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During its inspiral stage, a binary black hole (BBH) produces characteristic gravitational wave (GW)
signals. The waveform of the GW signals can be described by the physical parameters of BBH, such as the
masses of the black holes and the orbital eccentricity. Precise and accurate estimation of these parameters is
crucial for GWastrophysics. In the aspect of precision, decihertz GW detectors are promising proposals, as
they are anticipated to allow us to obtain highly precise parameter estimations for stellar-mass BBHs.
However, the high-precision parameter estimation requires accurate GW waveform modeling. Otherwise,
systematic errors can arise in estimated parameters. We emphasize the importance of considering the orbital
eccentricity in constructing an accurate GW waveform model. B-DECIGO and MAGIS are used as
benchmarks for decihertz GW detectors. We examine the significance of systematic error for a population
of stellar-mass BBH inspirals. We found that the quasicircular GW waveform model exhibits significant
systematic errors for BBH with a very small eccentricity ∼10−4 at GW frequency 0.1 Hz. The modeling
accuracy can be substantially enhanced by incorporating the leading-order correction to GW phase
evolution associated with eccentricity smaller than 0.01. The higher-order post-Newtonian corrections
induced by eccentricity should be important only for eccentricity larger than 0.01.
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I. INTRODUCTION

Predictions on the actual eccentricity distribution of
merging compact binaries depend on the formation sce-
nario. There are two popular formation scenarios: isolated
formation [1–4] and dynamical formation [5–18]. In the
isolated formation, the binary orbital evolution is primarily
driven by interactions with companion stars, and majority
of binary mergers occur with very small eccentricities. In
this scenario, BBH mergers with e > 0.01 at GW fre-
quency 10 Hz are expected to account for much less than
1% of the total binary merger population [2]. The dynami-
cal formation is relevant to binary formation in globular
clusters [5–12] and nuclear star clusters [13–18]. In
globular clusters, binaries with high eccentricities can be
produced by two-body encounters [7] or binary-single
encounters [6,10]. Consequently, studies based on N-body
simulations [11,12] estimated that binary mergers with
e > 0.01 at 10 Hz account for Oð1Þ percents of the
total population. In nuclear star clusters, much higher

eccentricities are expected due to gravitational capture
[13] and the influence of supermassive black hole [14].
It is expected that the majority of mergers will have small

eccentricity at high GW frequencies. One of the reasons is
that the eccentric orbit of merging binary tends to be
circularized due to GW emission [19,20]. For example, if
the eccentricity was 0.1 at f ¼ 0.1 Hz, it decreases to
e ∼ 0.001 as the GW frequency increases to f ¼ 10 Hz,
which can be estimated from e ∝ f−19=18 [20]. This
eccentricity decay takes less than a year in the case of
stellar-mass BBHs. As a result, GW observation in a lower
GW frequency band is more relevant to eccentric mergers.
It has been demonstrated that observing eccentric binary

mergers in ground-based detectors such as LIGO and Virgo
can provide evidence for the dynamical formation of binary
systems [5–18]. Measuring the orbital eccentricity with the
space-based GW detector LISA can help discriminate
between different formation channels of stellar-mass binary
black holes (BBH) [21–23]. In addition, the precision of the
sky localization of eccentric binary inspirals tends to be
better than those of quasicircular cases in the ground-based
detector networks [24–26]. Recently, Refs. [27–29] showed
that the improvement of sky localization of eccentric
binary inspirals is significantly more pronounced in the
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space-based detector operating in the decihertz band.
Another promising application of eccentric binary inspirals
is the early detection and localization of GWs by utilizing
the high harmonic modes induced by eccentricity [30].
The space-based interferometer DECIGO [31] and the

space-based atom interferometer MAGIS [32,33] have been
proposed to cover decihertz GW frequencies. We refer to
detectors that are sensitive in the range of deci-Hz to several
Hz range as midband detectors. The midband detectors
have great potential for GW science with stellar-mass
compact binaries. Binaries composed of stellar mass black
holes can emit GW signals for weeks and months in the
decihertz band. Continuous observation of GW signal from
compact binaries for long duration enables us to achieve
not only high signal-to-noise (SNR) ratio of the GW signal
but also exquisite measurement of the GW source param-
eters [34–39]. Therefore, successful operation of the
midband detectors will provide valuable hints to the
formation of compact objects [40] as well as the test of
general relativity [41,42].
The high-precision measurement of parameters with

midband detectors requires more accurate GW waveform
modeling. Otherwise, systematic errors can significantly
contaminate the parameter estimations of GW signals.
Specifically, we test the accuracy of estimated parameters
assuming the quasicircular waveform model for the eccen-
tric merger of BBHs. This issue has been examined in the
context of ground-based detectors [43–46]. In Ref. [44], the
author showed that the quasicircular waveform model
becomes inaccurate for eccentric mergers with e ∼ 10−3

at f ¼ 10 Hz in the case of neutron star binary merger. It
has been also noted that extending the low-frequency limit
results in observing more GW cycles, consequently ampli-
fying the systematic errors [45]. Therefore, we expect that
the issue of systematic errors will be more pronounced in
the midband detectors.
Waveform model constructed using the post-Newtonain

(PN) approximation always has the risk of systematic error
coming from neglected high-order PN effects [47–49].
Therefore, it is essential to ensure that the waveform model
being used includes high enough PN order terms to
minimize systematic errors. In our study, we focus on
the PN corrections associated with eccentricity in the
context of observation with the midband detectors.
The remainder of this paper is organized as follows.

