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Utilizing the electric Harrison transformation developed in five-dimensional minimal supergravity,
we construct an exact solution characterizing non-BPS (Bogomol’nyi-Prasad-Sommerfield) charged rotating
black holes with a horizon cross section of a lens space Lðn; 1Þ. Among these solutions, only the ones
corresponding to n ¼ 0 and n ¼ 1 do not have any curvature singularities, conical singularities, Dirac-Misner
string singularities, and orbifold singularities both on and outside the horizon; additionally, they are free from
closed timelike curves. The solution for n ¼ 0 corresponds to the charged dipole black ring that we
constructed in the previous paper. The specific solution for n ¼ 1, referred to as the “capped black hole,” was
introduced in our previous article. This provides the first example of a non-BPS exact solution, representing
an asymptotically flat, stationary spherical black hole with a domain of outer communication (DOC) having a
nontrivial topology in five-dimensional minimal supergravity. We demonstrate that the DOC on a time slice
has the topology of ½R4#CP2�nB4. Differing from the well-knownMyers-Perry and Cvetič-Youm black holes
describing a spherical horizon topology and a DOC with a trivial topology of R4nB4 on a timeslice, the
capped black hole’s horizon is capped by a disk-shaped bubble. We explicitly demonstrate that the capped
black hole carries mass, two angular momenta, an electric charge, and a magnetic flux, with only three of
these quantities being independent. Furthermore, we reveal that this black hole can possess identical
conserved charges as the Cvetič-Youm black hole. The existence of this solution challenges black hole
uniqueness beyond both the black ring and the BPS spherical black hole. Moreover, within specific parameter
regions, the capped black hole can exhibit larger entropy than the Cvetič-Youm black hole.
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I. INTRODUCTION

In the domain of string theory and its associated
disciplines, higher-dimensional black holes and other
extended black objects have played a pivotal role in our
comprehension of these higher-dimensional theories over
the past two decades [1,2]. Of particular interest is the
physics of black holes within the framework of five-
dimensional minimal supergravity, which is recognized
as a low-energy approximation of string theory. This theory
shares similarities with eleven-dimensional supergravity,
particularly in terms of its Lagrangians, where the three-
form field in eleven-dimensional supergravity is replaced
by Maxwell’s Uð1Þ gauge field. The correspondence
between five-dimensional minimal supergravity and
eleven-dimensional supergravity has been previously

investigated [3,4]. Furthermore, the formulation of five-
dimensional supergravity can be derived through a trun-
cated toroidal compactification of eleven-dimensional
supergravity by identifying three vector fields and freezing
out the moduli [5,6]. This highlights the significance of
discovering and classifying all exact solutions of black
holes within the framework of five-dimensional minimal
supergravity, as it contributes significantly to our under-
standing of string theory. Despite ongoing efforts, achiev-
ing this goal remains elusive, although various exact
solutions of black holes within this theory have been
generated through recent advancements in solution-
generation techniques [7–14].
It is now well-established that even within vacuum

Einstein gravity, there exists a diverse kind of black hole
solutions in higher dimensions [15,16]. However, the
classification of asymptotically flat and stationary black
holes remains a significant open problem. For instance,
according to the topology theorem of a stationary black
hole in five dimensions [17], the allowed topology of the
cross section of the event horizon is restricted to either a
sphere S3, a ring S1 × S2, or lens spaces Lðn;mÞ, given the
spacetime is asymptotically flat and allows two commuting
axial Killing vector fields. Emparan and Reall [16] first
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showed that five-dimensional vacuumEinstein theory allows
for the existence of a S1-rotating spherical black hole and
two rotating black rings with identical conserved charges,
thus explicitly illustrating the nonuniqueness property in
higher dimensions. The S2-rotating black ring was initially
derived independently by Mishima and Iguchi [18] and
Figueras [19], although it exhibited conical singularities.
Subsequently, Pomerasnky and Sen’kov [20] succeeded in
constructing the general black ring solution with rotations in
both S1 and S2. Numerous efforts have beenmade by various
authors to discover an asymptotically flat black lens solution
to the five-dimensional vacuum Einstein equations.
However, regrettably, all such endeavors have ended in
failure [21–24]. The main obstacle lies in the fact that the
resulting solutions obtained are always marred by naked
singularities. Several black objects have been extensively
studied within the context of asymptotically flat supersym-
metric solutions in five-dimensional minimal supergravity,
leveraging techniques pioneered by Gauntlett et al. [25].
Reall demonstrated that the possible topologies of these
supersymmetric black holes are limited to S3, S1 × S2, T3, or
quotients thereof [26]. For the S3 case, Breckenridge et al.
[27] constructed a black hole solution with spherical top-
ology featuring equal angular momenta, commonly referred
to as theBreckenridge-Myers-Peet-Vafa (BMPV)blackhole.
Elvang et al. discovered a black ring solution in the S1 × S2

case [28]. The black ring exhibits only Uð1Þ ×Uð1Þ spatial
symmetry and does not allow for a configuration with equal
angular momenta, distinguishing it from the BMPV black
hole. Furthermore, Kunduri and Lucietti constructed an
asymptotically flat supersymmetric black lens solution with
topologyLð2; 1Þ ¼ S3=Z2 [29], which was later extended to
more general black lens solutions with topology Lðn; 1Þ ¼
S3=Zn (n ≥ 3) in Refs. [30,31]. So far, exact solutions for
biaxisymmetric Bogomol’nyi-Prasad-Sommerfield (BPS)
black holes have been classified [31], but ones for non-
BPS black holes with a single Uð1Þ symmetry, or even
Uð1Þ ×Uð1Þ, remain elusive.
In recent years, many researchers have focused on

horizon topologies when constructing new exact solu-
tions of black holes. However, it has recently become
evident that different types of black holes can exist even
when the horizon topology is spherical. According to the
uniqueness theorem for charged rotating black holes in
the bosonic sector of five-dimensional minimal super-
gravity [32], assuming the existence of two commuting
axial isometries and a spherical topology of horizon cross
sections, an asymptotically flat, stationary charged rotat-
ing black hole with a nonextremal horizon is uniquely
characterized by its mass, charge, and two independent
angular momenta, and is therefore described by the five-
dimensional Cvetič-Youm solution [33]. Consequently, it
appears that there are no other spherical black holes in the
class of asymptotically flat, regular solutions with no
closed timelike curves (CTCs).

However, the topological censorship theorem proved by
Friedman [34] gives us the possibility of another black
hole with spherical topology since in the uniqueness
theorem [32], the exterior region of a black hole is assumed
to have the trivial topology of R4nB4, where B4 represents
the black hole region. This theorem asserts that under the
averaged null energy condition, the domain of outer
communication (DOC) in an asymptotically flat spacetime
must be simply connected. In four dimensions, this implies
that the topology of the intersection of a black hole’s
exterior region with a time slice Σ is limited to a trivial
structure of R3nB3, where B3 represents the black hole
region. However, in higher dimensions, the DOC can
exhibit nontrivial topologies, meaning that DOC ∩ Σ
can possess homology groups with ranks higher than
one. Based on the topological censorship theorem, it
was shown in Ref. [35] that in five dimensions, the region
DOC ∩ Σ can have the nontrivial topology of
½R4#nðS2 × S2Þ#mð�CP2Þ�nB4. In static asymptotically
flat spacetimes, the uniqueness theorems [36,37] establish
that the higher-dimensional Schwarzschild and Reissner-
Nordström solutions [38] are the only vacuum and charged
black hole solutions, respectively. Consequently, any sol-
utions with a nontrivial DOC—if they exist—must belong
to a class of solutions that are not static rather stationary.
Kunduri and Lucietti [39] have constructed a four param-
eter family of supersymmetric black hole solutions with
spherical horizon topology and two two-cycles in the
exterior in five-dimensional minimal supergravity, which
indicates a charged spherical black hole such that DOC ∩ Σ
has the topology of ½R4#S2 × S2�nB4. The presence of such
a solution indicates the existence of black holes within this
family that possess conserved charges identical to those of
the BMPV black hole [27], highlighting the violation of
uniqueness among black holes within a certain class of BPS
spherical black holes.
It is well known that dimensionally reduced gravity

theories and supergravity exhibit a global symmetry known
as “hidden symmetry,” which often proves to be a powerful
tool in discovering new solutions. New solutions can be
obtained by applying this group transformation to a known
solution within the same theory, referred to as a “seed
solution” (see Refs. [40–42] for four-dimensional Einstein
gravity). The dimensional reduction of five-dimensional
minimal supergravity to four dimensions, as explored in
Refs. [3,43], reveals precisely an SLð2;RÞ symmetry,
arising from the dimensional reduction of eleven-dimen-
sional supergravity [44]. The new solution-generation
technique utilizing this SLð2;RÞ symmetry [13] has
successfully produced the Kaluza-Klein black hole solu-
tions [45,46]. First explored by Mizoguchi and Ohta [3,4]
in five-dimensional minimal supergravity, the presence of
two commuting Killing vector fields reduces the theory to a
three-dimensional nonlinear sigma model with a G2ð2Þ
target space symmetry. With two spacelike commuting
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Killing vector fields, it is described by the G2ð2Þ=SOð4Þ
sigma model coupled to gravity, while if one of the two
commuting Killing vector fields is timelike, the symmetry
becomes G2ð2Þ=½SLð2;RÞ × SLð2;RÞ�. Utilizing this G2ð2Þ
symmetry, Bouchareb et al. [14] developed a solution-
generation technique involving an electric Harrison trans-
formation, capable of transforming a five-dimensional
vacuum solution into an electrically charged solution in
five-dimensional minimal supergravity. By representing the
coset in terms of a 7 × 7matrix, this transformation applied
to the five-dimensional vacuum rotating black hole (the
Myers-Perry solution [15]) yields the five-dimensional
charged rotating black hole (the Cvetič-Youm solution
[33]). However, applying this transformation to the vacuum
doubly rotating black ring (the Pomeransky-Sen’kov sol-
ution [20]) fails to produce a regular charged doubly
spinning black ring solution, as the resulting solution
inevitably suffers from a Dirac-Misner string singularity.
In Ref. [47], this transformation is also applied to the
Rasheed solution [48] producing the rotating generalization
of the static charged Kaluza-Klein black hole found by
Ishihara and Matsuno [49].
In our prior research [50], we employed the electric

Harrison transformation to derive an exact solution for a
non-BPS charged rotating black ring with a dipole charge
within the bosonic sector of five-dimensional minimal
supergravity. To achieve this solution, we employed a
vacuum solution of a rotating black ring that inherently
contained a Dirac-Misner string singularity as the seed
solution for the Harrison transformation. Subsequently,
we adjusted the parameters appropriately to eliminate the
Dirac-Misner string singularity inside the black ring. To
procure a vacuum seed solution having a Dirac-Misner
string singularity, the inverse scattering method (ISM)
proves invaluable. In Ref. [50], we successfully constructed
such a vacuum solution, which serves as the foundational
seed for the Harrison transformation. The ISM stands out as
one of the most valuable tools for obtaining exact solutions
of the vacuum Einstein equations with D − 2 Killing
isometries (D: spacetime dimension). This method enables
the systematic derivation of new solutions with the same
isometries through the soliton transformation from a known
simple solution. While the original ISM, as formulated by
Belinski and Zakharov [51,52], typically yields singular
solutions when applied directly to higher dimensions,
Pomeransky modified the ISM to generate regular solutions
even in higher dimensions [53]. Notably, when combined
with the rod structure [54,55], this modified ISM has been
highly successful, particularly in the context of five-dimen-
sional vacuum black hole solutions [12,18,20–24,56–79].
The first example of this success was the rederivation of the
five-dimensional Myers-Perry black hole solution [53].
Subsequently, the S2-rotating black ring was rederived
from the Minkowski seed [58], though the generation of
the S1-rotating black ring presented a more delicate

problem due to the choice of seed leading to singular
solutions. The appropriate seed for deriving the black ring
with S1 rotation was first considered in [56,57], culminat-
ing in the construction of the regular black ring solution
with both S1 and S2 rotations by Pomeransky and
Sen’kov [20]. In attempts to construct asymptotically flat
black lens solutions in five-dimensional vacuum Einstein
equations, several authors have employed the ISM. For
instance, Evslin [21] attempted to construct a static black
lens with lens space topology Lðn2 þ 1; 1Þ, only to find that
while orbifold singularities could be eliminated, curvature
singularities remained unavoidable. Similarly, Chen and
Teo [22] constructed a black lens solution with horizon
topology Lðn; 1Þ ¼ S3=Zn by the ISM, but encountered
either conical singularities or naked curvature singularities.
The primary obstacle in constructing black lens solutions
has thus been the presence of naked singularities. However,
breakthroughs in this regard have emerged from super-
symmetric solutions [29–31].
In this paper, we derive an exact solution representing an

asymptotically flat, stationary, non-BPS black hole char-
acterized by a horizon cross section with trivial topology S3

and a DOC exhibiting nontrivial topology, within the
bosonic sector of five-dimensional minimal supergravity.
To begin, we employ the ISM to construct a vacuum
black lens harboring a Dirac-Misner string singularity.
Subsequently, employing the electric Harrison transforma-
tion on this vacuum solution, we derive a charged rotating
black lens solution characterized by a horizon topology of
lens space Lðn; 1Þ, still retaining the Dirac-Misner string
singularity. Finally, we adjust the solution’s parameters to
eliminate the Dirac-Misner string singularity, ensuring its
regularity. Among these solutions, only those correspond-
ing to n ¼ 0 and n ¼ 1 exhibit regularity, the absence of
curvature, conical, Dirac-Misner string, or orbifold singu-
larities both inside and outside the horizon, and additionally
CTCs. The n ¼ 0 solution corresponds to the charged
dipole black ring previously constructed in our earlier work
[50]. Specifically, the n ¼ 1 solution, termed the “capped
black hole,” was introduced in our preceding work [79].
This presents the first instance of a non-BPS exact solution,
delineating an asymptotically flat, stationary spherical
black hole with a nontrivially topological DOC within
five-dimensional minimal supergravity. In contrast to the
familiar Cvetič-Youm solution with a spherical horizon
topology, the capped black hole’s horizon is capped by a
disk-shaped bubble. Additionally, we demonstrate the
existence of spherical black holes possessing the same
conserved charges as the Cvetič-Youm solution, which
implies the violation of the uniqueness for a spherical
black hole.
The remainder of this paper is structured as follows: In

Sec. II, we provide an overview of the setup and formalism
employed in our analysis. Section III is dedicated to the
construction of the neutral metric using the soliton
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transformation. Following this, in Sec. IV, we detail the
application of the electric Harrison transformation to the
neutral metric, resulting in the derivation of the charged
metric and gauge field. Furthermore, we demonstrate that
the only regular charged solution corresponds to a black
ring and a black hole with a disklike bubble. Subsequently,
in Sec. V, we delve into an examination of the physical
properties of the regular black hole solution. Finally, we
encapsulate our findings and conclusions in Sec. VI.

