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A small quantum system within the gravitational field of a massive body will be entangled with the
quantum degrees of freedom of the latter. Hence, the massive body acts as an environment, and it induces
nonunitary dynamics, noise, and decoherence to the quantum system. It is impossible to shield systems on
Earth from this gravity-mediated decoherence, which could severely affect all experiments with macro-
scopic quantum systems. We undertake a first-principles analysis of this effect, by deriving the
corresponding open system dynamics. We find that near-future quantum experiments are not affected,
but there is a strong decoherence effect at the human scale. The decoherence time for a superposition of two
localized states of a human with a one meter separation is of the order of one second.
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I. INTRODUCTION

Contrasting the existence of many hypotheses or theories
about a quantum theory of gravity, the experimental
information about the interplay of gravity and quantum
theory is surprisingly sparse, even in the nonrelativistic,
weak-field regime. The famous Colella-Overhauser-Werner
(COW) experiment [1] established that the effects of a
background gravitational field on nonrelativistic particles
are accounted by the addition of a potential term in the
Hamiltonian operator. Later experiments on neutrons
bouncing off a horizontal mirror [2] demonstrated the
existence of bound states due to the gravitational field.
There is as yet no experimental test of the gravitational

interaction between two different quantum matter distri-
butions. In classical physics, gravity is universal; that is, it
affects all bodies. It is always attractive, so it is impossible
to shield any body from its effects. Furthermore, in the
nonrelativistic weak-field limit, gravity is nondynamical. It
is described solely by the gravitational potential, which is
completely slaved to the mass density through Poisson’s
equation.
Taking the gravitational potential to be slaved to the mass

density also for quantum systems is perhaps the most
conservative assumption about the relation of gravity and
quantum theory in the weak-field regime. Nonetheless, it
has profound implications. It implies the possibility of
gravitational Schrödinger-cat states [3], that is, of measur-
able superpositions of the gravitational force. It also implies
that the gravitational interaction may induce quantum
correlations, such as entanglement [4–7], that are exper-
imentally accessible.

This means that a small quantum particle within the
gravitational field of a massive body—for example, Earth—
is entangled with the quantum degrees of freedom of the
latter. Hence, when considering the reduced dynamics of the
small particle, the massive body plays the role of an
environment, and it leads to nonunitary dynamics, noise,
and decoherence.
In this paper, we undertake a first-principles analysis

of open system dynamics and decoherence for a particle
in the gravitational field of a heavy body. We call this type
of decoherence “gravity mediated,” rather than “gravita-
tional,” because it originates from the quantum fluctuations
of matter. Gravity plays the role of the transmission channel
for those fluctuations, unlike gravitational decoherence
models, in which the source of decoherence is the gravi-
tational field itself [8,9].
The main motivation for our analysis is that gravity-

mediated decoherence affects any system inside the gravi-
tational field of the Earth. It sets an upper limit to the size of
any macroscopic superpositions that can be created in a
terrestrial laboratory. The existence of such a limit is
unavoidable, but its value cannot be estimated with simple
arguments: a detailed analysis and modeling is necessary.
There is a good a priori possibility that this limit would
affect many proposed experiments that involve macro-
scopic superpositions. This includes tests of dynamical
reduction theories [10,11], tests of fundamental/gravita-
tional decoherence [8,9], and generation of gravity-induced
effects, such as entanglement [4–7]. It is therefore essential
to have a quantitative estimate of the strength of gravity-
mediated decoherence.
We undertake a first-principles analysis of the effect, and

we evaluate the resulting decoherence rate. For Earth, this
rate is small; it will not affect currently proposed experi-
ments on macroscopic quantum systems. However, it is not
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negligible. Gravity-mediated decoherence effects become
significant when quantum superpositions reach the scale of
humans (or of cats). The decoherence time for a super-
position of two localized states with mean separation of
one meter for a human is of the order of one second.
Macroscopic superpositions of significantly heavier bodies
are not possible on the surface of Earth. However, the
decoherence rate drops as d−3, where d is a quantum
particle’s distance from the surface of Earth. The limits set
by gravity-mediated decoherence are not fundamental but
practical.
To obtain these results, we derived the open system