Section II introduces the eccentric waveform models and
the GWdetectors used in our work. Section III provides brief
reviews of the GW parameter estimation. Computation
methods for probability distribution are also reviewed in
this section. In Sec. IV, the methods for systematic error
estimation are introduced. Section V focuses on the system-
atic errors due to neglecting eccentricity or inaccurate
eccentric waveforms. In Sec. VI, we discuss the observa-
tional implications of the systematic errors. Lastly, Sec.VII is
the summary and conclusion of our work.

II. BASIC SETUP

A. Waveform model

In GW polarization basis, the GW with the polarization
amplitudes hþ;× passing through the detector with antenna
pattern functions Fþ;× will induce the strain signal

hðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ: ð1Þ

We use the Fourier transform of the signal

h̃ðfÞ≡
Z

∞

−∞
dfhðtÞe2πiftdt ð2Þ

for the parameter estimation. The integral can be calculated
via the stationary phase approximation (SPA). In terms of
SPA amplitudeA and phaseΨ, the Fourier transform of the
waveform can be written as

h̃ ¼ AeiΨ; where ð3aÞ

A ¼ −M
ffiffiffiffiffiffi
5π

96

r �
2
M
D̄

� ffiffiffi
η

p ðπMfÞ−7=6: ð3bÞ

Here,M ¼ m1 þm2 is the binary total mass in the detector
frame, η ¼ m1m2=M2 is the symmetric mass ratio, and

D̄≡ 2dL½ð1þ cos ι2Þ2F2þ þ 4 cos ι2F2
×�−1=2 ð4Þ

is the effective distance that absorbs the dependence on the
luminosity distance dL to source, the inclination angle of
the binary ι. Fþ;× depends on the detector orientation, the
GW source direction, and the GW polarization. In GW
observations with space-based detectors, the detector’s
orbital motion causes significant time variation in detector
orientation, making Fþ;× time-dependent quantities.
However, for computational efficiency, we fix the values
of Fþ;×. This approximation is justified because the time-
dependent Fþ;× effectively result in a slowly changing GW
amplitude over a much longer timescale than the GW
period (∼f−1), and thus, it does not affect the GW phase
measurement, which is our primary concern in this work.
The SPA phase is composed of several distinct contri-

butions [50–52]

ΨðfÞ¼ϕcþ2πftcþ
3

128ηv5
ð1þΔΨcirc

3.5PNþΔΨecc
3PNÞ; ð5Þ

where ϕc and tc are the coalescence phase and time, and
v ¼ ðπMfÞ1=3 is the post-Newtonian (PN) orbital velocity
parameter. In this expression, we factor out the leading
order inspiral phase 3=ð128ηv5Þ and divide the inspiral
phase corrections into circular term and eccentric term. The
circular term ΔΨcirc

3.5PN is the PN correction of the quasi-
circular binary inspiral, and therefore it is nonvanishing
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even for zero-eccentricity orbits. It includes the PN
corrections up to 3.5 PN order. The explicit expression
of the ΔΨcirc

3.5PN can be read off [50]. The eccentric term
accurate up to 3 PN order can be written as [51]

ΔΨecc
3PN ¼ −

2355

1462
e20

�
v0
v

�
19=3

�
1þ

X6
n¼2

cnvn
�
; ð6Þ

where v0 ¼ ðπMf0Þ1=3 is the PN orbital velocity parameter
at a reference GW frequency f0, and the e0 is the orbital
eccentricity at GW frequency f0. The reference GW
frequency f0 can be chosen arbitrarily, so we set
f0 ¼ 0.1 Hz. The coefficients cn are functions of binary
black hole masses and GW frequency. The details of cn can
be found in Ref. [51].
Our waveform model is a minimal setup designed to

study eccentric GWwaveforms. This approach allows us to
reveal the effects of eccentricity more clearly. However, it is
important to note that eccentric GW waveforms can be
much more complicated in reality. For instance, an eccen-
tric GWwaveform consists of multiple harmonics of orbital
frequency forb. While second harmonic f ¼ 2forb predom-
inates in the small eccentricity regime, the subdominant
modes can potentially impact parameter estimation
[27–29,53]. In addition, the phase corrections from black
hole spins, which we have not incorporated, introduce
additional complications into parameter estimation [36].
This aspect remains for future investigation.
GW waveform defined by Eqs. (3), (5), and (6) is the so-

called TaylorF2Ecc [52]. In the following sections, we
simulate GW signals from BBH sources with this wave-
form model. To study waveform accuracy, we define
reduced waveform models EccMPN by collecting PN
corrections in Eq. (6) up to v2M terms. Since the v1 term
is absent, there is no Ecc0.5PN. We also consider the
waveform model with ΔΨecc

3PN ¼ 0 which is equivalent to
TaylorF2 [50]; we refer to this model as QC for brevity.