II. PRELIMINARY

Let us start by explaining the fundamental framework for
asymptotically flat, stationary, and biaxisymmetric solu-
tions within the bosonic sector of five-dimensional minimal
ungauged supergravity (Einstein-Maxwell-Chern-Simons
theory). The action governing this theory is given by

S ¼ 1

16πG5

�Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

4
F2

�
−

1

3
ffiffiffi
3

p
Z

F ∧ F ∧ A
�
; ð1Þ

where F ¼ dA. The field equations governing the dynam-
ics of the system consist of the Einstein equation and the
Maxwell equation with a Chern-Simons term. They are
expressed as

Rμν −
1

2
Rgμν ¼

1

2

�
FμλFν

λ −
1

4
gμνFρσFρσ

�
; ð2Þ

and

d⋆F þ 1ffiffiffi
3

p F ∧ F ¼ 0: ð3Þ

A. Five-dimensional minimal supergravity
with symmetry

By assuming the presence of one timelike Killing vector
ξ0 ¼ ∂=∂t and one spacelike axial Killing vector ξ1¼∂=∂ψ,
the theory reduces to the G2ð2Þ=SLð2;RÞ × SLð2;RÞ non-
linear sigma models coupled to three-dimensional gravity
[3,4]. Further, the assumption of the existence of a third
spacelike axial Killing vector ξ2 ¼ ∂=∂ϕ, implying the
presence of three mutually commuting Killing vectors,
reduces the theory to a two-dimensional nonlinear sigma
model, and additionally ensures the integrability conditions
discussed in Ref. [54,55]; as a result, the metric can be
expressed in the Weyl-Papapetrou form:

ds2 ¼ λabðdxa þ aaϕdϕÞðdxb þ abϕdϕÞ þ τ−1ρ2dϕ2

þ τ−1e2σðdρ2 þ dz2Þ; ð4Þ

and the gauge potential is given by

A ¼
ffiffiffi
3

p
ψadxa þ Aϕdϕ; ð5Þ

where the coordinates xa ¼ ðt;ψÞ (a ¼ 0, 1) represent the
Killing coordinates, and thus all functions λab, τ ≔
− detðλabÞ, aa, σ, and ðψa; AϕÞ are independent of ϕ and
xa. Additionally, as shown in the Appendix of Ref. [32],
one can always set Aρ ¼ Az ¼ 0, using the gauge trans-
formation. It is important to note that the coordinates ðρ; zÞ,
spanning a two-dimensional base space Σ ¼ fðρ; zÞjρ ≥
0;−∞ < z < ∞g, are globally well defined, harmonic, and
mutually conjugate on Σ.
The magnetic potential μ and twist potentials ωa can be

introduced using Eqs. (2) and (3), as discussed in Ref. [32],
expressed as

dμ ¼ 1ffiffiffi
3

p ⋆ðξ0 ∧ ξ1 ∧ FÞ − ϵabψadψb; ð6Þ

dωa ¼ ⋆ðξ0 ∧ ξ1 ∧ dξaÞ þ ψað3dμþ ϵbcψbdψcÞ; ð7Þ

where ϵ01 ¼ −ϵ10 ¼ 1, and ξa (a ¼ 0, 1) are written as
Killing one-forms. Thus, as a consequence of the existence
of isometries ξa, we have eight scalar fields λab;ωa;
ψa; μ, which we denote collectively by coordinates ΦA ¼
ðλab;ωa;ψa; μÞ (a ¼ 0, 1) and then, the action (1) reduces
to the following nonlinear sigma model for the eight scalar
functions ΦA invariant under the G2ð2Þ transformation:

S ¼
Z

dρdzρ½GABð∂ΦAÞð∂ΦBÞ�

¼
Z

dρdzρ

�
1

4
Trðλ−1∂λλ−1∂λÞ þ 1

4
τ−2∂τ2 þ 3

2
∂ψTλ−1∂ψ

−
1

2
τ−1vTλ−1v −

3

2
τ−1ð∂μþ ϵabψa∂ψbÞ2

�
; ð8Þ

where v ¼ ∂ω − ψð3∂μþ ϵbcψb∂ψcÞ. In this coordinate
system, ΦA ¼ ðλab;ωa;ψa; μÞ are determined by the equa-
tions of motion

ΔγΦA þ ΓA
BC½ΦB

;ρΦC
;ρ þΦC

;zΦC
;z� ¼ 0; ð9Þ

where Δγ is the Laplacian with respect to the abstract three-
dimensional metric γ ¼ dρ2 þ dz2 þ ρ2dφ2, and ΓA

BC is
the Christoffel symbol with respect to the target space
metric GAB.
On the other hand, once ΦA are given, one can

completely determine σ, atϕ, aψϕ, Ai. In fact, the function
σ is determined by

2

ρ
σ;ρ¼GAB½ΦA

;ρΦB
;ρ−ΦA

;zΦB
;z�;

1

ρ
σ;z¼GABΦA

;ρΦB
;z: ð10Þ
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The integrability σ;ρz ¼ σ;zρ is assured by Eq. (9). From
Eq. (7), the metric functions aaϕ are determined by

aaϕ;ρ ¼ −ρτ−1λabðωb;z − 3ψbμ;z − ψbϵ
cdψcψd;zÞ;

aaϕ;z ¼ ρτ−1λabðωb;ρ − 3ψbμ;ρ − ψbϵ
cdψcψd;ρÞ; ð11Þ

where we have set

ϵ012ρz ¼ 1: ð12Þ

Therefore it follows from Eq. (6) that the gauge potential
Aϕ is determined by

Aϕ;ρ ¼
ffiffiffi
3

p
½aaϕψa;ρ − ρτ−1ðμ;z þ ϵbcψbψc;zÞ�; ð13Þ

Aϕ;z ¼
ffiffiffi
3

p
½aaϕψa;z þ ρτ−1ðμ;ρ þ ϵbcψbψc;ρÞ�: ð14Þ

Thus, once ΦA ¼ ðλab;ωa;ψa; μÞ are determined, one can
determine the solutions of the system given by the
action (1).
Following Ref. [14], we introduce the G2ð2Þ=½SLð2; RÞ ×

SLð2; RÞ� coset matrix, M, which is defined by

M ¼

0BB@ Â B̂
ffiffiffi
2

p
Û

B̂T Ĉ
ffiffiffi
2

p
V̂ffiffiffi

2
p

ÛT
ffiffiffi
2

p
V̂T Ŝ

1CCA; ð15Þ

where Â and Ĉ are symmetric 3 × 3 matrices, B̂ is a 3 × 3

matrix, Û and V̂ are three-component column matrices, and
Ŝ is a scalar, defined, respectively, by

Â ¼
 
½ð1 − yÞλþ ð2þ xÞψψT − τ−1ω̃ω̃T þ μðψψTλ−1Ĵ − Ĵλ−1ψψTÞ� τ−1ω̃

τ−1ω̃T −τ−1

!
;

B̂ ¼
 
ðψψT − μĴÞλ−1 − τ−1ω̃ψTĴ ½ð−ð1þ yÞλĴ − ð2þ xÞμþ ψTλ−1ω̃Þψ þ ðz − μĴλ−1 eÞω�

τ−1ψTĴ −z

!
;

Ĉ ¼
 

ð1þ xÞλ−1 − λ−1ψψTλ−1 λ−1ω̃ − Ĵðz − μĴλ−1Þψ
ω̃Tλ−1 þ ψTðzþ μλ−1ĴÞĴ ½ω̃Tλ−1ω̃ − 2μψTλ−1ω̃ − τð1þ x − 2y − xyþ z2Þ�

!
;

Û ¼
� ð1þ x − μĴλ−1Þψ − μτ−1ω̃

μτ−1

�
;

V̂ ¼
 

ðλ−1 þ μτ−1ĴÞψ
ψTλ−1ω̃ − μð1þ x − zÞ

!
;

Ŝ ¼ 1þ 2ðx − yÞ;

with

ω̃ ¼ ω − μψ ; ð16Þ

x¼ψTλ−1ψ ; y¼ τ−1μ2; z¼y−τ−1ψTĴ ω̃; ð17Þ

and the 2 × 2 matrix,

Ĵ ¼
�

0 1

−1 0

�
: ð18Þ

We note that this 7 × 7 matrix M is symmetric, MT ¼ M,
and unimodular, detðMÞ ¼ 1. We define a current matrix as

Ji ¼ M−1
∂iM; ð19Þ

which is conserved if the scalar fields are the solutions
of the equation of motion derived by the action (8).
Then, the action (8) can be written in terms of J or M
as follows:

S ¼ 1

4

Z
dρdzρtrðJiJiÞ

¼ 1

4

Z
dρdzρtrðM−1

∂iMM−1
∂
iMÞ: ð20Þ

Thus, the matrix M completely specifies the solutions to
our system. In terms of this, one can find that the equation
of motion (9) can be written as

∂ρðρ∂ρMM−1Þ þ ∂zðρ∂zMM−1Þ ¼ 0: ð21Þ

The action (20) is invariant under the G2ð2Þ transformation.
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B. Electric Harrison transformation

In particular, utilizing the G2ð2Þ symmetry, Ref. [14]
constructed the electric Harrison transformation preserving
asymptotic flatness that transforms a five-dimensional

vacuum solution ΦA ¼ fλab;ωa;ψa ¼ 0; μ ¼ 0g into a
charged solution Φ0A ¼ fλ0ab;ω0

a;ψ 0
a; μ0g in five-

dimensional minimal supergravity, which is given by

τ0 ¼ D−1τ; λ000 ¼ D−2λ00; λ001 ¼ D−2ðc3λ01 þ s3λ00ω0Þ;

λ011 ¼ −
τD
λ00

þ ðc3λ01 þ s3ω0λ00Þ2
D2λ00

;

ω0
0 ¼ D−2½c3ðc2 þ s2 þ 2s2λ00Þω0 − s3ð2c2 þ ðc2 þ s2Þλ00Þλ01�;

ω0
1 ¼ ω1 þD−2s3½−c3λ201 þ sð2c2 − λ00Þλ01ω0 − c3ω2

0�;
ψ 0
0 ¼ D−1scð1þ λ00Þ; ψ 0

1 ¼ D−1scðcλ01 − sω0Þ;
μ0 ¼ D−1scðcω0 − sλ01Þ; ð22Þ

with

D ¼ c2 þ s2λ00 ¼ 1þ s2ð1þ λ00Þ; ð23Þ

where the new parameter α in ðc; sÞ ≔ ðcosh α; sinh αÞ is
related to the electric charge. The functions a0aϕ (a ¼ 0, 1)
and the component A0

ϕ for the charged solution are
determined by the eight scalar functions fλ0ab;ω0

a;ψ 0
a; μ0g

from Eqs. (6) and (7) after the replacement of fλab;ωa;
ψa; μg with fλ0ab;ω0

a;ψ 0
a; μ0g: First, the functions a0aϕ

(a ¼ 0, 1) are determined by

∂ρa0aϕ ¼ −
ρ

τ0
λ0abð∂zω0

b − 3ψ 0
b∂zμ

0 − ψ 0
bϵ

cdψ 0
c∂zψ

0
dÞ;

∂za0aϕ ¼ ρ

τ0
λ0abð∂ρω0

b − 3ψ 0
b∂ρμ

0 − ψ 0
bϵ

cdψ 0
c∂ρψ

0
dÞ: ð24Þ

We can show from Eq. (22) that Eq. (24) can be written as

∂ρða01ϕ − a1ϕÞ ¼ 0; ∂zða01ϕ − a1ϕÞ ¼ 0: ð25Þ

Hence, a01ϕ can be obtained up to a constant as

a01ϕ ¼ a1ϕ: ð26Þ

Furthermore, Eq. (24) for a ¼ 0 can be written as

∂ρða00ϕ−c3a0ϕÞ¼ s3ð−ω0∂ρa1ϕþρτ−1ϵcdλ0c∂zλ0dÞ;
∂zða00ϕ−c3a0ϕÞ¼ s3ð−ω0∂za1ϕ−ρτ−1ϵcdλ0c∂ρλ0dÞ; ð27Þ

where we have used Eq. (11) corresponding to the vacuum
seed solution before the Harrison transformation:

∂ρaaϕ ¼ −
ρ

τ
λab∂zωb; ∂zaaϕ ¼ ρ

τ
λab∂ρωb: ð28Þ

Similarly, the gauge potential A0
ϕ is determined by

∂ρA0
ϕ ¼

ffiffiffi
3

p
ða0aϕ∂ρψ 0

a − ρτ0−1ð∂zμ0 þ ϵabψ 0
a∂zψ

0
bÞÞ;

∂zA0
ϕ ¼

ffiffiffi
3

p
ða0aϕ∂zψ 0

a þ ρτ0−1ð∂ρμ0 þ ϵabψ 0
a∂ρψ

0
bÞÞ: ð29Þ

One can rewrite the first equation of (29) as follows:

∂ρðA0
ϕ −

ffiffiffi
3

p
a0aϕψ 0

aÞ ¼
ffiffiffi
3

p
ð−ψ 0

a∂ρa0aϕ − ρτ0−1ð∂zμþ ϵabψ 0
a∂zψ

0
bÞÞ

¼
ffiffiffi
3

p
ρτ0−1½λ0abψ 0

a∂zω
0
b − ð1þ 3λ0abψ 0

aψ
0
bÞ∂zμ0 − ð1þ λ0abψ 0

aψ
0
bÞϵcdψ 0

c∂zψ
0
d�; ð30Þ

where we have used Eq. (24) to eliminate ∂ρa0aϕ in the second line. The similar expression is obtained for the second
equation in Eq. (29). Moreover, substituting Eq. (22) into the right-hand sides, this is expressed only in terms of the
quantities of the vacuum seed solution

∂ρðA0
ϕ −

ffiffiffi
3

p
a0aϕψ 0

aÞ ¼
ffiffiffi
3

p
½cs2ðω0∂ρa1ϕ − ρτ−1ϵabλ0a∂zλb0Þ − c2s∂ρa0ϕ�;

∂zðA0
ϕ −

ffiffiffi
3

p
a0aϕψ 0

aÞ ¼
ffiffiffi
3

p
½cs2ðω0∂za1ϕ þ ρτ−1ϵabλ0a∂ρλb0Þ − c2s∂za0ϕ�; ð31Þ
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where we used Eq. (28) to eliminate the derivatives of ωa
on the right-hand side. Comparing with the right-hand side
in Eq. (27), one can write this in the total derivative form,
which results in

A0
ϕ ¼

ffiffiffi
3

p �
a0aϕψ 0

a −
c
s
a00ϕ þ

c2

s
a0ϕ

�
: ð32Þ

Hence, integrating Eq. (27) is the only nontrivial task to
obtain the charged metric. As will be seen later, this can be
easily integrated in the C-metric, as in Ref. [14].
Therefore, one can derive the new metric and gauge

potential describing the charged solution from Eqs. (2)
and (3). This transformation adds an electric charge to a
vacuum solution while preserving asymptotic flatness and
Killing isometries. However, as noted in Ref. [14], per-
forming the Harrison transformation on a regular vacuum
black ring, such as the Pomeransky-Sen’kov solution,
unavoidably leads to a Dirac-Misner string singularity
appearing on the disk inside the ring. Conversely, the
transformation can produce the regular Cvetič-Youm
charged black hole from the vacuum black hole, such as
the Myers-Perry solution. In our previous work [50], we
solved this problem by utilizing a vacuum rotating black
ring with a Dirac-Misner string singularity as the seed for
the Harrison transformation and subsequently eliminating
it appropriately by controlling the post-transformation
parameters. As a result, we have obtained a regular exact
solution for a non-BPS charged rotating black ring with a
dipole charge. In the subsequent section, we will detail
the procedure for utilizing a vacuum seed that includes a
Dirac-Misner string singularity to derive a capped black
hole solution.