dynamics for a particle inside the gravitational field gen-
erated by a large body. This dynamics is well approximated
by a quantum Brownian motion (QBM) model [12–15],
which is exactly solvable.
Gravity-mediated decoherence affects quantum systems

in the vicinity of all massive bodies, except for black holes.
The latter are vacuum solutions to Einstein’s equation, and
they do not contain any quantum matter to generate
decoherence. The model constructed here applies to any
gravitating system for which the Newtonian description of
gravity is a good approximation. For example, it applies to
quantum particles in the vicinity of compact stars, such as
white dwarfs.
The structure of this paper is the following. In Sec. II, we

develop the dynamics of our model, and we show that it is
mathematically equivalent to QBM. In Sec. III, we present
the master equation and derive a general formula for the
decoherence rate. In Sec. IV, we make some simplifying
approximations to perform an explicit calculation of the
decoherence rate. In Sec. V, we summarize and discuss our
results.

II. SETUP

We consider a particle of mass m under a potential VðxÞ
localized at x, and interacting gravitationally with a spheri-
cally symmetric mass distribution of total mass M (see
Fig. 1). We assume that the massive body is composed of a
finite collection of uncoupled harmonic oscillators of
masses mi and frequencies ωi, each located at ri þ δri,
where the term δri describes small displacements from each
oscillator’s equilibrium position. The Hamiltonian of the
combined system reads

Htot ¼ Hm þHM þHint; ð1Þ

where

Hm ¼ p2

2m
þ VðxÞ; ð2Þ

HM ¼
X
i

�
p2i
2mi

þ 1

2
miω

2
i δr

2
i

�
; ð3Þ

are, respectively, the free Hamiltonians of the particle and
the harmonic oscillators and Hint is the interaction term
between the small particle of mass m and each of the
harmonic oscillators that compose the heavy body. The
interaction Hamiltonian is described by the Newtonian
gravitational potential

Hint ¼ −
X
i

Gmmi

jx − ðri þ δriÞj
; ð4Þ

where G is the gravitational constant. Expanding the
interaction term for small variations of δri around the
separation distance jx − rij, we obtain

Hint ¼ −
X
i

Gmmi

�
1

jx − rij
þ ðx − riÞ · δri

jx − rij3
þ…

�
: ð5Þ

The first term is of the form mϕðxÞ, where ϕ is the
gravitational potential generated by the massive body. It
can therefore be absorbed inHm.We assume a potentialVðxÞ
that compensates for thegravitational acceleration, so that the
small particle only performs small oscillations of frequency
Ω around an equilibrium point x0. Modulo a constant,

the HamiltonianHm becomes Hm ¼ p2

2m þ 1
2
mΩ2δx2, where

δx ¼ x − x0.
Substituting x ¼ x0 þ δx in the second term of Eq. (5),

we obtain to leading order in δx,

FIG. 1. A particle of massm lies within the gravitational field of
a massive body of a total mass M. The large body can be
described as a collection of cubic cells, with each shell localized
around a point ri and representing a crystal lattice of oscillators.
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H0
int ¼ −

X
i

Gmmi

jx0 − rij3
�
ðx0 − riÞ · δri þ δx · δri

− 3
ðx0 − riÞ · δriðx0 − riÞ · δx

jx0 − rij2
�
: ð6Þ

The first term can be absorbed by a shift in the equilibrium
positions of the oscillators. The second and third terms give
a genuine coupling between δx and δri. Assuming that the
small particle moves along the direction with unit vector
n, we can write δx ¼ δxn. Then, the coupling term takes
the form

H00
int ¼ δx

X
i

ci · δri; ð7Þ

where

ci ≡ Gmmi

jx0 − rij3
�
3n · ðx0 − riÞðx0 − riÞ

jx0 − rij2
− n

�
ð8Þ

defines coupling constants. In this way, the Hamiltonian of
the total system can be placed into the form

Htot ¼ Hm þHM þ δx
X
i

ci · δri; ð9Þ

which is equivalent to the QBM Hamiltonian that describes
the dynamics of a Brownian particle—modeled as a
harmonic oscillator—interacting with a thermal environ-
ment comprising a large number of independent harmonic
oscillators.

