, (C3)
PH(y=—1,x) =8u(1 —y)*(y —v)(1 —v)*(a = b)* > 0. (C4)

(2) Proof of (b)H(y = —1/v,x) <0 for xe[-1,1].
The negativity of H(y = —1/v,x) is obvious by writing it as

H(y = =1/v,x) = A/ (1 + x)% 4+ Ay (1 — x)2 + A3(1 — x2), (C5)
where
A (A=A +0)(e2 = 1= =N +v) (C6)
Uy -v)
Ay = (1 —y)c3(y—12/)y(21 -v)*(1 +v) 0. (C7)
A = (1= @+ D)y -v)(+ Db _211/)2((7;1’;))+ 2cv)* +4(1 =y)yv(1 =v)* +4(=d|)V?) ~0. (C8)

(3) Proof of (d)d;H(y,x) <0 for (x,y)€[-1,1] x [-1/v,-1]
0;H(y,x) <0 is obvious by writing it as

0H(y,x) = =B, (1 +x)? — By(1 —x)* = B3(1 — x?), (C9)
where
By =2(1=y)cicsv(1 +v) > 0,
By = (1-y)(1 =v)*(2ve; + (y = v)(1 =1)b)* > 0,
By =(1=y)(1 =v)4c3 22—y +v) +4bc(y —v)v(l =) + (1 —v)3(y* = 12)b?] > 0. (C10)
(4) Proof of (e)o,H(y = —1,x) +H(y = —1,x) > 0 for x&[-1,1]
0,H(y = —1,x) + H(y = —1,x) > 0 becomes obvious by writing it as

0,H(y=-1,x)+H(y =-1,x) = C;(1 + x)* + Co(1 — x)* + C5(1 — x?), (C11)

024026-26



SOLUTION GENERATION OF A CAPPED BLACK HOLE

PHYS. REV. D 110, 024026 (2024)

where

Ci=-ctv+1)(1-v)2(1-y)* -
Cy=2bc,(y =) =1)(w=1)*(r-v) -
C3=2(1-y)(=d))(v=1)*2=y+v)>0.

b*(y* —1?)) 4 2bcy (y —
2 (y=1)(v+

D@ =17 =)+ 1=y =-1)*C~7r+w),
De=17+ 1=y @=1)*2~-r+w),
(C12)

To see C; > 0 and C, > 0, one can write them by using Eq. (114) as

als—a —-v Y1 —-yp)? 2 —da (12 —da 21/
Ci = (2172(1)_(1@2(;&)!) [—2”(””) Lrata)d=a) +(2—a)a(—b(l—a+a2)+ab2(2—a))}>0,
(C13)
and
CZ_(I—y)Zgl—V)“ {(1—a+1a_2):2(1+b)2+ab2<2_a>(1+Za_2a2)_2b(1—a+ai)_(1a+a(1—a)2)} 0.

(C14)
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