III. CONSTRUCTION OF VACUUM SEED FOR
HARRISON TRANSFORMATION

Pomeransky’s pioneering work [53] marked the beginning
of utilizing the inverse scattering method (ISM) [51,52] for
constructing diverse vacuum solutions of five-dimensional
black holes. This approach has since been employed in
numerous studies [12,18,20–24,56–79], by using the rod
structure [54,55]. In this section, we employ the ISM to craft
the five-dimensional vacuum seed solution utilized for the
electric Harrison transformation detailed in the subsequent
section. This solution describes a vacuum rotating black lens
with a Dirac-Misner string singularity, comprising a rotating
black ring and a rotating black hole, with a horizon cross
section of Lðn; 1Þ ¼ S3=Zn topology.

A. ISM construction of the vacuum seed

As a vacuum seed for the Harrison transformation,
we choose the vacuum rotating black lens with a horizon
cross section of lens space Lðn; 1Þ ðn ¼ 0; 1; 2;…Þ, which
initially possesses a Dirac-Misner string singularity. This

singularity will be eliminated by appropriately adjusting the
parameters of the solution after the Harrison transforma-
tion. To construct this vacuum solution, we follow the
procedure outlined for the vacuum rotating black lens by
Chen and Teo [22]. The key distinction lies in the treatment
of the Dirac-Misner string singularity: while they remove it,
we retain it in our solution.
To use the ISM, we rewrite the Weyl-Papapetrou

form (4) as

ds2 ¼ Gijdxidxj þ fðdρ2 þ dz2Þ; ð33Þ

where ðxiÞ ¼ ðt;ψ ;ϕÞ (i ¼ 0, 1, 2), and a 3 × 3 matrix Gij

and f are the functions of ρ and z, with the constraint
detðGijÞ ¼ −ρ2. We begin with the diagonal metric given by

G0 ¼ diag

�
−
μ0
μ2

;
μ2μ3
μ1

;
ρ2μ1
μ0μ3

�
;

f0 ¼
Cfμ2μ3R01R02R12R2

13

μ1R00R03R11R22R23R33

; ð34Þ

where μi ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

p
− zþ zi and Rij ≔ ρ2 þ μiμj.

The rod structure is displayed in Fig. 1, and the constant
Cf is consistently set to 1 throughout this paper. The ψψ
component of the metric diverges as gψψ ∼Oðρ−2Þ as ρ → 0

for z1 < z < z2. This divergence indicates naked curvature
singularities on the negative rod ρ ¼ 0; z1 < z < z2, as
discussed in Ref. [55].
Then, following Pomeransky’s procedure [22,53], we

first remove three trivial solitons from the points z ¼
z0; z2; z3 with vectors (0, 0, 1), (1, 0, 0), and (0, 0, 1),
respectively. Next, we add back three nontrivial solitons at
the same points z¼ z0;z2;z3 with vectorsm0;0 ¼ ðC0; 0; 1Þ,
m2;0 ¼ ð1; C2; 0Þ, and m3;0 ¼ ð0; C3; 1Þ, respectively. For
the diagonal metric, removing a trivial soliton corresponds
to multiplying −μ2k=ρ2 to the kk component of G0, where k
is the index of the nonzero component in the vector.

G̃0 ¼ diag

�
−
μ22
ρ2

; 1;
μ20
ρ2

μ23
ρ2

�
G0

¼ diag

�
μ0μ2
ρ2

;
μ2μ3
μ1

;
μ0μ1μ3
ρ2

�
¼ diag

�
ρ2

μ̄0μ̄2
;

ρ4

μ1μ̄2μ̄3
;
ρ2μ1
μ̄0μ̄3

�
; ð35Þ

FIG. 1. Rod structure of the diagonal seed for the ISM.
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where μ̄i ≔ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

p
− zþ zi and we used μiμ̄i ¼

−ρ2 in the last line for the later use. The three-soliton
solution is obtained from the modified metric G̃0 and the
vectors mi as

G3 ¼ G̃0 −
X

i;j¼0;2;3

ðΓ−1Þij
ðmiG̃0Þ ⊗ ðmjG̃0Þ

μiμj
; ð36Þ

where the 3 × 3 matrix Γij is given by

Γij≔
miG̃0mj

Rij
; mi≔mi;0Ψ−1

0 ðλ¼μi;ρ;zÞ; ði;j¼0;2;3Þ;

ð37Þ

with the generating matrix made from G̃0 by the replace-
ment μi → μi − λ; μ̄i → μ̄i − λ; ρ2 → ρ2 − 2λz − λ2

Ψ0ðλ; ρ; zÞ ¼ diag

 
ρ2 − 2λz − λ2

ðλ − μ̄0Þðλ − μ̄2Þ
;

ðρ2 − 2λz − λ2Þ2
ðμ1 − λÞðμ̄2 − λÞðμ̄3 − λÞ ;

ðλ − μ1Þðρ2 − 2λz − λ2Þ
ðλ − μ̄0Þðλ − μ̄3Þ

!
: ð38Þ

The metric function f can be obtained as

f3 ¼
detðΓijÞ

detðΓijÞjC0;C2;C3→0

f0: ð39Þ

To remove the divergence of the metric on ρ ¼ 0;
z1 < z < z2, we set

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2z20
z21z32

s
z2; ð40Þ

where zij ≔ zi − zj. Under this condition (40), the rod
vectors on two rods fðρ; zÞjρ ¼ 0; z1 < z < z2g and
fðρ; zÞjρ ¼ 0; z2 < z < z3g become parallel, merging these
rods into a single rod. Note that under this condition, the
point ðρ; zÞ ¼ ð0; z2Þ no longer becomes an endpoint of
the rods but a mere regular point, often referred to as a
phantom point.
For later convenience, we introduce the following

parameters:

b≔ C0

z10
z30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z20z32
z21

s
; a≔ C3

z231
z3z30

−C0

z10
z30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z20z21
z32

s
:

ð41Þ

The resulting solution becomes asymptotically flat atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
→ ∞ if and only if

−1 < a < 1; ð42Þ

or otherwise the spacetime is not Lorentzian, since the
spatial metric ðG3ÞIJ (I; J ¼ ψ ;ϕ) approaches a semipos-
itive definite metric multiplied by the factor ð1 − a2Þ−1 at
infinity. Together with this condition, the solution turns
out to asymptote to the standard Minkowski metric

under the global rotation, which is expressed as the
coordinate change:

xi → Λi
jxj; ð43Þ

where

Λ¼

0BB@
1 −Γ1Γ2 bΓ1Γ2

0 Γ1 −aΓ1

0 −aΓ1 Γ1

1CCA; Γ1≔
1ffiffiffiffiffiffiffiffiffiffiffiffi

1−a2
p ; Γ2≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z20z21
z32

s
:

ð44Þ

B. Vacuum seed solution for Harrison transformation

Under the condition (40), the metric can be written in the
simpler form without square root terms if we introduce the
C-metric coordinates ðx; yÞ [55], which are defined as

ρ ¼ 2l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−GðxÞGðyÞp

ðx − yÞ2 ; z ¼ l2ð1 − xyÞð2þ νðxþ yÞÞ
ðx − yÞ2 ;

ð45Þ

with the cubic function

GðuÞ ¼ ð1 − u2Þð1þ νuÞ: ð46Þ

The endpoints zi (i ¼ 0, 1, 2, 3) of the rods are replaced by
the new parameters l; ν; γ

z0¼−νl2; z1¼νl2; z2¼ γl2; z3¼l2; ð47Þ

where

l > 0; ν < γ < 1: ð48Þ

From the definition of the C-metric coordinates ðx; yÞ, it
appears that there is an invariance under the exchange
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ðx; yÞ → ðy; xÞ. However, the functions μi (i ¼ 0, 1, 3)—which contribute to the metric—do not exhibit such symmetry due
to the differences in their ranges, as indicated in Eq. (58) below. Consequently the functions including nasty square roots are
written as rational functions of x and y,

μ0 ¼ −
2l2ð1 − xÞð1þ yÞð1þ νyÞ

ðx − yÞ2 ; μ1 ¼ −
2l2ð1 − xÞð1þ νxÞð1þ yÞ

ðx − yÞ2 ; μ3 ¼
2l2ð1þ νxÞðy2 − 1Þ

ðx − yÞ2 : ð49Þ

By the use of Eq. (40), the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − z2Þ2

p
in μ2 can be removed from the metric, and hence the point z ¼ z2 is

referred to as a phantom point.
Finally, the metric of the vacuum solution in the C-metric form can be written as

ds2 ¼ −
Hðy; xÞ
Hðx; yÞ ðdtþΩψðx; yÞdψ þ Ωϕðx; yÞdϕÞ2 þ

Fðy; xÞ
Hðy; xÞ dψ

2 −
2Jðx; yÞ
Hðy; xÞ dψdϕ −

Fðx; yÞ
Hðy; xÞ dϕ

2

þ l2Hðx; yÞ
4ð1 − γÞ3ð1 − νÞ2ð1 − a2Þðx − yÞ2

�
dx2

GðxÞ −
dy2

GðyÞ
�
; ð50Þ

where

Hðx; yÞ ¼ 2d1ð1 − γÞð1 − νÞð2þ νð1þ xþ y − xyÞÞðγð1þ yÞð1þ νxÞ − 2 − νð3xþ νþ yð2þ xþ νþ 2xνÞÞÞ
þ d1c3ð1þ νÞðγ þ γνx − νðxþ νÞÞð1þ xÞð1þ yÞ2
þ ð1 − γÞð1 − νÞ2ðxþ yþ νþ νxyÞ½2ðð1 − γÞð1 − νÞðγ þ νÞ − 2d2Þð2þ νð1þ xþ y − xyÞÞ
þ ½2ðγ − νÞð2þ ðxþ yÞνÞ þ ð1 − xyÞðð3 − νÞνþ γð1þ νÞÞ − ð1 − νÞðγ þ νÞðx − yÞ�c3�; ð51Þ

Fðx; yÞ ¼ 2l2

ð1 − a2Þðx − yÞ2
�
4½ð1 − a2Þ2ðy − 1Þð1 − γÞ3ð1 − νÞ3 − d21ð1þ yÞ�ð1þ νyÞGðxÞ

þ 4½ð1 − νÞc2 − ð1 − abÞðγ − νÞð1þ νÞc1�2ð1þ νxÞð1þ xÞGðyÞ
þ ν−1ð1 − νÞ3ðγ − νÞðd23ð1 − x2ÞGðyÞ − c23ð1 − y2ÞGðxÞÞ

þGðxÞGðyÞ½ð1 − a2Þð1 − γÞd4 − ða − bÞ2yð1 − γÞ2ðγ − νÞνc22 þ xðγ − νÞνðbd1 − c1c3Þ2�
νð1 − γÞ

�
; ð52Þ

Jðx; yÞ ¼ 2l2ð1þ xÞð1þ yÞ
ð1 − a2Þðx − yÞ ½4d1ðða − bÞð1 − γÞðγ − νÞð1þ νÞ − ad2Þð1þ νxÞð1þ νyÞ

− d3c3ð1 − νÞ3ðγ − νÞð1 − xÞð1 − yÞ − ða − bÞðγ − νÞc2ðc1c3 − bd1Þð1 − xÞð1 − yÞð1þ νxÞð1þ νyÞ�; ð53Þ

Ωψ ðx; yÞ ¼
v0lð1þ yÞð1 − νÞ

νHðy; xÞ ½c2ðc1c3 − bd1Þð1 − xÞð1þ νxÞð1þ νyÞ

− ð1 − νÞ2d2c3ð1 − xÞ þ ð1þ xνÞd1ð2νð1 − abÞð1 − γÞð1þ νÞð1þ xÞ þ ð1 − 3ν − xð1þ νÞÞc3Þ�; ð54Þ

Ωϕðx; yÞ ¼
v0lð1þ xÞ
Hðy; xÞ

�
bð1þ xÞd1ðd2ð1þ yÞð1þ νyÞ þ νc3ð1 − y2Þð1 − νÞÞ

þ 2ða − bÞð1 − γÞ2ð2d1ð1þ νxÞð1þ νyÞ2 − ð1 − νÞ2νc3ð1 − yÞðxþ yþ νþ νxyÞÞ
1þ ν

�
; ð55Þ
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and the coefficients are given by

v0 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγ2 − ν2Þ

ð1 − a2Þð1 − γÞ

s
;

c1 ≔ ð1 − γÞaþ ðγ − νÞb;
c2 ≔ 2að1 − γÞνþ bðγ − νÞð1þ νÞ;
c3 ≔ 2ð1 − γÞνþ b2ðγ − νÞð1þ νÞ;
d1 ≔ ðνþ 1Þc21 − ð1 − γÞð1 − νÞ2;
d2 ≔ bðνþ 1Þc1ðγ − νÞ þ 2νð1 − γÞð1 − νÞ;
d3 ≔ ða2 − 1Þbðγ − 1Þðνþ 1Þ − ac3;

d4 ≔ b2ðγ − νÞ½ðνþ 1Þ2c21ð−3ð1 − γÞν − ν2 þ 1Þ − ð1 − γÞð1 − νÞ4ð2νþ 1Þ�
þ ð1 − γÞ½ðð1 − νÞc2 − 2ν2c1Þ2 − 4ν2c21ð−γðνþ 2Þ þ 3ν2 þ 1Þ�: ð56Þ