B. GW detectors and the frequency range

We examine the near-future GW observations made by
B-DECIGO [31] and MAGIS [32,33]. Both are space-
based GW observatories and are sensitive to decihertz
GWs. The sensitivity curves of the detectors are shown in
Fig. 1. These detectors are anticipated to have exquisite
precision in measuring the inspiral motion of BBH with
stellar mass, as minute variations in GW phase evolution
accumulate over the year-long inspiral lifetime in the
decihertz band, allowing for measurability [36,42]. Their
precision may require more accurate source modeling than
that needed in LIGO, which is one of the motivations of
our study.
The B-DECIGO noise power spectral density (PSD) is

obtained by the analytic fitting function provided in
Eq. (20) of Ref. [36]. In the case of MAGIS, we used

SnðfÞ ¼

8><
>:

S�
�

f
f�

�
−4

f < f�

S�
�

f
f�

�
−0.17

f ≥ f�
; ð7Þ

where S� ¼ 3.26 × 10−43 Hz−1 and f� ¼ 0.05 Hz, which
approximately fits the resonant mode sensitivity curve in
Ref. [32]. In our analysis, the frequency bands ofB-DECIGO
and MAGIS are set to ½0.01; 100� Hz, and ½0.01; 3� Hz,
respectively.
The GW frequency range of BBH inspiral is also a

crucial factor that determines the frequency range of GW
data. The lower limit of this range is given by

flow ¼ 0.035

�
M

20M⊙

�
−5
8

�
tobs
1 yr

�
−3
8

Hz; ð8Þ

whereM is the detector-frame chirp mass. The observation
duration of GW inspiral tinsp is set to one year in our work.
However, it should be noted that the appropriate value of
tobs may vary depending on the mission duration and duty
cycle of the GW detectors, which are currently uncertain.
The upper GW frequency limit of BBH inspiral is given by
the inner-most stable circular orbit (ISCO) frequency

fISCO ¼ 1

63=2πM
¼ 220

�
M

20M⊙

�
−1

Hz; ð9Þ

where M is the detector-frame total mass. The frequency
range of GW data is determined by the overlapping range
between ½flow; fISCO� and a detector frequency band.

FIG. 1. Sensitivity curves of B-DECIGO (blue) and MAGIS
(orange). The square root of the noise PSD

ffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
is used to

present them. In principle, the decihertz band detectors have the
capability to observe the one-year-long inspiral of stellar mass
BBHs. The GW spectrum of BBH inspiral (dashed) with
M ¼ 40M⊙, η ¼ 0.24, and D̄ ¼ 5194 Mpc is presented as an
example. The star markers with labels show the inspiral lifetime
at the frequencies.
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III. GW PARAMETER ESTIMATION

A. Basics of parameter estimation

In this section, we provide a brief overview of the GW
parameter estimation. For simplicity, we assume that the
detector noise ñ is stationary and Gaussian. From the
stationarity, the noise covariance between the frequencies f
and f0 is given by

hñ�ðfÞñðf0Þi ¼ 1

2
SnðfÞδðf − f0Þ; ð10Þ

where SnðfÞ is the (one-sided) noise PSD. From the
Gaussianity, the probability distribution of the noise
ñðfjÞ at the frequency bins ðf0 ¼ fi; f1;…; fN−1 ¼ feÞ
follows (up to a normalization factor)

pðñÞ ∝ exp

�
−
XN−1

j¼0

2jñðfjÞj2
SnðfjÞ

Δf
�
≃ exp

�
−
1

2
ðnjnÞ

�
ð11Þ

where Δf ¼ fjþ1 − fj which is uniform, and

ðgjhÞ≡ 4Re
Z

fe

fi

df
g̃�ðfÞh̃ðfÞ
SnðfÞ

ð12Þ

is the noise-weighted inner product of the strain data g and
h. The initial and end frequencies, fi and fe, are deter-
mined by the detector frequency band and GW source, as
described in Sec. II B.
The GW detection significance of strain data d can be

measured by the likelihood ratio between the signal-plus-
noise hypothesis (d ¼ nþ h) and the noise-only hypoth-
esis (d ¼ n) [54]. Here, the GW waveform model h
depends on the model parameters θ. By Eq. (11), the
logarithm of the likelihood ratio is given by

lnΛðdjθÞ ¼ ðdjhðθÞÞ − 1

2
ðhðθÞjhðθÞÞ: ð13Þ

The marginalization of ΛðdjθÞ over the θ parameter space
can be used as the optimal detection statistics. The
marginalization result is proportional to the maximum
value of ΛðdjθÞ when it is informative [55]. Since
ΛðdjθÞ and lnΛðdjθÞ are simultaneously maximized, the
(maximum) matched-filter signal-to-noise ratio (SNR)

