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As gravitational wave detectors improve in sensitivity, signal-to-noise ratios of compact binary
coalescences will dramatically increase, reaching values in the hundreds and potentially thousands. Such
strong signals offer both exciting scientific opportunities and pose formidable challenges to the template
waveforms used for interpretation. Current waveform models are informed by calibrating or fitting to
numerical relativity waveforms and such strong signals may unveil computational errors in generating these
waveforms. In this paper, we isolate a single source of computational error, that of the finite grid resolution,
and investigate its impact on parameter estimation for aLIGO and Cosmic Explorer. We demonstrate that
increasing the inclination angle or decreasing the mass ratio q (q ≤ 1) raises the resolution required for
unbiased parameter estimation. We quantify the error associated with the highest-resolution waveform
utilized in our study using an extrapolation procedure on the median of recovered posteriors and confirm
the accuracy of current waveforms for the synthetic sources. We introduce a measure to predict the
necessary numerical resolution for unbiased parameter estimation and use it to predict that current
waveforms are suitable for equal and moderately unequal mass binaries for both detectors. However,
current waveforms fail to meet accuracy requirements for high signal-to-noise ratio signals from highly
unequal mass ratio binaries ðq≲ 1=6Þ, for all inclinations in Cosmic Explorer, and for high inclinations in
future updates to LIGO. Given that the resolution requirement becomes more stringent with more unequal
mass ratios, current waveforms may lack the necessary accuracy, even at median signal-to-noise ratios for
future detectors.
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I. INTRODUCTION

The detection of gravitational waves (GW) [1–4] by the
Advanced Laser Interferometer Gravitational-wave Obser-
vatory (LIGO) [5] and Advanced Virgo [6] has resulted in
an explosive growth in the field of GW astronomy and this
growth is expected to continue due to plans for substantial
upgrades to current detectors [7,8] and the development
of next-generation ground-based [9–13] and space-based
[14–16] detectors over the next two decades. These
advancements will enable the detection of GW events at
significantly higher signal-to-noise ratios (SNRs) than
observed to date. Detection of such strong signals not only
promises unprecedented science but also raises a question:
Are current waveforms accurate enough to yield unbiased
parameter estimation (PE) of GW sources? Increased
sensitivities necessitate a stricter accuracy requirement
on model waveforms and the numerical relativity (NR)
waveforms used in their construction. The increase in the
accuracy requirement stems from the fact that as the SNR
of observed signals increases, the statistical uncertainty in
the recovered parameters decreases, amplifying the impact

of underlying systematic uncertainties. As such, to fully
extract the wealth of information contained in such strong
signals, it is imperative that the waveforms meet these
enhanced accuracy requirements.
A coalescing compact binary system is described by

Einstein’s field equations, which can be solved using NR
[17–19], particularly for the late inspiral, merger, and ring-
down. Despite being the most accurate way of obtaining
a gravitational waveform of merger, NR waveforms are
typically not used directly for GW data analysis as they are
computationally expensive to generate, are short in length,
and have sparse and uneven parameter space coverage.
While some studies have used NR waveforms directly for
PE [20,21] including a LIGO-Virgo-KAGRA analysis of
GW150914 [22], these analyses are limited by the number
of available simulations. As such, to create comprehensive
inspiral-merger-ringdown waveform models that cover a
continuous parameter space, various modeling strategies
have been developed. These include: effective-one-body
formalism [23–26], phenomenological modeling [27–29],
and NR surrogates [30]. Each of these modeling strategies
relies on NR waveforms. Effective-one-body models use
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NR waveforms to calibrate the free parameters, phenom-
enological models use hybridized NR and post-Newtonian
waveforms [31] for a multiparameter fit and NR surrogates
generate interpolants based on NR waveforms. These
waveform models play a critical role in the search and
interpretation of GWevents, and given that their accuracy is
bounded by the accuracy of NR waveforms, it is imperative
that the NR waveforms used in their construction meet the
required level of accuracy.
Both NR and model waveforms have inherent uncer-

tainties that can affect the interpretation of GW signals. One
of the sources of systematic uncertainty in NR waveforms
is inaccuracy from finite grid resolution. The uncertainties
in model waveforms arise from the approximations made
during their construction, omission of certain physics and
their reliance on finite-resolution NR waveforms. However,
it is worth noting that it has been shown that currently
available NR waveforms demonstrate an adequate level of
accuracy for the signals detected to date [32].
While multiple studies [33–37] have been done to

investigate the impact of model waveform systematics
on PE, an area that remains relatively unexplored is the
effect of bias introduced by finite-resolution NR waveforms
on full PE. In a previous study [20], one-dimensional PE
of an NR injection was conducted to study the impact of
numerical resolutions on the final posterior distribution,
with the recovery being done using NR waveforms. Apart
from being restricted to a single dimension, the study was
carried out at an SNR of 25, limiting the applicability of
such a study to future, more sensitive detectors. In another
study [32], a criterion was proposed that relates the
minimum resolution required for producing an NR wave-
form that is indistinguishable [38] from a true signal to the
SNR. This criterion is conservative, as indistinguishability
itself is an unnecessarily strict requirement [34,39] and
significant parameter bias may not arise even for techni-
cally distinguishable waveforms. Consequently, its appli-
cation can become impractical, especially in scenarios
where higher modes play a crucial role as the criterion sets
a considerably higher resolution requirement than actually
needed, placing a burden on computational resources.
In this work, we study the impact of using finite-

resolution NR waveforms on PE by performing PE on
synthetic signals (injections) produced by NR simulations
run at multiple resolutions. We start by comparing the PE
outputs of equal mass ratio binary injections differing only
in resolution, and investigate the impact of NR truncation
errors on the recovered binary parameters. We demonstrate
that using a resolution higher than what is required for
unbiased PE does not yield additional information for PE.
We confirm that the resolution requirement based on
waveform indistinguishability [40] is stricter than required
for unbiased PE. We show the accuracy requirement for NR
waveforms is dependent on the detector, as the impact of
truncation errors varies according to the sensitivity curve of

the detector. We show that for systems with a greater higher
mode content in their GWs, higher resolution is needed to
achieve unbiased PE than for those without. Moreover, we
introduce and employ an extrapolation procedure to esti-
mate errors associated with the highest resolution wave-
forms used in our work. Finally, we utilize our results,
combined with a waveform criterion, to make predictions
for future NR codes, predicting the minimum resolution
necessary for unbiased PE of signals expected to be
observed by upcoming detectors. It should be noted that
the results of this study apply to NR codes that use finite
differencing methods to solve Einstein’s equations.
The rest of the paper is organized as follows: in Sec. II

we review the NR waveforms used in the study, the
indistinguishability criterion for NR waveforms generated
using finite-differencing codes, and the PE code RIFT. In
Sec. III we study the impact of numerical biases on PE
across a variety of systems and for two detectors, LIGO
Hanford (H1) and the proposed third generation detector
Cosmic Explorer (CE) [12]. In Sec. IV, we employ an
extrapolation procedure to determine bias in PE due to the
highest resolution waveforms used in this study. In Sec. V,
we predict the SNR at which we will see significant biases
and compare them with what we obtained from full PE. We
also assess the accuracy of current waveforms and deter-
mine if they are sufficiently accurate for current and future
detectors. In Sec. VI we summarize our results.

II. METHODS

In this section, we introduce the methods we use to
investigate the effect of NR truncation errors on PE and
assess the accuracy limitations of existing NR waveforms
in the context of PE. We start by discussing the NR wave-
forms used as injections in our PE studies in Sec. II A. We
then discuss the indistinguishability criterion for NR wave-
forms, as proposed in [32], in Sec. II B. We then review the
PE algorithm RIFT in Sec. II C.