We assume the ranges of the coordinates as

−∞ < t < ∞; 0 ≤ ψ ≤ 2π; 0 ≤ ϕ ≤ 2π; ð57Þ
and

−1 ≤ x ≤ 1; − 1=ν ≤ y ≤ −1; ð58Þ
where the boundary of the coordinate ðx; yÞ corresponds to the rods plus infinity:

(i) ϕ-rotational axis: ∂Σϕ ¼ fðx; yÞjx ¼ −1;−1 < y < −1=νg with the rod vector vϕ ≔ ð0; 0; 1Þ, where in the choice of
Cf ¼ 1, the periodicity ϕ ∼ ϕþ 2π from the coordinate ranges (57) ensures the absence of the conical singularities,

(ii) Horizon: ∂ΣH ¼ fðx; yÞj − 1 < x < 1; y ¼ −1=νg with the rod vector vH ≔ ð1;ωvac
ψ ;ωvac

ϕ Þ, where

ωvac
ψ ¼ v0ð1 − a2Þð1 − γÞ

2lðγ þ νÞð1 − a2 þ aða − bÞγ − ð1 − abÞνÞ ;

ωvac
ϕ ¼ ωvac

ψ
2að1 − γÞν − ð1 − a2Þbð1 − γÞð1þ νÞ þ ab2ðγ − νÞð1þ νÞ

2ð1 − γÞνþ b2ðγ − νÞð1þ νÞ ; ð59Þ

(iii) Inner axis: ∂Σin ¼ fðx; yÞjx ¼ 1;−1 < y < −1=νg
with the rod vector

vin ≔ ðv0lða − bÞ; n; 1Þ; ð60Þ

with

n ≔
ad1 þ ð1 − γÞð1þ νÞð1 − a2Þc1

d1
; ð61Þ

where we note that the presence of the t component
denotes the existence of the Dirac-Misner string
singularity [80],

(iv) ψ-rotational axis: ∂Σψ ¼fðx;yÞj−1<x<1;y¼−1g
with the rod vector vψ ≔ ð0; 1; 0Þ, where the perio-
dicity ψ ∼ ψ þ 2π from the coordinate ranges (57)
also ensures the absence of the conical singularities,

(v) Infinity: ∂Σ∞ ¼ fðρ; zÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
→ ∞ with

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
finiteg ¼ fðx; yÞjx → y → −1g.

As studied earlier in Ref. [22], setting a ¼ b and imposing
regularity conditions, in which the obtained metric exactly
describes the rotating black lens in [22], allows us to remove
theDirac-Misner string singularity [80] on the inner axis ∂Σin.
However, similar to the approach taken for the charged dipole
black ring in Ref. [50], we choose to use the vacuum black
lens possessing a Dirac-Misner string singularity as the seed
for the Harrison transformation. Hence, we do not assume its
absence (a ≠ b) before the Harrison transformation. In the
following section,wewill eliminate it after the transformation
by appropriately adjusting the solution’s parameters.

IV. CHARGED SOLUTION FROM HARRISON
TRANSFORMATION

Now, let us utilize the electric Harrison transformation
(22) on the vacuum solution (50) derived in the previous
section. The procedure to obtain the charged solution
follows a similar approach to that used for the charged
black ring [14,50]. First, we express the vacuum
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solution (50) in terms of eight scalar potentials ΦA ¼ ðλab;ωa;ψa; μÞ. Since the vacuum solution possesses two axial
Killing vectors ∂=∂ψ and ∂=∂ϕ, there are two possible ways to express the solution in terms of the potentials, depending on
the following choice of the Killing vectors: (i) ξ0 ¼ ∂=∂t; ξ1 ¼ ∂=∂ψ ; ξ2 ¼ ∂=∂ϕ and (ii) ξ0 ¼ ∂=∂t; ξ1 ¼ ∂=∂ϕ; ξ2 ¼ ∂=∂ψ .
In case (i), from the metric (50), we can extract λab, aaϕ and τ, expressed as

λ00 ¼ −
Hðy; xÞ
Hðx; yÞ ; λ01 ¼ −

Hðy; xÞ
Hðx; yÞΩψðx; yÞ; λ11 ¼

Fðy; xÞ
Hðy; xÞ −

Hðy; xÞ
Hðx; yÞΩ

2
ψðx; yÞ:

a0ϕ ¼ Ωϕðx; yÞ þ
Jðx; yÞ
Fðy; xÞΩψðx; yÞ; a1ϕ ¼ −

Jðx; yÞ
Fðy; xÞ ; τ ¼ Fðy; xÞ

Hðx; yÞ : ð62Þ

The twist potential ωa can be obtained by directly integrating Eq. (28). This yields

ω0 ¼ −Ωϕðy; xÞ; ð63Þ

ω1 ¼ −
Jðx; yÞ þ Kðx; yÞ

Hðx; yÞ ; ð64Þ

where Kðx; yÞ is a polynomial of x and y:

Kðx; yÞ ¼ l2ð1þ yÞ
1 − a2

½k1ð1 − x2Þð1þ yÞ þ k2fð1þ xÞð1 − yÞð1þ νxÞ þ ð1 − xÞð1þ yÞð1þ νyÞg
þ k3ðx − yÞðνðxy − x − y − 1Þ − 2Þ þ k4ð1 − xÞð1 − yÞðνðx − y − 1Þ þ 1Þ
þ k5ð1 − xÞð1 − yÞ þ k6fðνþ 1Þ2ðxþ 1Þðyþ 1Þ − 4ð1þ νxÞð1þ νyÞg þ k7ð1þ νxÞð1þ νyÞ�; ð65Þ

in which the coefficients ki (i ¼ 1;…; 7) are given in Appendix A. In case (ii), we denote the corresponding quantities with
“hats,” which can be expressed as

λ̂00 ¼ −
Hðy; xÞ
Hðx; yÞ ; λ̂01 ¼

Hðy; xÞ
Hðx; yÞΩϕðx; yÞ; λ̂11 ¼ −

Fðx; yÞ
Hðy; xÞ −

Hðy; xÞ
Hðx; yÞΩ

2
ϕðx; yÞ;

â0ψ ¼ Ωψ ðx; yÞ −
Jðx; yÞ
Fðx; yÞΩϕðx; yÞ; â1ψ ¼ Jðx; yÞ

Fðx; yÞ ; τ̂ ¼ −
Fðx; yÞ
Hðx; yÞ ; ð66Þ

which yields

ω̂0 ¼ Ωψ ðy; xÞ; ð67Þ

ω̂1 ¼
Jðx; yÞ þ K̂ðx; yÞ

Hðx; yÞ ; ð68Þ

where K̂ðx; yÞ can be expressed, in terms of Kðx; yÞ, as

K̂ðx; yÞ ¼ −Kðy; xÞ − 2l2c3d1ð1 − νÞðxþ 1Þ2ðγ þ νÞð2að1 − γÞð1 − νÞ þ c2ðyþ 1ÞÞ
ð1 − a2Þð1 − γÞ : ð69Þ

When deriving the metric and gauge potential after the
Harrison transformation, the most nontrivial aspect lies in
determining a00ϕ or â00ψ through the integration of Eq. (27),
resulting in

a00ϕ ¼ c3a0ϕðx; yÞ − s3â0ψ ðy; xÞ; ð70Þ

â00ψ ¼ c3â0ψðx; yÞ þ s3a0ϕðy; xÞ; ð71Þ

which also has the same form as that of the vacuum doubly
rotating black ring. The metric functions a0ϕ and â0ψ in
cases (i) and (ii) are intertwined in the transformed metric.
This highlights that the two Harrison transformations of (i)
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and (ii) are connected through sign flips: s → −s, t → −t,
ψ → −ψ , and ϕ → −ϕ. Therefore, in what follows, we
consider only the Harrison transformation in case (i).
Since Eq. (10) is invariant under the transformation, the

function σ is also invariant. Then, from the change of τ in
Eq. (22), one can see that the two-dimensional conformal
factor in Eq. (4) is multiplied by D, which leads to

g0xx ¼ Dgxx; g0yy ¼ Dgyy: ð72Þ

A. Charged solution

In case (i), the metric and gauge potential for a charged
solution in five-dimensional minimal supergravity after the
electric Harrison transformation can be written as

ds2 ¼ −
Hðy; xÞ

D2Hðx; yÞ ðdtþΩ0Þ2 þD

�
Fðy; xÞ
Hðy; xÞ dψ

2 −
2Jðx; yÞ
Hðy; xÞ dψdϕ −

Fðx; yÞ
Hðy; xÞ dϕ

2

�
þ l2DHðx; yÞ
4ð1 − γÞ3ð1 − νÞ2ð1 − a2Þðx − yÞ2

�
dx2

GðxÞ −
dy2

GðyÞ
�
; ð73Þ

A ¼
ffiffiffi
3

p
cs

DHðx; yÞ ½ðHðx; yÞ −Hðy; xÞÞdt − ðcHðy; xÞΩψðx; yÞ − sHðx; yÞΩϕðy; xÞÞdψ

− ðcHðy; xÞΩϕðx; yÞ − sHðx; yÞΩψðy; xÞÞdϕ�; ð74Þ

where the functions D, Ω0
ψ , and Ω0

ϕ are given by

D ¼ c2Hðx; yÞ − s2Hðy; xÞ
Hðx; yÞ ; ð75Þ

Ω0 ¼ ðc3Ωψðx; yÞ − s3Ωϕðy; xÞÞdψ
þ ðc3Ωϕðx; yÞ − s3Ωψðy; xÞÞdϕ: ð76Þ

The Harrison transformation (22) changes the rod
structure of the vacuum solution as follows (see Fig. 2
about the rod diagram):

(i) ϕ-rotational axis: ∂Σϕ ¼ fðx; yÞjx ¼ −1;−1=ν <
y < −1g with the rod vector vϕ ¼ ð0; 0; 1Þ. The
periodicity of ϕ ∼ ϕþ 2π still leaves the absence of
conical singularities.

(ii) Horizon: ∂ΣH ¼ fðx; yÞj − 1 < x < 1; y ¼ −1=νg
with the rod vector vH ¼ ð1;ωψ ;ωϕÞ, with

ωψ ¼
v0ð1−a2Þð1−γÞ

2lðγþνÞ½c3ð1−ν−ac1Þ−s3ða−bÞðγ−νÞ� ;

ωϕ¼−
d3ωψ

c3
: ð77Þ

(iii) Inner axis: ∂Σin ¼ fðx; yÞjx ¼ 1;−1=ν < y < −1g
with the rod vector

vin ¼ ðv0lðc3ða − bÞ − s3ð1 − abÞÞ; n; 1Þ; ð78Þ

where n is given by Eq. (61).
(iv) ψ-rotational axis: ∂Σψ ¼fðx;yÞj−1<x<1;y¼−1g

with the rod vector vψ ¼ ð0; 1; 0Þ. The periodicity
of ψ ∼ ψ þ 2π still leaves the absence of conical
singularities,

(v) Infinity: ∂Σ∞ ¼ fðx; yÞjx → y → −1g.
One can see that the Harrison transformation preserves

both the positions and the regularity of the ϕ- and
ψ-rotational axes at x ¼ −1 and y ¼ −1, respectively.
The event horizon remains at y ¼ −1=ν but the
horizon velocities are changed. The rod vector of the
inner axis ∂Σin changes from ðv0lða − bÞ; n; 1Þ to
ðv0lðc3ða − bÞ − s3ð1 − abÞÞ; n; 1Þ, which enables one
to eliminate the Dirac-Misner string singularity by setting

tanh3 α ¼ a − b
1 − ab

; ð79Þ

where the vacuum case corresponds to a ¼ b. As seen in
Ref. [50], the Dirac-Misner string singularity is unavoid-
able if we transform the vacuum seed not possessing the

FIG. 2. The rod structures before and after applying the
Harrison transformation, with the condition (79) imposed on
the latter.
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Dirac-Misner string singularity (the vacuum seed corre-
sponding to a ¼ b). From the range (42) of a and
−1 < tanh α < 1, the parameter b runs the range

−1 < b < 1: ð80Þ

Under the condition (79) for the absence of the Dirac-
Misner string singularity, the rod vector on ∂Σin becomes
∂ϕ0 ¼ ∂ϕ þ n∂ψ , and the absence of conical singularities
requires�
Δϕ0

2π

�
2

¼ d21
ð1 − a2Þ2ð1 − γÞ3ð1 − νÞ2ð1þ νÞ ¼ 1: ð81Þ

The topology condition for ∂ΣH requires

detðv̂in; v̂ψÞ¼
ad1þð1−γÞð1þνÞð1−a2Þc1

d1
¼n∈Z; ð82Þ

where each hatted vector v̂ denotes a two-dimensional
vector made from ψ and ϕ components of each rod
vector v. As proved in Ref. [17], the horizon cross section
has the topology of S2 × S1 for n ¼ 0, S3 for n ¼ �1 and
Lðn; 1Þ for jnj ≥ 2. To study all possibilities, we do not fix
the value of n here.
To summarize, the charged solution has six parameters

ðl; a; b; γ; ν; αÞ, with the following ranges:

l > 0; −1 < a < 1; −1 < b < 1;

0 < ν < γ < 1; −∞ < α < ∞: ð83Þ

The regularity of the metric at each boundary imposes the
conditions (79), (81), and (82), which reduce the indepen-
dent parameters of the solution from six to three. Moreover,
the solution and the conditions are invariant under trans-
formations n → −n; a → −a; b → −b; α → −α, and hence
we may assume n ≥ 0 without loss of generality. In the
following, under the conditions (79), (81), and (82), we
investigate whether the charged solution has curvature
singularities and CTCs for each value of n.