ρ2mðdÞ≡ 2max
θ

lnΛðdjθÞ ð14Þ

can be used as a measure of confidence in GW detection.
Parameter θ includes an overall amplitude A, the coales-
cence phase ϕc, the coalescence time tc, and the physical
parameters μ such as total mass and mass ratio. ρmðdÞ can
be analytically maximized with respect to A and ϕc and
becomes

ρ2mðdÞ ¼ max
tc;μ

1

ρ2oðhÞ
½ðdjhðtc; μÞÞ2 þ ðdjihðtc; μÞÞ2�; ð15Þ

where ρ2oðhÞ≡ ðhðμÞjhðμÞÞ is the optimal SNR.
The posterior probability distribution function (PDF)

pðθjdÞ is obtained by the framework of Bayesian parameter
estimation. Under a signal-plus-noise hypothesis, Bayes’
theorem gives

pðθjdÞ ¼ pðθÞpðdjθÞ
pðdÞ ; ð16Þ

where the logarithm of pðdjθÞ is given by Eq. (11)

lnpðdjθÞ ¼ −
XN−1

j¼0

2jd̃j − h̃ðfj; θÞj2
SnðfjÞ

Δf þ const

≃ −
1

2
ðd − hðθÞjd − hðθÞÞ þ const ð17Þ

(up to an irrelevant constant). pðθÞ is the prior PDF. For
simplicity, we always use the uniform prior PDF in this
work. The evidence pðdÞ is given by

pðdÞ ¼
Z

dθpðdjθÞpðθÞ; ð18Þ

and it is a normalization factor for the posterior PDF.

B. Computation of posterior PDF

In contrast to the simple statement of Bayes’ theorem,
numerical computation of posterior PDF has many tech-
nical challenges when model parameter space has a high
dimension. Several numerical algorithms have been devel-
oped to tackle the problems. We obtain posterior PDF
using DYNESTY [56–58] sampler implemented in Bilby [59]
library. DYNESTY sampler adopts the nested sampling
algorithm [56,57] which generates the posterior samples
as a byproduct of computing the evidence Eq. (18).
Parameter estimation in the decihertz band presents an

additional challenge due to a large amount of GW phase
evolution accumulated throughout a one-year-long obser-
vation. To accurately evaluate the likelihood Eq. (17), it is
necessary to resolve the GW phase ΨðfÞ ∝ M−5=3f−5=3

with sufficiently fine frequency bins. Note that the fre-
quency resolution required to capture phase evolution ΔΨ
can be estimated by Δf ∝ ΔΨM5=3f8=3. This estimation
suggests that frequency binning in the decihertz band needs
to be 108 times finer than in the hectohertz band, resulting
in a significant increase in the computing cost of the
likelihood.
To overcome the numerical challenges, we use the

relative binning method [60,61] for the likelihood compu-
tation. The relative binning method is based on the fact that
the phase evolution difference of two slightly different
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waveforms changes slowly with frequency. Therefore, once
the likelihood function is evaluated at a reference param-
eter, the likelihood function at nearby parameters can be
evaluated by an interpolating function on coarser frequency
bins. In this way, the relative binning achieves uniform
computation time for the likelihood function regardless of
frequency band and GW sources.

C. Approximate covariance estimation

One of the goals of constructing a posterior PDF is to
obtain covariance between the parameters. Without using
complicated numerical methods, sometimes an analytic
covariance estimation can be useful as a crude estimation
for an actual posterior PDF. Note that Eq. (16) can be
expanded around the maximum a posteriori (MAP) θ̂ as

lnpðθjdÞ≃ constþ1

2
ΔθaΔθb∂2ab lnpðθ̂jdÞþOðΔθ3Þ ð19Þ

where Δθ ¼ θ − θ̂, and ∂a is the partial derivative with
respect to θa. We used ∂a lnp ¼ ∂ap=p ¼ 0 at θ ¼ θ̂.
The second derivative term is written as

∂
2
ab lnpðθ̂jdÞ ¼ −Γabðθ̂Þ þ ðd − hðθ̂Þj∂2abhðθ̂ÞÞ; ð20Þ

where

ΓabðθÞ≡ ð∂ahðθÞj∂bhðθÞÞ ð21Þ

is the Fisher information matrix (see Refs. [62,63] for more
rigorous treatment). When d − hðθ̂Þ ¼ n ≪ hðθ̂Þ and hðθÞ
well approximates the true GW signals, the second term of
the right-hand side of Eq. (20) can be ignored. Note that
OðΔθ3Þ terms in Eq. (19) is ðhjhÞ−1=2 ∼ SNR−1 times
smaller than OðΔθ2Þ terms. Therefore, at the high SNR
limit, the posterior PDF can be approximated to the
multivariate Gaussian distribution near θ̂, and the covari-
ance matrix Σ can be obtained by

Σabðθ̂Þ ¼ ðΓ−1Þabðθ̂Þ: ð22Þ

The 1σ statistical error of parameter θa is approximately

σθa ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Σaaðθ̂Þ

q
.