III. MASTER EQUATION

The dynamics of the reduced density matrix ρðτÞ of the
small particle, obtained by tracing out the degrees of
freedom of the environment, can be described by the
Hu-Paz-Zhang (HPZ) master equation [15]:

dρðτÞ
dτ

¼ −
i
ℏ
½H̃mðτÞ; ρðτÞ� − iγðτÞ½δx; fp; ρðτÞg�

−DðτÞ½δx; ½δx; ρðτÞ�� − fðτÞ½δx; ½p; ρðτÞ��: ð10Þ

In the above equation, the term H̃mðτÞ represents the
particle Hamiltonian with a time-dependent frequency
shift Ω2 þ δΩ2ðτÞ. The coefficient γðτÞ describes dissi-
pation, while DðτÞ and fðτÞ are diffusion terms. The
explicit expressions of the time-dependent coefficients
δΩ2ðτÞ; γðτÞ; DðτÞ, and fðτÞ, which are rather cumber-
some to be reported here, can be found in Refs. [15,16].
We note that the HPZ master equation is exact. It is

valid for arbitrary temperatures of the environment and
open system-environment coupling strengths. It is
derived only under the assumption of a factorized initial
state ρtot ¼ ρ ⊗ ρenv for the total system, where the

environment is in a thermal equilibrium state ρenv at
temperature T.
Straightforward expressions for the coefficients in the

master equation (10) can be obtained by employing differ-
ent approximation schemes during its derivation. Examples
include the assumption of a weak coupling between the
open system and the environment, and the application of
the Markov approximation, which neglects memory effects
in the time evolution of the open system [17,18]. Under the
latter two approximations, the diffusion coefficient D is
given by

D ¼ 1

ℏ2

Z
∞

0

dsνðsÞ cosðΩsÞ; ð11Þ

where

νðτÞ ≔
X
i

ℏjcij2
2miωi

coth

�
ℏωi

2kBTi

�
cosðωiτÞ ð12Þ

is the so-called noise kernel. We have assumed a different
temperature Ti for each oscillator. Indeed, if the large body
is taken to be Earth, the temperature depends on the
distance from the center.
In the position representation, ρðx; x0; τÞ≡ hxjρðτÞjx0i,

the term of the master equation with the coefficient D can
be expressed as

−D½x̂; ½x̂; ρðτÞ�� ⟶ −Dðx − x0Þ2ρðx; x0; τÞ; ð13Þ

which indicates that the off-diagonal components (x ≠ x0)
of the reduced density matrix decohere at a rate
Dðx − x0Þ2 [19–22]. Thus, the quantity D, which has
dimensions ½time�−1 × ½length�−2, allows the definition
of a decoherence time

τdec ¼
1

DΔx2
; ð14Þ

as the characteristic timescale on which spatial coherence
over a distance Δx ¼ x − x0 becomes suppressed.

IV. THE NOISE KERNEL

We treat the heavy body as a solid composed by three-
dimensional cubic cells, with each shell centered at ri and
representing a crystal lattice of oscillators (see Fig. 1) at
constant temperature TðriÞ. Each of these cubic cells
comprises a total number of normal modes

N ¼ 1

3

Z
∞

0

grðωÞdω; ð15Þ

where grðωÞ is the density of modes whose frequencies lie
in the infinitesimal range between ω to dω. The index r
denotes spatial dependency into the characterization of the
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density of modes of each particular cubic cell. Hence, the
sum over i in the noise kernel (12) becomes a sum over all
distances ri and over all modes in a given cell, labeled by λ.
That is,

P
i →

P
ri

P
λ.