B. Regularity at the coordinate boundaries

Curvature singularities on and outside the horizon may
arise at points where the metric and its inverse appear to
diverge in the range (58). This occurs on the surfaces
Hðx; yÞ ¼ 0 and D ¼ 0, as well as on the boundary of the
C-metric coordinates at x ¼ �1 and y ¼ −1=ν;−1, where
GðxÞ ¼ 0 or GðyÞ ¼ 0. From Hð−1;−1Þ ¼ 8ð1 − γÞ3ð1 −
νÞ4ð1 − a2Þ > 0 andD ¼ 1 at infinity x → y → −1. Hence,
the necessary and sufficient condition for the absence of
surfaces Hðx; yÞ ¼ 0 and D ¼ 0 is that Hðx; yÞ and D are
positive everywhere in the range (58). Since the discussion
regarding Hðx; yÞ > 0 and D > 0 depends on the value of
n, we will address this in the next subsection. Here, we

demonstrate the absence of curvature singularities at the
coordinate boundaries, x ¼ �1, y ¼ −1;−1=ν, by assum-
ing Hðx; yÞ > 0 and D > 0. Additionally, we notice that
despite its appearance in the metric (73), the surface
Hðy; xÞ ¼ 0 does not cause a divergence in the metric
and its inverse. This is because the factor H−1ðy; xÞ does
not appear in each component of gμν and gμν.
(1) The limit x→y→−1 corresponds to the asymptotic

infinity. In terms of the standard spherical coordi-
nates ðr; θÞ defined as

x ¼ −1þ 4ð1 − νÞl2r−2 cos2 θ;

y ¼ −1 − 4ð1 − νÞl2r−2 sin2 θ; ð84Þ

we find that the metric at r → ∞ (x → y → −1)
behaves as the Minkowski metric:

ds2≃−dt2þdr2þr2ðdθ2þsin2θdψ2þcos2θdϕ2Þ:
ð85Þ

Hence, the charged metric (73) describes an asymp-
totically flat spacetime.

(2) The point ðx; yÞ ¼ ð1;−1Þ corresponds to a center
of the spacetime, i.e., the intersection of the
ψ-rotational axis and inner rotational axis. Using
the coordinates ðr; θÞ introduced by

x ¼ 1 −
ð1þ νÞð1 − γÞ2ð1 − a2Þr2 cos2 θ

jd1jl2ð1þ c2νþ s2γÞ ;

y ¼ −1 −
ð1 − νÞð1 − γÞ2ð1 − a2Þr2 sin2 θ

jd1jl2ð1þ c2νþ s2γÞ ; ð86Þ

we can show that the metric at r → 0 [ðx; yÞ →
ð1;−1Þ] behaves as the origin of the Minkowski
spacetime written in the spherical coordinates if
d1 < 0,

ds2 ≃−dt02 þ ð−d1=jd1jÞ½dr2 þ r2ðdθ2 þ sin2 θdψ 02

þ cos2 θdϕ2Þ�; ð87Þ

where t0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − γÞð1þ νÞp

t=ð1þ c2νþ s2γÞ and
ψ 0 ¼ ψ − nϕ.
If d1 > 0, the metric is not Lorentzian around this

point but the negativity of d1 is ensured by the
positivity of Hðx; yÞ at this point, since

Hð1;−1Þ¼−8d1ð1−γÞð1−νÞð1−ν2Þ>0⇔d1<0:

ð88Þ

Under this condition, the point ðx; yÞ ¼ ð1;−1Þ is
regular.
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(3) The boundaries x ¼ −1 and x ¼ 1 correspond to the ϕ-rotational axis and inner rotational axes, respectively.
Introducing the radial coordinate r by x ¼ �1 ∓ C�r2 with positive constants C� for x ¼ �1, we can see that, with
the use of Eqs. (82) and (81), the metric at r → 0 (x → �1) behaves as

ds2 ≃ γ�tt ðyÞdt2 þ 2γ�tψðyÞdtdψ� þ γ�ψψðyÞdψ2
� þ α�ðyÞðdr2 þ r2dϕ2

� −G−1ðyÞdy2Þ; ð89Þ
where

γ�tt ¼ −
Djx¼�1Hðy;�1Þ

Hð�1; yÞ ; γ�tψ ¼ −
Hðy;�1Þ½c3Ωϕð�1; yÞ − s3Ωϕðy;�1Þ�

D2jx¼�1Hð�1; yÞ ;

γ�ψψ ¼ Djx¼�1Fðy;�1Þ
Hðy;�1Þ −

Hðy;�1Þ½c3Ωψ ð�1; yÞ − s3Ωϕðy;�1Þ�2
D2jx¼�Hð�1; yÞ ;

α� ¼ C�l2Djx¼�1Hð�1; yÞ
2ð1 − γÞ3ð1� νÞð1 − νÞ2ð1 − a2Þð1 ∓ yÞ2 ; ð90Þ

and

ðψ−;ϕ−Þ≔ ðψ ;ϕÞ; ðψþ;ϕþÞ≔ ðψ −nϕ;ϕÞ: ð91Þ

Under the assumptions Hðx; yÞ > 0 and D > 0, we can also show that α� > 0, and

detðγþÞ ¼ 16l2d21ð1þ νÞð1þ yÞð1þ νyÞ
ð1 − a2Þð1 − yÞDjx¼1Hð1; yÞ < 0; ð92Þ

detðγ−Þ ¼ 16l2ð1 − γÞ3ð1 − νÞ4ð1 − a2Þð1 − yÞð1þ νyÞ
ð1þ yÞDjx¼−1Hð−1; yÞ < 0; ð93Þ

hence γ� is a nonsingular and nondegenerate matrix for −1=ν < y < −1. Thus, the metric is regular at x ¼ �1.
(4) The boundary y ¼ −1 corresponds to the ψ -rotational axis. Introducing the radial coordinate r by y ¼ −1 − C0r2

with a positive constant C0, we can see that the metric at r → 0 (y → −1) behaves as

ds2 ≃ γ0ttðxÞdt2 þ 2γ0tϕðxÞdtdϕþ γ0ϕϕðxÞdϕ2 þ α0ðxÞðdr2 þ r2dψ2 þG−1ðxÞdx2Þ; ð94Þ

where

γ0tt¼−
Djy¼−1Hð−1;xÞ

Hðx;−1Þ ; γ0tϕ¼−
Hð−1;xÞ½c3Ωϕðx;−1Þ−s3Ωψð−1;xÞ�

D2jy¼−1Hðx;−1Þ ;

γ0ϕϕ¼−
Djy¼−1Fðx;−1Þ

Hð−1;xÞ −
Hð−1;xÞ½c3Ωϕðx;−1Þ−s3Ωψð−1;xÞ�2

D2jy¼−1Hðx;−1Þ ; α0¼
C0l2Djy¼−1Hðx;−1Þ

2ð1−γÞ3ð1−νÞ3ð1−a2Þð1þxÞ2 : ð95Þ

Under the assumptions of Hðx; yÞ > 0 and D > 0, we can also show that α0 > 0 and

detðγ0Þ ¼ −
16l2ð1 − γÞ3ð1 − νÞ4ð1 − a2Þð1 − xÞð1þ νxÞ

ð1þ xÞDjy¼−1Hðx;−1Þ < 0; ð96Þ

and hence γ0 is a nonsingular and nondegenerate matrix for −1 < x < 1. Therefore, the metric is also regular
at y ¼ −1.

(5) The boundary y ¼ −1=ν corresponds to a Killing horizon with the surface gravity

κ ¼ ð1 − a2Þ3=2ð1 − γÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðνþ 1Þðγ þ νÞ−1

p
c3lðc3ð1 − ν − ac1Þ þ s3ðb − aÞðγ − νÞÞ ; ð97Þ
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and the null generator is denoted by vH ¼ ∂=∂tþ ωψ∂=∂ψ þ ωϕ∂=∂ϕ with

ðωψ ;ωϕÞ ¼
κ

ð1 − a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ − ν

2νð1 − γÞ3ð1þ νÞ
r

ðc3;−d3Þ: ð98Þ

We can show that both the metric and gauge potential are regular at y ¼ −1=ν, introducing the ingoing/outgoing
Eddington-Finkelstein coordinates by

dxi ¼ dx0i � viH
ð1 − ν2Þ
2νκGðyÞ dy; ð99Þ

where ðxiÞ ¼ ðt;ψ ;ϕÞ (i ¼ 0, 1, 2) and the metric near y ¼ −1=ν behaves as

ds2 ≃ αHðxÞ
�
4ν2κ2GðyÞ
ð1 − ν2Þ2 dt02 � 4νκ

1 − ν2
dt0dyþ dx2

GðxÞ
�

þ γHψψðxÞðdψ 0 − ωψdt0Þ2 þ 2γHψϕðxÞðdψ 0 − ωψdt0Þðdϕ0 − ωϕdt0Þ þ γHϕϕðxÞðdϕ0 − ωϕdt0Þ2; ð100Þ

with

γHψψ ¼ Djy¼−1=νFð−1=ν; xÞ
Hð−1=ν; xÞ −

Hð−1=ν; xÞ½c3Ωψðx;−1=νÞ − s3Ωϕð−1=ν; xÞ�2
D2jy¼−1=νHðx;−1=νÞ ;

γHψϕ ¼ −
Djy¼−1=νJðx;−1=νÞ

Hð−1=ν; xÞ −
Hð−1=ν; xÞ½c3Ωψðx;−1=νÞ − s3Ωϕð−1=ν; xÞ�½c3Ωϕðx;−1=νÞ − s3Ωψð−1=ν; xÞ�

D2jy¼−1=νHðx;−1=νÞ ;

γHϕϕ ¼ −
Djy¼−1=νFðx;−1=νÞ

Hð−1=ν; xÞ −
Hð−1=ν; xÞ½c3Ωϕðx;−1=νÞ − s3Ωψ ð−1=ν; xÞ�2

D2jy¼−1=νHðx;−1=νÞ ;

αH ¼ l2ν2Djy¼−1=νHðx;−1=νÞ
4ð1 − γÞ3ð1 − νÞ2ð1 − a2Þð1þ νxÞ2 ; ð101Þ

and hence, under the assumptions Hðx; yÞ > 0 and D > 0, we can show αH > 0 and

detðγHÞ ¼ 4l4c23ð1 − νÞ4ðνþ 1Þð1 − x2Þðγ þ νÞ½c3ðac1 þ ν − 1Þ − s3ðb − aÞðγ − νÞ�2
ð1 − a2Þ2ð1 − γÞDjy¼−1=ννðνxþ 1ÞHðx;−1=νÞ > 0 ð102Þ

and thus γH is a nonsingular and nondegenerate matrix for −1 < x < 1. Hence, the metric is smoothly continued to
−∞ < y < −1=ν across the horizon y ¼ −1=ν. Moreover, in the Eddington-Finkelstein coordinate, the gauge
potential also remains regular at the horizon y ¼ −1=ν under the gauge transformation

A0 ¼ A� d
�ð1 − ν2ÞΦe

2νκ

Z
dy
GðyÞ

�
; ð103Þ

where Φe is the electric potential defined by

Φe ≔ −ðAt þ Aψωψ þ AϕωϕÞjy¼−1 ¼ −
ffiffiffi
3

p
csððγ − 1Þðνþ 1Þsðb − aÞðγ − νÞ þ cðd1 − d2ÞÞ
ðγ − 1Þðνþ 1Þs3ðb − aÞðγ − νÞ þ c3ðd1 − d2Þ

: ð104Þ

(6) The points ðx; yÞ ¼ ð�1;−1=νÞ correspond to the intersecting points of the rotational axes and the horizon. By
introducing the coordinates ðr; θÞ for ðx; yÞ ¼ ð�1;−1=νÞ as

x ¼ �1 ∓ c�r2sin2θ; y ¼ −
1

ν

�
1 −

ð1 ∓ νÞc�
2

r2cos2θ

�
; c�∶ positive constants; ð105Þ
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and with the use of Eqs. (81) and (82), the metric at r → 0 (ðx; yÞ → ð�1;−1=νÞ) behaves as

ds2 ≃ dr2 þ r2dθ2 þ r2 sin2 θðdϕ� − ωϕdtÞ2 − r2κ2 cos2 θdt2 þ R2
�ðdψ� − ω�

ψ dtÞ2; ð106Þ

where ωþ
ψ ¼ ωψ − nωϕ, ω−

ψ ¼ ωψ , and ðψ�;ϕ�Þ are defined in Eq. (91). R� ≔ ffiffiffiffiffiffiffiffigψψ
p jðx;yÞ¼ð�1;−1=νÞ are given by

Rþ ¼ 2lð−d1Þðγ − νÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðγ þ νÞp ðc3d2 þ bs3ðd2 − ðγ − 1Þðν − 1Þðγ þ νÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 − 1Þðγ − 1Þ
p

ðc2d22ðγ − νÞ þ 2νs2ðd2 − ðγ − 1Þðν − 1Þðγ þ νÞÞ2Þ ; ð107Þ

R− ¼ 2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðγ þ νÞp ðc3ðd2 − d1Þ − s3ðγ − 1Þðνþ 1Þðb − aÞðγ − νÞÞ

ð1 − γÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a2Þðνþ 1Þ

p
ððνþ 1Þs2ðγ − νÞ − 2c2ðγ − 1ÞνÞ : ð108Þ

We also set c� as

cþ ¼ ð1 − a2Þκðð1 − γÞðνþ 1ÞÞ3=2Rþ
2ð−d1Þνl2

;

c− ¼ κð1 − νÞR−

2νðνþ 1Þl2
: ð109Þ

Note that the negativity (88) of d1 ensures that
the metric is Lorentzian at ðx; yÞ ¼ ð1;−1=νÞ. In
the Cartesian coordinates ðT; X; Y; Z;WÞ ¼ ðκt;
r cos θ; r sin θ cosðϕ� − ωϕtÞ; r sin θ sinðϕ� − ωϕtÞ;
R�ðψ� − ω�

ψ tÞÞ, the above asymptotic metric
becomes

ds2 ≃ −X2dT2 þ dX2 þ dY2 þ dZ2 þ dW2; ð110Þ

where the Rindler horizon lies at X ¼ 0. Therefore,
the metric is regular at ðx; yÞ ¼ ð�1;−1=νÞ.