IV. SYSTEMATIC ERROR ESTIMATION

A. MAP shift and systematic error

When the waveform model hðθÞ faithfully represents
true GW signals htrðθtrÞ, the posterior PDF is expected to
peak around the true parameter of the signal θtr, which
means that θ̂ ≃ θtr. However, the MAP θ̂ does not always
coincide with the true parameter due to the detector noise n
and waveform modeling error δh ¼ htr − h. As long as the
noise has a zero mean, the shift due to the noise will be

averaged out, and only the bias due to the modeling error
will remain. Therefore, denoting the shift of the MAP as
Δθa, a systematic error can be defined by

Δθasys ≡ hΔθai; ð23Þ

where h·i means averaging over many noise realizations. In
this work, we set n ¼ 0 and simply obtain Δθasys ≃ Δθa by
computing the posterior PDF only once, which is a good
approximation for high SNR cases.
Figure 2 shows the example of the MAP shift due to

inaccurate waveform modeling. Here, we simulate a GW
signal having e0 ¼ 0.001 with TaylorF2Ecc and compute
the posterior PDF with the same waveform model (solid)
and the QC model (dashed). The MAP shifts due to the use
of the inaccurate (QC) model are clearly shown. While
nontrivial distortion of the posterior PDF can arise (e.g., the
biased posterior PDF having bimodality [46]), we focus on
the systematic error represented by the MAP shift.

B. Fitting factor method

MAP can be approximately obtained as a byproduct of
finding the fitting factor (FF) instead of constructing a
whole posterior PDF, which is computationally expensive.
Wewill refer to this method as the FF method. FF is defined
as the maximized match, where the match between g and h
is the normalized inner product

FIG. 2. Posterior PDFs of eccentric GW signal computed by the
correct model (TaylorF2Ecc, solid) and the inaccurate model
(QC, dashed). The GW signal is generated by TaylorF2Ecc with
Mtr ¼ 40M⊙, ηtr ¼ 0.24, e0.1 ¼ 0.001, and D̄ ¼ 5194 Mpc. We
simulate the parameter estimation assuming one-year observation
in B-DECIGO. This setup produces ρo ¼ 30.
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hgjhi≡ ðgjhÞ
ðgjgÞ12ðhjhÞ12 : ð24Þ

Then FF can be written as

FF≡max
θ

hgjhðθÞi: ð25Þ

It is clear that FF ¼ 1 only if hðθÞ is identical to g,
otherwise FF < 1. Mismatch(MM) defined as

MM≡ 1 − FF; ð26Þ

is also a useful measure of the difference between two
waveforms.
Maximizing the match with respect to the constant phase

can be done analytically, and Eq. (25) becomes

FF ¼ max
t;μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hgjhðt; μÞi2 þ hgjihðt; μÞi2

q
: ð27Þ

The right-hand side of Eq. (27) is equal to ρmðgÞ=ρoðgÞ,
implying that FF can be a measure of waveform template
efficiency or, equivalently, SNR loss. Combined with the
fact that ρ ∝ D̄−1, inaccurate waveform modeling leads to
GW event loss 1 − FF3 ≃ 3MM assuming the uniform-in-
volume GW source distribution. Conventionally, an
approximate waveform model is required to be at least
FF > 0.97 with respect to a more accurate waveform
model, which corresponds to ∼90% detection efficiency.
To estimate the systematic bias, we compute the match

between d ¼ htrðθtrÞ and hðθÞ, and maximize it with
respect to θ. The maximum point of the match approx-
imately coincides with the MAP. It can be shown using the
fact that the derivative of the match can be written as

∂ahdjhðθÞi ¼
ðd − hj∂ahÞ − ðd − hjhÞðhj∂a lnAhÞ=ðhjhÞ

ðdjdÞ12ðhjhÞ12 :

ð28Þ

In the expression, ðd − hj∂ahÞ is dominant since it contains
∂aΨ, which is much larger than ∂a lnA in the other term.
This is due to the large phase evolution of the GW chirps.
Therefore, at the maximum point of the match, we can write

∂ahdjhðθÞi ≃
ðd − hj∂ahÞ
ðdjdÞ12ðhjhÞ12

¼ ∂a lnpðθjdÞ
ðdjdÞ12ðhjhÞ12 ¼ 0; ð29Þ

which indicates that the maximum point of the match is
also the MAP at the same time.
Although computing FF is less expensive than construct-

ing the posterior PDF, the difficulties coming from long

inspiral observation (as described in Sec. III B) still remain.
We find that the relative binning method is very effective
even for FF computation in the decihertz band. This is
because the relative binning method basically realizes fast
ðdjhðθÞÞ computation.