A. Numerical relativity waveforms

For our PE investigations, we use NR waveforms
generated using the MAYA code [41–44] as injections.
MAYA is a branch of the Einstein Toolkit, and is built upon
the Cactus framework, incorporating Carpet [45] for mesh
refinement. It employs the BSSN [46] formulation to derive
the initial constraints and evolution equations from
Einstein’s field equations. In its calculations, MAYA utilizes
sixth-order spatial finite-differencing and fourth-order
Runge-Kutta for time evolution.
Our NR waveform injections were extracted from two

sets of quasicircular MAYA NR simulations. Each had
identical initial conditions and parameters, differing only
in grid resolution. These simulations are parametrized, up
to an arbitrary total massM (in code units), by the intrinsic
parameters λ of the binary. These intrinsic parameters
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include primary mass m1, secondary mass m2, and spin
vectors S1 and S2. Since the simulations are scale-invariant
with respect to total mass, it is conventional to parametrize
them in terms of their mass ratio q ¼ m2=m1 ≤ 1. Further,
we define the dimensionless spin parameters χ 1 ¼ S1=m2

1

and χ 2 ¼ S2=m2
2.

The first set of simulations had q ¼ 1 and spins aligned
with the orbital angular momentum, with χ1z ¼ χ2z ¼ 0.6.
The other set was nonspinning, with q ¼ 1=3. These
parameters were computed at the beginning of the simu-
lation, but there is evidence that nonphysical junk radiation
does not significantly affect their values [47].
The initial separations and grid spacing or resolution of

our simulations are expressed in terms ofM. For the q ¼ 1
systems, the initial separation was 12M while for the
q ¼ 1=3 systems, the initial separation was 9M. Both sets
consist of four differently resolved simulations. The sim-
ulations were performed on a grid with 10 refinement levels
with the largest grid radii being 409.6M and the smallest
being 0.2M. The resolutions are specified by the grid
spacing Δi of the finest grid in each simulation and varied
from Δi ¼ M=200 ðM=180Þ for our highest resolution
q ¼ 1 ðq ¼ 1=3Þ simulation to Δi ¼ M=80 ðM=100Þ for
our lowest. The lowest resolution in each set is lower than
typically used for GW data analysis and was chosen to
illustrate the impact of resolution at moderate SNRs. The
typical resolution of q ¼ 1 and q ¼ 1=3 simulations in the
MAYA catalog [48] is M=200 and M=370 respectively.
The waveforms were computed from the Weyl scalar Ψ4

extracted at a finite radius of 75M from the binary system.
We avoided extrapolating the waveforms to infinity in order
to isolate the impact of finite resolution. Ψ4 is related to the
gravitational wave polarizations as follows:

Ψ4ðtÞ ¼ ḧþðtÞ − iḧ×ðtÞ: ð1Þ

Further decomposition of GW polarizations involves
expressing them as a sum of spherical harmonics −2Ylm
and GW modes hlm, given by

hþðtÞ − ih×ðtÞ ¼
X
l;m

hlmðtÞ−2Ylm: ð2Þ

In our injections, we only used l ≤ 4 modes.

In order to compute the GW strain hðtÞ as measured at a
detector, we must specify the detector frame total massMtot
so that the component masses and dimensionful scales are
determined. Additionally, the extrinsic parameters of the
binary must be defined. These extrinsic parameters deter-
mine the space-time location and orientation relative to the
detector and include luminosity distance DL, right ascen-
sion ra, declination dec, polarization ψ , inclination ι, orbital
phase ϕc, and coalescence time tc. The intrinsic and
extrinsic parameters chosen for our NR waveforms, along
with the grid spacing used in the finest grid, are provided
in Table I. There and throughout this study we quote the
detector-frame masses for the system. Two sets of these
waveforms are assumed to be observed face-on, with
ι ¼ 0, while the third has a modest inclination ι ¼ π=6.
Regardless of the detector sensitivity used in this study, we
assume the detector is located at the site of the Hanford GW
detector and aligned with it. Figure 1 depicts the time-
domain strains imprinted on the detector for the face-on
cases. These waveforms are aligned at their peaks, and we
can see a clear dephasing with differing grid resolutions.

B. Criterion for assessing waveform accuracy

A gravitational waveform hi extracted from an NR
simulation can be expressed in terms of the exact solution
h as hi ¼ hþ δhi, where δhi is the error in the extracted
waveform. If the code used to generate the waveform uses
finite-differencing to solve partial differential equations,
then the truncation error can be expressed as δhi ¼ cðΔiÞα,
where α is the convergence rate of the code and c depends
on the derivatives of h. Recall that since Carpet uses adaptive
mesh refinement, different sections of the grid have differ-
ent spacings, and Δi refers to the spacing of the finest grid.
Given two waveforms h1 and h2, the overlap between

them is defined as

O½h1; h2� ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð3Þ

where the noise-weighted inner product is defined as

hh1jh2i ¼ 4Re
Z

fmax

fmin

h�1ðfÞh2ðfÞ
SnðfÞ

df; ð4Þ

TABLE I. Synthetic sources: Parameters of the three sets of synthetic sources used in our study. For these sources, we have chosen
right ascension ra ¼ 0.57, polarization angle ψ ¼ 0, declination dec ¼ 0.1, and coalescence phase ϕc ¼ 0 (all in radians). The GPS
time at the geocenter was set to 109s. Each set of injections was recovered at multiple SNRs, achieved by changing the luminosity
distance DL.

q m1=M⊙ m2=M⊙ Mc=M⊙ χ1 χ2 ι (radians) Δ

1 50 50 43.5 (0.0, 0.0, 0.6) (0.0, 0.0, 0.6) 0 M=80, M=120, M=140, M=200
1 50 50 43.5 (0.0, 0.0, 0.6) (0.0, 0.0, 0.6) π=6 M=80, M=120, M=140, M=200
1=3 112.5 37.5 54.9 (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) 0 M=100, M=120, M=140, M=180
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with SnðfÞ being the one-sided power spectral density
of the detector, fmin a low-frequency cutoff, fmax a high-
frequency cutoff, and � denoting the complex conjugate.
Here, we have used the fact that hiðtÞ is a real-time series,
and as such its Fourier transform satisfies hiðfÞ ¼ h�i ð−fÞ,
allowing us to define the inner product as an integral over
positive frequencies.
Using the overlap, we can define mismatch ϵ½h1; h2�,

which several previous investigations have argued relates to
systematic biases in PE [34,38,40,49–52], as

ϵ½h1; h2� ¼ 1 −max
tc;ϕc

O½h1; h2�: ð5Þ

We calculate mismatch between two NR waveforms, both
having identical parameters but differing in the numerical
resolution of simulation grid. We use this mismatch to
compute β which is a parameter that only depends on the
parameters of the binary system and can be computed as

ϵ½h1; h2� ¼
β2

2

�
Δα

2 − Δα
1

�
2: ð6Þ

Using β, and the convergence rate α of the finite-
differencing code, we can then estimate the minimum
resolution necessary for producing NR waveforms indis-
tinguishable from a true signal using the criterion [32]

Δ < ðρβÞ−1=α; ð7Þ

where ρ is the SNR. Ideally, α and β would be independent
of the resolution of the simulations used for their calcu-
lation and this would be true if the waveforms were
extracted from simulations that consisted of a single grid,
used the same order for all finite-differencing, and the
strain was a grid variable. However, given the complicated
mesh refinements and boundary conditions as well as the
interpolation necessary to extract Ψ4 and compute strain,
we have a less well-defined convergence order. This means
the values of α and β differ slightly between different pairs
of resolutions. This introduces an uncertainty of up to
10M−1 in our estimates of the minimum resolution neces-
sary for indistinguishability.