C. Parameter regions for regularity

Since in the previous subsection, we have shown
that there are no curvature singularities at the boundaries
x ¼ �1; y ¼ −1; y ¼ −1=ν of the C-metric coordinates
under the assumptions of Hðx; yÞ > 0 and D > 0 in the
coordinate ranges (58), now we investigate whether they
can indeed be positive in the ranges (58). If Hðx; yÞ > 0
and D > 0 everywhere in the ranges (58), curvature
singularities do not appear on and outside the horizon.
This depends on the value of n, and hence we classify the
analysis into the following three cases: (i) n ¼ 0 (a black
ring), (ii) n ¼ 1 (a black hole), (iii) n ≥ 2 (a black lens). For
this purpose, instead of usingHðx; yÞ, it is more convenient
to use the condition (88), which can be expressed from
Eqs. (81) and (82) as

d1 ¼ ð1 − γÞð1 − νÞ2ðn − 1 − aÞðnþ 1 − aÞ < 0: ð111Þ

This provides a necessary condition for the absence of the
surfaceHðx; yÞ ¼ 0, and curvature singularities exist if this
condition is violated.

1. n = 0 (a black ring with S2 × S1-horizon topology)

For n ¼ 0, the horizon cross section has the topology
of S2 × S1. In this case, we can show from Eq. (111)
that d1 ¼ −ð1 − γÞð1 − νÞ2ð1 − a2Þ < 0 is always satisfied
in the ranges of γ, ν, a (83). Moreover, we can solve
Eqs. (79), (81), and (82) as

b ¼ 0; γ ¼ νð3 − νÞ
1þ ν

; tanh3 α ¼ a; ð112Þ

which describes the charged dipole black ring as a two-
soliton solution obtained in Ref. [50]. Further details
regarding the solution generation and analysis can be found
in the reference. Therefore, we do not explore this case
further in this paper.

2. n = 1 (a capped black hole with S3-horizon topology)

The n ¼ 1 case describes a regular solution called a
“capped black hole,” characterized by a horizon cross
section with a trivial topology of S3 but the domain
of outer communication with a nontrivial topology [79].
In this case, we can show from Eq. (111) that under the
condition (83),

d1 ¼ −ð1 − γÞð1 − νÞ2að2 − aÞ < 0 ⇔ 0 < a < 1: ð113Þ

For this range of a, Eqs. (81) and (82) can be solved in
terms of ν and γ as

ν ¼ 1 −
2bð1 − a2Þ2

bð2a2ða − 1Þ2 þ 1Þ þ aðða − 1Þ3 − 1Þ ;

γ ¼ νþ ð1 − νÞð1 − aþ a2Þ
1 − ð1þ 2bÞaþ ð1þ bÞa2 ; ð114Þ
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from which we can show

0 < ν < γ < 1 ⇔

8<:
aða − 2Þð1 − aþ a2Þ
ð1 − 2aÞð1þ 2a − 2a2Þ < b < 0 ð0 < a < a�Þ
−1 < b < 0 ða� ≤ a < 1Þ

; ð115Þ

where a� ¼ 0.347… is a root of a3 − 3aþ 1 ¼ 0. From Eq. (79), this also restricts the range of α to be positive.
From Eq. (114), it is straightforward to show Hðx; yÞ > 0 in the coordinate ranges (58) and in the parameter range (115)

by writing Hðx; yÞ in the following form [79]:

Hðx; yÞ ¼ ½fνb2c21ð1þ νÞ2ðγ − νÞð1− γÞð1− x2Þ þ νð1− γÞðγ − νÞðbð1− νÞ2ð1− xÞ− 2c1ð1þ νxÞÞ2
þ b2c21ð1þ νÞ3ðxþ 1Þðγ − νÞ2gð1þ yÞ2� þ ½fd5ð1− xÞ2 þ d6ð1− x2Þ þ d7ð1þ xÞð1þ νxÞgð−1− yÞ�
þ ½4ð1− a2Þð1− γÞ3ð1− νÞ4ð1− xÞ þ 2c22ð1− γÞð1− νÞ2ð1− x2Þ− 4d1ð1− γÞð1− νÞ2ð1þ νÞð1þ xÞ�; ð116Þ

with three extra auxiliary parameters:

d5 ≔ ð1 − γÞð1 − νÞ3½ðγ − 3νÞðb2ðν − 1Þðγ − νÞ − c21Þ − 2bc1ð3ν − 1Þðγ − νÞ�;
d6

1 − ν
≔

d7
2
≔ c1ð1 − γÞð1 − ν2Þðc2 − ð1 − γÞða − bÞðγ − νÞÞ: ð117Þ

It is evident that the first and third square brackets in Eq. (116) are non-negative. It can be shown from Appendix B
that d5, d6, and d7 in the second square bracket are positive, hence as a result, the second square bracket is also
non-negative. Thus, we can show that all three terms enclosed in a square bracket in Eq. (116) are non-negative, and
hence Hðx; yÞ is non-negative. Moreover, we can prove a stronger statement, Hðx; yÞ > 0, because the three square
brackets cannot be zero simultaneously. Having shown Hðx; yÞ > 0, we can see that the positivity of D follows from
D ¼ 1þ s2ðHðx; yÞ −Hðy; xÞÞ=Hðx; yÞ and

Hðx; yÞ−Hðy; xÞ ¼ ð1− νÞðγþ νÞðx− yÞ
1þ ν

ðc3ð1− γÞð1− νÞ3ð1− xÞð1− yÞ
þ c21ð1þ νÞ2ð1þ xÞð−1− yÞ þ 2ð−d1Þð1− γÞð1− νÞ½ð1þ νÞð1þ xÞ þ ð1þ νxÞð1− xÞ�Þ ≥ 0; ð118Þ

where c3 > 0 is obvious from the definition (56).

Moreover, we can demonstrate that this regular solution
does not permit the presence of CTCs both on and outside
the horizon. To show this explicitly, we need to ensure that
the two-dimensional part gIJ (where I; J ¼ ψ ;ϕ) of the
metric (73) is positive definite on and outside the horizon,
except on the axes at x ¼ �1 and y ¼ −1, i.e., detðgIJÞ > 0
and trðgIJÞ > 0 for −1 < x < 1 and −1=ν ≤ y < −1.
Following the same reasoning as in the case of the charged
dipole black ring discussed in Ref. [50], it suffices to
demonstrate detðgIJÞ > 0 for the ranges −1 < x < 1 and
−1=ν ≤ y < −1. This can be reduced to proving the
positivity of Δðx; yÞ defined by

Δðx; yÞ ≔ −
ð1þ νxÞDHðx; yÞ
l4ð1 − x2Þð1þ yÞ detðgIJÞ: ð119Þ

One can easily observe the positivity of this quantity at
infinity ðx; yÞ ¼ ð−1;−1Þ since the spacetime approaches
the Minkowski metric in that limit. Additionally, around
ðx; yÞ ¼ ð1;−1Þ, one can show the positivity from the
condition d1 < 0, as expressed by

Δð1;−1Þ ¼ −4d1ð1 − νÞ3ð1þ νÞð1þ c2νþ s2γÞ3; ð120Þ
where we have also used Eq. (79). The positivity on the
horizon follows from

Δðx;−1=νÞ ¼ 4c23ð1 − νÞ3ð1þ νÞðγ þ νÞðc3ðac1 þ ν − 1Þ − s3ðb − aÞðγ − νÞÞ2
ð1 − a2Þ2ð1 − γÞ > 0: ð121Þ

For other regions, proving the positivity analytically is challenging. Instead, we have numerically verified the positivity for
several values in the parameter region (115) (Fig. 4).
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3. n ≥ 2 (a black lens with Lðn; 1Þ-horizon topology)

For n ≥ 2, we find d1 > 0 in the range (83), which is
contrary to the condition (88). Therefore, at least, within the
solution obtained from the seed (50) through the Harrison
transformation, this excludes the possibility of a black lens
with a horizon cross section of Lðn; 1Þ for n ≥ 2 as a
regular solution not possessing CTCs. However, if we relax
the condition (81) and allow for a conical singularity at
x ¼ 1, we can find parameter ranges without curvature
singularities and CTCs, resembling the vacuum case dis-
cussed in Ref. [22].

V. CAPPED BLACK HOLE

For n ¼ 1, we obtain the spherical black hole in [79]
that has a nontrivial DOC in the parameter range (115). In
Fig. 5, we illustrate the orbit spaces of our spherical black
hole and known spherical black hole (Cvetič-Youm black
hole). The inner axis at x ¼ 1 for −1=ν ≤ y ≤ −1 has a
disk topology since a S1 generated by ∂=∂ψ shrinks to zero
at y ¼ −1 but not at y ¼ −1=ν. Hence, the horizon is
capped by a disk-shaped bubble at a pole and the solution
is called the capped black hole. Below, we study the
physical properties of the capped black hole.
As one can see from Fig. 3, besides the scale parameter

l, the regular solution is characterized by two independent
parameters ðν; tanh αÞ∈ ð0; 1Þ × ð0; 1Þ. We will see that ν
controls the relative size of the disk-shaped bubble and
horizon and tanh α indicates the amount of the electric
charge. Note that the metric is no longer Lorentzian on the
boundary of the parameter region.

A. Physical quantities

As shown previously in Eq. (85), the spacetime is
asymptotically flat, and hence the Arnowitt-Deser-Misner
(ADM) mass M and two ADM angular momenta Jψ ; Jϕ
can be read off from the asymptotic of the metric at r → ∞
in the coordinates (84),

ds2 ¼ −
�
1 −

8G5M
3πr2

�
dt2 −

8G5Jψ sin2 θ

πr2
dtdψ

−
8G5Jϕ cos2 θ

πr2
dtdϕþ dr2 þ r2 sin2 θdψ2

þ r2 cos2 θdϕ2 þ r2dθ2; ð122Þ

FIG. 3. The parameter region for a regular capped black hole
(n ¼ 1) given in Eq. (115). The thick and dashed curves
correspond to ν ¼ constant and tanh α ¼ constant, respec-
tively. There is no regular black hole in the blue-colored region
below ν ¼ 0.

FIG. 4. Profile of detðgIJÞ for parameters given by Eqs. (79) and
(114) with ða; bÞ ¼ ð0.5;−0.5Þ. One can obtain similar profiles
for other sets of ða; bÞ in the range (115).

FIG. 5. The orbit space Mð1;4Þ=½R × Uð1Þ ×Uð1Þ� of (a) the
capped black hole and (b) the Cvetič-Youm black hole. In each
panel, the bold curves—excluding the event horizon—represent
the rotational axes, which serve as fixed points for the action of
theUð1Þ isometries along the corresponding Killing vector fields.
The intersection of a rotational axis with a horizon denotes a set
of fixed points for the Uð1Þ action, forming the topology of a
circle in a given time slice. In panel (a), the intersection of two
distinct rotational axes, associated with the fixed points of the
Uð1Þ actions along the Killing vector fields ∂ϕ þ ∂ψ and ∂ϕ,
constitutes a common fixed point for the two different Uð1Þ
actions, which topologically is a point.
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with

M ¼ 3πl2ð1þ 2s2Þðγ þ νÞðc3ð1 − νÞ − d1Þ
4G5ð1 − a2Þð1 − γÞ2ð1þ νÞ ; ð123Þ

Jψ ¼ c3J1 þ s3J2; ð124Þ

Jϕ ¼ c3J2 þ s3J1; ð125Þ

where J1 and J2 correspond to the angular momenta in the
neutral case around the ψ-rotational axis and ϕ-rotational
axis, respectively, given by

J1 ¼
πl3v0ðc3d2 − c1c2c3 − ðc3 − bc2Þd1Þ

4G5ð1 − a2Þð1 − γÞ3ν ; ð126Þ

J2 ¼
πl3v0ða − bÞð2c3νþ d1Þ
2G5ð1 − a2Þð1 − γÞð1þ νÞ : ð127Þ

Additionally, the electric charge is defined by the integra-
tion over a three-dimensional closed surface S surrounding
a horizon and a bubble or spatial infinity S∞:

Q ≔
1

8πG5

Z
S

�
⋆F þ 1ffiffiffi

3
p F ∧ A

�
¼ 1

8πG5

Z
S∞

⋆F

¼ −
2 tanh αffiffiffi

3
p M; ð128Þ

where in the second equality, we have used the fact that the
Chern-Simons term falls much faster at the asymptotic
limit. This obviously follows the Bogomol’nyi bound

M ≥
ffiffi
3

p
2
jQj, which is saturated at the limit α → ∞.

It is worth emphasizing that the electric charge evaluated
over the three-dimensional surface S∞ at infinity does not
coincide with one evaluated over the spatial cross section
of the horizon SH. The rest of the contribution comes from
the three-dimensional surface surrounding the disk-shaped
bubble D. By direct computation, one can confirm that

Q ≔
1

8πG5

Z
S∞

�
⋆F þ 1ffiffiffi

3
p F ∧ A

�
ð129Þ

¼ 1

8πG5

Z
SH

�
⋆F þ 1ffiffiffi

3
p F ∧ A

�
þ 1

8πG5

Z
Dϵ→0

�
⋆F þ 1ffiffiffi

3
p F ∧ A

�
; ð130Þ

whereDϵ denotes the three-dimensional surface at x¼1−ϵ
for −1=ν ≤ y ≤ −1. This is same as the electric charge for
the charged dipole black ring [50].

In addition to these conserved charges, one can define
the magnetic flux (this is not a conserved charge) over the
disk-shaped bubble D at x ¼ 1 as

q ≔
1

4π

Z
D
F ¼ 1

2
Aψ ðx ¼ 1; y ¼ −1=νÞ

¼
ffiffiffi
3

p
lscd1v0ðbd2sðγ − νÞ − 2cνd̃2Þ
2ðc2d22ðγ − νÞ þ 2νs2d̃22

: ð131Þ

where d̃2 ≔ d2 − ðγ − 1Þðν − 1Þðγ þ νÞ. The area of a
constant time slice through the horizon is written as

AH ¼ 8π2l2νκ−1; ð132Þ

where the surface gravity κ is given by Eq. (97).
In Ref. [81], it is shown that the black hole with a disk-

shaped bubble must follow the first law

δM ¼ κ

8π
δAH þ VψδJψ þ VϕδJϕ þ

1

2
ΦHδQþQDδΦD;

ð133Þ

and the Smarr formula

M¼3κAH

16π
þ3

2
VψJψ þ

3

2
VϕJϕþ

1

2
ΦHQþ1

2
QDΦD; ð134Þ

whereΦH is the electric potential (104),ΦD andQD are the
magnetic potential and another type of a magnetic flux on
the bubble D, which are defined as

ΦD ≔ −ðAϕ þ nAψ Þjx¼1

¼ −
ffiffiffi
3

p
cslv0ðcða − bÞ − sð1 − abÞÞ; ð135Þ

QD ≔
1

4

Z
D

�
ιvHð⋆FÞ −

1ffiffiffi
3

p ðΦ −ΦHÞF
�

¼
ffiffiffi
3

p
πð1 − a2Þbcd1lsv0

4c3ðc3ðac1 þ ν − 1Þ − s3ðb − aÞðγ − νÞÞ : ð136Þ

As depicted in Fig. 6, the two magnetic fluxes q and QD
differ in general. Specifically, q can vanish even with the
existence of the bubble, while QD is negative definite.
When considering the horizon velocities in Eq. (98),
one can verify that the capped black hole adheres to the
aforementioned first law and Smarr formula by expressing
each variable as a function of ðl; a; bÞ using Eqs. (79)
and (114).
To discuss the phase space of the capped black hole,

let us introduce the angular momenta and horizon area
normalized by the mass scale rM ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8G5M=3π

p
as

jψ ≔
4G5

πr3M
Jψ ; jϕ ≔

4G5

πr3M
Jϕ; aH ≔

ffiffiffi
2

p

π2r3M
AH: ð137Þ
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Figure 7 provides insight into the allowed region for the
angular momenta in the ðjψ ; jϕÞ plane. This figure reveals
several important physical characteristics of the capped
black hole:

(i) The allowed range for angular momenta is con-
strained such that 0 < jϕ < 1=ð2 ffiffiffi

2
p Þ ≈ 0.353…

and 0.347… < jψ < 1. Compared to the Cvetič-
Youm black hole [82], this region is notably
narrower.