C. First order approximation and FCV method

The shift of MAP from θtr can be estimated by using the
local analytic properties of a posterior PDF [64]. Assuming
that MAP is at the stationary point of pðθjdÞ, we have

∂a lnpðθ̂jdÞ ¼ ðd − hðθ̂Þj∂ahðθ̂ÞÞ ¼ 0: ð30Þ

Writing θ̂ ¼ θtr þ Δθ and expanding Eq. (30) up to the first
order of Δθ results in

ðd − hðθtrÞj∂ahðθtrÞÞ − ΔθbΓabðθtrÞ ≃ 0: ð31Þ

Here, we dropped Δθbðd − hðθtrÞj∂abhðθtrÞÞ which is
subdominant. Putting

d ¼ nþ htrðθtrÞ ¼ nþ hðθtrÞ þ δhðθtrÞ ð32Þ

into Eq. (31) and using Σab ¼ ðΓ−1Þab, we have

Δθa ≃ ΣabðθtrÞðnj∂bhðθtrÞÞ þ ΣabðθtrÞðδhðθtrÞj∂bhðθtrÞÞ:
ð33Þ

From the equation above, it is clear that the noise can shift
MAP in a random direction, but the shift is zero on average.
In contrast, the shift by the modeling error is not stochastic.
Therefore, from Eq. (23), we get

Δθasys ¼ hΔθai ≃ ΣabðθtrÞðδhðθtrÞj∂bhðθtrÞÞ: ð34Þ

Although Eq. (34) provides a simple estimation for
systematic error, it is not practical since what we obtain
from the posterior PDF is θ̂, not θtr. Instead, Ref. [65]
shows that systematic error can be estimated by replacing
θtr with θ̂ in Eq. (34):

Δθasys ≃ Σabðθ̂Þðδhðθ̂Þj∂bhðθ̂ÞÞ: ð35Þ

When the modeling error is small, we can use

δhðθ̂Þ ≃Atr −Aþ iAðΨtr −ΨÞ: ð36Þ

In this expression, the waveform amplitudes (Atr and A)
and phases (Ψtr and Ψ) are evaluated at θ̂. This way of
systematic error estimation is the Fisher-Culter-Vallissneri
(FCV) method [65].
Although the FCV method provides a simple one-step

estimation for systematic errors, it should be utilized
carefully when the assumptions behind this method do
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not hold. First of all, the FCV method can be inaccurate in
large δh situations, which is the limitation of the linear-
order approximation. We find that the possibility of large
δh due to eccentricity is not negligible, and it will be
discussed in Sec. V. Additionally, the method becomes
inaccurate when MAP is located near the boundary points
of the parameter ranges. This is because the FCV method
relies on the stationary point condition Eq. (30) which may
not hold on the boundary points. However, we find that
such cases are rare in the midband detectors due to the
highly localized posterior PDF around MAP.

V. SYSTEMATIC ERROR DUE TO
ECCENTRICITY

A. Eccentricity scale of significant systematic error

In the decihertz band GW observation, the quasicircular
waveform model can induce non-negligible systematic
errors even for GW signals with very small eccentricities.
To demonstrate this, we generate eccentric GW signals and
compute the posterior PDFs with QC assuming B-DECIGO
observation. We obtain the MAP shifts and 1σ error ranges
from the posterior PDFs. Figure 3 summarizes the results
forM,M, and η as a function of e0.1. The figure shows that
the MAP shifts (orange dots) of the parameters are already
as large as 1σ error bars (green bars) at e0.1 ∼ 0.0004. Since
this level of eccentricity is not unlikely in the decihertz
band [2,8], the results imply that the eccentric waveform
model will be crucial for the precision test of GR in the
decihertz band. In contrast to the large systematic errors,
the mismatches (bottom panel of Fig. 3) are only 0.01
overall indicating a 1% loss of SNR. This shows that the
quasicircular waveform is still effective for GW detection
purposes. The implications of these results in observational
aspects will be discussed more in Sec. VI.
Figure 3 shows that the systematic error of chirp mass is

more significant than those of total mass and mass ratio. For
example, at e0.1 ∼ 0.0005, the MAP shift of the chirp mass
can be 3σ while that of the others are 1σ. This is because the
chirp mass controls the leading order (0 PN) behavior of
GW phase evolution. Since total mass and mass ratio
appear in the GW phase from the 1 PN corrections, they
have smaller effects.
We find that Ecc0PN has greatly enhanced accuracy

compared to the QC. We compute the systematic errors of
Ecc0PN by the same method as the QC case and summarize
the results in Fig. 4. It shows that the systematic errors of
Ecc0PN become comparable with those of QC only when
e0.1 > 0.01. Also, the mismatch values of Ecc0PN are
greatly reduced compared to those of QC. The effectiveness
of Ecc0PN implies that the higher-order PN corrections
have minor effects. Indeed, we find that the systematic
errors of EccMPN (M ≥ 1) are comparable to the QC and
Ecc0PN cases only when e0.1 ∼ 0.1 cases. This aspect will
be discussed further in the next section.