Employing the continuum limit for the spectrum of the
environmental frequencies ωλ in the noise kernel (12), we
obtain

νðτÞ ¼
X
r

Z
dω

ℏG2m2mr

2ω

�
jCrj2grðωÞ

× coth

�
ℏω

2kBTðrÞ
�
cosðωτÞ

�
; ð16Þ

where for later convenience we have written the coupling
constants (8) as ci ¼ GmmiCi.
We will next consider a frequency density of the form

grðωÞ ¼ αrω
kðrÞ, up to a cutoff frequency ωcðrÞ, The

spectral densities of many systems of interest (e.g., phonon
baths, EM field baths) indeed follow a power law. More
generally, decoherence is primarily due to the infrared
frequency modes of the environment, so it is usually
sufficient to consider the dominant behavior of the spectral
density as ω → 0; a power law is generic in this limit [13].
Here, k > 1 is a constant specific to each cubic cell in the
crystal solid. The normalization constant αr is directly
computed through Eq. (15). It follows that

grðωÞ ¼
8<
:

3NðkðrÞþ1Þ
ωcðrÞkðrÞþ1 ω

kðrÞ; for ω ≤ ωcðrÞ
0; for ω > ωcðrÞ

: ð17Þ

Accordingly, the noise kernel is given by

νðτÞ¼ 3

2
ℏG2m2

X
r

kðrÞþ1

ωcðrÞkðrÞþ1

Z
dωNmrjCrj2ωkðrÞ−1

×coth

�
ℏω

2kBTðrÞ
�
cosðωτÞ

¼ 3

2
ℏG2m2

Z
d3r

kðrÞþ1

ωcðrÞkðrÞþ1
ρðrÞjCrj2

Z
ωc

0

dωωkðrÞ−1

×coth

�
ℏω

2kBTðrÞ
�
cosðωτÞ; ð18Þ

where Nmr ¼ mðrÞ is the mass of each cell. In the second
equality the continuum-mass limit is taken and ρðrÞ is the
density of the spherical symmetric mass distribution.
Hence, to evaluate the noise kernel, we need explicit forms
for the functions TðrÞ; ρðrÞ;ωcðrÞ; kðrÞ in the interior of the
compact body.
Here, we will consider the case where these functions are

constant. For Earth, this does not affect the order of
magnitude of D and, hence, the decoherence time. The
density from Earth’s center to the surface changes at most

by a factor of 5; the temperature is significantly higher at
the center, but the contribution of internal layers to D is
strongly suppressed.
For constant functions TðrÞ; ρðrÞ;ωcðrÞ; kðrÞ, and for a

spherical body of radius R, we only need to compute the
integral

Iðx0; RÞ ¼
Z
r≤R

d3rjCrj2: ð19Þ

For x0 along the z-axis, particle motion along n ¼ ð0; 1; 0Þ,
and r ¼ ðr sin θ cosϕ; r sin θ sinϕ; r cos θÞ, we obtain

Iðx0; RÞ ¼
Z
r≤R

d3r
jx0 − rj6

�
1þ 9r4sin4θsin2ϕ

jx0 − rj4

−
6r2sin2θsin2ϕ

jx0 − rj2 þ 9r2sin2θsin2ϕ
jx0 − rj4

× ðx0 − r cos θÞ2
�
: ð20Þ

We evaluate this integral in Appendix A. We note that,
for a body at distance d ≪ R from the surface of Earth,
x0 ¼ Rþ d and

Iðx0; RÞ ≃
3π

16d3
: ð21Þ

The noise kernel reads

νðτÞ ¼ 9ðkþ 1ÞℏG2m2M
8πωkþ1

c R3
Iðx0; RÞ

×
Z

ωc

0

dωωk−1 coth

�
ℏω
2kBT

�
cosðωτÞ; ð22Þ

where M is the total mass of the massive body.
The noise kernel diverges for d → 0. This means that the

decoherence rate is very sensitive on the outer layers of the
massive body. When using the noise kernel to model a
specific experiment, we must split the mass distribution
into a spherical part that corresponds to the bulk of the
Earth and a part that models the immediate surroundings of
the particle in the experiment. In this sense, d is best
understood as an effective distance of the particle from the
surrounding masses. For particles near the surface of the
Earth, the effective d is of the order of the length scales that
characterize the laboratory.