C. RIFT

A GW from a quasicircular binary black hole system
undergoing merger can be completely determined by 15
parameters. These parameters are classified into the two
groups, intrinsic (λ) and extrinsic (θ), described previously.
In discussing the PE results, we also use chirp mass
Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5, which is paired with the
mass ratio q to represent the mass parameters. We also
define another parameter called effective spin, which is a

FIG. 1. Comparison between the different resolutions of q ¼ 1 and q ¼ 1=3 waveforms: Top: strain evaluated from the four distinct
resolution q ¼ 1waveforms for a source withMtot ¼ 100M⊙, ι ¼ 0. Bottom: strain evaluated from the four different resolution q ¼ 1=3
waveforms for a source withMtot ¼ 150M⊙, ι ¼ 0. In both panels, the waveforms are aligned at the peak, evaluated atDL ¼ 1000 Mpc
and the colors represent different resolutions.
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mass-weighted combination of individual spins and is
defined as

χeff ¼
m1χ1z þm2χ2z

m1 þm2

: ð8Þ

After a GW is detected, the data d is analyzed to infer the
parameters of the radiating system using a PE algorithm,
and RIFT [53] is one such algorithm. It is a highly
parallelizable, grid-based, iterative algorithm consisting
of two core iterative stages. In the first stage, a “grid” of
intrinsic parameters is put forth, and for each point λα from
the proposed grid, RIFT integrates over the extrinsic
variables to compute the marginal likelihood

LmargðdjλÞ≡
Z

Lfullðdjλ; θÞpðθÞdθ ð9Þ

from the likelihood Lfullðdjλ; θÞ of the GW signal, account-
ing for detector response. Here, pðθÞ are the priors on the
extrinsic parameters. The integration is made possible by
factorizing the dependence of Lfull on the extrinsic param-
eters, which is partially made possible by expressing the
GW polarizations in terms of GW l, m modes; see [54] for
a more detailed specification.
Once the marginalized likelihood is evaluated for points

on the grid ðλα;LαÞ, RIFT interpolates this discrete grid
of marginalized likelihood points to generate the conti-
nuous likelihood distribution LmargðdjλÞ. With the knowl-
edge of the continuous marginalized likelihood distribution
LmargðdjλÞ and intrinsic prior pðλÞ, RIFT constructs the
marginalized posterior via Bayes’ theorem:

ppostðλjdÞ ¼
LmargðdjλÞpðλÞR
dλLmargðdjλÞpðλÞ

: ð10Þ

The integral in the denominator is calculated by performing
a Monte Carlo integral: the evaluation points and weights
in that integral are weighted posterior samples, which are
fairly resampled to generate conventional independent,
identically distributed posterior samples.
The grid for the following iteration is generated using a

subset of posterior samples from the previous iteration,
with an additional expansion of the grid to ensure that
regions of high likelihood that might have been missed can
be explored. The iterations continue until two successive
iterations converge, as determined by examining the
Jensen-Shannon (JS) divergence [55] between the one-
dimensional marginal posteriors for each intrinsic para-
meter. In our study, we have taken measures to guarantee
convergence by ensuring that the JS divergence between
the last two iterations is less than or equal to 10−3 for all
parameters. Further details and a justification of this choice
is given in Appendix A. For further details on RIFT’s

technical underpinnings, performance, and comparison to
other PE codes see [53,54,56–58].

III. PARAMETER ESTIMATION RESULTS

In this section, we present the results of our PE study.
Our goal is to investigate the impact of finite-resolution
errors in NR waveforms on PE recovery. Ideally, to achieve
this goal, we would inject an infinite-resolution NR wave-
form followed by recovery using identically resolved NR
waveforms as template waveforms. This process would be
iterated multiple times, with each iteration utilizing tem-
plate waveforms obtained from NR simulations of differing
numerical resolution. Ultimately, we would compare the
results of each iteration and assess the impact of truncation
errors on the posterior distributions across a range of SNRs.
While the grid-based structure of RIFT allows it to perform
PE using NR waveforms [20], the available catalog of NR
waveforms are all of varying resolution, preventing us from
isolating the effect of finite-resolution. As such we must
take a different approach, which we describe in Sec. III A.
We then describe the setup of our PE study in Sec. III B,
and present results for our three sets of NR injections
(Table I) in Secs. III C–III E.

A. Justification for PE approach

Given the impracticality of utilizing NR waveforms as
our model waveform for PE, we approach the problem
differently. We consider a sequence hi of NR simulations
with varying resolution but fixed binary parameters μ�,
which we inject into a zero-noise realization for use as our
synthetic data di. Next we use a high-accuracy waveform
model, NRHybSur3dq8 [hsurðμÞ] for parameter recovery,
one which can be evaluated at arbitrary parameters μ. The
result is a sequence of posteriors pðμjdi; hsurÞ under our
model hypothesis. We repeat this procedure with a variety
of SNR values for our injected waveform, and compare the
resulting posteriors across resolution values in order to
understand the effect of finite resolution on PE results.
Figure 2 illustrates how we can use these results to

explore this question when we recover our posteriors with
the model hsur. The figure illustrates the space of possible
signals. All signals that can be realized by the model hsur
when evaluated over the relevant range of parameter values
μ forms a submanifold Σ of the overall signal space. The
numerical simulations hi do not lie on Σ, but using the
match as a distance measure allows us to identify points μi
such that hsurðμiÞ is the best match to hi. The distance of
each hi away from hsurðμiÞ is a measure of the SNR loss due
to mismodeling the NR waveform with hsur. The difference
between the best fit μi value and μ� is the parameter bias
that we are interested in. The sequence of NR waveforms
converges to some extrapolated waveform h∞, which
differs from hsurðμ�Þ.
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From the perspective of PE, the best fit points μi provide
the maximum likelihood values for a zero-noise recovery
with the waveform model hsur. hsurðμiÞ provides the
relevant maximum likelihood waveform. Meanwhile, the
shape of the posteriors is determined primarily as if hsurðμiÞ
were the injected data, modulo the effects of SNR loss
due to the projection of hi onto Σ. Thus we can study the
sequence of recovered posteriors as we approach h∞ and
the corresponding recovered posteriors, and ask at what
SNR and for which pairs of resolutions the PE results are
indistinguishable. This allows us to state what approximate
resolution is required at a given SNR for unbiased para-
meter recovery. Potentially the most important complicat-
ing factor relative to an idealized study is the variable SNR
loss as we move along the sequence hi; if this SNR loss is
not too severe, this approach provides the desired infor-
mation about the PE bias from finite resolution.

B. Setup of PE study

To investigate the impact of finite-resolution on PE, we
first injected four different resolutions of q ¼ 1 gravita-
tional waveforms (refer to Table I for all injected param-
eters) at a range of SNRs. Instead of directly selecting SNR
values, we first selected eight different resolutions and then
found the corresponding critical SNR using Eq. (7). Going
forward, when referring to critical SNR and resolution, we
mean the SNR and resolution values at which the inequality
transitions to equality. The choice for resolution levels was
made strategically such that for the first four SNR values,
two would correspond to cases where M=80 waveform is
predicted to be indistinguishable from true signal and two
to cases where it is predicted to be distinguishable from true
signal. We applied the same approach for M=120 to select
the remaining four SNR values. The selected resolutions
and corresponding critical SNRs are given in the first two

columns of Table II. Subsequently, we analyzed and
compared the resulting posterior distributions after recov-
ery with the hybridized NR surrogate waveform model
NRHybSur3dq8 [59] using all available l ≤ 4 modes, and
the RIFT PE code, quantifying the impact of truncation
errors as a function of SNR.
It has been shown that waveforms involving significant

contributions from higher modes [32], require a higher
resolution to satisfy accuracy requirements in comparison
to waveforms that lack significant contributions from
higher modes. As such we also injected the same q ¼ 1
NR waveforms but at ι ¼ π=6. At this inclination, the
detected GW is shaped not just by the modes observed at
ι ¼ 0 but also by ð2;−2Þ and (4, 4). To quantify the impact
of truncation errors as a function of SNR, the SNR selection
was done the same way as for the face-on case. For both of
these cases, we useMtot ¼ 100M⊙ to ensure the majority of
the injected waveform falls in band.
We also extended our study to include q ¼ 1=3 wave-

form injections which were generated at Mtot ¼ 150M⊙
and ι ¼ 0. We adjusted our SNR selection approach
slightly, opting for six SNRs instead of eight. This selection
involved choosing six resolution levels in such a way that,
for the first three levels, two corresponded to scenarios
where M=100 is predicted to be indistinguishable, and one
where it is predicted to be distinguishable. We applied the
same methodology to determine the next three SNRs, this
time focusing on M=120. Since the q ¼ 1=3 injections
were generated at a different total mass, to ensure the