B. Validity of the approximate methods

In Figs. 3 and 4, we can see that the systematic error
estimation with the FF method is consistent with the MAP
shift of the actual posterior PDFs. This means that the
approximation in Eq. (29) works well in our results.
Therefore, the FF method is highly efficient in finding
MAP. In Sec. VI, We will use this method to compute
systematic errors in much broader parameter space. Note
that the MAP estimation with the FF method is effective
only within the scope of our work, where the inaccuracy in
the GW phase induces systematic errors. If the inaccuracy
of GWamplitude modeling is non-negligible (for example,
due to the higher harmonics), the FF method may not be
appropriate for the MAP estimation.
Estimations of the FCVmethod (dashed curves in Figs. 3

and 4) are consistent with the other methods when e0.1 is
small, where the MAP shifts are within the 1σ error bars.
However, as e0.1 increases, deviations from other methods
are observed, with this trend becoming more pronounced

FIG. 3. First three panels from the top: systematic errors of M,
M, and η as a function of e0.1. The parameter estimation is done
with the QC for eccentric GW signals. The GW signals are
generated with M ¼ 40M⊙, η ¼ 0.24, and ρo ¼ 30 while e0.1 is
varied in each simulation. The MAP shift (orange circles) and 1σ
error bars (green bars) are obtained from the resulting posterior
PDFs. The results are normalized by the true parameters of the
GW signals. The error bars are drawn with respect to the (biased)
median values (green triangle) which coincide well with the
MAPs. Systematic error estimations with the FF method (blue
solid curves) and the FCV method (black dashed curves) are also
shown. Bottom panel: mismatch (1 − FF) between the QC and
the eccentric GW signals as a function of e0.1.
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with higher e0.1. The inaccurate estimations arise when
ΔΨeccðfeÞ − ΔΨeccðfiÞ > 6π. This means that the small
modeling error assumption in Eq. (36) is not valid in this
regime, and a higher-order calculation is required.

VI. IMPLICATIONS ON DETECTION AND
MEASUREMENT

Inaccurate waveformmodeling can cause systematic error
and, in severe cases, lead to the loss of a GW merger event
due to severe SNR loss. The degree of systematic error and
SNR loss (∝ mismatch) have complicated dependence on
GW parameters like black hole masses, luminosity distance,
and eccentricity. To take into account the various factors, we
simulate the BBH merger population using Power-law +
Peak (PP) model [66]. The model parameters of PP are set to
themeasurement values inRef. [67].GWsource redshifts are
sampled uniformly in comoving volume up to z ¼ 10. We
assume a constant source-frame merger rate. We collect the
samples satisfying the detection criteria ρo > 8 from the
generated event samples. A total of 1024 samples are
collected in each detector.
Systematic errorsΔθsys and the matched filter SNR ρm are

computed for the collected samples. The quantities are
estimatedby theFFmethod (Sec. IV B) for a givenwaveform
model and an eccentricity value.We repeat the computations
for eccentricities in the range ½10−5; 10−1�.
We classify the event samples into several subsets. An

event sample is regarded as detection if ρm > 8; otherwise,
it is classified as loss. If an event sample is detection

satisfying Δθasys > σθa , it is classified as biased. We use the
Fisher information matrix to estimate σθa . After the
classification, we can define event loss fraction Ploss and
biased measurement fraction Pθa as

Ploss ¼
Nloss

Ntotal
ð37Þ

Pθa ¼
Nθa

Ndetection
; ð38Þ

whereNloss,Nθa , andNdetection are the number of loss, biased
θa, and detection samples, respectively. Here,Ntotal ¼ 1024.
Our results show that the systematic error of QC can be

significant for e0.1 ∼Oð10−4Þ. In both detectors, PM > 0.5
for e0.1 > 10−3.5. The systematic errors of M and η are less
significant than that of M, but PM and Pη are still non-
negligible forOð10−4Þ eccentricities. For e0.1 > 10−3, more
than half of M and η measurement can be biased. Since
BBH mergers with Oð10−4Þe0.1 may not be rare [2,8], our
results imply that a quasicircular waveform model is not
appropriate for a precision test of GR. In this case,
including the leading-order eccentric phase correction in
the waveform model can be very effective. In Fig. 5, the
Ecc0PN cases have negligibly small Pθa and Ploss for the
Oð10−4Þe0.1. More accurate models (EccMPN withM ≥ 1)
can be considered depending on the required precision and
eccentricity distribution of BBHs.
In the QC case, Ploss of MAGIS is significant for