A. The decoherence time

We next focus our attention to the case of a function of
the density of states that is quadratic to frequency; i.e, we
choose k ¼ 2 in Eq. (17). This is equivalent to the Debye
model for the density of states of solids [23,24]; see also
Appendix B. The cutoff frequency ωc coincides with the
Debye frequency ωD of the solid, and the environmental
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degrees of freedom are characterized by an Ohmic spectral
density (in an Ohmic environment, the damping force
experienced by the Brownian particle is linear to its
velocity [15,25]).
The decoherence rate reads

D¼ 27G2m2M
8πℏπω3

DR
3
Iðx0;RÞ

×
Z

∞

0

dτ cosðΩτÞ
Z

ωD

0

dωωcoth

�
ℏω
2kBT

�
cosðωτÞ:

ð23Þ

At the limit ωD → ∞, we obtain

D ¼ 27G2m2M
8πℏω3

DR
3
Iðx0; RÞ

�
πΩ
2

coth

�
ℏΩ
2kBT

��
: ð24Þ

In the physically relevant regime, kBT ≫ ℏΩ, we
approximate cothðℏΩ=2kBTÞ ≈ 2kBT=ℏΩ. Then,

D ¼ 27G2m2M
8R3

kBT
ℏ2ω3

D
Iðx0; RÞ: ð25Þ

In Table I, we present the decoherence time for a
superposition of two localized states with mean separation
of Δx ¼ 1 m in various cases, calculated by means of
Eq. (25). For a human at a distance 10 cm from the surface
of Earth (R⊕ ¼ 6.4 × 106 m, M⊕ ¼ 5.9 × 1024 kg), we
find a decoherence time of order of 1 s. Earth is described
as a Debye solid with a Debye frequency of order
ωD ∼ 1013 Hz. We also give the decoherence rate for a
white dwarf. During the crystallization phase of its ion
lattice, a white dwarf (M ∼ 1M⊙ ¼ 2 × 1030 kg, R ∼ R⊕)
can also be described as a Debye solid [26]. In this case, the
Debye frequency is of the order ωD ∼ 1018 Hz.

V. CONCLUSIONS

We showed that any quantum particle within the gravi-
tational field of a massive body is subject not only to the

gravitational pull but also to nonunitary dynamics that
originate from the intrinsic fluctuations of the matter in the
massive body and are mediated by the gravitational field.
The nonunitary contribution is of second-order to the

gravitational constant, and for this reason, it is implicitly
assumed to be negligible and it is usually ignored.
However, the strength of a nonunitary term depends on
the strength of the fluctuations and may become quite
strong, for example, at high temperatures or in an envi-
ronment with a strong concentration of modes in the deep
infrared. In any case, the gravitational field will mediate a
decoherence process, from which no experiment in the
gravitational field of the massive body can be shielded.
Our analysis demonstrated that this effect does not affect

the regime of interest for near-future experiments with
macroscopic quantum systems. It is expected to appear for
superpositions at the human scale.
We note that our treatment is completely general: it can

be applied to describe quantum phenomena within the
gravitational field of any compact body that is compatible
with the Newtonian description of gravity. It allows for the
incorporation of fine details, such as density and temper-
ature gradients, or the gravitational influence of the
immediate surroundings of the quantum system.
Our analysis in this paper is restricted to positional

decoherence. However, this is not the only way that the
environment can destroy quantum coherences. Since the
environmental degrees of freedom are entangled with those
of the quantum particles, it will also affect the generation of
entanglement inmultipartite systems due to the gravitational
force. It is therefore important to analyze the degree towhich
proposed experiments for gravity-induced entanglement are
affected by the presence of gravity-mediated decoherence.
Finally, we note that our analysis straightforwardly

applies to the decoherence induced by a large charged
body on microscopic charged particles. In this case, the
Coulomb-mediated decoherence effects are much stronger
and, hence, experimentally accessible.