FIG. 2. Illustration of our data analysis strategy, visualizing
the waveforms as points in signal space. We perform PE on a
sequence of NR waveforms hi at fixed binary parameters μ� and
recover with a waveform model hsur, which produces waveforms
on a submanifold Σ. As we increase the resolution, the waveforms
converge to an extrapolated signal h∞, and the sequence of
posteriors also converges; the manner in which these posteriors
converge as a function of injected SNRs allows us to determine
resolution requirements for unbiased PE. Meanwhile, hsurðμ�Þ is a
separate signal which lies off this sequence in general.

TABLE II. Normalized bias in the marginalized Mc posterior
distributions of q ¼ 1, ι ¼ 0 injections: Bias observed in the
lower resolution posteriors, calculated with respect to M=200,
for H1 (top) and CE (bottom). Normalized bias were calculated
using Eq. (11).

SNR Δcritical M=80 M=120 M=140

9 M=70 −0.28 −0.04 −0.02
12 M=75 −0.39 −0.07 −0.03
20 M=85 −0.66 −0.12 −0.06
31 M=95 −1.09 −0.17 −0.09
47 M=105 −1.70 −0.27 −0.14
67 M=115 −3.10 −0.49 −0.22
94 M=125 −7.89 −0.92 −0.25
128 M=135 −9.59 −1.22 −0.78

SNR Δcritical M=80 M=120 M=140

5 M=70 −0.10 −0.02 −0.01
7 M=75 −0.28 −0.05 −0.03
11 M=85 −0.55 −0.11 −0.05
16 M=95 −0.89 −0.17 −0.08
22 M=105 −1.21 −0.24 −0.09
31 M=115 −1.74 −0.32 −0.11
44 M=125 −2.53 −0.52 −0.22
60 M=135 −3.58 −0.69 −0.28
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injected waveform starts in band, it would be unreasonable
to directly compare the results of q ¼ 1 and q ¼ 1=3
injections. To enable a direct comparison, the same total
mass must be injected for both q ¼ 1 and q ¼ 1=3 cases. In
such a comparison, we would expect that in the q ¼ 1=3
case, the same resolution introduces a significantly higher
parameter bias than in the q ¼ 1 case, at a given SNR. To
emphasize this point, we injected a set of q ¼ 1 waveforms
at Mtot ¼ 150M⊙, detailed in Sec. III E.
Furthermore, it is important to note that parameter biases

are also influenced by the shape of the noise power spectral
density (PSD) of the detector. Therefore, our study encom-
passed two detectors, namely design aLIGO [60,61] and CE.
Figure 3 depicts the characteristic strain [62] for the face-on
q ¼ 1 and q ¼ 1=3 waveforms, alongside the noise ampli-
tude spectral densities for comparison.
For each set of NR injections, differing only in resolution

and recovered at a sequence of SNRs, we kept our settings
the same so any differences in the posterior can be attributed
to the difference in NR resolution. However, despite our
best efforts, there are other errors that can potentially impact
the final posterior distribution, with some of them being
Monte Carlo integration errors when evaluating margin-
alized likelihood and the fit to the finite grid of intrinsic
parameters.
For our PE runs, in the first iterative step of RIFT, where

the marginalized likelihood is evaluated, we marginalized
over all the extrinsic parameters, except for ra and dec
which remained fixed for all runs. Thus we marginalized
over tc, ϕc, ψ , DL, and ι with the likelihood integration
starting from 20 Hz and ending at 2048 Hz, for both H1 and
CE. We chose to maintain the same frequency range, for
both H1 and CE, to ensure a direct comparison of PE

results. In the second iterative step, we approximated the
likelihood using random forests, and the Monte Carlo
sampling was carried out using Gaussian mixture models.
To ensure our choice of likelihood approximation and
sampling method used within RIFT does not impact our
final results, we reanalyzed the highest SNR injection for
each synthetic source using Gaussian process regression
as the approximation method and adaptive cartesian as the
sampling method (refer to [20,58] for details on the different
approximation and sampling method implemented in RIFT).
We found our results remained consistent regardless of our
choice of likelihood approximation and sampling method.
To quantify the impact of truncation errors on PE, we

calculate normalized bias for all parameters. The normal-
ized bias for a parameter λ is calculated as:

Normalized bias ¼ Δλ̃=σ ð11Þ

where λ̃ is the median of the marginalized λ posterior
distribution, Δλ̃ is the shift in the median of marginalized λ
posterior distribution relative to the highest resolution
posterior and σ is the standard deviation of the highest
resolution posterior. In Fig. 4, we plot normalized bias in
multiple parameters when the q ¼ 1, ι ¼ 0, Δ ¼ M=80
waveform is used as injection. We observe that Mc is the
first parameter to display an absolute normalized bias of
unity, which we will consider as a significant parameter
bias in our work. Therefore, moving forward, we place
primary emphasis on Mc.

C. q= 1

For the q ¼ 1 system, we generated injections from each
of the four differently resolved waveforms at eight different
SNRs. We started from SNR 9, whereM=70 is predicted to

FIG. 3. Characteristic strains and noise amplitudes: Character-
istic strain evaluated from the highest resolution q ¼ 1 (black)
and q ¼ 1=3 waveform (red). Black curve is from a source with
parameters Mtot ¼ 100M⊙, ι ¼ 0, SNR ¼ 12, and red curve is
from a source with parametersMtot ¼ 150M⊙, ι ¼ 0, SNR ¼ 37.
Also plotted are the noise amplitudes for design aLIGO and CE.
The extrinsic parameters for both waveforms are as given in
Table I.

FIG. 4. Absolute normalized bias in multiple parameters: Plot
showing absolute normalized bias in 1D marginal posteriors for
selected source parameters when q ¼ 1, Δ ¼ M=80 is used as an
injection. The dashed horizontal line marks an absolute normal-
ized bias of unity.
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be the critical grid spacing, and went all the way up to SNR
128, where M=135 is predicted to be the critical grid
spacing. All eight sets of injections had identical para-
meters except DL.

The top panel of Fig. 5 shows selected 1-D and 2-D
marginals of our recovered posteriors for SNR 12 and SNR
128, where M=75 and M=135 are the predicted critical
grid spacings respectively. At SNR 12, the 1-D and 2-D