eccentricities of Oð10−4Þ, while that of B-DECIGO is
negligible up to e0.1 ∼ 10−2. The difference can be
explained by the difference in their sensitivity curve shape.
In the case of B-DECIGO, the maximum sensitivity of
B-DECIGO is reached at Oð1Þ Hz (see Fig. 1). It means
that Oð1Þ Hz components of a GW signal drive parameter
estimation results. In the case of MAGIS, however,
decihertz components of a GW signal contribute to param-
eter estimation due to its (relatively) flat noise curve. Since
an eccentric BBH has a larger eccentricity at a lower
frequency, the phase difference between the QC and
eccentric waveforms is also larger at a lower frequency.
As a consequence, MAGIS becomes more sensitive to
eccentricity and has higher Ploss.
Higher-order EccMPN does not always improve accu-

racy. When Ecc0PN and Ecc1PN are compared, Ecc1PN
leads to smaller Pe0.1 and Ploss. However, the other bias
probabilities can be worse (e.g. PM and Pη results) at
e0.1 > 0.01. This implies that the PN approximation of
eccentric waveform does not converge at 1 PN order for
e0.1 > 0.01. We find that the convergent behavior of
accuracy appears only after 1.5 PN or higher orders. In
other words, the high-order PN corrections are crucial
for e0.1 > 0.01.
From our Ploss results, we can estimate the PN order

requirement of the eccentric waveform model for

FIG. 4. Similar to Fig. 3, except Ecc0PN is used for parameter
estimation.
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GW detection. In B-DECIGO, Ecc1PN achieves nearly
zero Ploss for e0.1 < 0.1. In MAGIS, the corresponding
model is Ecc1.5PN. Depending on the eccentricity distri-
bution of BBH, less accurate waveform models can be
considered. For example, if the majority of BBHs are
e0.1 < 10−2, then the QC waveform model can be adopted
in B-DECIGO, although it takes the risk Ploss ∼ 0.1. In the
case of MAGIS, Ecc0PN can be considered when such
eccentricity distribution is expected.
The PN order requirement to avoid systematic error is

more stringent. We find that, in both detectors, only
Ecc2.5PN can maintain all of Pθa S below 0.001 for
e0.1 < 0.1. If BBH mergers with e0.1 > 10−2 are rare,

Ecc1.5PN can be a practically good option for parameter
estimation.

VII. SUMMARY AND CONCLUSION

We examined the influence of eccentricity on the
detection and measurement in the decihertz detectors, B-
DECIGO and MAGIS. If a waveform model is not accurate
for eccentric binaries, systematic error can be a problem in
the estimation of parameters from GW observations. The
systematic error tends to increase as eccentricity increases.
Since the expected eccentricity of BBHs is larger at lower
frequencies, the systematic error problem can be significant

FIG. 5. Biased measurement fractions PM, PM, Pη, Pe0.1 (the first four rows from the top), and event loss fraction Ploss (the bottom
row) caused by inaccurate waveform modeling in the eccentricity. The results are given a function of e0.1, where those for different
accuracy levels (QC and EccMPNs) are differentiated by the color of the curves. The left panels are the B-DECIGO cases, and the right
panels are the MAGIS cases. Since QC has no e0.1 parameter, there is no result for QC in the fourth row.
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in the midband detectors. Furthermore, the high precision
of the midband detectors makes the problem more severe.
We studied the significance of the systematic error using

the parameter set generated by the fiducial model of the
BBH merger population. We found that even a small
eccentricity, e0.1 ∼Oð10−4Þ, can cause systematic errors
that are comparable to statistical errors if a quasicircular
model is used. The risk of systematic error is greatly
reduced by including the leading-order eccentric phase
corrections. The higher-order corrections are important
when e0.1 > 0.01. To obtain negligible systematic error
for e0.1 > 0.01, the eccentric phase corrections up to 2.5 PN
orders are required.
The PN accuracy requirement for GW detection is less

stringent than for parameter estimation. In the case of B-
DECIGO, the waveform model is still effective for
detecting GW signals with e0.1 < 0.01. If the eccentric
phase corrections up to 1 PN order are included, B-
DECIGO can get negligible event loss for e0.1 < 0.1. In
the case of MAGIS, the PN corrections up to 1.5 PN orders
are required.

Our work can be the basis of more general parameter
estimation studies in the decihertz detectors. In our work,
we consider only the dominant harmonics of the GW
waveform, but, in principle, the multiple harmonics
induced by eccentricity can affect parameter estimation.
Ultimately, studies on modeling accuracy for the case when
black hole spin precession and eccentricity effects coexist
are necessary. Although generating GW waveform for such
studies is not trivial work, if it is possible, extending our
work will be straightforward.
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