(ii) The solid curves represent different values of tanh α
(the electric charge), with each curve having end-
points at ν ¼ 0 and ν ¼ 1.

(iii) The allowed region is bounded by the dashed line
jψ ¼ jϕ, which can only be reached at the BPS limit
M ¼ ffiffiffi

3
p jQj=2 as α → ∞. However, it is important

to note that the metric is not Lorentzian at the BPS
limit. Therefore, the capped black hole does not
admit equal angular momenta jψ ¼ jϕ.

(iv) Since each tanh α ¼ const curve, as seen in the
middle panel, is not closed, the capped black hole is
uniquely specified by the conserved charges of its
mass, two angular momenta, and electric charge.
This implies that there is no continuous family of
solutions parametrized by the magnetic flux q,
highlighting the uniqueness of the capped black
hole configuration.

B. Nonuniqueness of spherical black holes

Now, we compare the capped black hole with the
Cvetič-Youm black hole [33,82] having the same conserved

FIG. 6. Profiles for magnetic fluxes q and QD in the ðν; tanh αÞ plane.

FIG. 7. The allowed region for jψ and jϕ and curves of constant tanh α are displayed in the ðjψ ; jϕÞ plane. The allowed region is
illustrated by the colored region. Each curve of constant tanh α starts at the ν ¼ 0 curve (blue dot-dashed) and ends at the ν ¼ 1
curve (red dotted). In the middle panel, we show a closeup of the phases for tanh α ≈ 1. At the limit α → 0, the curves of constant
tanh α ¼ const converge around ðjψ ; jϕÞ ¼ ð1; 0Þ, and the allowed region exists in a very narrow range. From the right panel, one can
observe that this range becomes narrower and narrower as jψ approaches 1. The plot depicts two angular momenta and several curves of
constant tanh α accompanied by the value of tanh α.
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charges, the mass, angular momenta, and electric charge. The normalized angular momenta and the normalized horizon area
for the Cvetič-Youm solution are give by, respectively,

jCYψ ¼ c3j1 þ s3j2
ð1þ 2s2Þ32 ; jCYϕ ¼ c3j2 þ s3j1

ð1þ 2s2Þ32 ; aCYH ¼
ffiffiffi
2

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðj1 þ j2Þ2

p
ðc3 þ s3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðj1 − j2Þ2

p
ðc3 − s3Þ�

ð1þ 2s2Þ32 ; ð138Þ

where α in ðc; sÞ ¼ ðcosh α; sinh αÞ is the same parameter
as in the capped black hole, and j1, j2 are the dimensionless
parameters for the angular momenta. To match the angular
momenta of the Cvetič-Youm black hole with those of the
capped black hole in Eq. (137), we set

j1¼ð1þ2s2Þ3=2 4G5J1
πr3M

; j2¼ð1þ2s2Þ3=2 4G5J2
πr3M

: ð139Þ

Here we note that the Cvetič-Youm black hole reaches
the extremal limit, which does not coincide with the BPS
limit when jj1 þ j2j ¼ 1 or jj1 − j2j ¼ 1 [82]. Hence, the

Cvetič-Youm black hole cannot match the capped black
hole if j1 and j2 in Eq. (139) excess the bound jj1þj2j≤1
or jj1 − j2j ≤ 1.
Here are the observations from Fig. 8 regarding the

difference in the horizon area of the two phases in the
(ν,tanh α)-plane:
(a) For a fixed α, the corresponding Cvetič-Youm black

hole becomes extremal at ν¼νextðαÞ for jj1 þ j2j ¼ 0,
and has the same horizon area at ν ¼ νcritðαÞ.

(b) For 0 < ν < νextðαÞ (the shaded region) and a fixed α,
there is no Cvetič-Youm black hole corresponding to
the capped black hole with the same angular momenta
because of jj1 þ j2j > 1,

(c) For νextðαÞ < ν < νcritðαÞ and a fixed α (tanh α <
0.940…), the capped black hole has larger entropy and
hence is thermodynamically more stable than the
Cvetič-Youm black hole, and for ν > νcritðαÞ, on the
other hand, the Cvetič-Youm black hole is more stable.

As depicted in Fig. 9, for tanh α < 0.940…, each
curve of constant tanh α can be segmented into three
parts: (i) 0 < ν < νextðαÞ, (ii) νextðαÞ < ν < νcritðαÞ, and
(iii) νcritðαÞ < ν < 1, while for tanh α > 0.940…, there are
only two segments without the range νextðαÞ < ν < νcritðαÞ.

C. Size of horizon and bubble

As one might expect from the rod structure depicted in
Fig. 2, the parameter ν indicates the size of the bubble, with
smaller values of ν indicating larger bubbles. The horizon
disappears as ν approaches 0, while the bubble disappears
as ν tends to 1. To illustrate this characteristic, we introduce

FIG. 8. The area of the horizon cross section of the capped
black hole compared with that of the Cvetič-Youm black hole of
the same ðjψ ; jϕÞ in the ðν; tanh αÞ.

FIG. 9. The area of the horizon cross section of the capped black hole compared with that of the Cvetič-Youm black hole on the
contour in ðjψ ; jϕÞ plane for some fixed α (tanh α ¼ 0.8, 0.95). The Cvetič-Youm black hole is favored on the thick curve, while ours is
favored on the dashed. On the dotted curve, the Cvetič-Youm black hole does not exist.
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two scales that represent the sizes of the horizon and the
bubble. Analogous to the horizon area, one can calculate
the two-dimensional area of the bubble as

aD ≔
AD

πr2M
¼ 2

r2M

Z
−1

−1=ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gyygψψ

p jx¼1dy; ð140Þ

where aD is the mass-normalized bubble area. As shown
in the top panels of Fig. 10, the horizon area vanishes
as ν → 0, while the bubble area remains finite. Although
both areas vanish as ν → 1, a comparison of the area
scales defined by lH ≔ a1=3H and lD ≔ a1=2D reveals that
the bubble scale decreases more rapidly, with lH=lD ∼
ð1 − νÞ−1=3 (see also the bottom left panel in Fig. 10).
To investigate the distortion of the S3 horizon, we

also compare R� defined in Eqs. (107) and (108), which
estimate the radial scales of the horizon at each pole. From
the bottom right panel of Fig. 10, it is evident that the ratio
between Rþ and R− remains finite even as ν → 1, indicat-
ing that the horizon shape does not collapse in the limit.
If the electric charge is sufficiently small, we observe
Rþ=R− → 0, suggesting that the horizon shape becomes
elongated along the ψ-rotation plane.

D. Ergoregion

The ergoregion of the capped black hole (50) is deter-
mined by the condition Hðy; xÞ < 0. To comprehend the
presence of the ergoregion, it is convenient to use the

following properties for the parameters within the range
(115) together with Eq. (114) (refer to Appendix C for
the proof):
(a) Hðy ¼ −1; x ¼ �1Þ > 0,
(b) Hðy ¼ −1=ν; xÞ < 0 for x∈ ½−1; 1�,
(c) ∂

2
xHðy ¼ −1; xÞ > 0 for x∈ ½−1; 1�,

(d) ∂
2
yHðy; xÞ < 0 for ðx; yÞ∈ ½−1; 1� × ½−1=ν;−1�,

(e) ∂yHðy ¼ −1; xÞ þHðy ¼ −1; xÞ > 0 for x∈ ½−1; 1�.
(a) indicates that both the asymptotic infinity and the
intersection of the inner rotational axis and the ψ-rotational
axis always lie outside the ergoregion, while (b) illustrates
that the horizon is invariably situated inside the ergoregion.
(c) demonstrates thatHðy ¼ −1; xÞ is a concave function of
x, which, combined with (a), leads to the following two
potential behaviors on the ψ-rotational axis at y ¼ −1:

(i) Hðy ¼ −1; xÞ > 0 for x∈ ½−1; 1�,
(ii) Hðy ¼ −1; xÞ > 0 for x∈ ½−1; x1Þ ∪ ðx2; 1� and

Hðy ¼ −1; xÞ < 0 for x∈ ðx1; x2Þ,
where x1 and x2 are certain constants such that −1 < x1 <
x2 < 1. Moreover, (d) and (e) ensure that for a given
x∈ ½−1; 1�:

(i) Hðy; xÞ ¼ 0 has a single root for y∈ ð−1=ν;−1�
if Hðy ¼ −1; xÞ ≥ 0,

(ii) ∂yHðy ¼ −1; xÞ ¼ −Hðy ¼ −1; xÞ > 0 and then
Hðy; xÞ is a monotonically increasing function of
y if Hðy ¼ −1; xÞ < 0,

which excludes the case where Hðy; xÞ > 0 for ∃y∈
ð−1=ν;−1Þ but Hðy¼−1;xÞ<0 and Hðy¼−1=ν;xÞ<0.
Therefore, we find that the capped black hole admits two

FIG. 10. ν dependence of horizon and bubble scales for each tanh α. The value of tanh α is shown with each curve. The red dashed
curves correspond to the limit curve at tanh α → 1.
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types of ergosurfaces, whose topology changes across a
value ν ¼ ν�ðαÞ where a quadratic function Hðy ¼ −1; xÞ
exhibits a double root within the range −1≤x≤1 (Fig. 11):

(i) 0 < ν < ν�ðαÞ: a single S3 surface around the
horizon,

(ii) ν�ðαÞ < ν < 1: an outer S3 surface that encompasses
both the horizon and bubble, and an inner S3 surface
around the flat center at ðx; yÞ ¼ ð1;−1Þ.

In case (ii), the ergoregion extends to the rotation axis of ψ ,
while the ball region around the center at ðx; yÞ ¼ ð1;−1Þ is
excluded from the ergoregion due to being the fixed point
of two rotations. In Fig. 12, we illustrate the threshold
curve ν ¼ ν�ðαÞ and the topology of the ergosurface in the
phase diagram.
One might understand the topology change of the

ergoregion from the change in the bubble size discussed
in the previous section. For small enough ν, the bubble is
sufficiently large compared to the horizon scale, and hence
it protrudes out of the ergoregion as in case (i). As ν
increases, the bubble becomes smaller, and for ν ¼ ν�ðαÞ,
it is completely engulfed by the ergoregion. The inner
ergosurface exists for ν�ðαÞ ≤ ν < 1, but it vanishes as ν
approaches 1, since the bubble shrinks to a point in the limit
and the spacetime approaches the extremal (non-BPS)
Cvetič-Youm black hole. Note that in both cases,
there does not exist a so-called evanescent ergosurface,

which is a timelike surface outside the horizon where the
timelike Killing vector field at infinity becomes null on
the surface but remains timelike both inside and outside
the surface [30].

VI. SUMMARY AND DISCUSSION

.
In this paper, applying the electric Harrison transforma-

tion to the vacuum black lens solutions possessing a Dirac-
Misner string singularity, we have constructed asymptoti-
cally flat, stationary, biaxisymmetric black hole solutions
within the bosonic sector of five-dimensional minimal
supergravity. Initially, we have obtained the vacuum black
lens solutions, which inherently contained Dirac-Misner
string singularities, using the inverse scattering method.
Then, by implementing the Harrison transformation on the
vacuum solution, we successfully eliminated the Dirac-
Misner string singularities by appropriately adjusting the
parameters involved. The resulting black hole solutions
exhibit horizon topologies of lens space Lðn; 1Þ, including
the n ¼ 0 and n ¼ 1 cases. It has been demonstrated that
these black hole solutions are singular for n ≥ 2, but regular
for n ¼ 0, 1. The n ¼ 0 case describes the charged rotating
black ring with a dipole charge constructed in Ref. [50],
and the n ¼ 1 case describes the capped black hole
constructed in Ref. [79]. In particular, the n ¼ 1 case is
interesting because this solution describes an asymptoti-
cally flat, stationary, non-BPS black hole with a horizon
cross section of trivial topology S3, while the domain of
outer communication (DOC) exhibits a nontrivial topology.
This solution remains regular without any curvature sin-
gularities, conical singularities, Dirac-Misner string singu-
larities, and orbifold singularities both on and outside the
horizon. It describes a charged rotating black hole capped
by a disk-shaped bubble, which we call a capped black
hole. We have demonstrated that the spherical black hole
carries mass, two angular momenta, an electric charge, and
a magnetic flux, where only three of these quantities are
independent. Moreover, we have shown that this black hole
can have identical conserved charges as the spherical black
hole found by Cvetič-Youm, thus indicating a violation of
black hole uniqueness even when assuming that the top-
ology of the horizon cross section is S3. Additionally, we
have found that the capped black hole can possess larger
entropy compared to the Cvetič-Youm black hole, estab-
lishing the spherical black hole with a significant bubble as
thermodynamically more stable.
We would like to comment on the intersection of the

horizon ∂ΣH ¼ fðx; yÞjy ¼ −1=ν;−1 ≤ x ≤ 1g and the
bubble ∂Σin ¼ fðx; yÞjx ¼ 1;−1=ν ≤ y ≤ −1g. Each point
on fðx; yÞjx ¼ 1;−1=ν < y < −1g, a fixed point of the
Killing vector vϕ0, corresponds to a circle generated by
another Killing vector vψ ≔ ∂ψ. Furthermore, vψ vanishes
at ðx;yÞ¼ð1;−1Þ but does not vanish at ðx; yÞ ¼ ð1;−1=νÞ.