APPENDIX A: EXPLICIT EXPRESSIONS
FOR THE DIFFUSION CONSTANT

We evaluate the quantity Iðx0; RÞ defined by Eq. (19).
Assuming that x ¼ ð0; 0; x0Þ, n ¼ ð0; 1; 0Þ, and r ¼
ðr sin θ cosϕ; r sin θ sinϕ; r cos θÞ,

Iðx0; RÞ ¼
Z
r≤R

d3r
jx0 − rj6

�
1þ 9r4sin4θsin2ϕ

jx0 − rj4

−
6r2sin2θsin2ϕ

jx0 − rj2 þ 9r2sin2θsin2ϕ
jx0 − rj4

× ðx0 − r cos θÞ2
�
: ðA1Þ

For a sphere of radius R, we define z ¼ x0=R, x ¼ r=R to
obtain

TABLE I. The decoherence time in different regions of the
parameter space. The distance of 400 km corresponds to the
average altitude at which the International Space Station main-
tains its orbit. The mass m of 10−27 kg corresponds to the atomic
mass.

Massive
body

Distance
from surface Mass m

Decoherence
time

Earth 10 cm 100 kg τdec ∼ 1 s
Earth 10 cm 105 kg τdec ∼ 10−6 s
Earth 400 km 100 kg τdec ∼ 1020 s
Earth 10 cm 10−27 kg τdec ∼ 1058 s
White dwarf 10 cm 100 kg τdec ∼ 10−6 s
White dwarf 10 m 100 kg τdec ∼ 1 s
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Iðx0; RÞ ¼
1

R3
FðzÞ; ðA2Þ

where

FðzÞ ¼ 2π

Z
1

0

dx
Z

1

−1
dξ

x2

jz − xj6
�
1þ 9x4ð1 − ξ2Þ

2jz − xj4

−
3x2ð1 − ξ2Þ
jz − xj2 þ 9z2x2ð1 − ξ2Þ

2jz − xj4 −
9zx3ð1 − ξ2Þξ

jz − xj4
�
;

ðA3Þ

and we wrote ξ ¼ z · x=ðzxÞ.
We carry out the integration over ξ to obtain

FðzÞ¼ 4π

3

1

ðz2−1Þ3þ4π

Z
1

0

dx
x4

ðx2− z2Þ4

¼ 4π

3

1

ðz2−1Þ3þπ
3zþ8z3−3z5

12z3ðz2−1Þ3 þ
π

4z3
arccothðzÞ:

ðA4Þ

For z ¼ 1þ x, with x ≪ 1, we obtain

FðxÞ ≃ 3π

16x3
: ðA5Þ

APPENDIX B: DEBYE SOLID

A solid can be viewed as an ordered array of atoms,
where each atom is fixed to a lattice site and can oscillate
about its equilibrium position. The Debye model [23,24]
treats these atomic vibrations as sound waves that propa-
gate through the crystal lattice at the speed of sound υs.
The vibrational energy is quantized, and the quanta of

vibrational energy are known as phonons, analogous to
photons in electromagnetic waves. The frequencies of these
phonons are linearly related to their wave vectors k through
the dispersion relation ωðkÞ ¼ υsjkj.
The Debye model allows for a continuum spectrum of

oscillation frequencies, resulting in a total number of
normal modes of vibration equal to 3N, expressed as

3N ¼
Z

ωD

0

gðωÞdω; ðB1Þ

where N is the number of atoms in the crystal, gðωÞ is the
density of normal modes meaning that gðωÞdω represents
the number of normal modes with frequencies in the
infinitesimal range between ω and ωþ dω, and ωD is a
maximum allowed phonon frequency, known as the Debye
frequency. The Debye frequency acts as a cutoff for phonon
frequencies and is determined by the minimum wavelength
allowed for sound wave propagation in the lattice, con-
strained by the finite interatomic distance.
The Debye model approximates the density of modes as

gðωÞ ¼
(

9N
ω3
D
ω2; for ω ≤ ωD

0; for ω > ωD

: ðB2Þ

The Debye frequency is defined by

ω3
D ¼ 18π2n

�
1

υ3L
þ 2

υ3T

�
−1
; ðB3Þ

where n is the atomic density, υL is the velocity of the
longitudinal sound mode, and υT is the velocity of the
transverse sound modes.
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