FIG. 5. PE results for q ¼ 1, ι ¼ 0 injections (H1): Top left: one- and two-dimensional marginal posterior distributions forMc, q, and
χeff . Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-diagonal panels show the 90%
credible intervals for the two-dimensional marginal posterior distribution. Different colored curves correspond to different resolutions.
Injections had an SNR of 12 and the minimum resolution for indistinguishability at that SNR is predicted to be ðM=75Þ−1. Top right:
corner plot produced after performing PE at an SNR of 128, where the minimum resolution for indistinguishability is predicted to be
ðM=135Þ−1. Bottom: one-dimensional marginalized posterior distributions forMc are presented here. PE was conducted at a sequence
of SNRs, with all parameters held constant except for DL. Each panel illustrates the outcomes for a specific SNR, and distinct colored
curves represent different resolutions. With increasing SNR, both M=80 and M=120 posteriors gradually separate from the others.
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posterior distributions for all four resolutions lie on top
of each other, whereas at SNR 128 the M=80 posteriors
peel away from the rest, introducing notable biases in all
three parameters displayed. Consequently, at SNR 12,
all four resolutions yield equivalent results for PE, render-
ing the use of higher-resolution waveforms unnecessary.
However, at SNR 128, the use ofM=80 leads to biased PE.
Additionally, we observe truncation errors cause a down-
ward shift in the marginalized posteriors of the three para-
meters relative to the highest resolution posterior.
The bottom panel of Fig. 5 shows the detector-frameMc

posterior distribution for all eight SNRs. The posteriors
beyond SNR 12, where the influence of prior becomes
negligible, peak at the same point indicating that the shift in
the lower resolution Mc posteriors relative to the highest
resolution posterior remains consistent; only its signifi-
cance increases with rising SNR. From Table II, we can see
that M=80 produces an absolute normalized bias greater
than one at SNR 29, suggesting that M=80 might be
accurate for SNRs lower than 29 but beyond this SNR, it is
no longer sufficiently accurate for unbiased PE. Also,
even though M=80 becomes distinguishable at SNR 15.7,
according to the estimate of Eq. (7), it does not produce a
normalized bias of one, underscoring the fact that the
criterion of indistinguishability arising from matches does
not imply significant parameter biases in PE.
We then repeated our analysis for CE, which has a

different PSD shape than that of H1. Examining Fig. 3, we
notice that H1 and CE exhibit a similar shape at higher
frequencies. However, at lower frequencies, CE surpasses
H1 in terms of sensitivity, which leads to greater mis-
matches and subsequently reduces the critical SNR for a
given resolution. Similar to our H1 analysis, we selected
eight SNRs, ranging from 5 to 60, where the predicted
critical grid spacings are M=70 and M=135 respectively.
The results of PE are shown in Fig. 6; the upper part
displays the 1-D and 2-D marginalized posteriors for
SNR 7 and SNR 60, corresponding to critical grid spacings
ofM=75 andM=135. At SNR 7, the 1-D and 2-D posterior
distributions for all four resolutions closely overlap.
However, at SNR 60 the M=80 posteriors deviate notably
from the others, introducing significant biases in all three
parameters under consideration. The lower part of Fig. 6
presents the Mc posterior distribution for all eight SNRs.
We observe that M=80 introduces significant biases at an
SNR of 18.3, which is considerably lower than what we
observed for H1. This is due to the differences in the shape
of the noise PSD of H1 and CE. Therefore, it is necessary to
reevaluate the accuracy of NR waveforms when the shape
of the PSD undergoes alterations.
We summarize these results in Fig. 7, which shows the

absolute normalized bias in Mc as a function of SNR
across injection resolutions and detector PSDs. It is evident
that only in the case of the lowest grid spacing, M=80, the
median of Mc exhibits a bias surpassing the statistical

uncertainty in parameter recovery for both PSDs, and this
occurs only at SNRs above approximately 18. Additionally,
at the highest explored SNR, M=120 exhibits a significant
bias in H1.

D. q = 1, ι= π=6

Higher GW modes require more resolution to be fully
resolved than the dominant (2, 2) mode and as such the
same resolution will produce more parameter bias at non
zero inclination, due to greater contribution from higher
modes, than it will for zero inclination. To illustrate this,
we injected the same q ¼ 1 waveforms but at a modest
inclination of π=6. Even at such a small inclination, two
additional GW modes, ð2;−2Þ and (4, 4), significantly
contribute to the detected GW, thereby increasing the
mismatch and consequently decreasing the critical SNR
for the same resolution. To estimate the impact of bias as a
function of SNR, we repeat the analysis the same way
we did for the face-on case. We started from SNR 6 (4),
whereM=70 is the predicted critical grid spacing, and went
all the way up to SNR 79 (55), where M=135 is the
predicted critical grid spacing for H1 (CE). The results
for this case are broadly the same as for the q ¼ 1, ι ¼ 0

case. Only the lowest resolution ðM=80Þ−1 injection dis-
plays significant bias in its recovered parameters, and
truncation errors continue to cause a downward shift
in the marginalized posteriors of the three parameters
relative to the highest resolution posterior. We provide
our posteriors and absolute normalized bias values in
Appendix B 1.
We observe an absolute normalized bias of unity due to

M=80 at an SNR of 28.5 (18.1) for H1 (CE), lower than
ι ¼ 0 case, showing that the accuracy requirements change
as the observed inclination changes. For a more direct
comparison, we also recovered inclined injections at SNR
128 (60) for H1 (CE). At these SNRs, we found thatM=80
produces an absolute normalized bias of 10.72 (3.63),
surpassing the bias observed at the same SNR for the face-
on case which was 9.59 (3.58) for H1 (CE).

E. q = 1=3, ι= 0

A resolution that is considered adequate for unbiased PE
for q ¼ 1 systems may prove insufficient for systems with
unequal mass ratios. This is due to the fact that as the mass
ratio decreases, a higher resolution is needed to accurately
resolve the smaller black hole. Additionally, the inherent
asymmetry in the system induces the excitation of higher
modes, which require more resolution to be sufficiently
resolved. The combination of these factors leads to an
increase in the parameter bias introduced by a resolution as
the mass ratio decreases. To illustrate this, we extended our
analysis to include q ¼ 1=3 waveforms. The waveforms
were extracted from simulations that had an initial sepa-
ration of 9M, compared to the initial separation of 12M
for q ¼ 1 simulations, resulting in shorter waveforms.
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To ensure that the waveforms do not begin in the frequency
band of interest, we increasedMtot from 100M⊙ to 150M⊙.
As such, we cannot directly compare the normalized bias
values for these injections and for q ¼ 1 injections.

The analysis was carried out the same way as we did for
q ¼ 1 injections. We started at SNR 37 (21) and went all
the way to SNR 203 (122) for H1 (CE), to study the impact
of bias as a function of SNR. We observe that M=100

FIG. 6. PE results for q ¼ 1, ι ¼ 0 injections (CE): Top left: one- and two-dimensional marginal posterior distributions forMc; q, and
χeff . Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-diagonal panels show the 90%
credible intervals for the two-dimensional marginal posterior distribution. Different colored curves correspond to different resolutions.
Injections had an SNR of 7 and the minimum resolution for indistinguishability at that SNR is predicted to be ðM=75Þ−1. Top right:
corner plot produced after performing PE at an SNR of 60, where the minimum resolution for indistinguishability is predicted to be
ðM=135Þ−1. Bottom: one-dimensional marginalized posterior distributions forMc are presented here. PE was conducted at a sequence
of SNRs, with all parameters held constant except for DL. Each panel illustrates the outcomes for a specific SNR, and distinct colored
curves represent different resolutions. With increasing SNR, the M=80 posterior gradually separates from the others.
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produces a normalized bias of unity at 185.4 (117.1) for H1
(CE). The PE results for this system are summarized in
Fig. 8, reflecting similar qualitative trends observed for the
previous two synthetic sources. The posteriors and absolute
normalized bias values are provided in Appendix B 2.
To emphasize the crucial point that the parameter bias

introduced by a resolution increases as the mass ratio
decreases, we injected q ¼ 1 waveforms at Mtot ¼ 150M⊙
at SNR 203 (122) for H1 (CE). We find that ðM=120Þ−1
resolution introduces an absolute normalized bias of 0.31
(0.16) for q ¼ 1 and 0.65 (0.46) for q ¼ 1=3 for H1 (CE).
This shows that at a given SNR and NR resolution,

waveforms with lower mass ratios introduce greater bias
compared to those with higher mass ratios, necessitating a
more stringent accuracy requirement.