FIG. 12. The topology change of the ergoregion in the phase
diagram.

FIG. 11. Possible shapes for the ergoregion: The ergoregions
are illustrated by the blue hatched pattern in the orbit space for
two cases, (a) ν < ν�ðαÞ and (b) ν > ν�ðαÞ.
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Consequently, since ∂Σin is topologically D2, this two-
dimensional disk-shaped bubble intersects with the
horizon at the one-dimensional circle ðx; yÞ ¼ ð1;−1=νÞ.
Therefore, the horizon appears to be capped by the disk-
shaped bubble. However, it should be noted that the term
“capped” does not imply that a part of the S3 horizon is cut
out and replaced with another structure; rather, the horizon
itself truly is S3. This can be seen as follows: Each point
on fðx; yÞjy ¼ −1=ν;−1 < x < 1g represents a two-
dimensional torus generated by the two Killing vectors,
vϕ ≔ ∂ϕ ¼ ð0; 1ÞT and vϕ0 ≔∂ϕ0 ¼ ∂ψ þ∂ϕ¼ð1;1ÞT .
Moreover, since these vectors vanish at the endpoints
x ¼ −1 and x ¼ 1, respectively, the endpoints ðx; yÞ ¼
ð−1;−1=νÞ and ðx; yÞ ¼ ð1;−1=νÞ form circles generated
by vϕ and vϕ0 , respectively. Therefore, since the segment
∂ΣH ¼ fðx; yÞjy ¼ −1=ν;−1 ≤ x ≤ 1g can be regarded as
the union of two solid tori, along with detðvϕ; vϕ0 Þ ¼ −1, it
turns out that ∂ΣH is actually S3. Hence, a part of the S3

horizon is not cut out by the bubble rather, the horizon itself
is complete S3.
The topology of the DOC on a timeslice Σ can easily be

read off from the rod structure, as described in Ref. [35].
According to the topology censorship theorem [34], the
intersection X ¼ DOC ∩ Σ in an asymptotically flat space-
time must be simply connected. Therefore, in a biaxisym-
metric spacetime, the orbit space X̂ ¼ X=Uð1Þ2 reduced to
two dimensions by two Uð1Þ isometries is also simply
connected. This results in the rod diagram representing
the upper half-plane in R2, as depicted in Fig. 13. For
simplicity, we assign only the spacial components of the
rod vector to each rod, and the rod vectors on the semi-
infinite rods are set to be ð0; 1ÞT and ð1; 0ÞT , respectively.
Note that, to match the orientation in Ref. [35], we assign
the rod vectormϕ∂ϕ þmψ∂ψ to ðmϕ; mψÞT so that the semi-
infinite rod with ð1; 0ÞT corresponds to the left side.
Following the procedure in Ref. [35], to know the

topological structure of X ¼ DOC ∩ Σ on a timeslice Σ
for the capped black hole, let us consider a sufficiently large
outer sphere Sout and a sphere Sin sufficiently close to the
horizon, which divide X into three regions: the asymptotic
region Xout outside Sout, including spatial infinity, the inner
region Xin between Sout and Sin, and the near-horizon
region XH between Sin and the horizon. We denote the
corresponding counterparts in the orbit space with hats. As
depicted in Fig. 13, the curve Ŝout, represented by the blue
dashed curve, terminates at the two rods with ð1; 0ÞT and
ð0; 1ÞT , and the curve Ŝin, represented by the red dotted
curve, terminates at the two rods with ð1; 0ÞT and ð1; 1ÞT ,
where as shown Ref. [17], it is ensured from the orienta-
tions of these rod vectors that Sout and Sin are topologically
S3. The procedure in Ref. [35] is as follows: (i) First, by
gluing X̂out and a half-disk D̂out, which is such that
Dout ≅ B4, along a semicircle Ŝout, one can obtain a upper
half-plane [in other words, by gluing Xout and Dout along
Sout, one can obtainR4], (ii) next, by gluing a half-disk D̂0

out

(D0
out ≅ B4) along a semicircle Ŝout, and (iii) finally, by

gluing another half-disk D̂in (Din ≅ B4) along a semicircle
Ŝin, one can obtain a compact two-dimensional space
bounded by a closed curve with three endpoints (similarly,
by gluing D0

out along Sout and Din along Sin to Xin, one can
obtain a compact, simply connected four-manifold).
According to the classification in Ref. [83], the topology
of the four-dimensional space with this type of rod diagram
turns out to be CP2. Thus, we find Xout ∪ Xin ∪ Din ≅
R4#CP2. Since X ≅ Xout ∪ Xin, we can conclude that the
capped black hole constructed in this paper has the DOC
such that DOC ∩ Σ ≅ ½R4#CP2�nB4.
The capped black hole derived in this paper is charac-

terized by four conserved charges: the mass, two angular
momenta, and an electric charge, along with a magnetic
flux. However, these quantities are not all independent. It is
expected that there may exist a more general capped black

FIG. 13. The topology of the DOC can be seen from the rod diagram.
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hole with five independent quantities. The construction of
such a solution deserves further investigation. Additionally,
so far, an exact solution of a non-BPS black lens, even a
vacuum solution, has not been found. In this paper, we also
attempted the construction of black lenses applying the
electric Harrison transformation on the Chen-Teo type
configuration as described in Ref. [22]. However, though
we could obtain the capped black hole solution and charged
dipole black ring solution as a by-product, our work does
not yield any regular solutions for black lenses. Exploring
this avenue is part of our future work. It is conceivable that
applying the Harrison transformation to the four-soliton
solution referenced in Ref. [23] might enable us to uncover
a regular charged black lens solution. Recently, a regular
static black lens immersed in the external magnetic field—
which is not asymptotically flat—was produced by com-
bining the Harrison transformation and another type of

transformation in the context of the five-dimensional
Einstein-Maxwell theory [84]. Hence, the presence of
the magnetic field plays a significant role in the support
of a black lens horizon, as suggested previously for
supersymmetric black lenses [30]. In our forthcoming
paper, we will discuss another construction of a non-
BPS charged black lens solution in five-dimensional
minimal supergravity.
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APPENDIX A: COEFFICIENTS FOR Kðx;yÞ
The coefficients in Eq. (65) are given by

k1 ¼ 2c1c2c3νðνþ 1Þða − bÞðγ − νÞ; k2 ¼ −c2ð1 − νÞða − bÞðγ − νÞðc1c3 − bd1Þ;

k3 ¼
c2d1ð1 − νÞðγc3 − c3ν − d2Þ

ð1 − γÞðνþ 1Þ ; k4 ¼
ð1 − γÞ3c2c3ð1 − νÞ2ðð1 − γÞð1 − νÞðγ þ νÞ þ d1 − d2Þ

ð1 − γÞ4ðνþ 1Þ ;

k5 ¼ 2c3d3ð1 − νÞ3ðγ − νÞ; k6 ¼
c2c3ðγ2ðν − 1Þ2 þ γððν − 1Þ3 − 2d1Þ − ðν − 1Þðd2 þ ðν − 1ÞνÞ þ d1ð3ν − 1ÞÞ

ð1 − γÞð1þ νÞ ;

k7 ¼ −
8d1½ð1 − γÞð1 − νÞ2ðγ − νÞðbðν − 1Þ þ c1Þ þ 2c1c3ðγ − νÞ − c1d2ð1 − νÞ�

ð1 − γÞðνþ 1Þ : ðA1Þ

APPENDIX B: PROOF OF Hðx;yÞ > 0 AND D > 0 FOR n= 1

Here we show the positivity of each term in Eq. (116). With the negativity of d1 (88), it suffices to show the positivity
of d5, d6, d7 defined in Eq. (117). For this, it is convenient to clarify the signature of c1 by rewriting it with Eqs. (82)
and (81) as

c1 ¼ −ð1 − γÞ2ð1 − dÞ2ð−d1Þ−1ð1 − aÞð1 − a2Þ < 0: ðB1Þ

This also imply c2 < 0 due to the identity

c2 ¼ c1ð1þ νÞ − ð1 − γÞð1 − νÞa < 0: ðB2Þ

With c1, c2 < 0, the positivity of d6 and d7 is obvious from the definition. The positivity of d5 is a little less trivial. First, we
consider the following quantity:

d̃5 ¼
ab2ð2 − aÞð1 − a2Þ2
ð1 − γÞ4ð1 − νÞ3 d5 ¼ ð2 − aÞa3ða2 − aþ 1Þ2 þ bða2 − aþ 1Þð8a5 − 13a4 þ 2a3 − a2 þ 2a − 1Þ

þ ab2ð2a6 − 14a5 þ 22a4 − 17a3 þ 16a2 − 8aþ 2Þ þ ð2a − 1Þb3ða2 − aþ 1Þð2a2 − 2a − 1Þ; ðB3Þ
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where we used Eq. (114). One can see the positivity of d5 by writing d̃5 as the sum of positive definite terms

d̃5 ¼ ð2− aÞ3a3ð1− aþ a2Þ2ð1þ b3Þ þ ð−bÞð1− b2Þð1− aþ a2Þ
�
5

18
þ 1

2
ð1− aÞ4 þ 9

2

�
a2 −

2

9

�
2

þ 8a4ð1− aÞ
�

þ b2ð1þ bÞa
�
2ð1− aÞ4 þ 6a2

�
a−

3

4

�
2

þ 5

8
a2 þ 2a6 þ 14a4ð1− aÞ

�
þ ð−bÞ3a2ð1þ aÞ3ð1þ a2 − a3Þ> 0: ðB4Þ

APPENDIX C: PROPERTIES OF Hðy;xÞ FOR n= 1

Here we prove several properties ofHðy; xÞ that are used to determine the topology of the ergoregion for the capped black
hole in Sec. V D. We use the following conditions proved in Sec. IV C and Appendix. B

d1 < 0; c1 < 0; c3 > 0: ðC1Þ

(1) Proof of ðaÞHðy ¼ −1; x ¼ �1Þ > 0 and ðcÞ∂2xHðy ¼ −1; xÞ > 0 for x∈ ½−1; 1�.
These can be shown directly from

Hðy ¼ −1; x ¼ 1Þ ¼ −8ð1 − γÞ2d1ð1 − νÞ2 > 0; ðC2Þ
Hðy ¼ −1; x ¼ −1Þ ¼ 8ð1 − γÞ3ð1 − νÞ4ð1 − a2Þ > 0; ðC3Þ

∂
2
xHðy ¼ −1; xÞ ¼ 8νð1 − γÞ3ðγ − νÞð1 − νÞ2ða − bÞ2 > 0: ðC4Þ

(2) Proof of ðbÞHðy ¼ −1=ν; xÞ < 0 for x∈ ½−1; 1�.
The negativity of Hðy ¼ −1=ν; xÞ is obvious by writing it as

Hðy ¼ −1=ν; xÞ ¼ A1ð1þ xÞ2 þ A2ð1 − xÞ2 þ A3ð1 − x2Þ; ðC5Þ

where

A1 ¼
ð1 − νÞ2ð1þ νÞðc2 − ð1 − νÞð1 − γÞðγ þ νÞÞ2

νðγ − νÞ > 0; ðC6Þ

A2 ¼
ð1 − γÞc3ðγ − νÞð1 − νÞ4ð1þ νÞ

2ν2
> 0; ðC7Þ

A3 ¼
ð1− γÞðν− 1Þ2ðνþ 1Þðγ − νÞððνþ 1Þðbðν− 1Þðγþ νÞ þ 2c1νÞ2 þ 4ð1− γÞγνð1− νÞ2 þ 4ð−d1Þν2Þ

2ν2ðγþ νÞ > 0: ðC8Þ

(3) Proof of ðdÞ∂2yHðy; xÞ < 0 for ðx; yÞ∈ ½−1; 1� × ½−1=ν;−1�
∂
2
yHðy; xÞ < 0 is obvious by writing it as

∂
2
yHðy; xÞ ¼ −B1ð1þ xÞ2 − B2ð1 − xÞ2 − B3ð1 − x2Þ; ðC9Þ

where

B1 ¼ 2ð1 − γÞc21c3νð1þ νÞ > 0;

B2 ¼ ð1 − γÞð1 − νÞ2ð2νc1 þ ðγ − νÞð1 − νÞbÞ2 > 0;

B3 ¼ ð1 − γÞð1 − νÞ½4c21ν2ð2 − γ þ νÞ þ 4bc1ðγ − νÞνð1 − ν2Þ þ ð1 − νÞ3ðγ2 − ν2Þb2� > 0: ðC10Þ
(4) Proof of ðeÞ∂yHðy ¼ −1; xÞ þHðy ¼ −1; xÞ > 0 for x∈ ½−1; 1�

∂yHðy ¼ −1; xÞ þHðy ¼ −1; xÞ > 0 becomes obvious by writing it as

∂yHðy ¼ −1; xÞ þHðy ¼ −1; xÞ ¼ C1ð1þ xÞ2 þ C2ð1 − xÞ2 þ C3ð1 − x2Þ; ðC11Þ
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where

C1 ¼ −c21ðνþ 1Þð1− ν2Þð2ð1− γÞ2 − b2ðγ2 − ν2ÞÞ þ 2bc1ðγ − 1Þðν2 − 1Þ2ðγ − νÞ þ ð1− γÞ2ðν− 1Þ4ð2− γþ νÞ;
C2 ¼ 2bc1ðγ − 1Þðν2 − 1Þðν− 1Þ2ðγ − νÞ− 2c21ðγ − 1Þðνþ 1Þðν− 1Þ3 þ ð1− γÞ2ðν− 1Þ4ð2− γþ νÞ;
C3 ¼ 2ð1− γÞð−d1Þðν− 1Þ2ð2− γþ νÞ > 0: ðC12Þ

To see C1 > 0 and C2 > 0, one can write them by using Eq. (114) as

C1 ¼
að2− aÞð1− νÞ4ð1− γÞ3

b2ð1− aÞ2ð1þ aÞ2
�
−
2bð1þ bÞ2ð1− aþ a2Þð1− aÞ2ν

1− ν
þ ð2− aÞað−bð1− aþ a2Þ þ ab2ð2− aÞÞ

�
> 0;

ðC13Þ

and

C2 ¼
ð1− γÞ3ð1− νÞ4

b2

�ð1− aþ a2Þ2ð1þ bÞ2
1− a2

þ ab2ð2− aÞð1þ 2a− 2a2Þ− 2bð1− aþ a2Þð1þ að1− aÞ2Þ
1− a

�
> 0:

ðC14Þ
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