IV. EXTRAPOLATION

In Sec. III, we assessed the errors introduced in PE when
finite resolution NR waveforms are used. We accomplished
this by comparing the PE recovery of low-resolution NR
injections with those of the highest-resolution NR injection,
for each of the three synthetic sources. However, it is
important to acknowledge that any finite-resolution wave-
form can introduce bias into PE, and this bias persists even
when we use the highest-resolution waveform. As such,
in this section, we employ an extrapolation procedure to
predict the median of a marginalized posterior distribution
for parameter λ, recovered for a hypothetical M=∞ injec-
tion. We then use this extrapolated value to calculate the
bias in PE attributable to the use of the highest-resolution
waveforms.
We utilize the understanding that the bias in NR wave-

forms is proportional to Δα. Thus, if all aspects of PE
remain consistent across the recovery of each differently
resolved injection, the bias in the final posterior due to
finite resolution should also be proportional to Δα. Keeping
this in mind, we fit the following function to the posteriors
recovered for all four injections:

λ ¼ aΔα þ b: ð12Þ

Here a and b are fitting constants, and α takes a value
of 4 [32] for the NR waveforms used in this study. We then
fit this function to the Mc posteriors, for all three systems
and for both detectors at the SNRs mentioned in Table III.
Analyzing the posteriors at the SNRs in Table III, we find
the standard deviation tends to remain approximately the
same for all the different resolution Mc posteriors. Using
this observation, alongside the median of Mc posterior for
M=∞ injection, we can determine the normalized bias in
the highest resolution Mc posterior, which are listed in
Table III. Our findings show that the highest-resolution
waveform utilized for each synthetic source meets the
accuracy requirements for the injected SNRs, validating the
comparison of low-resolution posteriors with the highest-
resolution posterior.

FIG. 7. Absolute normalized bias in the marginalized Mc
posterior distributions of q ¼ 1, ι ¼ 0 injections as a function of
SNR: The dashed horizontal line marks an absolute normalized
bias of unity. We have omitted normalized bias values exceeding
five to concentrate on the region where the bias is around one.
The bias values were calculated with respect to M=200.

FIG. 8. Absolute normalized bias in the marginalized Mc
posterior distributions of q ¼ 1=3, ι ¼ 0 injections as a function
of SNR: The dashed horizontal line marks an absolute normalized
bias of unity. The bias values were calculated with respect
to M=180.

TABLE III. Absolute normalized bias in the highest resolution
posteriors: Numbers in parenthesis are the SNRs at which these
biases are evaluated.

System Δ H1 CE

q ¼ 1 M=200 0.59 (128) 0.082 (60)
q ¼ 1, ι ¼ π=6 M=200 0.87 (128) 0.092 (60)
q ¼ 1=3 M=180 0.15 (203) 0.005 (122)

ACCURACY LIMITATIONS OF EXISTING NUMERICAL … PHYS. REV. D 110, 024023 (2024)

024023-11



Figure 9 demonstrates the application of the extrapola-
tion procedure. It is clear from the figure that the Mc
median atM=∞ does not align with the injected value. This
discrepancy is expected, due to differences between the
extrapolated NR waveforms h∞ and the recovery model
NRHybSur3dq8 hsur, as discussed in Sec. III A. We find
that the differences between h∞ and hsur is ultimately due to
mismatches between the MAYA waveforms we use for our
injections, and the SpEC [63] waveforms which underlie
hsur. For the parameters shows in Table I, the mismatches
between SpEC and hsur are on the order of 10−4. Meanwhile,
for the same parameters, the mismatches between MAYA

and hsur and between MAYA and SpEC waveforms are both
on the order of 10−3, suggesting that the observed param-
eter discrepancy can be ascribed to differences between
SpEC and MAYA waveforms. These differences can be
possibly due to the fact that the MAYA waveforms used
in our study were extracted at finite radius whereas the SpEC

waveforms used in the construction of the recovery model
were extrapolated to infinity. Furthermore, the two NR
codes employ different methods to solve partial differential
equations, which could also explain the discrepancy.

V. PREDICTION

In this section, we aim to determine the SNR at which a
finite-resolution NR waveform will produce an absolute
normalized bias of unity in at least one of the parameters,
without having to do full Bayesian inference. While current
PE codes have undergone significant speedups [64,65], full
Bayesian inference can still be computationally intensive,
especially for signals with higher SNRs. Furthermore,
when determining the minimum resolution required for
an NR waveform to avoid significant bias in GW inter-
pretation for a particular detector, full PE may be excessive.
Therefore we employ the following criterion [34,39] to give
an approximate estimation of critical SNR:

ϵ½h1; h2� < D=2ρ2: ð13Þ

Here, the prefactor D is the number of intrinsic parameters
affected by waveform inaccuracy. Our study was conducted
on aligned systems, and as such we have set D equal to 4.
To get a more accurate assessment of critical SNR,
one would need to tune D by finding the exact SNR at
which statistical error becomes equal to systematic error.
However, such a refinement typically requires the appli-
cation of PE and as such we rely on an approximate value
of 4 for D. Examining Table IV, we observe a reasonably
good agreement between the critical SNR values obtained
through full PE and those determined by the criterion of
Eq. (13) for both q ¼ 1 and q ¼ 1=3 systems. The disparity
between the two SNR values is approximately 11% for
q ¼ 1 systems and roughly 16% for q ¼ 1=3 systems. It is
worth noting that, with the exception of q ¼ 1 systems as
observed by H1, Eq. (13) tends to provide conservative
estimates for the critical SNR.
While Eq. (13) is relatively straightforward to apply, it

has a few notable limitations when it comes to its appli-
cation to finite-resolution NR waveforms. To determine the

FIG. 9. Extrapolation procedure: This figure shows our
extrapolation procedure applied to the recovered marginalized
Mc posterior for all four H1 q ¼ 1, ι ¼ 0 injections at SNR 128.
We employ the fitted curve to determine the recovered Mc for a
hypotheticalM=∞ injection and use it to calculate the bias in our
highest resolution injection posterior. The data points represent
the median values of recovered Mc distributions, the error bars
represent one standard deviation and the indigo curve illustrates
the fitted curve. The horizontal dashed line represents the
injected value.

TABLE IV. Comparing the critical SNR from full PE, Eqs. (7), (13), and (14): The critical SNRs predicted using
the modified criterion [Eq. (14)] tend to be on the conservative side.

System Δ Detector
Critical SNR
from PE

Critical SNR
[Eq. (7)]

Critical SNR
[Eq. (13)]

Critical SNR
[Eq. (14)]

q ¼ 1 M=80 H1 29.0 15.7 32.3 31.5
CE 18.3 8.3 17.0 16.6

q ¼ 1, ι ¼ π=6 M=80 H1 28.5 15.5 31.9 31.0
CE 18.1 8.2 17.0 16.5

q ¼ 1=3 M=100 H1 185.4 71.2 157.4 142.3
CE 117.1 39.9 88.0 79.7
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minimum resolution needed for unbiased PE for a detector,
one would generate NR waveforms at various resolutions
and then identify the resolution with a critical SNR excee-
ding the SNR of interest for that detector. Furthermore,
mismatches would need to be calculated using an infinite-
resolution waveform, which is not feasible. To address
these limitations, we adjust Eq. (7) by introducing the pre-
factor D. This modification renders the equation more
realistic in its estimation of the required SNR as it takes into
account the dimensionality of the search parameter space.
By utilizing this adjusted criterion, one can determine the
minimum resolution necessary to ensure that PE remains
largely unaffected by finite resolution waveforms, all
without the need to generate waveforms for a sequence
of resolutions or an infinite resolution waveform. One
would just need to generate waveforms at two resolutions,
compute β, and then find the resolution needed using the
modified criterion. The modified criterion is

ðβΔαÞ2 < D=ρ2: ð14Þ

Here β is calculated using Eq. (6), α is the convergence rate
and Δ−1 is the resolution. From Table IV, we can see that

the predictions obtained through the modified criterion
closely align with those from Eq. (13). The difference in the
critical SNR values by full PE and predictions by modified
criterion is approximately 9% for q ¼ 1 systems and
roughly 25% for q ¼ 1=3 systems. With the exception
of q ¼ 1 systems as observed by H1, Eq. (14) tends to
provide conservative estimates for SNR.
Realistic predictions for the minimum resolution required

for unbiased PE for CE requires waveforms that span the
entire CE frequency range. However, we are limited by the
length of the NR waveforms. While it is possible to extend
the length of NR waveforms through hybridization, doing so
introduces errors in addition to the truncation errors this
study is isolating. Thus, we employ power-weighted mis-
matches [66,67], instead of conventional mismatches, to
calculate β in Eq. (6) and subsequently calculate estimates
for the minimum resolution required for unbiased PE for CE.
Power-weighted mismatches allow us to approximately
account for the absent power in the 5–20 Hz range and
can be computed as follows:

ϵpow½h1; h2� ¼
hhjhið20;2048Þ
hhjhið5;2048Þ

ϵ½h1; h2�: ð15Þ

FIG. 10. Applying Eq. (14) to predict accuracy requirements: The predictions for H1 are presented in the left column, while the right
column displays predictions for CE. Each row corresponds to predictions for one of the three mass ratios. The colors represent the three
inclinations.
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Here, h1, h2 are two NR waveforms differing only in simu-
lation grid resolution, hhjhið20;2048Þ is the noise-weighted
inner product integrated from 20–2048 Hz of any reason-
ably accurate waveform model h assumed to approximate
the inspiral phase, and similarly for hhjhið5;2048Þ. The ratio
of the power in the reduced bandwidth to the full bandwidth
accounts for the early inspiral absent from our analysis,
which is optimistically expected to have a perfect match
between h1 and h2 in the missing frequency band. Here, we
use NRHybSur3dq8 for h. Since, ϵpow ≤ ϵ, our β values are
lower bounds to the actual values computed with ϵ. This
means that our predicted Δ values are upper bounds on the
required grid spacing, hence serving as lower bounds on
the required Δ−1 for CE. We find that when using power-
weighted mismatches, the resolution prediction for the
synthetic sources in Table I for CE is approximately
95% of what we obtain when using normal mismatches
calculated in the reduced bandwidth.
We now apply this modified criterion to q ¼ 1 and

q ¼ 1=3 waveforms observed at three different inclina-
tions, 0, π=6 and π=3. We also apply this criterion to
aligned q ¼ 1=6 MAYA waveforms, which have χ1z ¼ 0.2
and χ2z ¼ 0.0. We have set Mtot ¼ 100M⊙ for these
waveforms. Figure 10 provides a visual representation of
the results when this modified criterion is applied to these
three different mass ratio systems observed at three distinct
inclinations and for both H1 and CE. The figure illustrates
that our current waveforms suffice in terms of accuracy for
systems with q ¼ 1 and q ¼ 1=3, regardless of whether we
are dealing with H1 or CE. For systems with q ¼ 1=6, we
find that our current resolutions in the MAYA catalog will be
accurate for the median SNR of 10 for aLIGO [4] and 20
for CE [12]. But considering that LIGO Voyager will be at
least four times more sensitive than aLIGO [68] and CE
will observe signals with SNRs above 600, we find that
current resolutions are not sufficient for such high SNR
signals for inclinations greater than π=3 for H1 and for all
possible inclinations for CE.
It is important to note that the accuracy prediction is

dependent on the total mass since reducing Mtot places
more of the waveform within the detectors’ sensitive bands,
causing more truncation error to accumulate and conse-
quently lowering the SNR at which a given resolution
introduces significant parameter bias.

VI. CONCLUSIONS

In this work, we have assessed the impact of NR
truncation errors on PE. We accomplished this by perform-
ing PE, across a range of SNRs, on simulated GW signals
generated at different NR resolutions. We found that for
SNRs where a specific resolution ensures unbiased PE,
employing a higher resolution does not yield additional
scientific insights. Additionally, we have shown that the

resolution required for unbiased PE increases as the mass
ratio decreases and/or the observed inclination angle
increases. The accuracy requirements are also influenced
by the total mass of the system; as the total mass decreases,
more accurate waveforms are necessary to achieve an equi-
valent level of PE accuracy at a given SNR. Furthermore,
the shape of the noise curve of a detector is a key factor in
defining accuracy requirements. The accuracy demands
differ between detectors such as CE and aLIGO, particu-
larly due to the heightened sensitivity of CE at lower
frequencies.
We have provided a measure for determining the SNR at

which a resolution will produce significant parameter bias.
By comparing the critical SNR predictions from this
measure with those from full PE for aLIGO and CE, we
have shown that the measure provides reasonably accurate
estimates of the critical SNR, with most predictions being
conservative. To make predictions for the resolution
requirements for future NR codes, we applied this measure
to three different mass ratio NR waveforms observed at
various inclinations and for both detectors. From this
application we predict, for equal and moderately unequal
mass ratio, our current NR waveforms will be sufficiently
accurate, even when observed at high inclinations. For
mass ratios around 1=6, our current resolutions will be
accurate for the median SNRs for both detectors. However,
they will introduce significant parameter bias in the PE for
high SNR signals, at all inclinations for CE, and at high
inclinations for LIGOVoyager. Considering that, at a given
SNR, the resolution required for unbiased PE increases as
the mass ratio decreases, current resolutions will produce
significant parameter bias in the PE of much lower mass
ratio signals even at median SNRs.
In order to attain unbiased PE of signals from binary

systems with low mass ratios, we need to generate more
accurate NR waveforms. However, the generation of
accurate waveforms is a time-consuming process requiring
finite-differencing codes to efficiently scale with an
increased number of computational nodes. Consequently,
significant efforts are underway to improve the paralleliza-
tion and scalability of NR codes [69,70]. It is imperative to
achieve these improvements to maximize the scientific
outcomes of GW observations.
In the future, we plan to study the impact of other

sources of NR errors, such as extraction radius and finite-
differencing order, on PE. Additionally, we aim to explore
the impact of truncation error on the recovery of parameters
like Mc and χeff over a wide range of injection para-
meters. We also plan to extend this analysis to the Laser
Interferometer Space Antenna (LISA). Given LISA’s
capability to detect signals with high SNRs and across a
wider range of parameters than those examined in this
study, our emphasis will be directed toward studying such
systems.
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APPENDIX A: JS DIVERGENCE

The JS divergence [55], is a statistical tool employed to
quantify the dissimilarity between two posterior distribu-
tions. It is convenient to use when assessing the agreement
between these distributions as it is symmetric in nature,
meaning DJSðajbÞ ¼ DJSðbjaÞ and its output is bounded
between 0 and 1 bit, where 0 bit means the two distributions
are identical and 1 bit means maximal divergence [71].
Given two discrete probability distributions aðxÞ and

bðxÞ, the JS divergence between them is defined as:

DJSðajbÞ ¼
1

2

Z �
aðxÞlog2

�
aðxÞ
mðxÞ

�

þ bðxÞlog2
�
bðxÞ
mðxÞ

��
dx ðA1Þ

where mðxÞ ¼ ½aðxÞ þ bðxÞ�=2. To evaluate the conver-
gence of the RIFT algorithm, we generate kernel density
estimators (KDEs) for the marginal probability density
functions (PDFs) for each intrinsic parameter. These
estimators are constructed using the samples obtained from
two consecutive iterations and are subsequently utilized as
a and b in Eq. (A1) to calculate the JS divergence between
them. Our chosen convergence criterion entails achieving a
JS divergence of less than 10−3 between two successive
iterations. This threshold is determined while taking into
account the anticipated JS divergence resulting solely
from sampling errors. Consider the following experiment:
we draw two sets of independent samples from standard

normal distributions. We then carry out our JS procedure
with these samples, forming KDEs for a and b from the two
sets and computing DJSðajbÞ. In Fig. 11 we illustrate the
median and standard deviation of DJS from 1000 iterations
of this test as we vary the number of samples. JS divergence
values of ∼10−4 are thus expected due to sampling errors,
even for identical distributions. In our study, we typically
use 85,000 samples from RIFT to test convergence, to
ensure that there is no impact from sampling variance.

APPENDIX B: ADDITIONAL RESULTS

1. q = 1, ι=π=6

Figure 12 provides a comprehensive summary of our
findings for this system, mirroring the observations made in

FIG. 11. Sampling errors: JS divergence computed between
KDEs built from two sets of samples from standard normal
distributions as a function of the number of samples, illustrating
the effect of sampling errors. The points are medians, with error
bars denoting one standard deviation. These values come from
1000 JS divergence calculations at each x-axis point.

FIG. 12. Absolute normalized bias in the marginalized Mc
posterior distributions of q ¼ 1, ι ¼ π=6 injections as a function
of SNR: The dashed horizontal line marks an absolute normalized
bias of unity. The bias values were calculated with respect
to M=200.
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the face-on case. Additionally, the PE results are provided
in Fig. 13 (Fig. 14) for H1 (CE). The top panel shows the
1-D and 2-D histogram plots for SNR 7 (6) and SNR 79 (55),
where M=75 and M=135 are the predicted critical grid

spacings respectively. The bottom panel shows the detector-
frame Mc posterior distribution for all eight SNRs
and Table V provides the normalized bias values as a func-
tion of SNR.

FIG. 13. PE results for q ¼ 1, ι ¼ π=6 injections (H1): Top left: one- and two-dimensional marginal posterior distributions forMc; q,
and χeff . Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-diagonal panels show the
90% credible intervals for the two-dimensional marginal posterior distribution. Different colored curves correspond to different
resolutions. Injections had an SNR of 7 and the minimum resolution for indistinguishability at that SNR is predicted to be ðM=75Þ−1.
Top right: corner plot produced after performing PE at an SNR of 79, where the minimum resolution for indistinguishability is predicted
to be ðM=135Þ−1. Bottom: one-dimensional marginalized posterior distributions for Mc are presented here. PE was conducted at a
sequence of SNRs, with all parameters held constant except for DL. Each panel illustrates the outcomes for a specific SNR, and distinct
colored curves represent different resolutions. With increasing SNR, the M=80 posterior gradually separates from the others.
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FIG. 14. PE results for q ¼ 1, ι ¼ π=6 injections (CE): Top left: one- and two-dimensional marginal posterior distributions forMc; q,
and χeff . Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-diagonal panels show the
90% credible intervals for the two-dimensional marginal posterior distribution. Different colored curves correspond to different
resolutions. Injections had an SNR of 6 and the minimum resolution for indistinguishability at that SNR is predicted to be ðM=75Þ−1.
Top right: corner plot produced after performing PE at an SNR of 55, where the minimum resolution for indistinguishability is predicted
to be ðM=135Þ−1. Bottom: one-dimensional marginalized posterior distributions for Mc are presented here. PE was conducted at a
sequence of SNRs, with all parameters held constant except for DL. Each panel illustrates the outcomes for a specific SNR, and distinct
colored curves represent different resolutions. With increasing SNR, the M=80 posterior gradually separates from the others.
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2. q= 1=3, ι= 0

PE results are shown in Fig. 15 for H1 and Fig. 16 for
CE. In both figures, the top panels display the 1-D and 2-D
histogram plots at SNR 37 (21) and SNR 203 (122) for
H1 (CE), whereM=85 andM=135 are the predicted critical
grid spacings respectively. While the M=100 posterior
shows deviation from the M=180 posterior, the deviation
is not as pronounced as was for q ¼ 1 injections. This is due

to the resolutions being close to each other, minimizing the
disparity. The bottom panel in both figures shows the margi-
nalized Mc posteriors for the sequence of SNRs. In this
panel, a similar observation is made, the lowest resolution
posterior distribution deviates from the highest resolution
posterior distribution, although not as prominently as obser-
ved for q ¼ 1 injections. Table VI provides the normalized
bias values as a function of SNR for both detectors.

TABLE V. Normalized bias in the marginalized Mc posterior distributions of q ¼ 1, ι ¼ π=6 injections: Bias
observed in the lower resolution posteriors, calculated with respect to M=200, for H1 (top) and CE (bottom).

SNR Δcritical M=80 M=120 M=140

6 M=70 −0.10 −0.02 −0.02
7 M=75 −0.21 −0.04 −0.02
12 M=85 −0.38 −0.06 −0.03
19 M=95 −0.62 −0.08 −0.05
29 M=105 −1.01 −0.13 −0.04
41 M=115 −1.51 −0.20 −0.10
58 M=125 −2.49 −0.32 −0.16
79 M=135 −4.57 −0.49 −0.21

SNR Δcritical M=80 M=120 M=140

4 M=70 −0.06 −0.01 −0.00
6 M=75 −0.16 −0.03 −0.02
9 M=85 −0.47 −0.11 −0.04
15 M=95 −0.77 −0.15 −0.07
20 M=105 −1.13 −0.24 −0.10
28 M=115 −1.65 −0.35 −0.15
40 M=125 −2.22 −0.41 −0.17
55 M=135 −3.24 −0.59 −0.25

TABLE VI. Normalized bias in the marginalized Mc posterior distributions of q ¼ 1=3, ι ¼ 0 injections: Bias
observed in the lower resolution posteriors, calculated with respect to M=180, for H1 (top) and CE (bottom).

SNR Δcritical M=100 M=120 M=140

37 M=85 −0.28 −0.12 −0.03
58 M=95 −0.39 −0.16 −0.06
87 M=105 −0.41 −0.15 −0.01
107 M=115 −0.49 −0.35 −0.08
149 M=125 −0.78 −0.38 −0.05
203 M=135 −1.11 −0.65 −0.06

SNR Δcritical M=100 M=120 M=140

21 M=85 −0.31 −0.12 −0.01
32 M=95 −0.34 −0.15 −0.06
48 M=105 −0.42 −0.17 −0.05
64 M=115 −0.58 −0.26 −0.09
90 M=125 −0.69 −0.31 −0.09
122 M=135 −0.76 −0.46 −0.24
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FIG. 15. PE results for q ¼ 1=3, ι ¼ 0 injections (H1): Top left: one- and two-dimensional marginal posterior distributions forMc; q,
and χeff . Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-diagonal panels show the
90% credible intervals for the two-dimensional marginal posterior distribution. Different colored curves correspond to different
resolutions. Injections had an SNR of 37 and the minimum resolution for indistinguishability at that SNR is predicted to be ðM=85Þ−1.
Top right: corner plot produced after performing PE at an SNR of 203, where the minimum resolution for indistinguishability is
predicted to be ðM=135Þ−1. Bottom: one-dimensional marginalized posterior distributions forMc are presented here. PE was conducted
at a sequence of SNRs, with all parameters held constant except for DL. Each panel illustrates the outcomes for a specific SNR, and
distinct colored curves represent different resolutions.
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FIG. 16. PE results for q ¼ 1=3, ι ¼ 0 injections (CE): Top left: one- and two-dimensional marginal posterior distributions forMc; q,
and χeff . Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-diagonal panels show the
90% credible intervals for the two-dimensional marginal posterior distribution. Different colored curves correspond to different
resolutions. Injections had an SNR of 21 and the minimum resolution for indistinguishability at that SNR is predicted to be ðM=85Þ−1.
Top right: corner plot produced after performing PE at an SNR of 122, where the minimum resolution for indistinguishability is
predicted to be ðM=135Þ−1. Bottom: one-dimensional marginalized posterior distributions forMc are presented here. PE was conducted
at a sequence of SNRs, with all parameters held constant except for DL. Each panel illustrates the outcomes for a specific SNR, and
distinct colored curves represent different resolutions.
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